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Article Info ABSTRACT 

Article History: 
Food insecurity is a complex issue that requires a deep understanding of its influencing 

factors. Accurate predictions are crucial for effective interventions. Machine learning is 

well-suited to the large and complex data available in the big data era. However, machine 

learning generally does not accommodate hierarchical or clustered data structures, making 

them challenging for machine learning modeling. One model that accommodates 

hierarchical data structures is the mixed-effects model. This study introduces a novel 

approach to predict food insecurity by integrating mixed-effects models and a generalized 

random forest. Mixed-effects models capture variations in hierarchical or clustered data, 

such as differences between regions, and the generalized random forest, as extended and 

developed from the traditional random forest, is integrated to model fixed effects and 

improve prediction accuracy. The empirical data used were the food insecurity data from 

2021 in West Java, Indonesia. The results show that mixed-effects models with a generalized 

random forest significantly improve the prediction accuracy compared to other models. The 

average performance measure shows GMEGRF is a good model and has a balanced 

accuracy value of 0.6789709, which is the highest result compared to other methods. This 

methodological advancement offers a new robust model for understanding and potentially 

mitigating food insecurity, ultimately informing efforts towards SDG 2 (Zero Hunger). 

Received: 1st May 2025 

Revised: 23rd June 2025 

Accepted: 17th August 2025 

Available online: 18th January 2026 

 

 

Keywords: 

Food insecurity; 

Generalized random forest;  

Mixed-effects models; 

Prediction. 

 

  

This article is an open access article distributed under the terms and 

conditions of the Creative Commons Attribution-ShareAlike 4.0 

International License (https://creativecommons.org/licenses/by-sa/4.0/).  
 

 

 
 

 

 

 

 

 
 
 

  

 

 

 

 

 

 

 

 
 

  

Copyright © 2026 Author(s)  
Journal homepage: https://ojs3.unpatti.ac.id/index.php/barekeng/  

Journal e-mail: barekeng.math@yahoo.com; barekeng.journal@mail.unpatti.ac.id  

Research Article  ∙  Open Access 

 

mailto:17.hfransiska@apps.ipb.ac.id
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
mailto:17.hfransiska@apps.ipb.ac.id
https://orcid.org/0000-0002-7983-5590
mailto:agusms@apps.ipb.ac.id
https://orcid.org/0000-0002-2732-1985
mailto:khairil@apps.ipb.ac.id
https://orcid.org/0000-0003-2892-4689
mailto:erfiani@apps.ipb.ac.id
https://orcid.org/0000-0001-5502-7321
https://ojs3.unpatti.ac.id/index.php/barekeng/
mailto:barekeng.math@yahoo.com
mailto:barekeng.journal@mail.unpatti.ac.id


1112 Fransiska et al.    MIXED-EFFECTS MODELS WITH GENERALIZED RANDOM FOREST: IMPROVED …  

1. INTRODUCTION 

Food insecurity is a global issue owing to its potential to be a widespread problem affecting individuals 

across lifespans in terms of health and well-being [1]. This means that a lack of access to sufficient nutritious 

food can have serious consequences for people of all ages, from babies and children to adults and seniors. 

Addressing this problem requires a thorough understanding. Food insecurity frequently varies across 

geographical regions and socioeconomic groups. Statistics can play a role in addressing the problem of food 

insecurity by developing statistical models to predict future trends in food insecurity. Accurate prediction of 

food insecurity is essential for the design and implementation of effective interventions and policies aimed at 

mitigating its impact and achieving food security. 

Big data related to food security, encompassing demographic, economic, environmental, and social 

indicators, make machine learning approaches particularly well-suited for analyzing and predicting this 

phenomenon. Several studies on machine learning models to predict food vulnerability include G. Nica-

Avram et al. [2], A. H. Villacis et al. [3], C. Gao el al. [4], S. Gholami et al. [5] and J. J. L. Westerveld et al. 

[6]. Machine learning algorithms are a valuable tool that enhances model goodness of fit, uncovers 

meaningful and valid hidden patterns in data, detects nonlinear and non-additive effects, offers insights into 

data trends, methodology, and theory, and advances scientific research [7]. However, food insecurity data 

often exhibit hierarchical or clustered structures. For instance, data may be collected at the household level 

within villages, districts, or provinces. These structures introduce dependencies between observations within 

the same cluster, violating the independence assumption of many standard machine learning algorithms. 

Several studies on mixed models: A. Hajjem et al.[8], A. Hajjem et al. [9], Hajjem et al. [10], J. Hu and S. 

Szymczak [11], P. Krennmair and T. Schmid [12], M. Pellagatti et al. [13] , R. J. Sela and J. S. Simonoff [14] 

, J. L. Speiser et al. [15],  L. Fontana et al. [16] , and D. Kusumaningrum et al. [17]. The hierarchical data 

approach, as highlighted by P. C. Chen et al., offers a good performance evaluation method by integrating 

expert judgment and data-driven techniques [18]. This approach is highly valuable as it provides more 

accurate and relevant insights, which ultimately contribute to the improvement of food security modeling.  

Machine learning models are generally good at finding patterns in complex datasets and using these 

patterns to make predictions. Random Forest is a popular and powerful machine-learning algorithm 

introduced by L. Breiman (2001) [19]. In machine learning, RF assumes that observations are obtained 

independently from a population. If data are hierarchical (nested, like students within classrooms within 

schools) or clustered in structure (grouped, like per capita income from various villages within a 

regency/district). It does not inherently understand these groupings and can treat them as independent data 

points, which can lead to biased inference owing to the underestimation of standard errors in linear models 

[20] and the identification of false subgroups and inaccurate variable selection [14], [21]. GRF, an extension 

of the traditional random forest, offers increased flexibility in modeling the relationships between features 

and the target variable [22]. The GRF algorithm employs forest-based local estimation and splitting to 

maximize heterogeneity for optimal split selection and utilizes a gradient tree algorithm to optimize an 

approximate criterion [22], [23], [24]. Several studies on GRF: E. Zhou and D. Lee 2024 [23] and H. 

Fransiska et al. [24]. The GRF model tends to be stable. 

Mixed-effects models are statistical techniques specifically designed to handle hierarchical and 

clustered data. Generalized Mixed-Effects Random Forest (GMERF) is one such example. This statement 

suggests that GMERF combines the strengths of mixed-effects models and random forests. Although it offers 

comparable performance to mixed models using linear methods, GMERF exhibits greater robustness [13]. 

This study proposes a novel approach to enhance the analysis and prediction of food insecurity by 

integrating mixed-effects models with a generalized random forest (GRF) algorithm. This approach aims to 

capture both the hierarchical structure of the data through mixed-effects models and the complex, nonlinear 

relationships through the GRF. Specifically, the mixed-effects component accounts for variations across 

regions or other relevant clusters, whereas the GRF models the fixed effects and improves overall prediction 

accuracy. 

2. RESEARCH METHODS 

This section details the methods used to predict food insecurity, focusing on machine learning 

techniques suitable for hierarchical or clustered data. We primarily employed the generalized mixed-effects 
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random forest (GMERF) and introduced a novel modification, the Generalized Mixed-Effects Generalized 

Random Forest (GMEGRF), aimed at improving prediction accuracy. For comparison, we also included 

standard Random Forest (RF) and Generalized Random Forest (GRF) models. All models were trained on 

high-quality food insecurity data and validated using cross-validation techniques to ensure robust and 

accurate predictions. This research framework is designed in such a way as to achieve the main objective, 

namely to obtain food vulnerability classification prediction results that have high accuracy and are relevant 

to existing data conditions. 

2.1 Frame work  

The framework is designed with components intended for reusability in various contexts. These 
components are organized within a structured and well-defined workflow. This workflow ensures that each 
step in the prediction process is conducted systematically and consistently, leading to more reliable results 
and a reduction in the potential for errors. For effective research, data preprocessing was also performed, 
including data cleaning and reducing variables with small variances. Data preprocessing is a crucial step in 
preparing raw data for use in the model [25]. This framework utilizes ML algorithms, both single algorithms 
and mixed models, to construct the most efficient prediction model. To ensure optimal model performance, 
cross-validation techniques were employed. Cross-validation is a critical technique for evaluating the 
performance of an ML model in assessing how well the model will perform on unseen data [26]. A workflow 
diagram of the study is shown in Fig. 1.  

  
Figure 1. The Study Workflow Diagram  

(Source: Smartart in word) 

Fig. 1 shows the five stages of our research methodology. Stage 1 consists of a dataset of food 

insecurity collected through a survey in West Java, Indonesia, in 2021 Stage 2 is data preprocessing, which 

is a crucial step to ensure the quality of the data used for modeling. In this stage, we cleaned the dataset to 

ensure that the dataset is devoid of incorrect or erroneous data and ready for the next stage of analysis [27].  

Additionally, variables with small variances are reduced because they provide limited information and 

can be removed to simplify the model and enhance computational efficiency. Near-zero variance variables 

either have a single, distinct value, or most of the data falls into one group [28]. Following this, feature scaling 

was carried out for numeric variables, transforming them using Z-score standardization. It was chosen over 

other methods because outliers are found in numerical variables, and this method is sensitive to outliers. This 

improves the computational efficiency of the machine learning models and promotes better prediction 

performance by preventing features with larger values from dominating the learning process. Stage 3: K-Fold 

Cross-Validation. K-fold cross-validation is a model evaluation technique that partitions a dataset into k 

equal-sized subsets known as folds. In each iteration, one-fold was designated as the testing data, whereas 

the remaining k-folds served as the training data. This process was repeated k times, with each fold taking a 

turn as the testing data [26].  

Stage 4 centers on the development and evaluation of predictive models utilizing both machine learning 

algorithms and a mixed-effects modeling approach. Specifically, this stage explores the application of single 

machine learning algorithms, Random Forest and Generalized Random Forest, along with their mixed-effects 

counterparts, Generalized Mixed-Effects Random Forest (GMERF) and Generalized Mixed-Effects 

Generalized Random Forest (GMEGRF), for predictive model construction. The incorporation of mixed-

effects models suggests the presence of a hierarchical or clustered structure within the data, which the 

researchers aim to address within their modeling framework. In stage 5 model evaluation, the performance 

of the chosen machine learning algorithms was evaluated using four popular values to evaluate classification 

   Dataset  
Data 

Preprocessing  K-Fold CV  

Machine 
Learning and 
Mixed Effect 

Machine 
Learning 

Algorithm 

 Model Evaluation 
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tasks: accuracy, sensitivity, specificity, and balanced accuracy. These values provide a comprehensive picture 

of the overall prediction accuracy, ability to identify positive and negative classes, and balance accuracy 

prediction, and their calculations are based on a confusion matrix [29], [30]. The confusion matrix serves as 

a pivotal evaluation tool for classification, summarizing the performance of a model through four critical 

scenarios: true positive (correct positive prediction), false positive (incorrect positive prediction), false 

negative (incorrect negative prediction), and true negative (correct negative prediction). It offers a profound 

understanding of the specific types of errors a model commits and forms the foundation for calculating more 

informative evaluation metrics [31], [32].  

2.2 Dataset Detail 

This study examines the state of household food insecurity in West Java, Indonesia, in 2021. A 

household was classified as food insecure if it answered "yes" to any of the eight questions in the Food 

Insecurity Experience Scale (FIES) survey. The data source for this study was the National Socio-Economic 

Survey (2021), which includes 23 fixed-effect predictor variables, one random-effect predictor variable, and 

one response variable: the classification of household food insecurity experience (Y) (Table 1). The dataset 

comprises 25,890 observations (households). 

Table 1. Details of the Features Present in the Dataset  

Variable What it does? 

𝑌 The Classification of Household Food Insecurity Experience 

𝑋1 Number Of Household Members 

𝑋2 Gender Of Head of Household 

𝑋3 Age Of Head of Household 

𝑋4 Literacy Status of Head of Household 

𝑋5 Highest Education Level of Head of Household 

𝑋6 Status of Bank Savings Accounts Owned 

𝑋7 Health Insurance Contribution Assistance Recipient Status 

𝑋8 Health Insurance Ownership Status 

𝑋9 Smoking Status of Head of Household 

𝑋10 Home Ownership Status 

𝑋11 House Size 

𝑋12 Type of House Wall Material 

𝑋13 Type of House Floor Material 

𝑋14 Adequacy of Home Sanitation 

𝑋15 Feasibility of Drinking Water Source 

𝑋16 People's Business Credit Recipient Status 

𝑋17 Bank/Cooperative Loan Recipient Status 

𝑋18 Village-Owned Enterprise Benefit Recipient Status 

𝑋19 Value of House and/or Land Assets 

𝑋20 Prosperous Family Card Recipient Status 

𝑋21 Family Hope Program Recipient Status 

𝑋22 Non-Cash Food Assistance Recipient Status 

𝑋23 Other Routine Assistance Recipient Status 

𝑅 Subdistrict 

2.3 Methods 

The research methods utilized included Random Forest (RF), Generalized Random Forest (GRF), 

Generalized Mixed-Effects Random Forest (GMERF), and Generalized Mixed-Effects Generalized Random 

Forest (GMEGRF). Random Forest is a machine learning technique that constructs an ensemble of decision 

trees to generate robust and accurate predictive models. This methodology involves the iterative development 

of multiple decision trees, each trained on random subsets of data and features, followed by the aggregation 

of their respective predictions. It operates through a sequence of distinct procedural steps: initially, bootstrap 

sampling generates multiple data subsets from the original dataset using randomized sampling with 

replacement/bootstrap sample; subsequently, decision tree (Dt) construction involves the development of 

individual decision trees for each of these subsets; each tree undergoes tree growth, expanding to its maximum 

potential without pruning, ensuring high variance; the algorithm then performs prediction, synthesizing the 

outputs of all constituent trees to formulate a final predictive result (majority vote); and finally, out-of-bag 

(OOB) error estimation evaluates the model's performance by utilizing data points excluded from the training 
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of individual trees, providing a robust measure of generalization. The illustration schematic diagram of the 

RF algorithm can be seen in Fig. 2 [33].  

 
Figure 2. Illustration Schematic of RF Algorithm  

(Source: A. Khairunnisa et al., 2024) 

The Generalized Random Forest (GRF) adapts the traditional RF framework through modified 

procedural steps tailored to specific statistical estimation tasks; initially, data may be partitioned for "honest" 

estimation, followed by tree construction where splitting criteria are adapted to the estimation task, such as 

heterogeneous treatment effects, utilizing information from local moment equations; subsequently, leaf node 

value assignments are determined based on the estimation goal, potentially involving calculations of 

treatment effects or other relevant quantities; finally, predictions from individual trees are aggregated, and 

methods are employed to calculate confidence intervals and perform statistical inference, thereby enabling 

the estimation of a broader range of statistical quantities beyond simple conditional means [22], [24]. 

Generalized mixed-effects random forest (GMERF) models represent an important advancement in 

machine learning techniques, particularly for datasets with complex hierarchical structures or correlated 

random effects. The GMERF algorithm aims to build an accurate predictive model for data with hierarchical 

or clustered structures by considering both random and fixed effects. The steps are as follows: first, identify 

the data structure and then initialize random effects, where random effects, which represent variations 

between groups, are initialized. This can be either a given initial value or initialized as zero. These random 

effects are iteratively updated during the algorithm process. Then, fit initial GLM Model, where an initial 

Generalized Linear Model (GLM) is fitted to obtain an initial estimate of the predictions. This model uses all 

covariates (predictor variables) but does not yet account for random effects. The algorithm then enters an 

iterative process in which the model is continuously updated until it reaches convergence (stable results) or 

a predetermined maximum number of iterations. Within the iterative sequence, it calculates the target value, 

fits random forest, fits the GLMM, and performs convergence checking. After the iterations are complete, 

the algorithm produces the final GMERF model, which includes the fitted GLMM, fitted RF model, and the 

final estimation of the random effects. In essence, The GMERF algorithm iteratively combines information 

from RF and GLMM to update the estimation of random effects and improve prediction accuracy. This 

process allows the model to capture nonlinear relationships in the data and consider hierarchical structures, 

resulting in a more accurate and comprehensive model [13].  

Given 𝑦𝑖𝑗 = (𝑦𝑖1, 𝑦𝑖2, . . . , 𝑦𝑖𝑛𝑗
) with observation units 𝑖, 𝑖 = 1,2, . . . , 𝑛𝑗, in groups 𝑗, 𝑗 = 1,2, . . . , 𝐽. 𝑌𝑖𝑗 

is assumed to follow an exponential family distribution using Eq. (1), as follows: 
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𝑓𝑖(𝑦𝑖𝑗|𝑏𝑗) = 𝑒𝑥𝑝 {
𝑦𝑖𝑗𝜂𝑖𝑗 − 𝑎(𝜂𝑖𝑗)

𝜙
+ 𝑐(𝑦𝑖𝑗 , 𝜙)} , (1) 

where 𝑏𝑗 is a random component, 𝑎 and 𝑐 are specific functions, 𝜂𝑖𝑗 is a natural parameter, and 𝜙 is a 

dispersion parameter. The mean and variance of 𝑦𝑖𝑗 are respectively 𝐸(𝑦𝑖𝑗|𝑏𝑗) = 𝑎′(𝜂𝑖𝑗) = 𝜇𝑖𝑗 and 

𝑉𝑎𝑟(𝑌𝑖𝑗|𝑏𝑗) = 𝜓𝑎′′(𝜂𝑖𝑗) [13]. 

Given the canonical function 𝑔(𝑎′)−1, which connects the mean with the systematic component, the 

GLMM formula can be expressed by Eq. (2).  

𝜇𝑗 = 𝐸(𝑦𝑗|𝑏𝑗), 𝑗 = 1,2, … , 𝐽,

𝑔(𝜇𝑗) = 𝜂𝑗,

𝜂𝑗 = 𝑋𝑗𝛽 + 𝑍𝑗𝑏𝑗,

𝑏𝑗~𝑁𝑄(0, 𝜓),

(2) 

where 𝑗 is the group index, and 𝐽 is the number of groups. 𝑛𝑗 is the number of observations in the 𝑗-th group 

and ∑ 𝑛𝑗 = 𝐽
𝐽
𝑗=1 . 𝜂𝑗 is a linear predictor vector of dimension 𝑛𝑗, where 𝑋𝑗 is a fixed-effect predictor variable 

matrix of size 𝑛𝑗 × 𝑃, 𝑃 = 𝑝 + 1 and 𝛽 is a coefficient vector of predictor variables of size 𝑃. 𝑍𝑗 is a 𝑛𝑗 × 𝑄 

matrix of random effects regression, 𝑏𝑗 is a 𝑄-dimensional vector of coefficients (including random 

intercepts), and ψ is a 𝑄 × 𝑄 matrix of the variance of random effects. Fixed effects were identified using 

parameters related to the entire population, whereas random effects were identified using group-specific 

parameters. Estimation methods include the maximum likelihood, restricted maximum likelihood, and 

penalized quasi-likelihood [13], [16]. 

The generalized mixed effect random forest (GMERF) presented by Pallagati et al. (2021) [13]. 
Fundamentally, the GMERF replaces the linear function of fixed effects in a traditional GLMM with a RF 

method. Given the canonical function 𝑔(𝑎′)−1, which connects the mean with the systematic component, the 

GMERF model can be expressed by Eq. (3).  

𝜇𝑗 = 𝐸(𝑦𝑗|𝑏𝑗), 𝑗 = 1,2, … , 𝐽,

𝑔(𝜇𝑗) = 𝜂𝑗,

𝜂𝑗 = 𝑓(𝑥𝑗) + 𝑍𝑗𝑏𝑗,

𝑏𝑗~𝑁𝑄(0, 𝜓),

 

Consequently, the GMERF extends the capabilities of GLMMs by enabling the modelling of nonlinear and 

interactive fixed effects through the integration of an ensemble tree structure, while still effectively 

addressing dependencies within grouped data via random effects.  

The modification from Generalized Mixed-Effects Random Forest (GMERF) to Generalized Mixed-

Effects Generalized Random Forest (GMEGRF) entails the integration of Generalized Random Forest (GRF) 

components within the established GMERF framework. GMERF, a hybrid of Generalized Linear Mixed 

Models (GLMM) and RF, is augmented by GRF's capacity to address heterogeneous treatment effects and 

broader statistical estimation tasks. This modification is realized by substituting the conventional 'fitting 

random forest' step in the standard GMERF with a modified GRF procedure. GMEGRF can be expressed by 

Equation (3), where function 𝑓(𝑥𝑗)  in 𝜂𝑗 = 𝑓(𝑥𝑗) + 𝑍𝑗𝑏𝑗 in Equation (3) is computed using the GRF 

algorithm in GMEGRF method. The initial approach for estimating the parameters of a GMEGRF involved 

an iterative algorithm that alternated between fitting a GRF for fixed effects and a generalized linear mixed 

model for random effects. Through this integration, GMEGRF is anticipated to enhance predictive accuracy, 

effectively manage complex nonlinearities, and simultaneously account for hierarchical structures and 

random effects within the data, thereby yielding a more comprehensive and precise model. The GMEGRF 

and GRF algorithms as follows:  

 
Algorithm 1: Generalized Mixed Effect Generalized Random Forest 

Input:  

𝑦- vector with responses 𝑦𝑖𝑗  

𝑐𝑜𝑣- data frame with all covariates 

𝑔𝑟- vector with the grouping variable for each observations 

(3) 
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Algorithm 1: Generalized Mixed Effect Generalized Random Forest 

𝑧𝑛𝑎𝑚- vector with names of covariates to be used as random affects 

𝑥𝑛𝑎𝑚- vector with names of covariates to be used as fixed affects 

𝑓𝑎𝑚- distribution of 𝑦 

𝑏0- optional matrix of initial values for each 𝑏𝑖 

𝑡𝑜𝑙𝑙- threshold to decide whether our estimation coveraged or not 

𝑖𝑡𝑚𝑎𝑥- maximum number of iterations  

 

𝑍 ← (1; 𝑐𝑜𝑣[𝑧𝑛𝑎𝑚]) {to include also the random intercept} 

 

Initialize 𝑏 to a matrix of 𝑧𝑒𝑟𝑜 (if is 𝑏0 not given) {Each column b[𝑖, ] of b will be the 𝑖-th random coefficients  𝑏𝑖} 

𝑎𝑙𝑙. 𝑏[0]  =  𝑏 

 

fit a GLM model using 𝑦 as response and 𝑐𝑜𝑣 as matrix of covariates 

𝑒𝑡𝑎 ← estimated 𝜂𝑖𝑗  by the GLM model 

𝑖 ←  1 

while 𝑖𝑡 <  𝑖𝑡𝑚𝑎𝑥 and not 𝑐𝑜𝑛𝑣 do 

    𝑡𝑎𝑟𝑔 ←  𝑒𝑡𝑎 −  𝑍 ×  𝑏 

    fit a GRF model using 𝑡𝑎𝑟𝑔 as target and 𝑐𝑜𝑣 as predictor matrix 

    𝑓 𝑥 ← fitted values of the GRF model 

    fit the GLMM 𝜂𝑖𝑗 −  𝑓(𝑥𝑖𝑗)  =  𝑍𝑖𝑗
𝑇  ×  𝑏𝑖 

    𝑎𝑙𝑙. 𝑏[𝑖𝑡]  ←  𝑏 ← the estimated 𝑏 from the model 

    𝑀 ←  𝑚𝑎𝑥(𝑎𝑏𝑠(𝑏 −  𝑎𝑙𝑙. 𝑏[𝑖𝑡 −  1])) 

    (𝑖, 𝑗)  ←  𝑎𝑟𝑔𝑚𝑎𝑥(𝑎𝑏𝑠(𝑏 −  𝑎𝑙𝑙. 𝑏[𝑖𝑡 −  1])) 
    𝑡𝑟 ←  𝑀 / 𝑎𝑙𝑙. 𝑏[𝑖𝑡 −  1][𝑖, 𝑗] 
    if 𝑡𝑟 <  𝑡𝑜𝑙𝑙 then 

        𝑐𝑜𝑛𝑣 ← true 

    else 

        𝑐𝑜𝑛𝑣 ← false 

    end if 

    𝑖𝑡 ←  𝑖 +  1 

end while 

if not 𝑐𝑜𝑛𝑣 then 

    give a warning 

end if 

 

Algorithm 2: Generalized Random Forest with Honesty and Subsampling 

All tuning parameters are prespecified, including the number of trees 𝐶 and the subsampling rate 𝑠 used in 

Subsample.  

Procedure GRF  

set of examples 𝑆, test point 𝑥, weight vector 𝛼 ← 𝑍𝐸𝑅𝑂𝑆(∣ 𝑆 ∣) 

for 𝑐 = 1 to total number of trees 𝐶 do 

set of examples 𝐼 ← 𝑆𝑈𝐵𝑆𝐴𝑀𝑃𝐿𝐸(𝑆, 𝑠) 

sets of examples 𝐽1, 𝐽2 ← 𝑆𝑃𝐿𝐼𝑇𝑆𝐴𝑀𝑃𝐿𝐸(𝐼) 

tree 𝑇 ← 𝐺𝑅𝐴𝐷𝐼𝐸𝑁𝑇𝑇𝑅𝐸𝐸(𝐽1, 𝑋) 

𝑁 ← 𝑁𝐸𝐼𝐺𝐻𝐵𝑂𝑅𝑆(𝑥, 𝑇, 𝐽2) 

Returns those elements of 𝐽2 that fall into the same leaf as 𝑥 in the tree 𝑇 

for all example 𝑒 ∈ 𝑁 do 

           𝛼[𝑒]+= 1/∣ 𝑁 ∣ 
Output: 

𝜃̂(𝑥), the solution to (2) with weights 𝛼/𝐶 

Table 2 summarizes the modeling approaches considered in this study by presenting the type of model 

each method represents and its ability to support mixed-effects modeling. This comparison is essential to 

understand the structural differences between methods, especially in the context of hierarchical or cluster 

data. 
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Table 2. The Summary Methods 

Method Model Type Support for Mixed Models 

Random Forest (RF) Ensemble Decision Tree No 

Generalized Random Forest (GRF) Generalization of RF for local 

parameter estimation 

No 

GMERF Random Forest + Mixed Effects Yes 

GMEGRF GRF + Mixed Effects Yes 

3. RESULTS AND DISCUSSION 

This section is divided into several subsections. The first subsection concerns the results of the 

descriptive analysis, the second subsection concerns the model results, and finally, the discussion. 

3.1 Summary Statistics 

The analysis in this study was conducted on 25,873 of the 25,890 observations (households) initially 

included in the data. This was a result of the data cleansing process, which involved the deletion of household 

records containing ‘do not know’ or ‘no responses.’ The collected data were analyzed using advanced 

statistical techniques to interpret the effectiveness of the methods used. The proportion of Y can be expressed 

as follows:  

  
Figure 3. The Proportion of Y 

(Source: R Application in kaggle) 

Fig. 3 shows that 77% of households are classified as food secure (category 0), and 23% of households 

experience food insecurity (category 1). Although the majority of households (77%) are classified as food 

secure, 23% of households still experience food insecurity. This figure is significant considering the negative 

impacts of food insecurity on individuals' health, education, and productivity. This condition requires serious 

attention as it can hinder the achievement of sustainable development goals, particularly SDG 2, which targets 

zero hunger. 

Prior to model development, the variance of the explanatory variables was assessed to identify potential 

near-zero variance predictors (NZV). The X4 (literacy status of head of household) and X18 (village-owned 

enterprise benefit recipient status) exhibited exceedingly low variances, indicating a lack of meaningful 

variability within these predictors, primarily because most observations shared a single, predominant value, 

indicating a lack of meaningful variability within these predictors.  Consequently, to mitigate potential issues 

of model instability and ensure the inclusion of informative variables, X4 and X18 were excluded from 

subsequent analyses. This decision was based on the premise that variables with near-zero variance contribute 

minimally to the predictive capability of the model and can adversely affect its robustness. 
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Figure 4. The Boxplot of Numeric Variable Predictor 

(Source: R Application in kaggle) 

Fig. 4 visualizes the distribution of values for the numerical variables number of household members 

(𝑋1), age of head of household (𝑋3), and house size (𝑋11), grouped by category Y (0 and 1). In general, the 

medians for all three variables tend not to differ significantly between categories Y=0 and Y=1, indicating 

that the average number of household members, age of head of household, and house size are not significantly 

different between the two groups. However, there were significant differences in the data spread, particularly 

in the house size variable (𝑋11). For variable 𝑋11, a very wide data spread and numerous outliers were 

observed in category Y=1, indicating extreme variations in house size within that group. This suggests that 

although the average house size does not differ significantly, there are houses with significantly larger or 

smaller sizes in group Y=1 than in group Y=0.  

 
Figure 5. The Proportion of Category X by Category Y 

(Source: R Application in kaggle) 
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Fig. 5 shows that the graph visualizes the proportions of categorical predictor variables (𝑋2, 𝑋5, 𝑋6, 

𝑋7, 𝑋8, 𝑋9, 𝑋10, 𝑋12, 𝑋13, 𝑋14, 𝑋15, 𝑋16, 𝑋17, 𝑋19, 𝑋20, 𝑋21, 𝑋22, and  𝑋23) for each value of category Y (0 

and 1). This graph allows us to compare the distribution of predictor variables between the two groups of 

category Y. In general, there were significant differences in proportions between categories Y=0 and Y=1 for 

most predictor variables. To understand this relationship in more detail, statistical modeling was performed. 

3.2 Modeling Results 

This study employed standard machine learning techniques, specifically Random Forest (RF) and 

Generalized Random Forest (GRF), and mixed-effects machine learning approaches, namely Generalized 

Mixed-Effects Random Forest (GMERF) and Generalized Mixed-Effects Random Forest (GMEGRF), to 

model food insecurity data. In the RF and GRF models, the variable 'R' was operationalized as a fixed-effects 

predictor. Conversely, the mixed-effects models, GMERF and GMEGRF, considered 'R' as a random effects 

predictor to account for the inherent hierarchical structure of the data, wherein households within the same 

'R' exhibited greater homogeneity compared to those in different 'R' units. The presence of significant sub-

district-level random effects was statistically validated through the Likelihood Ratio Test and the Intraclass 

Correlation Coefficient (ICC), yielding a significant result (p < 0.05, ICC = 36.06%). Subsequently, the 

predictive capabilities of all the models were evaluated using a suite of performance metrics, including 

accuracy, sensitivity, specificity, and balanced accuracy. 

Table 3. Performance Measure 

Algorithm 

 

Average Performance Measure 

Accuracy Sensitivity  Specificity  Balance Accuracy 

Machine 

Learning  

RF 0.7022422 0.8377061 0.2485139 0.5431100 

GRF 0.7695784 0.9699956 0.0984168 0.5342062 

Mixed 

Models 

GMERF 0.7141011 0.7595313 0.5940777 0.6768045 

GMEGRF 0.7497661 0.8100859 0.5478559 0.6789709 

 
Figure 6. The Boxplots Comparing the Distribution of Evaluation Metrics Across Different Models 

(Source: R Application in kaggle) 
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Table 3 presents the average performance metrics of the four predictive models used in this study. To 

provide a more nuanced understanding of the performance distribution across these models, Fig. 6 shows the 

metrics (accuracy, sensitivity, specificity, and balanced accuracy) obtained using boxplots for each algorithm. 

The integration of information from both the table and figure facilitates a more comprehensive analysis of 

the strengths and limitations inherent in each modeling approach, particularly considering how the mixed-

effects framework models random effects within the data. 

Based on Table 3 and the visualizations in Fig. 6, the Generalized Random Forest (GRF) model exhibits 

an intriguing performance profile. The GRF demonstrated the highest average accuracy (0.7696) and 

excellent sensitivity (0.9700), indicating its superior capability in identifying positive cases. However, these 

models demonstrated a low specificity (0.0984), which was visually corroborated by the specificity boxplot, 

where the GRF values were concentrated at the lower end of the scale. This low specificity reveals a 

significant bias in GRF towards the majority class, wherein the model tends to misclassify negative instances 

as positive. Consequently, despite its high overall accuracy, the balanced accuracy of GRF (0.5342) was 

relatively low, reflecting an imbalance in its ability to predict both classes equally. Bias is particularly 

problematic given the imbalanced nature of our dataset, where the majority class (food secure) constitutes 

77% of the observations, while the minority class (food insecure) is only 23%. 

Conversely, mixed-effects approaches, represented by the Generalized Mixed-Effects Random Forest 

(GMERF) and, notably, the Generalized Mixed-Effects Random Forest (GMEGRF), offer a more balanced 

performance profile. This model is an extension of the machine learning model that incorporates a mixed-

effects model structure into the tree-building process. Although their average accuracy and sensitivity were 

slightly lower than those of GRF, both models consistently exhibited substantially improved specificity, 

which was also confirmed by the specificity boxplots showing a higher distribution of values. Considering 

the enhanced equilibrium between sensitivity and specificity, coupled with a superior balanced accuracy, the 

Generalized Mixed-Effects Random Forest (GMEGRF) has emerged as the most optimal and recommended 

model for this classification task. The model includes fixed effects (the general effect of predictor variables) 

and random effects (variability between groups or clusters, such as sub-districts), allowing it to capture 

differences between groups. When the data has a clustered or hierarchical structure, or when there is 

heterogeneity between groups that influences the outcome (response), this model is more appropriate than 

RF or GRF and mitigates potential class imbalance. Table 3 reports an accuracy of 0.7498 and the highest 

balanced accuracy (0.6790) for GMEGRF among all models. This finding is further supported by the 

balanced accuracy boxplot, which illustrates a higher and more stable distribution of the values for GMEGRF. 

In addition to the evaluation results, the GMEGRF has a faster computation time compared to the GMERF. 

 

3.3 Interpretation and Discussion 

In this study, the optimal model employed was a modified mixed-effects model, the Generalized 

Mixed-Effects Generalized Random Forest (GMEGRF). We have attempted to extract a specific output from 

the GMEGRF model. This model effectively segregates the variance in outcomes attributed to directly 

measured factors (fixed effects) from the variance resulting from interdistrict group differences (random 

effects). The random effects variance, quantified at 1.812, indicated a statistically significant variation across 

districts in influencing the research outcomes. This suggests that each district possesses unique characteristics 

that contribute to the observed differences in results, which cannot be solely explained by directly measured 

factors. 

The Generalized Mixed-Effects Generalized Random Forest (GMEGRF) model employed in this study 

yielded a fixed effects intercept estimate of -0.26286, with a highly significant p-value of 1.19e-05. This 

indicates that the average log odds of the event, excluding random effects across district groups, is -0.26286. 

The model achieved convergence after four iterations, signifying that the optimization algorithm successfully 

identified a stable and efficient solution. Furthermore, the model demonstrated consistent performance. 

Importantly, the output of the model offers practical value for real-world decision-making. The random 

effects component highlights which districts deviate most significantly from the average trend, allowing 

policymakers to target specific areas that may require additional support or intervention. Districts with 

unusually high or low random effects may signal underlying contextual factors—such as infrastructure, 

accessibility, or local policies—that warrant closer attention. 
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On the other hand, the fixed effects provide insight into household-level variables that are consistently 

associated with the outcome of interest. These variables can guide the design of household-focused programs, 

such as nutritional aid, health interventions, or educational outreach, by identifying which characteristics 

most strongly influence food insecurity or other target outcomes. 

In summary, the GMEGRF model not only offers strong predictive performance but also yields 

interpretable components that can inform both area-based and individual-level interventions. By integrating 

these outputs into planning and resource allocation, stakeholders can make more informed, data-driven 

decisions that reflect the heterogeneity across and within districts.  

4. CONCLUSION 

This study successfully developed a Generalized Mixed-Effects Generalized Random Forest 

(GMEGRF) model, which demonstrated superior predictive performance for food insecurity compared to 

Random Forest (RF), Generalized Random Forest (GRF), and Generalized Mixed-Effects Random Forest 

(GMERF) models. The efficacy of the GMEGRF model is attributed to its ability to effectively partition 

variance between fixed and random effects, manage the hierarchical structure inherent in food insecurity data, 

produce balanced predictive outcomes, and achieve efficient model convergence. These findings establish 

GMEGRF as a robust and accurate tool for food insecurity prediction, offering valuable insights for policy 

formulation and effective interventions while underscoring the critical importance of addressing data 

structure and class imbalance.  

To enhance model performance, particularly in scenarios involving extreme class imbalance, it is 

recommended to consider employing techniques such as oversampling, undersampling, or the application of 

class weights. Extremely imbalanced datasets often overlook minority classes, which are often the primary 

focus of analysis. By addressing the dominance of the majority class, the model becomes more inclusive and 

sensitive to groups requiring special attention. 
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