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Article Info ABSTRACT 

Article History: 
Fluctuations in exchange rates and foreign stock indices strongly influence domestic stock 

performance, particularly in the banking sector, which is highly sensitive to global 

economic dynamics. Traditional financial models often fail to capture the complex, non-

linear dependencies between these variables, underscoring the need for more advanced 

approaches. This study examines the effectiveness of copula-based regression models in 

predicting Bank Mandiri’s (BMRI) stock price using exchange rates and the Nikkei 225 

Index as predictors. Conventional regression methods, such as Linear Regression, cannot 

adequately capture nonlinear relationships and tail dependencies in financial time series. 

To address this, we compare Elliptical Copula, Symmetric Archimedean Copula, 

Asymmetric Archimedean Copula, and Generalized Nested Copula models. Results show 

that the Generalized Nested Copula Regression achieves the lowest Root Mean Square 

Error (RMSE), Mean Absolute Percentage Error (MAPE), and Weighted MAPE (wMAPE), 

effectively modeling asymmetric and tail dependencies that are crucial in financial 

forecasting. While Elliptical Copula (t-Copula) also provides strong predictive accuracy, 

Archimedean copulas perform poorly, failing to improve upon linear regression. These 

findings highlight the importance of flexible statistical models in financial prediction, 

demonstrating that copula-based regression offers a superior alternative to traditional 

methods. Unlike prior research that often relied on simpler copula families or linear 

models, this study introduces a Generalized Nested Copula Regression in the context of the 

Indonesian banking sector, addressing a gap in emerging market literature. The study 

assumes correctly specified marginal distributions and a stable dependency structure, 

which may limit applicability under rapidly changing market conditions. Future work 

should consider dynamic copula structures and additional economic indicators to further 

enhance predictive accuracy. 
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1. INTRODUCTION 

Analyzing the influence of exchange rates and foreign stock indices on domestic stocks is essential, 

particularly in sectors such as banking that are highly sensitive to international economic fluctuations [1]. 

Traditional financial models have often struggled to capture the complex, non-linear dependencies between 

these variables, as financial markets are characterized by intricate interactions influenced by both regional 

and global dynamics [2]. To address these challenges, this study employs a nested copula regression 

approach, a sophisticated statistical technique designed to model multi-layered, dynamic relationships among 

variables [3]. 

The nested copula approach is especially relevant for financial analysis because it allows for the 

investigation of non-linear dependencies that might otherwise be missed by traditional linear models [4], [5]. 

In this study, the approach is used to explore how the movements of exchange rates and the Nikkei 225 index 

influence Bank Mandiri's stock price. By capturing the complex interdependence between these variables, 

nested copula regression offers a more comprehensive framework for understanding the underlying forces 

affecting Bank Mandiri’s stock performance.  

The concept of copula modeling itself has undergone significant development, beginning with its 

origins in finance and insurance risk management, where it was used to study dependencies between two 

variables [6]-[8]. As copula methods have advanced, their applications have extended to fields beyond 

finance, including environmental science [9], [10] biostatistics [11], [12], engineering [4], [13], and social 

sciences [14]. This diversity of applications underscores copulas’ flexibility in handling complex data and 

dependence patterns. Early copula models were limited in scope, often focusing on straightforward, linear 

relationships and unable to address the complexity of financial markets as they exist today. However, as 

financial systems grew more interconnected and interdependent, the limitations of simple copula models 

became apparent. This need for more robust analytical methods led to the development of more advanced 

copula models capable of handling high-dimensional data and capturing complex dependency structures. 

Nested copulas, a more advanced evolution of the copula framework, were introduced to address 

precisely these challenges [15]-[17]. They allow for the modeling of hierarchical dependencies, enabling 

researchers to capture multi-dimensional relationships across different economic indicators, such as currency 

exchange rates and foreign stock indices. By applying a nested copula model, this study delves into the 

specific interdependencies that affect Bank Mandiri’s stock, offering a more nuanced perspective on how 

investors might anticipate the impacts of global economic factors on their portfolios in the Indonesian market. 

This deeper understanding is essential for creating strategies to navigate the volatility and risk associated with 

international market influences. 

Although previous studies have successfully applied copula models to capture dependencies in various 

financial [18], environmental [19], and engineering [20] contexts, most have been limited to simple copula 

families or pairwise constructions that fail to represent complex multi-dimensional structures. These 

approaches often overlook asymmetric and tail dependencies that are crucial in financial markets, particularly 

for highly volatile assets such as banking stocks. Moreover, existing research on the Indonesian financial 

sector rarely employs advanced copula frameworks, leaving a gap in understanding how global factors, such 

as exchange rates and foreign stock indices, jointly influence domestic stock prices. This study addresses this 

gap by introducing a Generalized Nested Copula Regression model, which provides greater flexibility in 

modeling hierarchical and asymmetric dependencies, thereby offering a novel contribution to the literature 

on financial forecasting in emerging markets. 

This research also holds significance for regulators and policymakers in the financial sector. 

Understanding the patterns of volatility and risk that stem from the interconnections between global and 

domestic markets can inform better decision-making and policy formulation, helping to stabilize markets in 

times of economic turbulence. Insights derived from this nested copula analysis can be particularly valuable 

for crafting regulations that mitigate systemic risks, thereby enhancing the resilience of the Indonesian 

banking sector against global shocks. For academics, this study contributes to the expanding literature on 

global economic factors influencing Indonesia’s financial sector. It also provides a flexible analytical tool 

that can be adapted to similar research, potentially inspiring new approaches to understanding global and 

domestic market interactions. Ultimately, the results of this research aim to guide more strategic investment 

decisions in Indonesia’s stock market, offering practical implications for investors in sectors with substantial 

global linkages, such as banking. By applying the nested copula model, this study highlights the importance 

of sophisticated statistical approaches in navigating today’s interconnected financial environment. 
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2. RESEARCH METHODS 

This section outlines the research methods used to analyze the relationship between exchange rates, 

the Nikkei 225 index, and the stock price of Bank Mandiri, employing a nested copula regression approach 

to capture the complex, non-linear dependencies among the variables. However, before delving into the 

methodology, the basic concept of copula will first be discussed. 

2.1. Copula 

Definition 1 (Copula Function). A two-dimensional copula is a function 𝐶 that maps 𝐼2 to 𝐼, where 𝐼 ∈ [0,1], 
and satisfies the following properties [21]: 

1. 𝐶 is grounded: 𝐶(𝑢, 0) = 𝐶(0, 𝑣) = 0, 

2. 𝐶(1, 𝑣) = 𝑢𝑗;  ∀𝑢𝑗 ∈ [0,1], and 

3. 𝐶 is 𝑛-increasing. 

Theorem 1 (Sklar). Let 𝐻 be a two-dimensional distribution function with marginal distribution functions 𝐹1 

and 𝐹2. Then, there exists a two-dimensional copula 𝐶 such that for every 𝑥 ∈ 𝑅2, the following holds: 

 𝐻(𝑥1, 𝑥2) = 𝐶(𝐹1(𝑥1), 𝐹2(𝑥2)). (1) 

If the marginal functions 𝐹1 and 𝐹2 are continuous, then the copula 𝐶 is unique [21]. Theorem 1 can be 

extended for 𝑛-dimensional case as follows. 

Theorem 2. For 𝑛-dimensional cases, let 𝐺 be an 𝑛-dimensional distribution function with marginal 

distribution functions 𝐹1, 𝐹2, … 𝐹𝑛. Then, there exists an 𝑛-dimensional copula 𝐶𝑛 such that for every 𝑥 ∈ 𝑅𝑛, 

the following holds: 

 𝐺(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝐶𝑛(𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝑛(𝑥𝑛)). (2) 

If all the marginal functions are continuous, then the copula 𝐶𝑛 is unique [21]. 

2.2. Consequence of Sklar’s Theorem 

Let 𝐶 is a unique copula, then 𝐶 can be expressed as: 

 𝐶(𝑢, 𝑣) = ∫ ∫ 𝑐(𝑠, 𝑡)
𝑢

0
𝑑𝑠

𝑣

0
𝑑𝑡, (3) 

where 𝑢 = 𝐹𝑋(𝑥) and 𝑣 = 𝐹𝑌(𝑦) and 𝑐 is the corresponding copula density function. The important 

consequence of Sklar’s theorem [22] (Theorem 1) then stated that every joint probability density ℎ is also 

writable by the product of its marginal probability densities 𝑓𝑋 and 𝑓𝑌 and the copula density 𝑐. 

Theorem 3. Let ℎ is a joint density with marginal densities 𝑓𝑋 and 𝑓𝑌, then there exists a copula density 𝑐 

such that 

 ℎ(𝑥, 𝑦) =  𝑐(𝐹𝑋(𝑥), 𝐹𝑌(𝑦)) ⋅ 𝑓𝑋(𝑥) ⋅ 𝑓𝑌(𝑦). (4) 

Proof. By deriving the right and left sides of Sklar's Theorem (Theorem 1) with respect to 𝑥 and 𝑦,  

𝜕

𝜕𝑥𝜕𝑦
𝐻(𝑥1, 𝑥2) =

𝜕

𝜕𝑥𝜕𝑦
𝐶(𝐹1(𝑥1), 𝐹2(𝑥2)), 

ℎ(𝑥, 𝑦) =  𝑐(𝐹𝑋(𝑥), 𝐹𝑌(𝑦)) ⋅ 𝑓𝑋(𝑥) ⋅ 𝑓𝑌(𝑦). 

then Eq. (4) is proven. ∎ 

2.3. Nested Copula 

In the case of a 3-dimensional copula, a nested copula structure allows modeling the dependencies 

among three variables by nesting two-dimensional copulas within one another. The general form of a three-

dimensional nested copula can be expressed as follows: 

Definition 2. Let 𝐶1 and 𝐶2 be bivariate copulas. A three-dimensional nested copula 𝐶 can be constructed as: 

 𝐶(𝐹1(𝑥1), 𝐹2(𝑥2), 𝐹3(𝑥3)) = 𝐶2(𝐶1[𝐹1(𝑥1), 𝐹2(𝑥2)], 𝐹3(𝑥3)),  (5) 
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where 𝐹1, 𝐹2, 𝐹3 are the marginal distribution functions of the three variables. Here, the copula 𝐶1 models the 

dependency between 𝑥1 and 𝑥2, and 𝐶2 models the dependency between the result of 𝐶1 and 𝑥3. In this case, 

the nested structure allows the modeling of a hierarchical dependence structure, where the relationship 

between 𝑥1 and 𝑥2 is first captured, and then the dependence between this pair and the third variable 𝑥3 is 

modeled. Suppose that 𝑢𝑖 = 𝐹(𝑥𝑖) and 𝑈𝑖 = 𝐹(𝑋𝑖) for 𝑖 = 1,2,3, then Fig. 1 provides the structural 

construction of nested copulas in the tri-variate cases.  

 

Figure 1. Nested Structure of 3-Dimensional Copulas 

Intuitively, the nested copula structure in Fig. 1 can be understood as a two-step process of building 

dependencies. First, 𝐶1 links two variables, 𝑢1 and 𝑢2, capturing how they move together. Then, 𝐶2 takes the 

combined result of 𝐶1 and connects it with the third variable, 𝑢3. This hierarchical construction allows us to 

model complex relationships step by step: we first describe the dependence between two variables and then 

extend it to include the third. Such a nested approach provides greater flexibility than a single copula, 

especially when the strength or type of dependence differs across subsets of variables. 

The joint probability density function derived from the nested 3-copula follows directly from Sklar’s 

theorem and the theorem of the nested 3-copula. Sklar’s theorem ensures that any multivariate distribution 

can be represented using its marginal distributions and a copula function that captures dependence. 

Consequently, the joint density function of the nested 3-copula is obtained by differentiating its copula 

function, providing a precise representation of the dependence structure among the variables. 

Theorem 4. Let 𝑋1, 𝑋2, 𝑋3 be random variables with marginal cumulative distribution functions (CDFs) 

𝐹1, 𝐹2, 𝐹3, respectively. Then, the joint distribution 𝐹1,2,3 can be constructed from a nested structure of two 

bivariate copula (2-copulas) as follows: 

 𝐹1,2,3(𝑥1, 𝑥2, 𝑥3) =  𝐶2 (𝐶1(𝐹1(𝑥1), 𝐹2(𝑥2)), 𝐹3(𝑥3)).  (6) 

As a result, the joint probability density function is written by: 

 𝑓1,2,3(𝑥1, 𝑥2, 𝑥3) = 𝑐2 (𝐶1(𝐹1(𝑥1), 𝐹2(𝑥2)), 𝐹3(𝑥3)) ⋅ 𝑐1(𝐹1(𝑥1), 𝐹2(𝑥2)) ⋅ 𝑓1(𝑥1) ⋅ 𝑓2(𝑥2) ⋅ 𝑓3(𝑥3). (7) 

Proof. Using Theorem 2 and Definition 2, we get: 

𝐹1,2,3(𝑥1, 𝑥2, 𝑥3) = 𝐶𝑛(𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝑛(𝑥𝑛)) = 𝐶2 (𝐶1(𝐹1(𝑥1), 𝐹2(𝑥2)), 𝐹3(𝑥3)), 

then Eq. (6) proven. By deriving the right and left sides of  Eq. (6) with respect to 𝑥1, 𝑥2 and 𝑥3,  

𝜕

𝜕𝑥1𝜕𝑥2𝜕𝑥3
𝐹1,2,3(𝑥1, 𝑥2, 𝑥3) =

𝜕

𝜕𝑥1𝜕𝑥2𝜕𝑥3
𝐶2 (𝐶1(𝐹1(𝑥1), 𝐹2(𝑥2)), 𝐹3(𝑥3)) , 

𝑓1,2,3(𝑥1, 𝑥2, 𝑥3) = 𝑐2 (𝐶1(𝐹1(𝑥1), 𝐹2(𝑥2)), 𝐹3(𝑥3)) ⋅ 𝑐1(𝐹1(𝑥1), 𝐹2(𝑥2)) ⋅ 𝑓1(𝑥1) ⋅ 𝑓2(𝑥2) ⋅ 𝑓3(𝑥3), 

then the joint probability density function in  Eq. (7) is proven. ∎ 

Generally, the construction steps for the nested 3-copula are as follows [23]. 

1. Estimate 𝐹1, 𝐹2, and 𝐹3 (marginal distribution). 

2. Select the two variables with the highest degree of dependence, for example 𝑋1 and 𝑋2, then 

transform the two variables using their respective marginal distributions (notate the results as 𝑈1 

and 𝑈2). 

3. Estimate 𝐶1 using 𝑈1 and 𝑈2 (first bivariate copula). 

4. Transform the remaining variable 𝑋3 using its marginal distribution (notate the result as 𝑈3). 

5. Estimate 𝐶2 using 𝑈3 and 𝐶2(𝑈1, 𝑈2) (second bivariate copula). 
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However, since the goal of this research is to predict BMRI, the calculation process is simplified by selecting 

𝑥1 and 𝑥2 as predictor variables, while 𝑥3 serves as the response variable (BMRI), which will be denoted as 

𝑦. 

2.4. Conditional probability density function and copula regression 

Let 𝑋3 be the response variable while 𝑋1 and 𝑋2 are the explanatory variables, then the conditional 

probability density function of 𝑥3 given 𝑥1 and 𝑥2 is defined by 

𝑓(𝑥3|𝑥1, 𝑥2) =
𝑓(𝑥1, 𝑥2, 𝑥3)

𝑓(𝑥1, 𝑥2)
= 𝑐2(𝐶1(𝑢1, 𝑢2), 𝑢3) ⋅ 𝑓3(𝑥3), (8) 

due to 𝑓(𝑥1, 𝑥2) = 𝑐1(𝑢1, 𝑢2) ⋅ 𝑓1(𝑥1) ⋅ 𝑓2(𝑥1) [9]. 

If we wish to predict the value of 𝑥3, then we might take the expected value of the conditional density, 

which is so-called conditional expectation. The conditional expectation provides the prediction of 𝑥3 with the 

smallest possible mean square error, which is why it is often referred to as the minimum-mean-square-error 

predictor. Formally, the conditional expectation of 𝑥3 given 𝑥1 and 𝑥2 is defined as 

𝐸(𝑥3|𝑥1, 𝑥2) = ∫ 𝑥3 ⋅ 𝑓(𝑥3|𝑥1, 𝑥2)
∞

−∞

𝑑𝑥3 = ∫ 𝑐2(𝐶1(𝑢1, 𝑢2), 𝑢3) ⋅ 𝑓3(𝑥3) ⋅ 𝑥3

∞

−∞

𝑑𝑥3. (9) 

Since nested copulas are used to construct the conditional density, we call this formula a nested copula 

regression. Copula regression is often more robust to outliers and non-normality in the data compared to 

traditional regression techniques. It can handle data with heavy tails and non-standard distributions more 

effectively. 

For computational convenience, we use the Riemann sum approach to estimate the value of the integral: 

𝐸(𝑥3|𝑥1, 𝑥2) ≈ ∑ 𝑐2(𝐶1(𝑢1, 𝑢2), 𝑢3
(𝑖)

⋅ 𝑓3 (𝑥3
(𝑖)

) ⋅ 𝑥3
(𝑖)

⋅ Δ𝑥3
(𝑖)

𝑝

𝑖=1

. (10) 

where 𝑝 represents the number of partitions used [24]. 

2.5. Types of Copula Family 

In this study, we explore several families of copulas to model the dependence structure between 

variables. Copulas offer a flexible framework for separating marginal distributions from their dependence 

structure, allowing the joint behavior of variables to be modeled without assuming identical distributional 

forms. This property makes copulas particularly useful for financial and economic data, where relationships 

are often nonlinear and characterized by asymmetric tail behavior. The families of copulas considered can be 

broadly classified as follows: 

2.5.1. Elliptical Copulas (Gaussian and Student-t) 

Elliptical copulas are derived from multivariate elliptical distributions. The Gaussian copula captures 

symmetric dependence but lacks tail dependence, making it less suitable for modeling extreme events. In 

contrast, the Student-t copula accommodates tail dependence, thereby providing a better fit for financial data 

that often exhibits co-movement during extreme market conditions. For further details on the theoretical 

foundations and applications of elliptical copulas, readers may refer to recent works such as [25], [26], [27], 

[28] and subsequent references. 

2.5.2. Archimedean Copulas (Clayton, Gumbel, Frank, Joe) 

Archimedean copulas are widely used due to their simple closed-form expressions and ability to 

capture asymmetric dependence. For example, the Clayton copula emphasizes lower-tail dependence, making 

it suitable when joint extreme losses are of interest. The Gumbel copula, on the other hand, captures upper-

tail dependence, reflecting simultaneous extreme gains. The Frank copula provides symmetric dependence 

without tail emphasis, while the Joe copula focuses on strong upper-tail associations. For a more 

comprehensive discussion of Archimedean copulas and their extensions, readers may consult [29], [30], [31], 

[32], [33] and subsequent references. 
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2.5.3. Extreme Value Copulas 

Extreme value copulas are designed to capture dependence structures in the tails of distributions, which 

are critical in risk management and financial forecasting. They provide theoretical consistency with extreme 

value theory, ensuring that joint tail behavior is properly represented. Further insights into the construction 

and applications of extreme value copulas can be found in [34], [35], [36], [37] and related references. 

2.5.4. Two-Parameter Copulas (BB1, BB6, BB7, BB8) 

These copulas extend the flexibility of the Archimedean family by combining features of two different 

copulas. For instance, BB1 merges Clayton and Gumbel properties, allowing simultaneous modeling of both 

lower- and upper-tail dependence. Such flexibility is valuable when empirical data shows asymmetric 

dependence patterns that cannot be captured by single-parameter copulas. Readers interested in detailed 

theoretical formulations and broader applications of two-parameter copulas are referred to [38], [39], [40], 

[41], [42] and related works. 

To ensure comprehensive coverage of possible dependence structures, we employed eleven copula 

functions across these families. This diversity allows the analysis to account for a wide range of dependence 

behaviors—symmetric versus asymmetric, weak versus strong, and central versus tail dependence. Table 1 

presents the formulas and parameter domains of the selected bivariate copula functions, which serve as the 

foundation for constructing the multivariate nested copula models used in this study. 

Table 1. Formulas and Parameter Domains of Some Bivariate Copula Functions 

No Copula 𝑪𝑿(𝒖𝟏, 𝒖𝟐) Parameter 

1 Normal 𝐹𝑁(0,Σ) (𝐹𝑁(0,1)
−1 (𝑢1), 𝐹𝑁(0,1)

−1 (𝑢2))  

2 Student-t 𝐹𝑡(𝑣,Σ) (𝐹𝑡(𝑣)
−1 (𝑢1), 𝐹𝑡(𝑣)

−1 (𝑢2))  

3 Clayton (𝑢1
−𝜃 + 𝑢2

−𝜃 − 1)
−1/𝜃

 𝜃 > 0 

4 Gumbel exp [−(𝑤1
𝜃 + 𝑤2

𝜃)
1/𝜃

], where 𝑤𝑖 = − ln 𝑢𝑖 𝜃 ≥ 1 

5 Frank −
1

𝜃
ln [1 +

𝑤1𝑤2

𝑒−1−1
], where 𝑤𝑖 = 𝑒−𝜃𝑢𝑖 − 1 𝜃 ≠ 0 

6 FGM 𝑢1𝑢2 + 𝜃𝑢1𝑢2(1 − 𝑢1)(1 − 𝑢2) −1 ≤ 𝜃 ≤ 1 

7 Galambos 𝑢1𝑢2 exp [(𝑤1
−𝜃 + 𝑤2

−𝜃)
−1/𝜃

], where 𝑤𝑖 = − ln 𝑢𝑖 𝜃 ≥ 0 

8 BB1 [1 + (𝑤1
𝛿 + 𝑤2

𝛿)
1/𝛿

]
−1/𝜃

, where 𝑤𝑖 = 𝑢𝑖
−𝜃 − 1 𝜃 > 0, 𝛿 ≥ 1 

9 BB6 1 − {1 − exp [−(𝑤1
𝛿 + 𝑤2

𝛿)
1/𝛿

]}
1/𝜃

, where 𝑤𝑖 = − ln[1 − (1 − 𝑢𝑖)
𝜃] 𝜃 ≥ 1, 𝛿 ≥ 1 

10 BB7 1 − [1 − (𝑤1
−𝛿 + 𝑤2

−𝛿 − 1)
−1/𝛿

]
1/𝜃

, where 𝑤𝑖 = 1 − (1 − 𝑢𝑖)
𝜃 𝜃 ≥ 1, 𝛿 > 0 

11 BB8 
1

𝜃
{1 − [1 −

𝑤1𝑤2

1−(1−𝛿)𝜃]
1/𝛿

}, where 𝑤𝑖 = 1 − (1 − 𝛿𝑢𝑖)
𝜃 

𝜃 ≥ 1, 
0 < 𝛿 ≤ 1 

2.6. Parameter Estimation using the Inference of Function for Margin 

The Inference of Function for Margin (IFM) method is a parametric method consisting of two steps, 

with the basis of each step containing the log likelihood approach. This method is usually used to estimate 

the parameters of a multidimensional copula. The first step in this method is to construct a log likelihood 

function to estimate the marginal parameter vector 𝛼̂𝑖, i.e. 

 𝛼̂𝑖 = arg max ln 𝐿𝑖 = arg max ln ∏ 𝑓𝑖(𝑥𝑖
𝑡; 𝛼𝑖)𝑁

𝑡=1 , (11) 

where 𝑓𝑖 is the probability density function of the random variable 𝑋𝑖. The second step of the IFM method is 

to estimate the copula parameters by maximizing the log value of the copula likelihood function 𝐿. For 

bivariate cases, it is written as follows. 

 𝜃 = arg max ln 𝐿 = arg max ln ∏ 𝑐(𝐹1(𝑥1
𝑡; 𝛼̂1), 𝐹2(𝑥2

𝑡 ; 𝛼̂2); 𝜃)𝑁
𝑡=1 , (12) 

where 𝜃 is the estimate of the copula parameter 𝜃 and 𝑐 is the copula probability density function [43], [44]. 

For the trivariate case, copulas are formed through a nested structure of bivariate copulas as in Algorithm 1. 
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2.7. Goodness-of-fits 

In this study, we use the Kolmogorov–Smirnov (K–S) test [45], Root Mean Square Error (RMSE), and 

Akaike’s information criterion (AIC) [46] to measure the goodness of fit of the joint distributions as follows: 

 𝐾𝑆𝐸 = max
𝑖=1,2,..,𝑛

|𝑃𝐸𝑖
− 𝑃𝑇𝑖

|, (13) 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑃𝐸𝑖

− 𝑃𝑇𝑖
)

2𝑛
𝑖=1 , (14) 

 𝐴𝐼𝐶 = 2𝑘 − 2 𝑙𝑛 𝐿, (15) 

where 𝑛 is the sample size, 𝑘 is the number of parameters of different distributions, 𝐿 is the maximum 

likelihood function value of distributions, 𝑃𝐸𝑖 and 𝑃𝑇𝑖 are the empirical and theoretical frequency, 

respectively. We use Gringorten’s formula [47] to estimate the empirical frequency of 𝑋 and 𝑌 as follow 

𝑃𝐸𝑖
= 𝑃(𝑋 ≤ 𝑥𝑖 , 𝑌 ≤ 𝑦𝑖) =

#(𝑋 ≤ 𝑥𝑖, 𝑌 ≤ 𝑦𝑖) − 0.44

𝑛 + 0.12
, (16) 

where #(𝑋, 𝑌) is the combination of the 𝑖-th values of the increased order in the 𝑋 and 𝑌 series. Meanwhile, 

theoretical frequency is the models from marginal and copula distributions. In this study, the Kolmogorov–

Smirnov (KS) test, Anderson–Darling (AD) test, RMSE, and AIC were selected as the primary model 

comparison tools because they provide complementary insights into both distributional fit and predictive 

performance. Other criteria, such as the Bayesian Information Criterion (BIC) or likelihood ratio tests, were 

not considered for two reasons. First, BIC tends to penalize model complexity more strongly than AIC, which 

may be less suitable in the context of copula models where flexibility is required to capture complex 

dependencies. Second, likelihood ratio tests are not always straightforward to apply in copula-based 

frameworks, particularly when comparing non-nested models, making them less practical for the objectives 

of this study. Thus, the chosen criteria strike a balance between statistical rigor and applicability to the copula 

modeling framework. 

2.8 Datasets 

In this study, three datasets are utilized to develop a predictive model for BMRI. The response variable 

is BMRI, while the predictor variables include Exchange Rates and the Nikkei 225 index. The datasets consist 

of monthly observations of BMRI stock prices, exchange rates (USD/IDR), and the Nikkei 225 index over 

the study period. The details of each dataset are described as follows. 

 

Figure 2. Time Series of the BMRI Stock Price, USD to IDR Exchange Rate and Nikkei 225 Index. 
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The above Fig. 2 provides an overview of the historical trends and fluctuations in BMRI stock prices, 

exchange rates, and the Nikkei 225 index over the observed period. By analyzing these time series, patterns 

and potential correlations among the variables can be identified, which is essential for building an accurate 

predictive model. The integration of these three datasets enables a comprehensive analysis of the factors 

affecting BMRI stock prices. By leveraging historical data, the model aims to enhance prediction accuracy 

and support data-driven decision-making in financial markets. 

 

Figure 3. Correlation Matrix among the Three Variables: Bank Mandiri Stock Price (BMRI), Exchange Rates (Exrat), 

and the Nikkei 225 Index (N225). 

The above Fig. 3 presents a correlation matrix that reveals key relationships between Bank Mandiri 

Stock Price (BMRI), exchange rates (ExRat), and the Nikkei 225 index (N225). The upper triangle shows 

Pearson correlation coefficients, indicating strong positive correlations: 0.89 between N225 and ExRat, 0.84 

between N225 and BMRI, and 0.74 between ExRat and BMRI. These values suggest that movements in the 

Nikkei 225 and exchange rates significantly affect BMRI stock prices, with N225 exerting a slightly stronger 

influence. The lower triangle features scatter plots with upward-sloping red regression lines, visually 

confirming the positive associations among the variables. Diagonal elements contain histograms showing 

right-skewed distributions for BMRI and ExRat, while N225 appears more symmetric. Collectively, the 

matrix highlights that BMRI is influenced by both exchange rates and the Japanese stock market, with 

implications for predictive modeling that underscore the need to consider both variables when forecasting 

BMRI performance. 

3. RESULTS AND DISCUSSION 

This study aimed to predict the stock price of Bank Mandiri (BMRI) using two predictor variables: the 

Nikkei 225 Index (N225) and Exchange Rates (ExRat). Traditional linear regression and several copula-based 

models were applied to assess the predictive performance of different approaches. The models tested include 

Linear Regression, Elliptical Copula, Symmetric Archimedean Copula, Asymmetric Archimedean Copula, 

and Generalized Nested Copula. Each model was evaluated based on metrics such as Root Mean Square Error 

(RMSE), Mean Absolute Percentage Error (MAPE), and weighted MAPE (wMAPE). 

3.1. Performance of Linear Regression Model 

The parameter estimation process for the linear regression model was conducted using the Ordinary 

Least Squares (OLS) method. OLS aims to minimize the sum of squared residuals, ensuring that the estimated 

regression line best fits the given data. In this study, the dependent variable (BMRI) was modeled as a 

function of two explanatory variables: Nikkei 225 (N225) and Exchange Rates (ExRat). The general form of 

the linear regression model is expressed as: 
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𝑦̂ = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝜖, 

where 𝑦̂ represents the predicted value of BMRI, 𝛽0 is the intercept, 𝛽1 and 𝛽2 are the estimated regression 

coefficients for N225 (𝑥1) and Exchange Rates (𝑥2), respectively, and 𝜖 denotes the error term. After 

performing OLS estimation, resulting in: 

𝑦̂ = 0.1419𝑥1 − 0.0328𝑥2 + 𝜖. 

This indicates that BMRI has a positive relationship with N225, as evidenced by the coefficient 0.1419. 

This suggests that an increase in the Nikkei 225 index is associated with an increase in BMRI, potentially 

reflecting the influence of global stock market trends on BMRI stock performance. Conversely, the negative 

coefficient of -0.0328 for Exchange Rates suggests that a rise in exchange rates tends to decrease BMRI, 

which may be linked to investor concerns over currency depreciation and its effects on financial markets. 

To evaluate the model’s predictive performance, three error metrics were computed. The Root Mean 

Squared Error (RMSE) of 0.56461 quantifies the average magnitude of prediction errors, providing a measure 

of how well the model fits the data. Additionally, the Mean Absolute Percentage Error (MAPE) of 0.13808 

indicates that the model’s predictions deviate by approximately 13.81% from actual values on average. The 

Weighted Mean Absolute Percentage Error (wMAPE) of 0.13894 further confirms the model’s consistency 

across different observations. 

While linear regression serves as a useful baseline model due to its simplicity and interpretability, it 

assumes a linear relationship between variables. However, financial data often exhibits nonlinear 

dependencies, tail risks, and complex interactions that cannot be effectively captured by traditional regression 

techniques. As a result, more advanced approaches, such as copula-based regression, may provide better 

predictive accuracy by accounting for the intricate dependencies and extreme fluctuations observed in 

financial markets. 

3.2. Performance of Copula Regression Model 

In this section, copula regression will be performed following the procedures outlined in the 

methodology. The process begins with estimating the marginal distributions of all variables to ensure that 

each variable’s individual characteristics are well captured. Next, a nested copula structure is constructed, 

allowing the model to capture the dependence between the predictor variables, Nikkei 225 and Exchange 

Rates, and the response variable, BMRI. Finally, the expected conditional probability density function (PDF) 

of BMRI is computed, given known values of the predictor variables. This step is essential in obtaining 

accurate predictions while incorporating the complex dependency structure among the financial variables. 

To evaluate the effectiveness of different copula-based regression models, four 3-nested copula 

approaches are considered: Elliptical Copula, Symmetric Archimedean Copula, Asymmetric Archimedean 

Copula, and Generalized Nested Copula. The Elliptical Copula, which includes the Gaussian and t-copulas, 

provides a flexible dependence structure suitable for capturing symmetric relationships. The Symmetric 

Archimedean Copula assumes a common dependence pattern among variables and is often used when dealing 

with exchangeable data structures. The Asymmetric Archimedean Copula allows for asymmetric tail 

dependencies, making it particularly useful for financial data where extreme movements tend to be more 

pronounced in one direction. Finally, the Generalized Nested Copula combines different copula families, 

offering a more advanced and adaptable framework for modeling complex dependencies. 

By applying these four approaches, this study aims to determine the most effective nested copula 

structure for predicting BMRI stock prices. Given the nonlinear and heavy-tailed nature of financial data, 

incorporating copula-based regression models provides a more flexible alternative to traditional methods, 

ensuring that both linear and nonlinear dependencies between financial variables are properly accounted for. 

3.2.1. Marginal Distributions Estimation 

In copula-based modeling, an essential step before constructing the dependence structure is estimating 

the marginal distributions of each variable. Marginal distributions describe the individual behavior of each 

variable independently, allowing for the separation of dependency modeling from univariate characteristics. 

This step ensures that the selected copula function captures only the dependence structure and not the 

individual variability of the variables. 

  



1176           Khairiati, et al.             GENERALIZED NESTED COPULA REGRESSION TO UNVEIL THE IMPACT OF EXCHANGE … 

3.2.2. Selection of Marginal Distributions 

To accurately model the behavior of the predictor variables (Nikkei 225 and Exchange Rates) and the 

response variable (BMRI), different probability distributions were tested. The best-fitting marginal 

distributions were selected based on statistical criteria such as the Kolmogorov-Smirnov Test (KS) and 

Anderson-Darling (AD) tests, and Akaike Information Criterion (AIC). The identified marginal distributions 

for each variable are: 

1. Nikkei 225 (X1):  

Generalized Extreme Value (GEV) distribution with parameters 𝑘 = −0.33371, 𝜎 = 6.6589, and  

𝜇 = 17.5862 was selected based on the Kolmogorov–Smirnov (KS) and Anderson–Darling (AD) 

statistics, despite not yielding the lowest Akaike Information Criterion (AIC). This choice was 

made because goodness-of-fit tests (KS and AD) provide a more direct measure of the model’s 

ability to capture the empirical distribution, particularly in the tails, which is critical for extreme 

value analysis. In contrast, AIC emphasizes parsimony and overall likelihood, but it may not 

adequately reflect the fit in the distribution’s extremes, which are the primary focus in extreme 

value modeling. 

Table 2. Results of the Marginal Distribution Fitting for the Nikkei 225 Index. 

Dist. Name KS stat KS p-val AD stat AD p-val AIC 

 GEV  0.068710 0.437650 1.111500 0.303620 1026.0 

 NOR  0.071322 0.391240 1.179200 0.275520 1028.1 

 WB  0.073160 0.360470 1.182100 0.274360 1023.7 

 LOG  0.071058 0.395790 1.245400 0.250830 1037.4 

 EV  0.100270 0.082661 1.917900 0.102010 1042.1 

 GAM  0.098653 0.091434 2.310700 0.062447 1033.5 

 LL  0.094723 0.116100 2.755100 0.036571 1048.6 

 LN  0.121990 0.018129 3.416500 0.016948 1043.5 

 ING  0.129160 0.010290 3.707900 0.012162 1043.5 

 EXP  0.347580 0.000000 30.841000 0.000004 1236.8 

2. Exchange Rates (X2):  

Extreme Value distribution with parameters 𝜇 = 13.8707 and 𝜎 = 1.5136 was selected, as all 

goodness-of-fit statistics consistently indicated that this distribution provides the best fit to the 

observed data. This result suggests that the Extreme Value distribution is more capable of 

capturing the behavior of the empirical distribution, particularly in representing the central 

tendency and spread of the data, compared to other candidate distributions. The superiority across 

multiple statistical tests reinforces its robustness, implying that the Extreme Value distribution is 

the most reliable choice for further analysis and modeling in this study. 

Table 3. Results of the Marginal Distribution Fitting for the Exchange Rates. 

Dist. Name KS stat KS p-val AD stat AD p-val AIC 

EV 0.122250 0.017766 3.697100 0.012312 634.66 

GEV 0.136950 0.005359 3.800900 0.010947 638.38 

WB 0.147180 0.002147 5.699500 0.001343 645.47 

LOG 0.137480 0.005119 6.778200 0.000425 675.84 

NOR 0.192230 0.000017 7.931700 0.000124 671.94 

LL 0.157530 0.000795 8.801500 0.000047 696.50 

GAM 0.211920 0.000001 9.592900 0.000018 687.31 

LN 0.220350 0.000000 10.383000 0.000007 696.33 

ING 0.222600 0.000000 10.528000 0.000006 696.36 

EXP 0.482050 0.000000 50.883000 0.000004 1105.50 

3. BMRI (Y):  

Inverse Gaussian distribution with 𝜇 = 3.049 and 𝜆 = 26.4443 was selected, as all goodness-of-

fit statistics consistently demonstrated that this distribution provides the best agreement with the 

observed data. This indicates that the Inverse Gaussian distribution effectively represents both the 

shape and variability of the dataset, making it the most suitable candidate among the evaluated 

distributions for subsequent analysis. 
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Table 4. Results of the Marginal Distribution Fitting for BMRI. 

 

 

 

 

 

 

 

The parameters for each distribution were estimated using the Maximum Likelihood Estimation (MLE) 

method, which finds the parameter values that maximize the likelihood function given the observed data. 

These parameters determine the shape, scale, and location of the respective marginal distributions, ensuring 

a precise representation of the data. To validate the suitability of the selected marginal distributions, 

goodness-of-fit tests were performed. The Kolmogorov-Smirnov (KS) and Anderson-Darling (AD) test was 

used to compare the empirical distribution with the fitted theoretical distribution, while the Akaike 

Information Criterion (AIC) provided a measure of model selection by balancing goodness-of-fit with model 

complexity. The selected distributions showed a good fit, ensuring that the copula construction accurately 

captures the dependency structure without distorting the individual behaviors of the variables. 

By accurately estimating the marginal distributions, the dependency modeling using copulas becomes 

more reliable. The marginal transformations allow the variables to be mapped into the uniform (0,1) domain, 

where the copula function is applied. This transformation ensures that the dependency structure is analyzed 

independently of marginal behavior, enhancing the flexibility and robustness of the copula-based regression 

model. Accurate marginal distribution estimation is crucial for the effectiveness of copula models, as 

incorrect marginal choices can lead to biased dependency structures. Therefore, selecting the appropriate 

distributions and validating their fit plays a fundamental role in achieving reliable predictions in copula-based 

modeling. 

3.2.3. Elliptical Copula Model Regression 

The Elliptical Copula Model Regression is applied to estimate BMRI stock prices using Nikkei 225 

and Exchange Rates as predictor variables. This process involves constructing the copula, selecting the best-

fitting copula, performing copula-based regression, and evaluating the model’s predictive accuracy. In this 

study, two elliptical copula families were considered: Gaussian Copula, which assumes a normal dependency 

structure without tail dependence, and t-Copula, which allows for stronger tail dependence, making it more 

suitable for financial data with extreme fluctuations. The copulas were parameterized using maximum 

likelihood estimation (MLE) to best fit the observed data. Table 5 shows the results of the 3-nested copula 

fitting using elliptical copula with their goodness of fits. 

Table 5. Results of the 3-Nested Copula Fitting Using Elliptical Copula. 

Name param1*) param2 CvM pValue RMSE AIC 

t 𝑟 6.148 0.27798 0.15429 0.042349 -477.92 

Gaussian 𝑟 - 0.27365 0.15838 0.042017 -458.36 

*) 𝑟 = (
1 0.8963 0.8602

0.8963 1 0.8244
0.8602 0.8244 1

) 

To determine the most suitable elliptical copula, model selection was performed using the Akaike 

Information Criterion (AIC) and Cramér–von Mises (CvM) statistic. The copula with the lowest AIC value 

was chosen as the best fit for modeling the dependencies between BMRI, Nikkei 225, and Exchange Rates. 

In this case, the t-Copula provided the best performance, indicating that financial data exhibit significant tail 

dependencies, which are better captured by the t-copula structure. Once the best-fitting copula was selected, 

copula regression was applied to estimate the conditional probability density function (PDF) of BMRI given 

observed values of Nikkei 225 and Exchange Rates.  

The expected value of BMRI is computed using Eqs. (9) and (10). It resulted in  

RMSE = 0.547, MAPE = 0.13688, and wMAPE = 0.13438. The results indicate that the t-Copula model 

Dist. Name KS stat KS p-val AD stat AD p-val AIC 

ING 0.040691 0.950330 0.390110 0.858280 428.90 

LN 0.041779 0.939070 0.404770 0.843770 429.77 

GEV 0.054525 0.725040 0.437850 0.810300 432.01 

LL 0.056915 0.675260 0.587380 0.659730 437.15 

GAM 0.059564 0.619610 0.715350 0.545900 433.98 

LOG 0.072874 0.365150 1.648700 0.144670 455.39 

WB 0.075641 0.321470 2.167100 0.074555 453.65 

NOR 0.087769 0.172940 2.320300 0.061722 456.16 

EV 0.153160 0.001219 6.993900 0.000338 513.48 

EXP 0.390530 0.000000 32.514000 0.000004 657.59 
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outperformed linear regression, achieving lower RMSE and MAPE values. This suggests that incorporating 

tail dependence in financial modeling significantly enhances predictive performance. 

3.2.4. Symmetric Archimedean Copula Model 

The Symmetric Archimedean Copula Model Regression was applied to estimate BMRI stock prices 

using the Nikkei 225 Index and Exchange Rates as predictors. Unlike elliptical copulas, which allow for 

greater flexibility in capturing dependence structures, symmetric Archimedean copulas rely on a single-

parameter dependency structure. This simplicity makes them computationally efficient and relatively easy to 

interpret but also limits their ability to represent asymmetric or complex tail behavior commonly observed in 

financial data. 

In this study, four Archimedean families—Clayton, Frank, Gumbel, and Joe—were tested. Each family 

has distinct properties: the Clayton copula emphasizes lower-tail dependence, the Gumbel and Joe copulas 

focus on upper-tail dependence, and the Frank copula provides a more symmetric dependence without tail 

dominance. Parameter estimation was performed using Maximum Likelihood Estimation (MLE), and model 

adequacy was evaluated using the Cramér–von Mises (CvM) statistic, Akaike Information Criterion (AIC), 

and error measures. Table 6 summarizes the results. Among the four families, the Clayton copula achieved 

the most favorable AIC (–432.72) and the lowest RMSE (0.03593), suggesting that lower-tail dependence 

plays a more prominent role in the joint movements of BMRI with its predictors. In contrast, the Joe copula 

performed poorly, with the weakest fit indices and the highest RMSE (0.07308). 

Table 6. Results of the 3-Nested Copula Fitting Using Symmetric Archimedean Copula. 

Name param1 param2 CvM pValue RMSE AIC 

Clayton 2.6913 - 0.20004 0.24702 0.03593 -432.72 

Frank   9.4214 - 0.33061 0.11228 0.04618 -431.60 

Gumbel  2.5048 - 0.43180 0.06094 0.05278 -390.22 

Joe     2.8102 - 0.82775 0.00558 0.07308 -290.00 

Model selection was guided by AIC and CvM, leading to the Clayton copula as the best candidate 

within this family. However, further validation using conditional expectation showed that its predictive 

performance remained limited, with RMSE = 1.3217, MAPE = 0.35305, and wMAPE = 0.31786. These 

results indicate that although the Clayton copula captures dependency patterns better than other Archimedean 

copulas, its predictive accuracy is inferior to that of elliptical copula models. Overall, symmetric 

Archimedean copulas provide a straightforward means of modeling dependence, particularly when 

interpretability is prioritized. Nevertheless, their restrictive single-parameter form makes them less suitable 

for highly dynamic and asymmetric financial relationships, underscoring the need for more flexible copula 

structures in practice. 

3.2.5. Asymmetric Archimedean Copula Model Regression 

Given the limitations of symmetric Archimedean copulas in capturing complex dependencies, the 

Asymmetric Archimedean Copula Model Regression was employed as an alternative. Unlike the symmetric 

version, which assumes a uniform dependency strength across all variables, the asymmetric structure 

introduces greater flexibility by nesting multiple copulas. This design allows for varying dependence 

strengths between the lower and upper tails, which is particularly important in financial applications where 

joint extreme losses and gains do not necessarily occur with equal probability. 

In this study, a nested Clayton copula was selected because of its ability to capture lower-tail 

dependence more accurately. Such dependence is relevant in financial markets, where extreme negative 

shocks in exchange rates and foreign indices may disproportionately affect stock prices. Table 7 summarizes 

the results of the 3-nested copula fitting using asymmetric Archimedean families. 

Table 7. Results of the 3-Nested Copula Fitting Using Asymmetric Archimedean Copula. 

Family Parameter Goodness of Fits 

Clayton Nested Layers: AIC (Joint PDF) = 1632.8 

 No. 1: Copula Name = Clayton CvM = 0.171 

 param1 = 4.2896 RMSE = 0.033 

 No. 2: Copula Name = Clayton pVal = 0.294 

  param1 = 2.2128   
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Family Parameter Goodness of Fits 

Gumbel Nested Layers: AIC (Joint PDF) = 1720.7 

 No. 1: Copula Name = Gumbel CvM = 0.422 

 param1 = 2.7335 RMSE = 0.052 

 No. 2: Copula Name = Gumbel pVal = 0.065 

  param1 = 2.3913   

Frank Nested Layers: AIC (Joint PDF) = 1633.0 

 No. 1: Copula Name = Frank CvM = 0.329 

 param1 = 12.713 RMSE = 0.046 

 No. 2: Copula Name = Frank pVal = 0.114 

  param1 = 8.9316   

Joe Nested Layers: AIC (Joint PDF) = 1833.4 

 No. 1: Copula Name = Joe CvM = 0.821 

 param1 = 2.8583 RMSE = 0.073 

 No. 2: Copula Name = Joe pVal = 0.006 

  param1 = 2.81   

The model construction followed a two-step process: first, the marginal distributions of BMRI, Nikkei 

225, and Exchange Rates were estimated, and then the copula structure was determined using Akaike 

Information Criterion (AIC). The nested Clayton copula was identified as the best fit, highlighting strong 

lower-tail dependence while allowing for varying dependency strengths between predictors and the response 

variable. 

Using the selected copula, the conditional probability density function (PDF) of BMRI stock prices 

was estimated given the observed values of Nikkei 225 and Exchange Rates. The expected value was 

computed numerically following Eq. (5) from the methodology, approximated using Riemann sums. This 

model achieved RMSE = 0.64323, MAPE = 0.14261, and wMAPE = 0.1519, demonstrated that the 

Asymmetric Archimedean Copula Model significantly outperformed its symmetric counterpart. Lower error 

values suggest that accounting for asymmetric dependencies leads to a more precise stock price prediction. 

This confirms that allowing for different strengths of dependency in different market conditions is essential 

for financial modeling, making the asymmetric approach a more suitable choice than the symmetric 

Archimedean copula model. 

3.2.6. Generalized Nested Copula Model 

Since the Asymmetric Archimedean Copula Model failed to outperform the Elliptical Copula 

Regression and even showed lower accuracy than traditional linear regression, a more advanced approach 

was considered: the Generalized Nested Copula Model. This framework extends the flexibility of copula 

constructions by allowing different copula families to be combined hierarchically. Through such nesting, the 

model can simultaneously capture multiple forms of dependence, including asymmetric relationships, 

nonlinear interactions, and tail dependencies, which are often present in financial time series data. 

The modeling process began with the estimation of marginal distributions for BMRI stock prices, 

Nikkei 225, and Exchange Rates. Afterward, various candidate nesting structures were evaluated using the 

Akaike Information Criterion (AIC), Cramér–von Mises (CvM) statistic, and root-mean-square error 

(RMSE). The best-fitting specification was obtained by combining the BB8-180 copula in the first layer 

(linking Nikkei 225 and Exchange Rates) with a t-copula in the second layer (incorporating BMRI). This 

hybrid structure enabled the model to represent lower- and upper-tail dependence as well as symmetric tail 

co-movement, yielding a more accurate and realistic representation of joint dynamics. 

Table 8 summarizes the fitting results. The nested BB8-180 and t-copula combination outperformed 

all competing models, achieving RMSE = 0.58557, MAPE = 0.13632, and wMAPE = 0.14709. These error 

metrics were substantially lower than those of the symmetric and asymmetric Archimedean copulas and also 

improved upon the elliptical copula regression. The relatively strong p-value (0.197) further indicated that 

the dependence structure was statistically consistent with the data. 

Table 8. Results of the 3-Nested Copula Fitting Using Generalized Nested Copula 

Family Parameter Goodness of Fits 

Clayton Nested Layers: AIC (Joint PDF) = 1585.3 

 No. 1: Copula Name = BB8 180 CvM = 0.238 

 Param 1 = 7.8361, param 2 = 0.91401 RMSE = 0.039 
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Family Parameter Goodness of Fits 

 No. 2: Copula Name = t pVal = 0.197 

  Param 1 = 0.85455, param 2 = 11831819.2288   

Overall, the results demonstrate that the Generalized Nested Copula Model provides the most robust 

framework for capturing the complex dependencies inherent in financial markets. By flexibly combining 

copulas with different strengths, the model successfully reconciles tail dependence, asymmetry, and 

nonlinearity, i.e., features that simpler models fail to capture simultaneously. This superior performance 

underscores the importance of hybrid copula constructions in financial econometrics and positions the 

Generalized Nested Copula Regression as the most effective predictive tool among all the models tested. 

3.3. Discussion 

This section presents a comparative analysis of the predictive performance of various models, 

including linear regression, elliptical copula regression, symmetric Archimedean copula, asymmetric 

Archimedean copula, and generalized nested copula regression. The discussion focuses on evaluating the 

strengths and weaknesses of each approach based on key performance metrics such as Root Mean Square 

Error (RMSE), Mean Absolute Percentage Error (MAPE), and Weighted MAPE (wMAPE). 

Table 9. Comparison of Performance Metrics from Each Model Structure 

Model Structure RMSE MAPE wMAPE 

Generalized Nested Copula 0.58557 0.13632 0.14709 

Elliptical Copula (t) 0.54700 0.13688 0.13438 

Linear Regression 0.56461 0.13808 0.13894 

Asymmetric Archimedean Copula (Clayton) 0.64323 0.14261 0.15190 

Symmetric Archimedean Copula (Clayton) 1.32170 0.35305 0.31786 

From Table 9, the Generalized Nested Copula Model demonstrates the best overall performance, 

achieving the lowest MAPE and wMAPE, confirming its superior ability to model financial dependencies. 

The Elliptical Copula (t-Copula) Regression follows closely behind, showing strong predictive accuracy, 

particularly in capturing tail dependencies. Linear Regression, while performing relatively well, lacks the 

flexibility to handle complex dependency structures, making it less effective than copula-based approaches. 

The Asymmetric Archimedean Copula Model, despite allowing for different dependency strengths in the 

lower and upper tails, does not outperform elliptical copulas or linear regression. Lastly, the Symmetric 

Archimedean Copula Model performs the worst, highlighting its limitations in modeling real-world financial 

relationships due to its rigid structure. 

The results indicate that nested copula models outperform traditional linear regression and simpler 

copula structures by better capturing nonlinear and asymmetric dependencies. The Generalized Nested 

Copula Model, which combines BB8-180 and t-Copula layers, successfully adapts to varying dependency 

structures, making it the most effective model for stock price prediction. The Elliptical Copula (t-Copula) 

Regression also exhibits strong predictive power, particularly due to its ability to model tail dependencies, 

which are crucial in financial markets. This confirms that models capable of handling extreme market 

conditions tend to perform better in stock price forecasting. 

The underperformance of the Symmetric and Asymmetric Archimedean Copulas suggests that a single-

parameter dependency structure is insufficient for capturing the complexity of stock market data. While the 

Asymmetric Archimedean Copula improves upon its symmetric counterpart, it still fails to match the 

accuracy of elliptical and nested copula models. This reinforces the notion that financial time series data 

require greater modeling flexibility, which can be achieved through hybrid or hierarchical copula structures. 

Overall, the findings emphasize the importance of selecting an appropriate copula model for financial 

forecasting. While linear regression remains a simple and interpretable baseline model, it is outperformed by 

copula-based approaches that incorporate nonlinear, asymmetric, and tail-dependent relationships. The 

Generalized Nested Copula Model emerges as the most effective, proving that combining multiple 

dependency structures enhances predictive accuracy in financial markets. However, it should be noted that 

these findings are specific to the dataset employed in this study and may not necessarily generalize to other 

time periods or market conditions. Future research could explore further refinements in copula selection and 

parameter estimation to optimize predictive performance even further. 
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4. CONCLUSION 

This study has demonstrated the effectiveness of Generalized Nested Copula Regression in predicting 

Bank Mandiri's (BMRI) stock price based on Exchange Rates and the Nikkei 225 Index. By comparing 

multiple models, we found that traditional linear regression methods fail to capture the complex, nonlinear 

dependencies inherent in financial data. Copula-based models, particularly the Generalized Nested Copula, 

emerged as the most effective approach for modeling stock price movements by allowing for both asymmetric 

and tail-dependent relationships. 

The findings reveal that BMRI stock prices are significantly influenced by both exchange rates and the 

Nikkei 225, with the latter showing a stronger correlation. While Elliptical Copulas, especially t-Copula 

Regression, provided a strong baseline for capturing tail dependencies, the Generalized Nested Copula Model 

outperformed all alternatives by adapting to varied dependency structures, leading to the lowest RMSE, 

MAPE, and wMAPE values. This result highlights the importance of hybrid copula models in accurately 

predicting financial trends, particularly in highly volatile markets. 

From a broader perspective, this research underscores the need for more sophisticated statistical 

techniques in financial forecasting. The superiority of copula-based models suggests that market analysts, 

investors, and policymakers should move beyond traditional regression techniques and adopt more flexible, 

dependencies-aware approaches. Future research could further refine copula selection strategies, incorporate 

additional economic indicators, and explore dynamic copula structures to enhance forecasting accuracy. By 

leveraging these advanced methodologies, financial market predictions can become more precise, resilient, 

and adaptable to changing economic conditions. 

Author Contributions 

Alfi Khairiati: Data Curation, Software, Investigation, Writing—Original Draft Preparation, Validation, Funding 

Acquisition. Retno Budiarti: Resources, Formal Analysis, Validation, Writing—Review and Editing. Mohamad Khoirun 

Najib: Conceptualization, Methodology, Software, Supervision, Project Administration, Formal Analysis, Visualization, 

Writing, Critical Revision. All authors discussed the results and contributed to the final manuscript. 

Funding Statement 

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors. 

Acknowledgment  

The authors would like to thank the School of Data Science, Mathematics and Informatics, IPB University, and the 

National Institute of Science and Technology for their support during this research. Special appreciation is also extended 

to colleagues who provided valuable feedback and to the reviewers whose constructive comments helped improve the 

quality of this manuscript. 

Declarations 

The authors declare that he/she has no conflicts of interest to report study. 

Declaration of Generative AI and AI-assisted Technologies 

Generative AI tools (e.g., ChatGPT) were used solely for language refinement (grammar, spelling, and clarity). The 

scientific content, analysis, interpretation, and conclusions were developed entirely by the authors. The authors reviewed 

and approved all final text. 

REFERENCES 

[1] A. Maulana, Mayrinda, M. Fitriyani, Deni, and Y. Adiyanto, “RISK MANAGEMENT AS A DETERMINANT OF 

INDONESIAN BANKING FINANCIAL PERFORMANCE: A SYSTEMATIC LITERATURE APPROACH,” Indo-Fintech 

Intellectuals J. Econ. Bus., vol. 4, no. 5, pp. 2523–2537, 2024, doi: https://doi.org/10.54373/ifijeb.v4i5.2120. 

[2] A. Njegovanović, “COMPLEX SYSTEMS IN INTERDISCIPLINARY INTERACTION,” Financ. Mark. Institutions Risks, 

vol. 8, no. 1, pp. 94–107, 2024, doi: https://doi.org/10.61093/fmir.8(1).94-107.2024. 

[3] W. Yaméogo and D. Barro, “MODELING THE DEPENDENCE OF LOSSES OF A FINANCIAL PORTFOLIO USING 

NESTED ARCHIMEDEAN COPULAS,” Int. J. Math. Math. Sci., vol. 2021, 2021, doi: https://doi.org/10.1155/2021/4651044. 

https://doi.org/10.54373/ifijeb.v4i5.2120
https://doi.org/10.61093/fmir.8(1).94-107.2024
https://doi.org/10.1155/2021/4651044


1182           Khairiati, et al.             GENERALIZED NESTED COPULA REGRESSION TO UNVEIL THE IMPACT OF EXCHANGE … 

[4] Y. Li, H. Chen, M. Yi, J. Li, and C. Fang, “SEISMIC VULNERABILITY ANALYSIS OF BRIDGES INCORPORATING 

SCOUR UNCERTAINTY USING A COPULA-BASED APPROACH,” Ocean Eng., vol. 323, 2025, doi: 

https://doi.org/10.1016/j.oceaneng.2025.120598. 

[5] C. Su and Q. Wang, “RELIABILITY EVALUATION FOR ELECTROMECHANICAL PRODUCTS BASED ON 

IMPROVED MULTILEVEL NESTED COPULA METHOD,” Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal Southeast 

Univ. (Natural Sci. Ed., vol. 52, no. 5, pp. 981–989, 2022, doi: https://doi.org/10.3969/j.issn.1001-0505.2022.5.019 

[6] L. Tibiletti, “BENEFICIAL CHANGES IN RANDOM VARIABLES VIA COPULAS: AN APPLICATION TO 

INSURANCE,” GENEVA Pap. Risk Insur. Theory, vol. 20, no. 2, pp. 191–202, 1995, doi: https://doi.org/10.1007/BF01258396. 

[7] E. W. Frees and E. A. Valdez, “UNDERSTANDING RELATIONSHIPS USING COPULAS,” North Am. Actuar. J., vol. 2, 

no. 1, pp. 1–25, 1998, doi: https://doi.org/10.1080/10920277.1998.10595667. 

[8] K. Aas, C. Czado, A. Frigessi, and H. Bakken, “PAIR-COPULA CONSTRUCTIONS OF MULTIPLE DEPENDENCE,” Insur. 

Math. Econ., vol. 44, no. 2, pp. 182–198, 2009, doi: https://doi.org/10.1016/j.insmatheco.2007.02.001. 

[9] T. W. Mas’oed, S. Nurdiati, A. Sopaheluwakan, M. K. Najib, and A. Salsabila, “MODELING FIRE HOTSPOTS IN 

KALIMANTAN, INDONESIA USING NESTED 3-COPULA REGRESSION BASED ON PRECIPITATION AND DRY 

DAYS DURING DIFFERENT ENSO PHASES,” Geogr. Tech., vol. 19, no. 2, pp. 264–281, 2024, doi: 

https://doi.org/10.21163/GT_2024.192.21. 

[10] M. K. Najib, S. Nurdiati, and A. Sopaheluwakan, “PREDICTION OF HOTSPOTS PATTERN IN KALIMANTAN USING 

COPULA-BASED QUANTILE REGRESSION AND PROBABILISTIC MODEL: A STUDY OF PRECIPITATION AND 

DRY SPELLS ACROSS VARIED ENSO CONDITIONS,” Vietnam J. Earth Sci., vol. 46, no. 1, pp. 12–33, 2024, doi: 

1https://doi.org/10.15625/2615-9783/19302. 

[11] A. K. Nikoloulopoulos, “ON COMPOSITE LIKELIHOOD IN BIVARIATE META-ANALYSIS OF DIAGNOSTIC TEST 

ACCURACY STUDIES,” AStA Adv. Stat. Anal., vol. 102, no. 2, pp. 211–227, 2018, doi: https://doi.org/10.1007/s10182-017-

0299-y. 

[12] S. Cho, M. A. Psioda, and J. G. Ibrahim, “BAYESIAN JOINT MODELING OF MULTIVARIATE LONGITUDINAL AND 

SURVIVAL OUTCOMES USING GAUSSIAN COPULAS,” Biostatistics, 2024, doi: 

https://doi.org/10.1093/biostatistics/kxae009. 

[13] C. Cui et al, “MULTIDIMENSIONAL SEISMIC FRAGILITY ANALYSIS OF SUBWAY STATION STRUCTURES USING 

THE ADAPTIVE BANDWIDTH KERNEL DENSITY ESTIMATION AND COPULA FUNCTION,” Undergr. Sp., vol. 22, 

pp. 110–123, 2025, doi: https://doi.org/10.1016/j.undsp.2024.10.004. 

[14] E. Dehghani et al, “INTRODUCING COPULA AS A NOVEL STATISTICAL METHOD IN PSYCHOLOGICAL 

ANALYSIS,” Int. J. Environ. Res. Public Health, vol. 18, no. 15, 2021, doi: https://doi.org/10.3390/ijerph18157972. 

[15] N. Whelan, “SAMPLING FROM ARCHIMEDEAN COPULAS,” Quant. Financ., vol. 4, no. 3, pp. 339–352, 2004, doi: 

https://doi.org/10.1088/1469-7688/4/3/009. 

[16] F. Serinaldi and S. Grimaldi, “FULLY NESTED 3-COPULA: PROCEDURE AND APPLICATION ON HYDROLOGICAL 

DATA,” J. Hydrol. Eng., vol. 12, no. 4, pp. 420–430, 2007, doi: https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(420). 

[17] A. J. McNeil, “SAMPLING NESTED ARCHIMEDEAN COPULAS,” J. Stat. Comput. Simul., vol. 78, no. 6, pp. 567–581, 

2008, doi: https://doi.org/10.1080/00949650701255834. 

[18] P. R. Dewick and S. Liu, “COPULA MODELLING TO ANALYSE FINANCIAL DATA,” J. Risk Financ. Manag., vol. 15, 

no. 3, 2022, doi: https://doi.org/10.3390/jrfm15030104. 

[19] M. K. Najib, S. Nurdiati, and A. Sopaheluwakan, “QUANTIFYING THE JOINT DISTRIBUTION OF DROUGHT 

INDICATORS IN BORNEO FIRE-PRONE AREA,” IOP Conf. Ser. Earth Environ. Sci., vol. 880, no. 1, 2021, doi: 

https://doi.org/10.1088/1755-1315/880/1/012002. 

[20] P. Kumar, “COPULA FUNCTIONS AND APPLICATIONS IN ENGINEERING,” in Logistics, supply chain and financial 

predictive analytics: theory and practices, Singapore: Springer Singapore, 2019, pp. 195–209. doi: 

1https://doi.org/10.1007/978-981-13-0872-7_15. 

[21] R. B. Nelsen, AN INTRODUCTION TO COPULAS. Springer, 2006. 

[22] A. Sklar, “FONCTIONS DE RÉPARTITION ÀN DIMENSIONS ET LEURS MARGES,” Publ. L’Institut Stat. L’Université 

Paris, vol. 8, pp. 229–231, 1959. 

[23] S. Nurdiati, T. W. Mas’oed, M. K. Najib, and D. Rahmawati, “JOINT DISTRIBUTION AND PROBABILITY DENSITY OF 

CLIMATE FACTORS IN KALIMANTAN USING NESTED COPULAS,” Barekeng, vol. 19, no. 2, pp. 1203–1216, 2025, 

doi: https://doi.org/10.30598/barekengvol19iss2pp1203-1216. 

[24] B. K. Jha and Y. J. Danjuma, “UNSTEADY DEAN FLOW FORMATION IN AN ANNULUS WITH PARTIAL SLIPPAGE: 

A RIEMANN-SUM APPROXIMATION APPROACH,” Results Eng., vol. 5, 2020, doi: 

https://doi.org/10.1016/j.rineng.2019.100078. 

[25] X. Huang and Z. Wang, “PROBABILISTIC SPATIAL PREDICTION OF CATEGORICAL DATA USING ELLIPTICAL 

COPULAS,” Stoch. Environ. Res. Risk Assess., vol. 32, no. 6, pp. 1631–1644, 2018, doi: https://doi.org/10.1007/s00477-017-

1485-x. 

[26] Y. Zhao and C. Genest, “INFERENCE FOR ELLIPTICAL COPULA MULTIVARIATE RESPONSE REGRESSION 

MODELS,” Electron. J. Stat., vol. 13, no. 1, pp. 911–984, 2019, doi: https://doi.org/10.1214/19-EJS1534. 

[27] B. W. Langworthy, R. L. Stephens, J. H. Gilmore, and J. P. Fine, “CANONICAL CORRELATION ANALYSIS FOR 

ELLIPTICAL COPULAS,” J. Multivar. Anal., vol. 183, 2021, doi: https://doi.org/10.1016/j.jmva.2020.104715. 

[28] Y. He, L. Zhang, J. Ji, and X. Zhang, “ROBUST FEATURE SCREENING FOR ELLIPTICAL COPULA REGRESSION 

MODEL,” J. Multivar. Anal., vol. 173, pp. 568–582, 2019, doi: https://doi.org/10.1016/j.jmva.2019.05.003. 

[29] G. Risca et al, “ARCHIMEDEAN COPULAS: A USEFUL APPROACH IN BIOMEDICAL DATA—A REVIEW WITH AN 

APPLICATION IN PEDIATRICS,” Stats, vol. 8, no. 3, 2025, doi: https://doi.org/10.3390/stats8030069. 

[30] N. Uyttendaele, “ON THE ESTIMATION OF NESTED ARCHIMEDEAN COPULAS: A THEORETICAL AND AN 

EXPERIMENTAL COMPARISON,” Comput. Stat., vol. 33, no. 2, pp. 1047–1070, 2018, doi: https://doi.org/10.1007/s00180-

017-0743-1. 

[31] Y. Ng, A. Hasan, K. Elkhalil, and V. Tarokh, “GENERATIVE ARCHIMEDEAN COPULAS,” 37th Conf. Uncertain. Artif. 

Intell. UAI 2021, pp. 643–653, 2021. 

https://doi.org/10.1016/j.oceaneng.2025.120598
https://doi.org/10.3969/j.issn.1001-0505.2022.5.019
https://doi.org/10.1007/BF01258396
https://doi.org/10.1080/10920277.1998.10595667
https://doi.org/10.1016/j.insmatheco.2007.02.001
https://doi.org/10.21163/GT_2024.192.21
https://doi.org/10.15625/2615-9783/19302
https://doi.org/10.1007/s10182-017-0299-y
https://doi.org/10.1007/s10182-017-0299-y
https://doi.org/10.1093/biostatistics/kxae009
https://doi.org/10.1016/j.undsp.2024.10.004
https://doi.org/10.3390/ijerph18157972
https://doi.org/10.1088/1469-7688/4/3/009
https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(420)
https://doi.org/10.1080/00949650701255834
https://doi.org/10.3390/jrfm15030104
https://doi.org/10.1088/1755-1315/880/1/012002
https://doi.org/10.1007/978-981-13-0872-7_15
https://doi.org/10.30598/barekengvol19iss2pp1203-1216
https://doi.org/10.1016/j.rineng.2019.100078
https://doi.org/10.1007/s00477-017-1485-x
https://doi.org/10.1007/s00477-017-1485-x
https://doi.org/10.1214/19-EJS1534
https://doi.org/10.1016/j.jmva.2020.104715
https://doi.org/10.1016/j.jmva.2019.05.003
https://doi.org/10.3390/stats8030069
https://doi.org/10.1007/s00180-017-0743-1
https://doi.org/10.1007/s00180-017-0743-1


BAREKENG: J. Math. & App., vol. 20(2), pp. 1167-1184, Jun, 2026.     1183 

 
[32] T. D. Kularatne, J. Li, and D. Pitt, “ON THE USE OF ARCHIMEDEAN COPULAS FOR INSURANCE MODELLING,” Ann. 

Actuar. Sci., vol. 15, no. 1, pp. 57–81, 2021, doi: https://doi.org/10.1017/S1748499520000147. 

[33] C. K. Ling, F. Fang, and J. Z. Kolter, “DEEP ARCHIMEDEAN COPULAS,” Adv. Neural Inf. Process. Syst., vol. 2020-

December, 2020. 

[34] F. Li, J. Zhou, and C. Liu, “STATISTICAL MODELLING OF EXTREME STORMS USING COPULAS: A COMPARISON 

STUDY,” Coast. Eng., vol. 142, pp. 52–61, 2018, doi: https://doi.org/10.1016/j.coastaleng.2018.09.007. 

[35] G. D’Amico, F. Petroni, and F. Prattico, “WIND SPEED PREDICTION FOR WIND FARM APPLICATIONS BY EXTREME 

VALUE THEORY AND COPULAS,” J. Wind Eng. Ind. Aerodyn., vol. 145, pp. 229–236, 2015, doi: 

https://doi.org/10.1016/j.jweia.2015.06.018. 

[36] H. Elgohari and H. M. Yousof, “A NEW EXTREME VALUE MODEL WITH DIFFERENT COPULA, STATISTICAL 

PROPERTIES AND APPLICATIONS,” Pakistan J. Stat. Oper. Res., vol. 17, no. 4, pp. 1015–1035, 2021, doi: 

https://doi.org/10.18187/pjsor.v17i4.3471. 

[37] D. Lee and H. Joe, “MULTIVARIATE EXTREME VALUE COPULAS WITH FACTOR AND TREE DEPENDENCE 

STRUCTURES,” Extremes, vol. 21, no. 1, pp. 147–176, 2018, doi: https://doi.org/10.1007/s10687-017-0298-0. 

[38] M. A. Ehsan, A. Shahirinia, J. Gill, and N. Zhang, “DEPENDENT WIND SPEED MODELS: COPULA APPROACH,” 2020 

IEEE Electr. Power Energy Conf. EPEC 2020, 2020, doi: https://doi.org/10.1109/EPEC48502.2020.9320024. 

[39] S. Latif, I. El Ouadi, and T. B. M. J. Ouarda, “COPULA-BASED JOINT DISTRIBUTION MODELLING OF 

PRECIPITATION, TEMPERATURE AND HUMIDITY EVENTS IN THE ASSESSMENTS OF AGRICULTURAL RISKS, 

WITH A CASE STUDY IN MOROCCO,” Stoch. Environ. Res. Risk Assess., 2025, doi: https://doi.org/10.1007/s00477-025-

03047-4. 

[40] S. Latif and F. Mustafa, “BIVARIATE FLOOD DISTRIBUTION ANALYSIS UNDER PARAMETRIC COPULA 

FRAMEWORK: A CASE STUDY FOR KELANTAN RIVER BASIN IN MALAYSIA,” Acta Geophys., vol. 68, no. 3, pp. 

821–859, 2020, doi: https://doi.org/10.1007/s11600-020-00435-y. 

[41] A. Shahirinia, Z. Farahmandfar, M. T. Bina, S. B. Henderson, and M. Ashtary, “SPATIAL MODELING SENSITIVITY 

ANALYSIS: COPULA SELECTION FOR WIND SPEED DEPENDENCE,” AIP Adv., vol. 14, no. 4, 2024, doi: 

https://doi.org/10.1063/5.0185710. 

[42] Z. Li, Q. Shao, Q. Tian, and L. Zhang, “COPULA-BASED DROUGHT SEVERITY-AREA-FREQUENCY CURVE AND ITS 

UNCERTAINTY, A CASE STUDY OF HEIHE RIVER BASIN, CHINA,” Hydrol. Res., vol. 51, no. 5, pp. 867–881, 2020, 

doi: https://doi.org/10.2166/nh.2020.173. 

[43] M. K. Najib, S. Nurdiati, and A. Sopaheluwakan, “MULTIVARIATE FIRE RISK MODELS USING COPULA REGRESSION 

IN KALIMANTAN, INDONESIA,” Nat. Hazards, vol. 113, no. 2, pp. 1263–1283, 2022, doi: https://doi.org/10.1007/s11069-

022-05346-3. 

[44] M. K. Najib, S. Nurdiati, and A. Sopaheluwakan, “COPULA-BASED JOINT DISTRIBUTION ANALYSIS OF THE ENSO 

EFFECT ON THE DROUGHT INDICATORS OVER BORNEO FIRE-PRONE AREAS,” Model. Earth Syst. Environ., vol. 

8, no. 2, pp. 2817–2826, 2022, doi: https://doi.org/10.1007/s40808-021-01267-5 

[45] X. Wei et al, “COINCIDENCE PROBABILITY OF STREAMFLOW IN WATER RESOURCES AREA, WATER 

RECEIVING AREA AND IMPACTED AREA: IMPLICATIONS FOR WATER SUPPLY RISK AND POTENTIAL 

IMPACT OF WATER TRANSFER,” Hydrol. Res., vol. 51, no. 5, pp. 1120–1135, 2020, doi: 

https://doi.org/10.2166/nh.2020.106. 

[46] M. N. Tahroudi, Y. Ramezani, C. De Michele, and R. Mirabbasi, “ANALYZING THE CONDITIONAL BEHAVIOR OF 

RAINFALL DEFICIENCY AND GROUNDWATER LEVEL DEFICIENCY SIGNATURES BY USING COPULA 

FUNCTIONS,” Hydrol. Res., vol. 51, no. 6, pp. 1332–1348, 2020, doi: https://doi.org/10.2166/nh.2020.036 

[47] I. I. Gringorten, “A PLOTTING RULE FOR EXTREME PROBABILITY PAPER,” J. Geophys. Res., vol. 68, no. 3, pp. 813–

814, 1963, doi: https://doi.org/10.1029/JZ068i003p00813. 

  

https://doi.org/10.1017/S1748499520000147
https://doi.org/10.1016/j.coastaleng.2018.09.007
https://doi.org/10.1016/j.jweia.2015.06.018
https://doi.org/10.18187/pjsor.v17i4.3471
https://doi.org/10.1007/s10687-017-0298-0
https://doi.org/10.1109/EPEC48502.2020.9320024
https://doi.org/10.1007/s00477-025-03047-4
https://doi.org/10.1007/s00477-025-03047-4
https://doi.org/10.1007/s11600-020-00435-y
https://doi.org/10.1063/5.0185710
https://doi.org/10.2166/nh.2020.173
https://doi.org/10.1007/s11069-022-05346-3
https://doi.org/10.1007/s11069-022-05346-3
https://doi.org/10.1007/s40808-021-01267-5
https://doi.org/10.2166/nh.2020.106
https://doi.org/10.2166/nh.2020.036
https://doi.org/10.1029/JZ068i003p00813


1184           Khairiati, et al.             GENERALIZED NESTED COPULA REGRESSION TO UNVEIL THE IMPACT OF EXCHANGE … 

 

 


	GENERALIZED NESTED COPULA REGRESSION TO UNVEIL THE IMPACT OF EXCHANGE RATES AND NIKKEI 225 ON BANK MANDIRI STOCK PRICE
	1. INTRODUCTION
	2. RESEARCH METHODS
	2.1. Copula
	2.2. Consequence of Sklar’s Theorem
	2.3. Nested Copula
	2.4. Conditional probability density function and copula regression
	2.5. Types of Copula Family
	2.5.1. Elliptical Copulas (Gaussian and Student-t)
	2.5.2. Archimedean Copulas (Clayton, Gumbel, Frank, Joe)
	2.5.3. Extreme Value Copulas
	2.5.4. Two-Parameter Copulas (BB1, BB6, BB7, BB8)

	2.6. Parameter Estimation using the Inference of Function for Margin
	2.7. Goodness-of-fits
	2.8 Datasets

	3. RESULTS AND DISCUSSION
	3.1. Performance of Linear Regression Model
	3.2. Performance of Copula Regression Model
	3.2.1. Marginal Distributions Estimation
	3.2.2. Selection of Marginal Distributions
	3.2.3. Elliptical Copula Model Regression
	3.2.4. Symmetric Archimedean Copula Model
	3.2.5. Asymmetric Archimedean Copula Model Regression
	3.2.6. Generalized Nested Copula Model

	3.3. Discussion

	4. CONCLUSION
	Author Contributions
	Funding Statement
	Acknowledgment
	Declarations

	Declaration of Generative AI and AI-assisted Technologies
	REFERENCES


