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1. INTRODUCTION

Food insecurity is a global issue owing to its potential to be a widespread problem affecting individuals
across lifespans in terms of health and well-being [1]. This means that a lack of access to sufficient nutritious
food can have serious consequences for people of all ages, from babies and children to adults and seniors.
Addressing this problem requires a thorough understanding. Food insecurity frequently varies across
geographical regions and socioeconomic groups. Statistics can play a role in addressing the problem of food
insecurity by developing statistical models to predict future trends in food insecurity. Accurate prediction of
food insecurity is essential for the design and implementation of effective interventions and policies aimed at
mitigating its impact and achieving food security.

Big data related to food security, encompassing demographic, economic, environmental, and social
indicators, make machine learning approaches particularly well-suited for analyzing and predicting this
phenomenon. Several studies on machine learning models to predict food vulnerability include G. Nica-
Avram et al. [2], A. H. Villacis et al. [3], C. Gao el al. [4], S. Gholami et al. [5] and J. J. L. Westerveld et al.
[6]. Machine learning algorithms are a valuable tool that enhances model goodness of fit, uncovers
meaningful and valid hidden patterns in data, detects nonlinear and non-additive effects, offers insights into
data trends, methodology, and theory, and advances scientific research [7]. However, food insecurity data
often exhibit hierarchical or clustered structures. For instance, data may be collected at the household level
within villages, districts, or provinces. These structures introduce dependencies between observations within
the same cluster, violating the independence assumption of many standard machine learning algorithms.
Several studies on mixed models: A. Hajjem et al.[8], A. Hajjem et al. [9], Hajjem et al. [10], J. Hu and S.
Szymczak [11], P. Krennmair and T. Schmid [12], M. Pellagatti et al. [13] , R. J. Sela and J. S. Simonoff [14]
, J. L. Speiser et al. [15], L. Fontana et al. [16] , and D. Kusumaningrum et al. [17]. The hierarchical data
approach, as highlighted by P. C. Chen et al., offers a good performance evaluation method by integrating
expert judgment and data-driven techniques [18]. This approach is highly valuable as it provides more
accurate and relevant insights, which ultimately contribute to the improvement of food security modeling.

Machine learning models are generally good at finding patterns in complex datasets and using these
patterns to make predictions. Random Forest is a popular and powerful machine-learning algorithm
introduced by L. Breiman (2001) [19]. In machine learning, RF assumes that observations are obtained
independently from a population. If data are hierarchical (nested, like students within classrooms within
schools) or clustered in structure (grouped, like per capita income from various villages within a
regency/district). It does not inherently understand these groupings and can treat them as independent data
points, which can lead to biased inference owing to the underestimation of standard errors in linear models
[20] and the identification of false subgroups and inaccurate variable selection [14], [21]. GRF, an extension
of the traditional random forest, offers increased flexibility in modeling the relationships between features
and the target variable [22]. The GRF algorithm employs forest-based local estimation and splitting to
maximize heterogeneity for optimal split selection and utilizes a gradient tree algorithm to optimize an
approximate criterion [22], [23], [24]. Several studies on GRF: E. Zhou and D. Lee 2024 [23] and H.
Fransiska et al. [24]. The GRF model tends to be stable.

Mixed-effects models are statistical techniques specifically designed to handle hierarchical and
clustered data. Generalized Mixed-Effects Random Forest (GMERF) is one such example. This statement
suggests that GMERF combines the strengths of mixed-effects models and random forests. Although it offers
comparable performance to mixed models using linear methods, GMERF exhibits greater robustness [13].

This study proposes a novel approach to enhance the analysis and prediction of food insecurity by
integrating mixed-effects models with a generalized random forest (GRF) algorithm. This approach aims to
capture both the hierarchical structure of the data through mixed-effects models and the complex, nonlinear
relationships through the GRF. Specifically, the mixed-effects component accounts for variations across
regions or other relevant clusters, whereas the GRF models the fixed effects and improves overall prediction
accuracy.

2. RESEARCH METHODS

This section details the methods used to predict food insecurity, focusing on machine learning
techniques suitable for hierarchical or clustered data. We primarily employed the generalized mixed-effects
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random forest (GMERF) and introduced a novel modification, the Generalized Mixed-Effects Generalized
Random Forest (GMEGRF), aimed at improving prediction accuracy. For comparison, we also included
standard Random Forest (RF) and Generalized Random Forest (GRF) models. All models were trained on
high-quality food insecurity data and validated using cross-validation techniques to ensure robust and
accurate predictions. This research framework is designed in such a way as to achieve the main objective,
namely to obtain food vulnerability classification prediction results that have high accuracy and are relevant
to existing data conditions.

2.1 Frame work

The framework is designed with components intended for reusability in various contexts. These
components are organized within a structured and well-defined workflow. This workflow ensures that each
step in the prediction process is conducted systematically and consistently, leading to more reliable results
and a reduction in the potential for errors. For effective research, data preprocessing was also performed,
including data cleaning and reducing variables with small variances. Data preprocessing is a crucial step in
preparing raw data for use in the model [25]. This framework utilizes ML algorithms, both single algorithms
and mixed models, to construct the most efficient prediction model. To ensure optimal model performance,
cross-validation techniques were employed. Cross-validation is a critical technique for evaluating the
performance of an ML model in assessing how well the model will perform on unseen data [26]. A workflow
diagram of the study is shown in Fig. 1.

Figure 1. The Study Workflow Diagram
(Source: Smartart in word)

Fig. 1 shows the five stages of our research methodology. Stage 1 consists of a dataset of food
insecurity collected through a survey in West Java, Indonesia, in 2021 Stage 2 is data preprocessing, which
is a crucial step to ensure the quality of the data used for modeling. In this stage, we cleaned the dataset to
ensure that the dataset is devoid of incorrect or erroneous data and ready for the next stage of analysis [27].

Additionally, variables with small variances are reduced because they provide limited information and
can be removed to simplify the model and enhance computational efficiency. Near-zero variance variables
either have a single, distinct value, or most of the data falls into one group [28]. Following this, feature scaling
was carried out for numeric variables, transforming them using Z-score standardization. It was chosen over
other methods because outliers are found in numerical variables, and this method is sensitive to outliers. This
improves the computational efficiency of the machine learning models and promotes better prediction
performance by preventing features with larger values from dominating the learning process. Stage 3: K-Fold
Cross-Validation. K-fold cross-validation is a model evaluation technique that partitions a dataset into k
equal-sized subsets known as folds. In each iteration, one-fold was designated as the testing data, whereas
the remaining k-folds served as the training data. This process was repeated k times, with each fold taking a
turn as the testing data [26].

Stage 4 centers on the development and evaluation of predictive models utilizing both machine learning
algorithms and a mixed-effects modeling approach. Specifically, this stage explores the application of single
machine learning algorithms, Random Forest and Generalized Random Forest, along with their mixed-effects
counterparts, Generalized Mixed-Effects Random Forest (GMERF) and Generalized Mixed-Effects
Generalized Random Forest (GMEGREF), for predictive model construction. The incorporation of mixed-
effects models suggests the presence of a hierarchical or clustered structure within the data, which the
researchers aim to address within their modeling framework. In stage 5 model evaluation, the performance
of the chosen machine learning algorithms was evaluated using four popular values to evaluate classification
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tasks: accuracy, sensitivity, specificity, and balanced accuracy. These values provide a comprehensive picture
of the overall prediction accuracy, ability to identify positive and negative classes, and balance accuracy
prediction, and their calculations are based on a confusion matrix [29], [30]. The confusion matrix serves as
a pivotal evaluation tool for classification, summarizing the performance of a model through four critical
scenarios: true positive (correct positive prediction), false positive (incorrect positive prediction), false
negative (incorrect negative prediction), and true negative (correct negative prediction). It offers a profound
understanding of the specific types of errors a model commits and forms the foundation for calculating more
informative evaluation metrics [31], [32].

2.2 Dataset Detail

This study examines the state of household food insecurity in West Java, Indonesia, in 2021. A
household was classified as food insecure if it answered "yes" to any of the eight questions in the Food
Insecurity Experience Scale (FIES) survey. The data source for this study was the National Socio-Economic
Survey (2021), which includes 23 fixed-effect predictor variables, one random-effect predictor variable, and
one response variable: the classification of household food insecurity experience (Y) (Table 1). The dataset
comprises 25,890 observations (households).

Table 1. Details of the Features Present in the Dataset

Variable What it does?
Y The Classification of Household Food Insecurity Experience
X, Number Of Household Members
X, Gender Of Head of Household
X5 Age Of Head of Household
X, Literacy Status of Head of Household
X Highest Education Level of Head of Household
Xe Status of Bank Savings Accounts Owned
X, Health Insurance Contribution Assistance Recipient Status
Xg Health Insurance Ownership Status
X, Smoking Status of Head of Household
X10 Home Ownership Status
X1 House Size
X Type of House Wall Material
X3 Type of House Floor Material
X4 Adequacy of Home Sanitation
X5 Feasibility of Drinking Water Source
X6 People's Business Credit Recipient Status
X, Bank/Cooperative Loan Recipient Status
X1s Village-Owned Enterprise Benefit Recipient Status
X19 Value of House and/or Land Assets
X5 Prosperous Family Card Recipient Status
X5 Family Hope Program Recipient Status
X5, Non-Cash Food Assistance Recipient Status
Xy3 Other Routine Assistance Recipient Status
R Subdistrict

2.3 Methods

The research methods utilized included Random Forest (RF), Generalized Random Forest (GRF),
Generalized Mixed-Effects Random Forest (GMERF), and Generalized Mixed-Effects Generalized Random
Forest (GMEGRF). Random Forest is a machine learning technique that constructs an ensemble of decision
trees to generate robust and accurate predictive models. This methodology involves the iterative development
of multiple decision trees, each trained on random subsets of data and features, followed by the aggregation
of their respective predictions. It operates through a sequence of distinct procedural steps: initially, bootstrap
sampling generates multiple data subsets from the original dataset using randomized sampling with
replacement/bootstrap sample; subsequently, decision tree (Dt) construction involves the development of
individual decision trees for each of these subsets; each tree undergoes tree growth, expanding to its maximum
potential without pruning, ensuring high variance; the algorithm then performs prediction, synthesizing the
outputs of all constituent trees to formulate a final predictive result (majority vote); and finally, out-of-bag
(OOB) error estimation evaluates the model's performance by utilizing data points excluded from the training
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of individual trees, providing a robust measure of generalization. The illustration schematic diagram of the

RF algorithm can be seen in Fig. 2 [33].
Training data
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Figure 2. lllustration Schematic of RF Algorithm
(Source: A. Khairunnisa et al., 2024)
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The Generalized Random Forest (GRF) adapts the traditional RF framework through modified
procedural steps tailored to specific statistical estimation tasks; initially, data may be partitioned for "honest"
estimation, followed by tree construction where splitting criteria are adapted to the estimation task, such as
heterogeneous treatment effects, utilizing information from local moment equations; subsequently, leaf node
value assignments are determined based on the estimation goal, potentially involving calculations of
treatment effects or other relevant quantities; finally, predictions from individual trees are aggregated, and
methods are employed to calculate confidence intervals and perform statistical inference, thereby enabling
the estimation of a broader range of statistical quantities beyond simple conditional means [22], [24].

Generalized mixed-effects random forest (GMERF) models represent an important advancement in
machine learning techniques, particularly for datasets with complex hierarchical structures or correlated
random effects. The GMERF algorithm aims to build an accurate predictive model for data with hierarchical
or clustered structures by considering both random and fixed effects. The steps are as follows: first, identify
the data structure and then initialize random effects, where random effects, which represent variations
between groups, are initialized. This can be either a given initial value or initialized as zero. These random
effects are iteratively updated during the algorithm process. Then, fit initial GLM Model, where an initial
Generalized Linear Model (GLM) is fitted to obtain an initial estimate of the predictions. This model uses all
covariates (predictor variables) but does not yet account for random effects. The algorithm then enters an
iterative process in which the model is continuously updated until it reaches convergence (stable results) or
a predetermined maximum number of iterations. Within the iterative sequence, it calculates the target value,
fits random forest, fits the GLMM, and performs convergence checking. After the iterations are complete,
the algorithm produces the final GMERF model, which includes the fitted GLMM, fitted RF model, and the
final estimation of the random effects. In essence, The GMERF algorithm iteratively combines information
from RF and GLMM to update the estimation of random effects and improve prediction accuracy. This
process allows the model to capture nonlinear relationships in the data and consider hierarchical structures,
resulting in a more accurate and comprehensive model [13].

Given y;; = (yil,yiz,...,yinj) with observation units i,i = 1,2,...,n;, ingroups j,j = 1,2,...,]. Y;;
is assumed to follow an exponential family distribution using Eq. (1), as follows:
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¢

where b; is a random component, a and c are specific functions, n;; is a natural parameter, and ¢ is a
dispersion parameter. The mean and variance of y;; are respectively E(y;;|b;) = a’(n;;) = p;; and

Given the canonical function g(a’)~1, which connects the mean with the systematic component, the
GLMM formula can be expressed by Eq. (2).

uj =E(y;lb;),j = 12,....],
9(u;) =nj, 2)
nj =XB +Zbj,

bj“'NQ (o, l/J),
where j is the group index, and J is the number of groups. n; is the number of observations in the j-th group
and Z§=1nj = J. n; is a linear predictor vector of dimension n;, where X; is a fixed-effect predictor variable
matrix of size n; X P, P = p + 1 and 3 is a coefficient vector of predictor variables of size P. Z; isan; X Q
matrix of random effects regression, b; is a Q-dimensional vector of coefficients (including random

intercepts), and vy is a Q X Q matrix of the variance of random effects. Fixed effects were identified using
parameters related to the entire population, whereas random effects were identified using group-specific
parameters. Estimation methods include the maximum likelihood, restricted maximum likelihood, and
penalized quasi-likelihood [13], [16].

The generalized mixed effect random forest (GMERF) presented by Pallagati et al. (2021) [13].
Fundamentally, the GMERF replaces the linear function of fixed effects in a traditional GLMM with a RF
method. Given the canonical function g(a")~1, which connects the mean with the systematic component, the
GMERF model can be expressed by Eqg. (3).

uj =E(y;lb;),j = 12,....],
g(:“j) =Mnj 3)
n; = f(x) +Zb,
bj~Nqy(0,v),

fi(}’ij|bj) = exp {M + C(yij' ¢)} 1

Consequently, the GMERF extends the capabilities of GLMMSs by enabling the modelling of nonlinear and
interactive fixed effects through the integration of an ensemble tree structure, while still effectively
addressing dependencies within grouped data via random effects.

The modification from Generalized Mixed-Effects Random Forest (GMERF) to Generalized Mixed-
Effects Generalized Random Forest (GMEGRF) entails the integration of Generalized Random Forest (GRF)
components within the established GMERF framework. GMERF, a hybrid of Generalized Linear Mixed
Models (GLMM) and RF, is augmented by GRF's capacity to address heterogeneous treatment effects and
broader statistical estimation tasks. This modification is realized by substituting the conventional ‘fitting
random forest' step in the standard GMERF with a modified GRF procedure. GMEGREF can be expressed by
Equation (3), where function f(x;) in n; = f(x;) + Z;b; in Equation (3) is computed using the GRF
algorithm in GMEGRF method. The initial approach for estimating the parameters of a GMEGRF involved
an iterative algorithm that alternated between fitting a GRF for fixed effects and a generalized linear mixed
model for random effects. Through this integration, GMEGREF is anticipated to enhance predictive accuracy,
effectively manage complex nonlinearities, and simultaneously account for hierarchical structures and
random effects within the data, thereby yielding a more comprehensive and precise model. The GMEGRF
and GRF algorithms as follows:

Algorithm 1: Generalized Mixed Effect Generalized Random Forest
Input:

y- vector with responses y;

cov- data frame with all covariates

gr- vector with the grouping variable for each observations
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Algorithm 1: Generalized Mixed Effect Generalized Random Forest
znam- vector with names of covariates to be used as random affects
xnam- vector with names of covariates to be used as fixed affects
fam- distribution of y

b,- optional matrix of initial values for each b;

toll- threshold to decide whether our estimation coveraged or not
itmax- maximum number of iterations

Z « (1; cov[znam]) {to include also the random intercept}

Initialize b to a matrix of zero (if is b, not given) {Each column b[i, ] of b will be the i-th random coefficients b;}
all.b[0] = b

fit a GLM model using y as response and cov as matrix of covariates
eta « estimated n;; by the GLM model
i« 1
while it < itmax and not conv do
targ < eta — Z X b
fit a GRF model using targ as target and cov as predictor matrix
f x « fitted values of the GRF model
fitthe GLMM n;; — f(x;;) = Z; x b,

all.b[it] « b < the estimated b from the model
M <« max(abs(b — all.b[it — 1]))
(i,j) « argmax(abs(b — all.b[it — 1]))
tr « M /all.b[it — 1][i,j]
if tr < toll then
conv <« true
else
conv « false
end if
it «i+1
end while
if not conv then
give a warning
end if

Algorithm 2: Generalized Random Forest with Honesty and Subsampling
All tuning parameters are prespecified, including the number of trees C and the subsampling rate s used in
Subsample.
Procedure GRF
set of examples S, test point x, weight vector @ « ZEROS(| S |)
for ¢ = 1 to total number of trees C do
set of examples | « SUBSAMPLE(S, s)
sets of examples J;,J, « SPLITSAMPLE (I)
tree T « GRADIENTTREE (J,X)
N « NEIGHBORS (x,T,J,)
Returns those elements of J, that fall into the same leaf as x in the tree T
for all example e € N do
ale]+=1/I N |
Output:
A (x), the solution to (2) with weights a/C

Table 2 summarizes the modeling approaches considered in this study by presenting the type of model
each method represents and its ability to support mixed-effects modeling. This comparison is essential to
understand the structural differences between methods, especially in the context of hierarchical or cluster
data.
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Table 2. The Summary Methods

Method Model Type Support for Mixed Models
Random Forest (RF) Ensemble Decision Tree No
Generalized Random Forest (GRF) Generalization of RF for local No
parameter estimation
GMERF Random Forest + Mixed Effects Yes
GMEGRF GRF + Mixed Effects Yes

3. RESULTS AND DISCUSSION

This section is divided into several subsections. The first subsection concerns the results of the
descriptive analysis, the second subsection concerns the model results, and finally, the discussion.

3.1 Summary Statistics

The analysis in this study was conducted on 25,873 of the 25,890 observations (households) initially
included in the data. This was a result of the data cleansing process, which involved the deletion of household
records containing ‘do not know’ or ‘no responses.” The collected data were analyzed using advanced
statistical techniques to interpret the effectiveness of the methods used. The proportion of Y can be expressed
as follows:

Proportion Y

Category Y

0
| B

7%

Figure 3. The Proportion of Y
(Source: R Application in kaggle)

Fig. 3 shows that 77% of households are classified as food secure (category 0), and 23% of households
experience food insecurity (category 1). Although the majority of households (77%) are classified as food
secure, 23% of households still experience food insecurity. This figure is significant considering the negative
impacts of food insecurity on individuals' health, education, and productivity. This condition requires serious
attention as it can hinder the achievement of sustainable development goals, particularly SDG 2, which targets
zero hunger.

Prior to model development, the variance of the explanatory variables was assessed to identify potential
near-zero variance predictors (NZV). The X4 (literacy status of head of household) and X18 (village-owned
enterprise benefit recipient status) exhibited exceedingly low variances, indicating a lack of meaningful
variability within these predictors, primarily because most observations shared a single, predominant value,
indicating a lack of meaningful variability within these predictors. Consequently, to mitigate potential issues
of model instability and ensure the inclusion of informative variables, X4 and X18 were excluded from
subsequent analyses. This decision was based on the premise that variables with near-zero variance contribute
minimally to the predictive capability of the model and can adversely affect its robustness.
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Boxplot of Values of Each Numeric Variable Based on Y
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Figure 4. The Boxplot of Numeric Variable Predictor
(Source: R Application in kaggle)

Fig. 4 visualizes the distribution of values for the numerical variables number of household members
(X1), age of head of household (X3), and house size (X;,), grouped by category Y (0 and 1). In general, the
medians for all three variables tend not to differ significantly between categories Y=0 and Y=1, indicating
that the average number of household members, age of head of household, and house size are not significantly
different between the two groups. However, there were significant differences in the data spread, particularly
in the house size variable (X;,). For variable X;,, a very wide data spread and numerous outliers were
observed in category Y=1, indicating extreme variations in house size within that group. This suggests that
although the average house size does not differ significantly, there are houses with significantly larger or

smaller sizes in group Y=1 than in group Y=0.
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Figure 5. The Proportion of Category X by Category Y
(Source: R Application in kaggle)
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Fig. 5 shows that the graph visualizes the proportions of categorical predictor variables (X,, Xs, Xg,
X5, Xg, Xg, X190, X12, X13, X142, X15, X16, X17, X190, X250, X1, X552, and X,3) for each value of category Y (0
and 1). This graph allows us to compare the distribution of predictor variables between the two groups of
category Y. In general, there were significant differences in proportions between categories Y=0 and Y=1 for
most predictor variables. To understand this relationship in more detail, statistical modeling was performed.

3.2 Modeling Results

This study employed standard machine learning techniques, specifically Random Forest (RF) and
Generalized Random Forest (GRF), and mixed-effects machine learning approaches, namely Generalized
Mixed-Effects Random Forest (GMERF) and Generalized Mixed-Effects Random Forest (GMEGRF), to
model food insecurity data. In the RF and GRF models, the variable 'R' was operationalized as a fixed-effects
predictor. Conversely, the mixed-effects models, GMERF and GMEGRF, considered 'R' as a random effects
predictor to account for the inherent hierarchical structure of the data, wherein households within the same
'R" exhibited greater homogeneity compared to those in different 'R' units. The presence of significant sub-
district-level random effects was statistically validated through the Likelihood Ratio Test and the Intraclass
Correlation Coefficient (ICC), yielding a significant result (p < 0.05, ICC = 36.06%). Subsequently, the
predictive capabilities of all the models were evaluated using a suite of performance metrics, including
accuracy, sensitivity, specificity, and balanced accuracy.

Table 3. Performance Measure

Algorithm Average Performance Measure
Accuracy Sensitivity Specificity Balance Accuracy
Machine RF 0.7022422 0.8377061 0.2485139 0.5431100
Learning GRF 0.7695784 0.9699956 0.0984168 0.5342062
Mixed GMERF  0.7141011 0.7595313 0.5940777 0.6768045
Models GMEGRF  0.7497661 0.8100859 0.5478559 0.6789709
accuracy balancad _accuracy

Model
E Randam Forest

4]

=

:._"E sensilivity specilicity * G_Random Farest
1.00 B3 GMERF

B3 GMEGRF
0.80 -

0.25 —
——
& & & o & & & &
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Figure 6. The Boxplots Comparing the Distribution of Evaluation Metrics Across Different Models
(Source: R Application in kaggle)



BAREKENG: J. Math. & App., vol. 20(2), pp. 1111-1124, Jun, 2026. 1121

Table 3 presents the average performance metrics of the four predictive models used in this study. To
provide a more nuanced understanding of the performance distribution across these models, Fig. 6 shows the
metrics (accuracy, sensitivity, specificity, and balanced accuracy) obtained using boxplots for each algorithm.
The integration of information from both the table and figure facilitates a more comprehensive analysis of
the strengths and limitations inherent in each modeling approach, particularly considering how the mixed-
effects framework models random effects within the data.

Based on Table 3 and the visualizations in Fig. 6, the Generalized Random Forest (GRF) model exhibits
an intriguing performance profile. The GRF demonstrated the highest average accuracy (0.7696) and
excellent sensitivity (0.9700), indicating its superior capability in identifying positive cases. However, these
models demonstrated a low specificity (0.0984), which was visually corroborated by the specificity boxplot,
where the GRF values were concentrated at the lower end of the scale. This low specificity reveals a
significant bias in GRF towards the majority class, wherein the model tends to misclassify negative instances
as positive. Consequently, despite its high overall accuracy, the balanced accuracy of GRF (0.5342) was
relatively low, reflecting an imbalance in its ability to predict both classes equally. Bias is particularly
problematic given the imbalanced nature of our dataset, where the majority class (food secure) constitutes
77% of the observations, while the minority class (food insecure) is only 23%.

Conversely, mixed-effects approaches, represented by the Generalized Mixed-Effects Random Forest
(GMERF) and, notably, the Generalized Mixed-Effects Random Forest (GMEGRF), offer a more balanced
performance profile. This model is an extension of the machine learning model that incorporates a mixed-
effects model structure into the tree-building process. Although their average accuracy and sensitivity were
slightly lower than those of GRF, both models consistently exhibited substantially improved specificity,
which was also confirmed by the specificity boxplots showing a higher distribution of values. Considering
the enhanced equilibrium between sensitivity and specificity, coupled with a superior balanced accuracy, the
Generalized Mixed-Effects Random Forest (GMEGRF) has emerged as the most optimal and recommended
model for this classification task. The model includes fixed effects (the general effect of predictor variables)
and random effects (variability between groups or clusters, such as sub-districts), allowing it to capture
differences between groups. When the data has a clustered or hierarchical structure, or when there is
heterogeneity between groups that influences the outcome (response), this model is more appropriate than
RF or GRF and mitigates potential class imbalance. Table 3 reports an accuracy of 0.7498 and the highest
balanced accuracy (0.6790) for GMEGRF among all models. This finding is further supported by the
balanced accuracy boxplot, which illustrates a higher and more stable distribution of the values for GMEGRF.
In addition to the evaluation results, the GMEGRF has a faster computation time compared to the GMERF.

3.3 Interpretation and Discussion

In this study, the optimal model employed was a modified mixed-effects model, the Generalized
Mixed-Effects Generalized Random Forest (GMEGRF). We have attempted to extract a specific output from
the GMEGRF model. This model effectively segregates the variance in outcomes attributed to directly
measured factors (fixed effects) from the variance resulting from interdistrict group differences (random
effects). The random effects variance, quantified at 1.812, indicated a statistically significant variation across
districts in influencing the research outcomes. This suggests that each district possesses unique characteristics
that contribute to the observed differences in results, which cannot be solely explained by directly measured
factors.

The Generalized Mixed-Effects Generalized Random Forest (GMEGRF) model employed in this study
yielded a fixed effects intercept estimate of -0.26286, with a highly significant p-value of 1.19e-05. This
indicates that the average log odds of the event, excluding random effects across district groups, is -0.26286.
The model achieved convergence after four iterations, signifying that the optimization algorithm successfully
identified a stable and efficient solution. Furthermore, the model demonstrated consistent performance.

Importantly, the output of the model offers practical value for real-world decision-making. The random
effects component highlights which districts deviate most significantly from the average trend, allowing
policymakers to target specific areas that may require additional support or intervention. Districts with
unusually high or low random effects may signal underlying contextual factors—such as infrastructure,
accessibility, or local policies—that warrant closer attention.



1122 Fransiska etal. MIXED-EFFECTS MODELS WITH GENERALIZED RANDOM FOREST: IMPROVED ...

On the other hand, the fixed effects provide insight into household-level variables that are consistently
associated with the outcome of interest. These variables can guide the design of household-focused programs,
such as nutritional aid, health interventions, or educational outreach, by identifying which characteristics
most strongly influence food insecurity or other target outcomes.

In summary, the GMEGRF model not only offers strong predictive performance but also yields
interpretable components that can inform both area-based and individual-level interventions. By integrating
these outputs into planning and resource allocation, stakeholders can make more informed, data-driven
decisions that reflect the heterogeneity across and within districts.

4. CONCLUSION

This study successfully developed a Generalized Mixed-Effects Generalized Random Forest
(GMEGRF) model, which demonstrated superior predictive performance for food insecurity compared to
Random Forest (RF), Generalized Random Forest (GRF), and Generalized Mixed-Effects Random Forest
(GMERF) models. The efficacy of the GMEGRF model is attributed to its ability to effectively partition
variance between fixed and random effects, manage the hierarchical structure inherent in food insecurity data,
produce balanced predictive outcomes, and achieve efficient model convergence. These findings establish
GMEGREF as a robust and accurate tool for food insecurity prediction, offering valuable insights for policy
formulation and effective interventions while underscoring the critical importance of addressing data
structure and class imbalance.

To enhance model performance, particularly in scenarios involving extreme class imbalance, it is
recommended to consider employing techniques such as oversampling, undersampling, or the application of
class weights. Extremely imbalanced datasets often overlook minority classes, which are often the primary
focus of analysis. By addressing the dominance of the majority class, the model becomes more inclusive and
sensitive to groups requiring special attention.

Author Contributions

Herlin Fransiska: Conceptualization, Methodology, Writing-Original Draft, Software, Validation. Agus Mohamad
Soleh: Software, Resources, Draft Preparation. Khairil Anwar Notodiputro: Formal analysis, Validation, and Resources.
Erfiani: Visualization and Resources. All authors discussed the results and contributed to the final manuscript.

Funding Statement

This research received a specific grant from the Directorate General of Higher Education, Research, and Technology of
the Ministry of Education, Culture, Research, and Technology for funding this research through the 2024 Doctoral
Research Scheme in accordance with Research Contract Number: 027/E5/PG.02.00.PL/2024 dated June 11, 2024.

Acknowledgment

This research was made possible by the generous support of the School of Data Science, Mathematics, and Informatics,
IPB University; the Faculty of Mathematics and Sciences, Bengkulu University; and Badan Pusat Statistik (Statistics
Indonesia).

Declarations

The authors declare no competing interest.

Declaration of Generative Al and Al-assisted Technologies

Generative Al tools (e.g., ChatGPT) were used solely for language refinement (grammar, spelling, and clarity). The
scientific content, analysis, interpretation, and conclusions were developed entirely by the authors. The authors reviewed
and approved all final text



BAREKENG: J. Math. & App., vol. 20(2), pp. 1111-1124, Jun, 2026. 1123

REFERENCES

(1]
(2]

(3]

(4]
5]
(6]

[7]
(8]
(9]
[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

(28]

K. P. Myers and J. L. Temple, “TRANSLATIONAL SCIENCE APPROACHES FOR FOOD INSECURITY RESEARCH,”
Appetite, vol. 200, p. 107513, Sep. 2024, doi: https://doi.org/10.1016/j.appet.2024.107513.

G. Nica-Avram, J. Harvey, G. Smith, A. Smith, and J. Goulding, “IDENTIFYING FOOD INSECURITY IN FOOD SHARING
NETWORKS VIA MACHINE LEARNING,” J Bus Res, vol. 131, pp. 469-484, Jul. 2021, doi:
https://doi.org/10.1016/j.jbusres.2020.09.028.

A. H. Villacis, S. Badruddoza, A. K. Mishra, and J. Mayorga, “THE ROLE OF RECALL PERIODS WHEN PREDICTING
FOOD INSECURITY: A MACHINE LEARNING APPLICATION IN NIGERIA,” Glob Food Sec, vol. 36, p. 100671, Mar.
2023, doi: https://doi.org/10.1016/j.9fs.2023.100671.

C. Gao, C. J. Fei, B. A. McCarl, and D. J. Leatham, “IDENTIFYING VULNERABLE HOUSEHOLDS USING MACHINE-
LEARNING,” Sustainability (Switzerland), vol. 12, no. 15, Aug. 2020, doi: https://doi.org/10.3390/su12156002.

S. Gholami et al., “FOOD SECURITY ANALYSIS AND FORECASTING: A MACHINE LEARNING CASE STUDY IN
SOUTHERN MALAWI,” Data Policy, vol. 4, no. 3, Oct. 2022, doi: https://doi.org/10.1017/dap.2022.25.

J. J. L. Westerveld et al, “FORECASTING TRANSITIONS IN THE STATE OF FOOD SECURITY WITH MACHINE
LEARNING USING TRANSFERABLE FEATURES,” Science of The Total Environment, vol. 786, p. 147366, Sep. 2021,
doi: https://doi.org/10.1016/j.scitotenv.2021.147366.

X.Shuand Y. Ye, “KNOWLEDGE DISCOVERY: METHODS FROM DATA MINING AND MACHINE LEARNING,” Soc
Sci Res, vol. 110, p. 102817, Feb. 2023, doi: https://doi.org/10.1016/j.ssresearch.2022.102817.

A. Hajjem, F. Bellavance, and D. Larocque, “MIXED EFFECTS REGRESSION TREES FOR CLUSTERED DATA,” Stat
Probab Lett, vol. 81, no. 4, pp. 451-459, Apr. 2011, doi: https://doi.org/10.1016/j.spl.2010.12.003.

A. Hajjem, F. Bellavance, and D. Larocque, “MIXED-EFFECTS RANDOM FOREST FOR CLUSTERED DATA,” J Stat
Comput Simul, vol. 84, no. 6, pp. 1313-1328, Jun. 2014, doi: https://doi.org/10.1080/00949655.2012.741599.

A. Hajjem, D. Larocque, and F. Bellavance, “GENERALIZED MIXED EFFECTS REGRESSION TREES,” Stat Probab Lett,
vol. 126, pp. 114-118, Jul. 2017, doi: https://doi.org/10.1016/j.spl.2017.02.033.

J. Hu and S. Szymczak, “A REVIEW ON LONGITUDINAL DATA ANALYSIS WITH RANDOM FOREST,” Brief
Bioinform, vol. 24, no. 2, pp. 1-11, Mar. 2023, doi: https://doi.org/10.1093/bib/bbad002.

P. Krennmair and T. Schmid, “FLEXIBLE DOMAIN PREDICTION USING MIXED EFFECTS RANDOM FORESTS,” JR
Stat Soc Ser C Appl Stat, vol. 71, no. 5, pp. 1865-1894, Nov. 2022, doi: https://doi.org/10.1111/rssc.12600.

M. Pellagatti, C. Masci, F. Ieva, and A. M. Paganoni, “GENERALIZED MIXED-EFFECTS RANDOM FOREST: A
FLEXIBLE APPROACH TO PREDICT UNIVERSITY STUDENT DROPOUT,” Statistical Analysis and Data Mining: The
ASA Data Science Journal, vol. 14, no. 3, pp. 241-257, Jun. 2021, doi: https://doi.org/10.1002/sam.11505.

R.J. Selaand J. S. Simonoff, “RE-EM TREES: A DATA MINING APPROACH FOR LONGITUDINAL AND CLUSTERED
DATA,” Mach Learn, vol. 86, no. 2, pp. 169-207, Feb. 2012, doi: https://doi.org/10.1007/s10994-011-5258-3.

J. L. Speiser et al, “BIMM TREE: A DECISION TREE METHOD FOR MODELING CLUSTERED AND LONGITUDINAL
BINARY OUTCOMES,” Commun Stat Simul Comput, vol. 49, no. 4, pp. 1004-1023, Apr. 2020, doi:
https://doi.org/10.1080/03610918.2018.1490429.

L. Fontana, C. Masci, F. Ieva, and A. M. Paganoni, “PERFORMING LEARNING ANALYTICS VIA GENERALISED
MIXED-EFFECTS TREES,” Data (Basel), vol. 6, no. 7, p. 74, Jul. 2021, doi: https://doi.org/10.3390/data6070074.

D. Kusumaningrum et al, “FOUR-PARAMETER BETA MIXED MODELS WITH SURVEY AND SENTINEL 2A
SATELLITE DATA FOR PREDICTING PADDY PRODUCTIVITY,” Smart Agricultural Technology, vol. 9, Dec. 2024, doi:
https://doi.org/10.1016/j.atech.2024.100525.

P. C. Chen, M. M. Yu, J. C. Shih, C. C. Chang, and S. H. Hsu, “A REASSESSMENT OF THE GLOBAL FOOD SECURITY
INDEX BY USING A HIERARCHICAL DATA ENVELOPMENT ANALYSIS APPROACH,” Eur J Oper Res, vol. 272, no.
2, pp. 687-698, Jan. 2019, doi: https://doi.org/10.1016/j.ejor.2018.06.045.

L. Breiman, “RANDOM FORESTS,” Mach Learn, vol. 45 no. 1, pp. 5-32, Oct. 2001, doi:
https://doi.org/10.1023/A:1010933404324.

S. W. Raudenbush and A. S. Bryk, “HIERARCHICAL LINEAR MODELS: APPLICATIONS AND DATA ANALYSIS
METHODS,” Applications and data analysis methods (Vol. 1), 2002.doi: https://doi.org/10.3758/s13428-017-0971-x

M. Fokkema, N. Smits, A. Zeileis, T. Hothorn, and H. Kelderman, “DETECTING TREATMENT-SUBGROUP
INTERACTIONS IN CLUSTERED DATA WITH GENERALIZED LINEAR MIXED-EFFECTS MODEL TREES,” Behav
Res Methods, vol. 50, no. 5, pp. 2016-2034, 2018, doi: 10.3758/s13428-017-0971-x.

S. Athey, J. Tibshirani, and S. Wager, “GENERALIZED RANDOM FORESTS,” https://doi.org/10.1214/18-A0S1709, vol.
47, no. 2, pp. 1148-1178, Apr. 2019, doi: https://doi.org/10.1214/18-A0S1709.

E. Zhou and D. Lee, “GENERATIVE ARTIFICIAL INTELLIGENCE, HUMAN CREATIVITY, AND ART,” PNAS Nexus,
vol. 3, no. 3, Mar. 2024, doi: https://doi.org/10.1093/pnasnexus/pgae052.

H. Fransiska, A. M. Soleh, K. A. Notodiputro, and Erfiani, “EVALUATION OF MACHINE LEARNING MODELS BASED
ON HOUSEHOLD FOOD INSECURITY DATA IN INDONESIA,” in BIO Web of Conferences, EDP Sciences, Apr. 2025.
doi: https://doi.org/10.1051/bioconf/202517102011.

S. Garcia, S. Ramirez-Gallego, J. Luengo, J. M. Benitez, and F. Herrera, “BIG DATA PREPROCESSING: METHODS AND
PROSPECTS,” Big Data Anal, vol. 1, no. 1, Dec. 2016, doi: https://doi.org/10.1186/s41044-016-0014-0.

I. K. Nti, O. Nyarko-Boateng, and J. Aning, “PERFORMANCE OF MACHINE LEARNING ALGORITHMS WITH
DIFFERENT K VALUES IN K-FOLD CROSSVALIDATION,” International Journal of Information Technology and
Computer Science, vol. 13, no. 6, pp. 61-71, Dec. 2021, doi: https://doi.org/10.5815/ijitcs.2021.06.05.

G.Y. Lee, L. Alzamil, B. Doskenov, and A. Termehchy, “A SURVEY ON DATA CLEANING METHODS FOR IMPROVED
MACHINE LEARNING MODEL PERFORMANCE,” Sep. 2021, [Online]. Available: http://arxiv.org/abs/2109.07127

P. Agasthi et al “PREDICTION OF PERMANENT PACEMAKER IMPLANTATION AFTER TRANSCATHETER AORTIC
VALVE REPLACEMENT: THE ROLE OF MACHINE LEARNING,” World J Cardiol, vol. 15, no. 3, pp. 95-105, Mar. 2023,
doi: https://doi.org/10.4330/wjc.v15.i3.95.



https://doi.org/10.1016/j.appet.2024.107513
https://doi.org/10.1016/j.jbusres.2020.09.028
https://doi.org/10.1016/j.gfs.2023.100671
https://doi.org/10.3390/su12156002
https://doi.org/10.1017/dap.2022.25
https://doi.org/10.1016/j.scitotenv.2021.147366
https://doi.org/10.1016/j.ssresearch.2022.102817
https://doi.org/10.1016/j.spl.2010.12.003
https://doi.org/10.1080/00949655.2012.741599
https://doi.org/10.1016/j.spl.2017.02.033
https://doi.org/10.1093/bib/bbad002
https://doi.org/10.1111/rssc.12600
https://doi.org/10.1002/sam.11505
https://doi.org/10.1007/s10994-011-5258-3
https://doi.org/10.1080/03610918.2018.1490429
https://doi.org/10.3390/data6070074
https://doi.org/10.1016/j.atech.2024.100525
https://doi.org/10.1016/j.ejor.2018.06.045
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.3758/s13428-017-0971-x
https://doi.org/10.1214/18-AOS1709
https://doi.org/10.1093/pnasnexus/pgae052
https://doi.org/10.1051/bioconf/202517102011
https://doi.org/10.1186/s41044-016-0014-0
https://doi.org/10.5815/ijitcs.2021.06.05
http://arxiv.org/abs/2109.07127
https://doi.org/10.4330/wjc.v15.i3.95

1124

[29]

(30]

[31]

[32]

(33]

Fransiska etal. MIXED-EFFECTS MODELS WITH GENERALIZED RANDOM FOREST: IMPROVED ...

D. Krstini¢, M. Braovi¢, L. Seri¢, and D. Bozi¢-Stuli¢, “MULTI-LABEL CLASSIFIER PERFORMANCE EVALUATION
WITH CONFUSION MATRIX,” ACADEMY AND INDUSTRY RESEARCH COLLABORATION CENTER (AIRCC), Jun.
2020, pp. 01-14. doi: https://doi.org/10.5121/csit.2020.100801.

S. H. Hasanah et al, “GOJEK DATA ANALYSIS THROUGH TEXT MINING USING SUPPORT VECTOR MACHINE
(SVM) AND K-NEAREST NEIGHBOR (KNN),” BAREKENG: J. Math. & App, vol. 19, no. 2, pp. 889-0902, 2025, doi:
https://doi.org/10.30598/barekengvol19iss2pp889-902.

M. Heydarian, T. E. Doyle, and R. Samavi, “MLCM: MULTI-LABEL CONFUSION MATRIX,” IEEE Access, vol. 10, pp.
19083-19095, 2022, doi: https://doi.org/10.1109/ACCESS.2022.3151048.

L. Sriliana, S. Nugroho, W. Agwil, and E. D. Sihombing, “EVALUATION OF MULTIVARIATE ADAPTIVE REGRESSION
SPLINES ON IMBALANCED DATASET FOR POVERTY CLASSIFICATION IN BENGKULU PROVINCE,” Barekeng,
vol. 19, no. 2, pp. 1143-1156, Jun. 2025, doi: https://doi.org/10.30598/barekengvol19iss2pp1143-1156.

H. A. Salman, A. Kalakech, and A. Steiti, “RANDOM FOREST ALGORITHM OVERVIEW,” Babylonian Journal of Machine
Learning, vol. 2024, pp. 69-79, Jun. 2024, doi: https://doi.org/10.58496/BJML/2024/007.



https://doi.org/10.5121/csit.2020.100801
https://doi.org/10.30598/barekengvol19iss2pp889-902
https://doi.org/10.1109/ACCESS.2022.3151048
https://doi.org/10.30598/barekengvol19iss2pp1143-1156
https://doi.org/10.58496/BJML/2024/007

	MIXED-EFFECTS MODELS WITH GENERALIZED RANDOM FOREST: IMPROVED FOOD INSECURITY ANALYSIS
	1. INTRODUCTION
	2. RESEARCH METHODS
	2.1 Frame work
	2.2 Dataset Detail
	2.3 Methods

	3. RESULTS AND DISCUSSION
	3.1 Summary Statistics
	3.2 Modeling Results
	3.3 Interpretation and Discussion

	4. CONCLUSION
	Author Contributions
	Funding Statement
	Acknowledgment
	Declarations

	Declaration of Generative AI and AI-assisted Technologies
	REFERENCES

