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Fluctuations in exchange rates and foreign stock indices strongly influence domestic stock
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enhance predictive accuracy.

This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution-ShareAlike 4.0
International License (https://creativecommons.org/licenses/by-sa/4.0/).

How to cite this article:

A. Khairiati, R. Budiarti, and M. K. Najib., “GENERALIZED NESTED COPULA REGRESSION TO UNVEIL THE IMPACT OF
EXCHANGE RATES AND NIKKEI 225 ON BANK MANDIRI (BMRI) STOCK PRICE”, BAREKENG: J. Math. & App., vol. 20, no. 2, pp.
1167-1184, Jun, 2026.

Copyright © 2026 Author(s)
Journal homepage: https://ojs3.unpatti.ac.id/index.php/barekeng/
Journal e-mail: barekeng.math@yahoo.com; barekeng.journal@mail.unpatti.ac.id

Research Article - Open Access

1167


https://ojs3.unpatti.ac.id/index.php/barekeng/
mailto:barekeng.math@yahoo.com
mailto:barekeng.journal@mail.unpatti.ac.id
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
mailto:alfi@istn.ac.id
https://orcid.org/0009-0005-6169-8689
mailto:retnobu@apps.ipb.ac.id
https://orcid.org/0000-0003-3500-7272
mailto:mkhoirun@apps.ipb.ac.id
https://orcid.org/0000-0002-4372-4661

1168 Khairiati, et al. GENERALIZED NESTED COPULA REGRESSION TO UNVEIL THE IMPACT OF EXCHANGE ...

1. INTRODUCTION

Analyzing the influence of exchange rates and foreign stock indices on domestic stocks is essential,
particularly in sectors such as banking that are highly sensitive to international economic fluctuations [1].
Traditional financial models have often struggled to capture the complex, non-linear dependencies between
these variables, as financial markets are characterized by intricate interactions influenced by both regional
and global dynamics [2]. To address these challenges, this study employs a nested copula regression
approach, a sophisticated statistical technique designed to model multi-layered, dynamic relationships among
variables [3].

The nested copula approach is especially relevant for financial analysis because it allows for the
investigation of non-linear dependencies that might otherwise be missed by traditional linear models [4], [5].
In this study, the approach is used to explore how the movements of exchange rates and the Nikkei 225 index
influence Bank Mandiri's stock price. By capturing the complex interdependence between these variables,
nested copula regression offers a more comprehensive framework for understanding the underlying forces
affecting Bank Mandiri’s stock performance.

The concept of copula modeling itself has undergone significant development, beginning with its
origins in finance and insurance risk management, where it was used to study dependencies between two
variables [6]-[8]. As copula methods have advanced, their applications have extended to fields beyond
finance, including environmental science [9], [10] biostatistics [11], [12], engineering [4], [13], and social
sciences [14]. This diversity of applications underscores copulas’ flexibility in handling complex data and
dependence patterns. Early copula models were limited in scope, often focusing on straightforward, linear
relationships and unable to address the complexity of financial markets as they exist today. However, as
financial systems grew more interconnected and interdependent, the limitations of simple copula models
became apparent. This need for more robust analytical methods led to the development of more advanced
copula models capable of handling high-dimensional data and capturing complex dependency structures.

Nested copulas, a more advanced evolution of the copula framework, were introduced to address
precisely these challenges [15]-[17]. They allow for the modeling of hierarchical dependencies, enabling
researchers to capture multi-dimensional relationships across different economic indicators, such as currency
exchange rates and foreign stock indices. By applying a nested copula model, this study delves into the
specific interdependencies that affect Bank Mandiri’s stock, offering a more nuanced perspective on how
investors might anticipate the impacts of global economic factors on their portfolios in the Indonesian market.
This deeper understanding is essential for creating strategies to navigate the volatility and risk associated with
international market influences.

Although previous studies have successfully applied copula models to capture dependencies in various
financial [18], environmental [19], and engineering [20] contexts, most have been limited to simple copula
families or pairwise constructions that fail to represent complex multi-dimensional structures. These
approaches often overlook asymmetric and tail dependencies that are crucial in financial markets, particularly
for highly volatile assets such as banking stocks. Moreover, existing research on the Indonesian financial
sector rarely employs advanced copula frameworks, leaving a gap in understanding how global factors, such
as exchange rates and foreign stock indices, jointly influence domestic stock prices. This study addresses this
gap by introducing a Generalized Nested Copula Regression model, which provides greater flexibility in
modeling hierarchical and asymmetric dependencies, thereby offering a novel contribution to the literature
on financial forecasting in emerging markets.

This research also holds significance for regulators and policymakers in the financial sector.
Understanding the patterns of volatility and risk that stem from the interconnections between global and
domestic markets can inform better decision-making and policy formulation, helping to stabilize markets in
times of economic turbulence. Insights derived from this nested copula analysis can be particularly valuable
for crafting regulations that mitigate systemic risks, thereby enhancing the resilience of the Indonesian
banking sector against global shocks. For academics, this study contributes to the expanding literature on
global economic factors influencing Indonesia’s financial sector. It also provides a flexible analytical tool
that can be adapted to similar research, potentially inspiring new approaches to understanding global and
domestic market interactions. Ultimately, the results of this research aim to guide more strategic investment
decisions in Indonesia’s stock market, offering practical implications for investors in sectors with substantial
global linkages, such as banking. By applying the nested copula model, this study highlights the importance
of sophisticated statistical approaches in navigating today’s interconnected financial environment.
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2. RESEARCH METHODS

This section outlines the research methods used to analyze the relationship between exchange rates,
the Nikkei 225 index, and the stock price of Bank Mandiri, employing a nested copula regression approach
to capture the complex, non-linear dependencies among the variables. However, before delving into the
methodology, the basic concept of copula will first be discussed.

2.1. Copula

Definition 1 (Copula Function). A two-dimensional copula is a function € that maps 12 to I, where I € [0,1],
and satisfies the following properties [21]:

1. Cisgrounded: C(u,0) = C(0,v) =0,
2. C(1,v) =uy; Vu; € [0,1], and
3. Cisn-increasing.

Theorem 1 (Sklar). Let H be a two-dimensional distribution function with marginal distribution functions F;
and F,. Then, there exists a two-dimensional copula C such that for every x € R?, the following holds:

H(xy,x3) = C(Fl (x1), F, (xz))- (1)

If the marginal functions F; and F, are continuous, then the copula C is unique [21]. Theorem 1 can be
extended for n-dimensional case as follows.

Theorem 2. For n-dimensional cases, let G be an n-dimensional distribution function with marginal
distribution functions F;, F,, ... F,. Then, there exists an n-dimensional copula C,, such that for every x € R™,
the following holds:

G(Xl, X2 ee) xn) = Cn(Fl(xl)r FZ (xz), ey Fn(xn))- (2)
If all the marginal functions are continuous, then the copula C,, is unique [21].

2.2. Consequence of Sklar’s Theorem

Let C is a unigue copula, then C can be expressed as:
C(u,v) = f: f(:l c(s, t) ds dt, (3)

where u = Fy(x) and v = F,(y) and c is the corresponding copula density function. The important
consequence of Sklar’s theorem [22] (Theorem 1) then stated that every joint probability density h is also
writable by the product of its marginal probability densities fyx and f; and the copula density c.

Theorem 3. Let h is a joint density with marginal densities fy and fy, then there exists a copula density ¢
such that

h(x,y) = c(Fx(x), Fr (1)) - fx() - fr ). (4)
Proof. By deriving the right and left sides of Sklar's Theorem (Theorem 1) with respect to x and y,

d
H(xy,x3) = MC(F} (x1), F, (xz));
h(x,y) = C(Fx(x),Fy(Y)) fx ) - fr ).

dxdy

then Eq. (4) is proven. m

2.3. Nested Copula

In the case of a 3-dimensional copula, a nested copula structure allows modeling the dependencies
among three variables by nesting two-dimensional copulas within one another. The general form of a three-
dimensional nested copula can be expressed as follows:

Definition 2. Let C; and C, be bivariate copulas. A three-dimensional nested copula C can be constructed as:
C(F1 (x1), F5(x3), F3 (x3)) =, (C1 [F1(x1), F(x2)], F3 (x3)), (5)



1170 Khairiati, et al. GENERALIZED NESTED COPULA REGRESSION TO UNVEIL THE IMPACT OF EXCHANGE ...

where F;, F,, F5 are the marginal distribution functions of the three variables. Here, the copula C; models the
dependency between x; and x,, and C, models the dependency between the result of C; and x3. In this case,
the nested structure allows the modeling of a hierarchical dependence structure, where the relationship
between x; and x, is first captured, and then the dependence between this pair and the third variable x5 is
modeled. Suppose that u; = F(x;) and U; = F(X;) for i =1,2,3, then Fig. 1 provides the structural
construction of nested copulas in the tri-variate cases.

Figure 1. Nested Structure of 3-Dimensional Copulas

Intuitively, the nested copula structure in Fig. 1 can be understood as a two-step process of building
dependencies. First, C; links two variables, u, and u,, capturing how they move together. Then, C, takes the
combined result of C; and connects it with the third variable, u5. This hierarchical construction allows us to
model complex relationships step by step: we first describe the dependence between two variables and then
extend it to include the third. Such a nested approach provides greater flexibility than a single copula,
especially when the strength or type of dependence differs across subsets of variables.

The joint probability density function derived from the nested 3-copula follows directly from Sklar’s
theorem and the theorem of the nested 3-copula. Sklar’s theorem ensures that any multivariate distribution
can be represented using its marginal distributions and a copula function that captures dependence.
Consequently, the joint density function of the nested 3-copula is obtained by differentiating its copula
function, providing a precise representation of the dependence structure among the variables.

Theorem 4. Let X4, X;, X3 be random variables with marginal cumulative distribution functions (CDFs)
Fy, F,, F3, respectively. Then, the joint distribution F; , 3 can be constructed from a nested structure of two
bivariate copula (2-copulas) as follows:

F1'2,3(x1,x2,x3) = (; (C1(F1(x1)'Fz(xz))'F?,(xs))- (6)
As a result, the joint probability density function is written by:
f1,2,3(x1;x2;x3) =0 (Cl(Fl(xl)JFZ(XZ))'FS(XB)) : C1(F1(x1)'F2(x2)) f1(x1) - f202) - f3(x3). (7)
Proof. Using Theorem 2 and Definition 2, we get:
F1_2,3(x1,x2,x3) = Cn(Fl(xl)'FZ(xz)' ---'Fn(xn)) = C, (C1(F1(x1): Fz(xz)): F3(x3)),
then Eq. (6) proven. By deriving the right and left sides of Eqg. (6) with respect to x;, x, and xs,

d
0x,0x,0x5

f1_2_3(x1,x2,x3) =0 (C1(F1(X1);Fz(xz));F3(x3)) : C1(F1(x1);F2(x2)) f1(xy) - fo(x2) - f3(x3),

Fi23 (x1,%2,%3) = Gy (F1 (x1), F> (xz))» F3 (xs)) )

————C
0x,0x,0x3 z (

then the joint probability density function in Eqg. (7) is proven. m
Generally, the construction steps for the nested 3-copula are as follows [23].

1. Estimate F;, F,, and F5 (marginal distribution).

2. Select the two variables with the highest degree of dependence, for example X; and X,, then
transform the two variables using their respective marginal distributions (notate the results as U;
and U,).

Estimate C; using U; and U, (first bivariate copula).

Transform the remaining variable X5 using its marginal distribution (notate the result as Us).

5. Estimate C, using Us and C,(U;, U,) (second bivariate copula).

~w
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However, since the goal of this research is to predict BMRI, the calculation process is simplified by selecting
x, and x, as predictor variables, while x5 serves as the response variable (BMRI), which will be denoted as

y.

2.4. Conditional probability density function and copula regression

Let X5 be the response variable while X; and X, are the explanatory variables, then the conditional
probability density function of x5 given x; and x, is defined by

% = ¢ (C1(ug, uz),uz) - f3(x3), )]

due to f(x1,x2) = cq(ug, up) - f1(x1) - f2(xq) [9].

If we wish to predict the value of x5, then we might take the expected value of the conditional density,
which is so-called conditional expectation. The conditional expectation provides the prediction of x5 with the
smallest possible mean square error, which is why it is often referred to as the minimum-mean-square-error
predictor. Formally, the conditional expectation of x5 given x; and x, is defined as

f(xs3lxg,x3) =

E(x3lx,x5) = j x3 - f(x3lxq, x5) dxg = f c2(C1(uq,uz),uz) - f3(x3) « x5 dxs. ©
Since nested copulas are used to construct the conditional density, we call this formula a nested copula
regression. Copula regression is often more robust to outliers and non-normality in the data compared to
traditional regression techniques. It can handle data with heavy tails and non-standard distributions more
effectively.

For computational convenience, we use the Riemann sum approach to estimate the value of the integral:
P

Bl ) = ) 6a(Crun, ), u - f (6 -1 - axf. (10)
i=1
where p represents the number of partitions used [24].

2.5. Types of Copula Family

In this study, we explore several families of copulas to model the dependence structure between
variables. Copulas offer a flexible framework for separating marginal distributions from their dependence
structure, allowing the joint behavior of variables to be modeled without assuming identical distributional
forms. This property makes copulas particularly useful for financial and economic data, where relationships
are often nonlinear and characterized by asymmetric tail behavior. The families of copulas considered can be
broadly classified as follows:

2.5.1. Elliptical Copulas (Gaussian and Student-t)

Elliptical copulas are derived from multivariate elliptical distributions. The Gaussian copula captures
symmetric dependence but lacks tail dependence, making it less suitable for modeling extreme events. In
contrast, the Student-t copula accommodates tail dependence, thereby providing a better fit for financial data
that often exhibits co-movement during extreme market conditions. For further details on the theoretical
foundations and applications of elliptical copulas, readers may refer to recent works such as [25], [26], [27],
[28] and subsequent references.

2.5.2. Archimedean Copulas (Clayton, Gumbel, Frank, Joe)

Archimedean copulas are widely used due to their simple closed-form expressions and ability to
capture asymmetric dependence. For example, the Clayton copula emphasizes lower-tail dependence, making
it suitable when joint extreme losses are of interest. The Gumbel copula, on the other hand, captures upper-
tail dependence, reflecting simultaneous extreme gains. The Frank copula provides symmetric dependence
without tail emphasis, while the Joe copula focuses on strong upper-tail associations. For a more
comprehensive discussion of Archimedean copulas and their extensions, readers may consult [29], [30], [31],
[32], [33] and subsequent references.
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2.5.3. Extreme Value Copulas

Extreme value copulas are designed to capture dependence structures in the tails of distributions, which
are critical in risk management and financial forecasting. They provide theoretical consistency with extreme
value theory, ensuring that joint tail behavior is properly represented. Further insights into the construction
and applications of extreme value copulas can be found in [34], [35], [36], [37] and related references.

2.5.4. Two-Parameter Copulas (BB1, BB6, BB7, BB8)

These copulas extend the flexibility of the Archimedean family by combining features of two different
copulas. For instance, BB1 merges Clayton and Gumbel properties, allowing simultaneous modeling of both
lower- and upper-tail dependence. Such flexibility is valuable when empirical data shows asymmetric
dependence patterns that cannot be captured by single-parameter copulas. Readers interested in detailed
theoretical formulations and broader applications of two-parameter copulas are referred to [38], [39], [40],
[41], [42] and related works.

To ensure comprehensive coverage of possible dependence structures, we employed eleven copula
functions across these families. This diversity allows the analysis to account for a wide range of dependence
behaviors—symmetric versus asymmetric, weak versus strong, and central versus tail dependence. Table 1
presents the formulas and parameter domains of the selected bivariate copula functions, which serve as the
foundation for constructing the multivariate nested copula models used in this study.

Table 1. Formulas and Parameter Domains of Some Bivariate Copula Functions

No Copula Cx(uq,uy) Parameter
1 Normal  Fugoz (Fidony @) o (u2))

2 Studentt Fyp (F;(;) (), Fhy (uz))

3 Clayton  (u;®+u;° — 1)‘1/9 6>0

4  Gumbel  exp [—(wf + wzg)l/e], where w; = —Inu; 6>1

5  Frank —%ln [1 + ;”_11“121] where w; = e %% — 1 6+0

6 FGM UUy + Ougu, (1 —uy) (1 —uy) -1<6<1
7  Galambos uju, exp [(ng + Wz_g)_l/e], where w; = —lny; 60=0

8 BBL [+ (wf+wd)”| " wherew, =ur® —1 6>0,621
9 BB6 1—{1—exp|[-(wf + wg)”‘s]}l/e, wherew; = —In[1 - (1 —u;)°] 6=18=1
10 BB7 1= [t = it 4wt = 1) ] wherew, = 1 - (1 —w)? 6>1,6>0
11 BBS I 5}, where w; = 1— (1 — 81)° N

2.6. Parameter Estimation using the Inference of Function for Margin

The Inference of Function for Margin (IFM) method is a parametric method consisting of two steps,
with the basis of each step containing the log likelihood approach. This method is usually used to estimate
the parameters of a multidimensional copula. The first step in this method is to construct a log likelihood
function to estimate the marginal parameter vector &;, i.e.

@; = argmaxlInlL; = argmaxlIn ]_[’tv=1ﬁ(xit; ai), (11)

where f; is the probability density function of the random variable X;. The second step of the IFM method is
to estimate the copula parameters by maximizing the log value of the copula likelihood function L. For
bivariate cases, it is written as follows.

6 = argmaxInL = argmaxIn [, c(F,(x}; &), F,(x5; @,); 6), (12)

where @ is the estimate of the copula parameter 8 and c is the copula probability density function [43], [44].
For the trivariate case, copulas are formed through a nested structure of bivariate copulas as in Algorithm 1.
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2.7. Goodness-of-fits

In this study, we use the Kolmogorov—-Smirnov (K-S) test [45], Root Mean Square Error (RMSE), and
Akaike’s information criterion (AIC) [46] to measure the goodness of fit of the joint distributions as follows:

KSE = max |Pg, — Pr.|, (13)
i=1,2,.n t t
1 2
RMSE = \/;Zgl:l(PEi - Pr,)’, (14)
AIC =2k —2InlL, (15)

where n is the sample size, k is the number of parameters of different distributions, L is the maximum
likelihood function value of distributions, Pg; and Pp; are the empirical and theoretical frequency,
respectively. We use Gringorten’s formula [47] to estimate the empirical frequency of X and Y as follow

#X <x;,Y <y;)—0.44
( —xl’ —yl) , (16)
n+0.12

where #(X,Y) is the combination of the i-th values of the increased order in the X and Y series. Meanwhile,
theoretical frequency is the models from marginal and copula distributions. In this study, the Kolmogorov—
Smirnov (KS) test, Anderson—Darling (AD) test, RMSE, and AIC were selected as the primary model
comparison tools because they provide complementary insights into both distributional fit and predictive
performance. Other criteria, such as the Bayesian Information Criterion (BIC) or likelihood ratio tests, were
not considered for two reasons. First, BIC tends to penalize model complexity more strongly than AIC, which
may be less suitable in the context of copula models where flexibility is required to capture complex
dependencies. Second, likelihood ratio tests are not always straightforward to apply in copula-based
frameworks, particularly when comparing non-nested models, making them less practical for the objectives
of this study. Thus, the chosen criteria strike a balance between statistical rigor and applicability to the copula
modeling framework.

Pg,=PX <x;,Y<y) =

2.8 Datasets

In this study, three datasets are utilized to develop a predictive model for BMRI. The response variable
is BMRI, while the predictor variables include Exchange Rates and the Nikkei 225 index. The datasets consist
of monthly observations of BMRI stock prices, exchange rates (USD/IDR), and the Nikkei 225 index over
the study period. The details of each dataset are described as follows.

35000 T T T T T T T T T
Nikkei 225
Exchange Rate

30000 BMRI Stock Price

25000

20000

Rupiah

15000

10000

5000 - 7

1 | 1 1 Il 1 1 1 Il 1 1 Il
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
Year

Figure 2. Time Series of the BMRI Stock Price, USD to IDR Exchange Rate and Nikkei 225 Index.
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The above Fig. 2 provides an overview of the historical trends and fluctuations in BMRI stock prices,
exchange rates, and the Nikkei 225 index over the observed period. By analyzing these time series, patterns
and potential correlations among the variables can be identified, which is essential for building an accurate
predictive model. The integration of these three datasets enables a comprehensive analysis of the factors
affecting BMRI stock prices. By leveraging historical data, the model aims to enhance prediction accuracy
and support data-driven decision-making in financial markets.

40

0.89

Q%
&,
3
o

10 20 30 40 10 12 14 16 18 2 4 6
N225 ExRat BMRI

Figure 3. Correlation Matrix among the Three Variables: Bank Mandiri Stock Price (BMRI), Exchange Rates (Exrat),
and the Nikkei 225 Index (N225).

The above Fig. 3 presents a correlation matrix that reveals key relationships between Bank Mandiri
Stock Price (BMRI), exchange rates (ExRat), and the Nikkei 225 index (N225). The upper triangle shows
Pearson correlation coefficients, indicating strong positive correlations: 0.89 between N225 and ExRat, 0.84
between N225 and BMRI, and 0.74 between ExRat and BMRI. These values suggest that movements in the
Nikkei 225 and exchange rates significantly affect BMRI stock prices, with N225 exerting a slightly stronger
influence. The lower triangle features scatter plots with upward-sloping red regression lines, visually
confirming the positive associations among the variables. Diagonal elements contain histograms showing
right-skewed distributions for BMRI and ExRat, while N225 appears more symmetric. Collectively, the
matrix highlights that BMRI is influenced by both exchange rates and the Japanese stock market, with
implications for predictive modeling that underscore the need to consider both variables when forecasting
BMRI performance.

3. RESULTS AND DISCUSSION

This study aimed to predict the stock price of Bank Mandiri (BMRI) using two predictor variables: the
Nikkei 225 Index (N225) and Exchange Rates (ExRat). Traditional linear regression and several copula-based
models were applied to assess the predictive performance of different approaches. The models tested include
Linear Regression, Elliptical Copula, Symmetric Archimedean Copula, Asymmetric Archimedean Copula,
and Generalized Nested Copula. Each model was evaluated based on metrics such as Root Mean Square Error
(RMSE), Mean Absolute Percentage Error (MAPE), and weighted MAPE (WMAPE).

3.1. Performance of Linear Regression Model

The parameter estimation process for the linear regression model was conducted using the Ordinary
Least Squares (OLS) method. OLS aims to minimize the sum of squared residuals, ensuring that the estimated
regression line best fits the given data. In this study, the dependent variable (BMRI) was modeled as a
function of two explanatory variables: Nikkei 225 (N225) and Exchange Rates (ExRat). The general form of
the linear regression model is expressed as:
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Y = Bo + B1x1 + Box; €,

where § represents the predicted value of BMRI, B, is the intercept, 8, and 3, are the estimated regression
coefficients for N225 (x;) and Exchange Rates (x,), respectively, and € denotes the error term. After
performing OLS estimation, resulting in:

$ = 0.1419x, — 0.0328x, + €.

This indicates that BMRI has a positive relationship with N225, as evidenced by the coefficient 0.1419.
This suggests that an increase in the Nikkei 225 index is associated with an increase in BMRI, potentially
reflecting the influence of global stock market trends on BMRI stock performance. Conversely, the negative
coefficient of -0.0328 for Exchange Rates suggests that a rise in exchange rates tends to decrease BMRI,
which may be linked to investor concerns over currency depreciation and its effects on financial markets.

To evaluate the model’s predictive performance, three error metrics were computed. The Root Mean
Squared Error (RMSE) of 0.56461 quantifies the average magnitude of prediction errors, providing a measure
of how well the model fits the data. Additionally, the Mean Absolute Percentage Error (MAPE) of 0.13808
indicates that the model’s predictions deviate by approximately 13.81% from actual values on average. The
Weighted Mean Absolute Percentage Error (WMAPE) of 0.13894 further confirms the model’s consistency
across different observations.

While linear regression serves as a useful baseline model due to its simplicity and interpretability, it
assumes a linear relationship between variables. However, financial data often exhibits nonlinear
dependencies, tail risks, and complex interactions that cannot be effectively captured by traditional regression
techniques. As a result, more advanced approaches, such as copula-based regression, may provide better
predictive accuracy by accounting for the intricate dependencies and extreme fluctuations observed in
financial markets.

3.2. Performance of Copula Regression Model

In this section, copula regression will be performed following the procedures outlined in the
methodology. The process begins with estimating the marginal distributions of all variables to ensure that
each variable’s individual characteristics are well captured. Next, a nested copula structure is constructed,
allowing the model to capture the dependence between the predictor variables, Nikkei 225 and Exchange
Rates, and the response variable, BMRI. Finally, the expected conditional probability density function (PDF)
of BMRI is computed, given known values of the predictor variables. This step is essential in obtaining
accurate predictions while incorporating the complex dependency structure among the financial variables.

To evaluate the effectiveness of different copula-based regression models, four 3-nested copula
approaches are considered: Elliptical Copula, Symmetric Archimedean Copula, Asymmetric Archimedean
Copula, and Generalized Nested Copula. The Elliptical Copula, which includes the Gaussian and t-copulas,
provides a flexible dependence structure suitable for capturing symmetric relationships. The Symmetric
Archimedean Copula assumes a common dependence pattern among variables and is often used when dealing
with exchangeable data structures. The Asymmetric Archimedean Copula allows for asymmetric tail
dependencies, making it particularly useful for financial data where extreme movements tend to be more
pronounced in one direction. Finally, the Generalized Nested Copula combines different copula families,
offering a more advanced and adaptable framework for modeling complex dependencies.

By applying these four approaches, this study aims to determine the most effective nested copula
structure for predicting BMRI stock prices. Given the nonlinear and heavy-tailed nature of financial data,
incorporating copula-based regression models provides a more flexible alternative to traditional methods,
ensuring that both linear and nonlinear dependencies between financial variables are properly accounted for.

3.2.1. Marginal Distributions Estimation

In copula-based modeling, an essential step before constructing the dependence structure is estimating
the marginal distributions of each variable. Marginal distributions describe the individual behavior of each
variable independently, allowing for the separation of dependency modeling from univariate characteristics.
This step ensures that the selected copula function captures only the dependence structure and not the
individual variability of the variables.
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3.2.2. Selection of Marginal Distributions

To accurately model the behavior of the predictor variables (Nikkei 225 and Exchange Rates) and the
response variable (BMRI), different probability distributions were tested. The best-fitting marginal
distributions were selected based on statistical criteria such as the Kolmogorov-Smirnov Test (KS) and
Anderson-Darling (AD) tests, and Akaike Information Criterion (AIC). The identified marginal distributions
for each variable are:

1.

Nikkei 225 (X1):

Generalized Extreme Value (GEV) distribution with parameters k = —0.33371, ¢ = 6.6589, and
u = 17.5862 was selected based on the Kolmogorov—-Smirnov (KS) and Anderson—-Darling (AD)
statistics, despite not yielding the lowest Akaike Information Criterion (AIC). This choice was
made because goodness-of-fit tests (KS and AD) provide a more direct measure of the model’s
ability to capture the empirical distribution, particularly in the tails, which is critical for extreme
value analysis. In contrast, AIC emphasizes parsimony and overall likelihood, but it may not
adequately reflect the fit in the distribution’s extremes, which are the primary focus in extreme
value modeling.

Table 2. Results of the Marginal Distribution Fitting for the Nikkei 225 Index.
Dist. Name KSstat KSp-val ADstat ADp-val AIC

GEV 0.068710 0.437650 1.111500 0.303620 1026.0
NOR 0.071322 0.391240 1.179200 0.275520 1028.1
WB 0.073160 0.360470 1.182100 0.274360 1023.7
LOG 0.071058 0.395790 1.245400 0.250830 1037.4
EV 0.100270 0.082661 1.917900 0.102010 1042.1
GAM 0.098653 0.091434 2.310700 0.062447 1033.5
LL 0.094723 0.116100 2.755100 0.036571 1048.6
LN 0.121990 0.018129 3.416500 0.016948 1043.5
ING 0.129160 0.010290 3.707900 0.012162 1043.5
EXP 0.347580 0.000000 30.841000 0.000004 1236.8

Exchange Rates (X2):

Extreme Value distribution with parameters u = 13.8707 and o = 1.5136 was selected, as all
goodness-of-fit statistics consistently indicated that this distribution provides the best fit to the
observed data. This result suggests that the Extreme Value distribution is more capable of
capturing the behavior of the empirical distribution, particularly in representing the central
tendency and spread of the data, compared to other candidate distributions. The superiority across
multiple statistical tests reinforces its robustness, implying that the Extreme Value distribution is
the most reliable choice for further analysis and modeling in this study.

Table 3. Results of the Marginal Distribution Fitting for the Exchange Rates.
Dist. Name KSstat KSp-val ADstat ADp-val AIC

EV 0.122250 0.017766  3.697100 0.012312 634.66
GEV 0.136950 0.005359 3.800900 0.010947 638.38
WB 0.147180 0.002147 5.699500 0.001343 645.47
LOG 0.137480 0.005119 6.778200 0.000425 675.84
NOR 0.192230 0.000017  7.931700 0.000124 671.94
LL 0157530 0.000795  8.801500 0.000047  696.50
GAM 0.211920 0.000001  9.592900 0.000018  687.31
LN 0.220350 0.000000 10.383000 0.000007  696.33
ING 0.222600 0.000000 10.528000 0.000006  696.36
EXP 0.482050 0.000000 50.883000 0.000004 1105.50
BMRI (Y):

Inverse Gaussian distribution with u = 3.049 and 1 = 26.4443 was selected, as all goodness-of-
fit statistics consistently demonstrated that this distribution provides the best agreement with the
observed data. This indicates that the Inverse Gaussian distribution effectively represents both the
shape and variability of the dataset, making it the most suitable candidate among the evaluated
distributions for subsequent analysis.
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Table 4. Results of the Marginal Distribution Fitting for BMRI.
Dist. Name KSstat KSp-val ADstat ADp-val AIC

ING 0.040691 0.950330 0.390110 0.858280 428.90
LN 0.041779 0.939070 0.404770 0.843770 429.77
GEV 0.054525 0.725040 0.437850 0.810300 432.01
LL 0.056915 0.675260 0.587380 0.659730 437.15
GAM 0.059564 0.619610 0.715350 0.545900 433.98
LOG 0.072874 0.365150  1.648700 0.144670 455.39
WB 0.075641 0.321470  2.167100 0.074555 453.65
NOR 0.087769 0.172940  2.320300 0.061722 456.16
EV 0.153160 0.001219  6.993900 0.000338 513.48
EXP 0.390530 0.000000 32.514000 0.000004 657.59

The parameters for each distribution were estimated using the Maximum Likelihood Estimation (MLE)
method, which finds the parameter values that maximize the likelihood function given the observed data.
These parameters determine the shape, scale, and location of the respective marginal distributions, ensuring
a precise representation of the data. To validate the suitability of the selected marginal distributions,
goodness-of-fit tests were performed. The Kolmogorov-Smirnov (KS) and Anderson-Darling (AD) test was
used to compare the empirical distribution with the fitted theoretical distribution, while the Akaike
Information Criterion (AIC) provided a measure of model selection by balancing goodness-of-fit with model
complexity. The selected distributions showed a good fit, ensuring that the copula construction accurately
captures the dependency structure without distorting the individual behaviors of the variables.

By accurately estimating the marginal distributions, the dependency modeling using copulas becomes
more reliable. The marginal transformations allow the variables to be mapped into the uniform (0,1) domain,
where the copula function is applied. This transformation ensures that the dependency structure is analyzed
independently of marginal behavior, enhancing the flexibility and robustness of the copula-based regression
model. Accurate marginal distribution estimation is crucial for the effectiveness of copula models, as
incorrect marginal choices can lead to biased dependency structures. Therefore, selecting the appropriate
distributions and validating their fit plays a fundamental role in achieving reliable predictions in copula-based
modeling.

3.2.3. Elliptical Copula Model Regression

The Elliptical Copula Model Regression is applied to estimate BMRI stock prices using Nikkei 225
and Exchange Rates as predictor variables. This process involves constructing the copula, selecting the best-
fitting copula, performing copula-based regression, and evaluating the model’s predictive accuracy. In this
study, two elliptical copula families were considered: Gaussian Copula, which assumes a normal dependency
structure without tail dependence, and t-Copula, which allows for stronger tail dependence, making it more
suitable for financial data with extreme fluctuations. The copulas were parameterized using maximum
likelihood estimation (MLE) to best fit the observed data. Table 5 shows the results of the 3-nested copula
fitting using elliptical copula with their goodness of fits.

Table 5. Results of the 3-Nested Copula Fitting Using Elliptical Copula.
Name paraml” param2 CvM pValue RMSE AIC
t r 6.148  0.27798 0.15429 0.042349 -477.92
Gaussian r - 0.27365 0.15838 0.042017 -458.36
Y ( 1 0.8963 O.8602>

r=

0.8963 1 0.8244
0.8602 0.8244 1

To determine the most suitable elliptical copula, model selection was performed using the Akaike
Information Criterion (AIC) and Cramér—von Mises (CvM) statistic. The copula with the lowest AIC value
was chosen as the best fit for modeling the dependencies between BMRI, Nikkei 225, and Exchange Rates.
In this case, the t-Copula provided the best performance, indicating that financial data exhibit significant tail
dependencies, which are better captured by the t-copula structure. Once the best-fitting copula was selected,
copula regression was applied to estimate the conditional probability density function (PDF) of BMRI given
observed values of Nikkei 225 and Exchange Rates.

The expected value of BMRI is computed using Eqgs. (9) and (10). It resulted in
RMSE = 0.547, MAPE = 0.13688, and wMAPE = 0.13438. The results indicate that the t-Copula model
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outperformed linear regression, achieving lower RMSE and MAPE values. This suggests that incorporating
tail dependence in financial modeling significantly enhances predictive performance.

3.2.4. Symmetric Archimedean Copula Model

The Symmetric Archimedean Copula Model Regression was applied to estimate BMRI stock prices
using the Nikkei 225 Index and Exchange Rates as predictors. Unlike elliptical copulas, which allow for
greater flexibility in capturing dependence structures, symmetric Archimedean copulas rely on a single-
parameter dependency structure. This simplicity makes them computationally efficient and relatively easy to
interpret but also limits their ability to represent asymmetric or complex tail behavior commonly observed in
financial data.

In this study, four Archimedean families—Clayton, Frank, Gumbel, and Joe—were tested. Each family
has distinct properties: the Clayton copula emphasizes lower-tail dependence, the Gumbel and Joe copulas
focus on upper-tail dependence, and the Frank copula provides a more symmetric dependence without tail
dominance. Parameter estimation was performed using Maximum Likelihood Estimation (MLE), and model
adequacy was evaluated using the Cramér—von Mises (CvM) statistic, Akaike Information Criterion (AIC),
and error measures. Table 6 summarizes the results. Among the four families, the Clayton copula achieved
the most favorable AIC (—432.72) and the lowest RMSE (0.03593), suggesting that lower-tail dependence
plays a more prominent role in the joint movements of BMRI with its predictors. In contrast, the Joe copula
performed poorly, with the weakest fit indices and the highest RMSE (0.07308).

Table 6. Results of the 3-Nested Copula Fitting Using Symmetric Archimedean Copula.
Name paraml param2 CvM pValue RMSE AlIC

Clayton 2.6913 - 0.20004  0.24702  0.03593  -432.72
Frank 9.4214 - 0.33061 0.11228 0.04618  -431.60
Gumbel 2.5048 - 0.43180 0.06094 0.05278  -390.22
Joe 2.8102 - 0.82775  0.00558  0.07308  -290.00

Model selection was guided by AIC and CvM, leading to the Clayton copula as the best candidate
within this family. However, further validation using conditional expectation showed that its predictive
performance remained limited, with RMSE = 1.3217, MAPE = 0.35305, and wMAPE = 0.31786. These
results indicate that although the Clayton copula captures dependency patterns better than other Archimedean
copulas, its predictive accuracy is inferior to that of elliptical copula models. Overall, symmetric
Archimedean copulas provide a straightforward means of modeling dependence, particularly when
interpretability is prioritized. Nevertheless, their restrictive single-parameter form makes them less suitable
for highly dynamic and asymmetric financial relationships, underscoring the need for more flexible copula
structures in practice.

3.2.5. Asymmetric Archimedean Copula Model Regression

Given the limitations of symmetric Archimedean copulas in capturing complex dependencies, the
Asymmetric Archimedean Copula Model Regression was employed as an alternative. Unlike the symmetric
version, which assumes a uniform dependency strength across all variables, the asymmetric structure
introduces greater flexibility by nesting multiple copulas. This design allows for varying dependence
strengths between the lower and upper tails, which is particularly important in financial applications where
joint extreme losses and gains do not necessarily occur with equal probability.

In this study, a nested Clayton copula was selected because of its ability to capture lower-tail
dependence more accurately. Such dependence is relevant in financial markets, where extreme negative
shocks in exchange rates and foreign indices may disproportionately affect stock prices. Table 7 summarizes
the results of the 3-nested copula fitting using asymmetric Archimedean families.

Table 7. Results of the 3-Nested Copula Fitting Using Asymmetric Archimedean Copula.

Family Parameter Goodness of Fits
Clayton Nested Layers: AIC (Joint PDF) = 1632.8
No. 1: Copula Name = Clayton CvM =0.171
paraml = 4.2896 RMSE = 0.033
No. 2: Copula Name = Clayton pVal =0.294

paraml = 2.2128




BAREKENG: J. Math. & App., vol. 20(2), pp. 1167-1184, Jun, 2026.

1179

Family Parameter Goodness of Fits
Gumbel Nested Layers: AIC (Joint PDF) = 1720.7
No. 1: Copula Name = Gumbel CvM =0.422
paraml = 2.7335 RMSE = 0.052
No. 2: Copula Name = Gumbel pVal = 0.065

paraml = 2.3913

Frank Nested Layers: AIC (Joint PDF) = 1633.0
No. 1: Copula Name = Frank CvM =0.329
paraml =12.713 RMSE = 0.046
No. 2: Copula Name = Frank pVal =0.114
paraml = 8.9316
Joe Nested Layers: AIC (Joint PDF) = 1833.4
No. 1: Copula Name = Joe CvM =0.821
paraml = 2.8583 RMSE =0.073
No. 2: Copula Name = Joe pVal = 0.006

paraml = 2.81

The model construction followed a two-step process: first, the marginal distributions of BMRI, Nikkei
225, and Exchange Rates were estimated, and then the copula structure was determined using Akaike
Information Criterion (AIC). The nested Clayton copula was identified as the best fit, highlighting strong
lower-tail dependence while allowing for varying dependency strengths between predictors and the response
variable.

Using the selected copula, the conditional probability density function (PDF) of BMRI stock prices
was estimated given the observed values of Nikkei 225 and Exchange Rates. The expected value was
computed numerically following Eqg. (5) from the methodology, approximated using Riemann sums. This
model achieved RMSE = 0.64323, MAPE = 0.14261, and wMAPE = 0.1519, demonstrated that the
Asymmetric Archimedean Copula Model significantly outperformed its symmetric counterpart. Lower error
values suggest that accounting for asymmetric dependencies leads to a more precise stock price prediction.
This confirms that allowing for different strengths of dependency in different market conditions is essential
for financial modeling, making the asymmetric approach a more suitable choice than the symmetric
Archimedean copula model.

3.2.6. Generalized Nested Copula Model

Since the Asymmetric Archimedean Copula Model failed to outperform the Elliptical Copula
Regression and even showed lower accuracy than traditional linear regression, a more advanced approach
was considered: the Generalized Nested Copula Model. This framework extends the flexibility of copula
constructions by allowing different copula families to be combined hierarchically. Through such nesting, the
model can simultaneously capture multiple forms of dependence, including asymmetric relationships,
nonlinear interactions, and tail dependencies, which are often present in financial time series data.

The modeling process began with the estimation of marginal distributions for BMRI stock prices,
Nikkei 225, and Exchange Rates. Afterward, various candidate nesting structures were evaluated using the
Akaike Information Criterion (AIC), Cramér-von Mises (CvM) statistic, and root-mean-square error
(RMSE). The best-fitting specification was obtained by combining the BB8-180 copula in the first layer
(linking Nikkei 225 and Exchange Rates) with a t-copula in the second layer (incorporating BMRI). This
hybrid structure enabled the model to represent lower- and upper-tail dependence as well as symmetric tail
co-movement, yielding a more accurate and realistic representation of joint dynamics.

Table 8 summarizes the fitting results. The nested BB8-180 and t-copula combination outperformed
all competing models, achieving RMSE = 0.58557, MAPE = 0.13632, and WMAPE = 0.14709. These error
metrics were substantially lower than those of the symmetric and asymmetric Archimedean copulas and also
improved upon the elliptical copula regression. The relatively strong p-value (0.197) further indicated that
the dependence structure was statistically consistent with the data.

Table 8. Results of the 3-Nested Copula Fitting Using Generalized Nested Copula
Family Parameter Goodness of Fits
Clayton Nested Layers: AIC (Joint PDF) = 1585.3

No. 1: Copula Name = BB8 180 CvM =0.238
Param 1 = 7.8361, param 2 = 0.91401 RMSE =0.039
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Family Parameter Goodness of Fits
No. 2: Copula Name =t pVal =0.197
Param 1 = 0.85455, param 2 = 11831819.2288

Overall, the results demonstrate that the Generalized Nested Copula Model provides the most robust
framework for capturing the complex dependencies inherent in financial markets. By flexibly combining
copulas with different strengths, the model successfully reconciles tail dependence, asymmetry, and
nonlinearity, i.e., features that simpler models fail to capture simultaneously. This superior performance
underscores the importance of hybrid copula constructions in financial econometrics and positions the
Generalized Nested Copula Regression as the most effective predictive tool among all the models tested.

3.3. Discussion

This section presents a comparative analysis of the predictive performance of various models,
including linear regression, elliptical copula regression, symmetric Archimedean copula, asymmetric
Archimedean copula, and generalized nested copula regression. The discussion focuses on evaluating the
strengths and weaknesses of each approach based on key performance metrics such as Root Mean Square
Error (RMSE), Mean Absolute Percentage Error (MAPE), and Weighted MAPE (WMAPE).

Table 9. Comparison of Performance Metrics from Each Model Structure

Model Structure RMSE MAPE wMAPE
Generalized Nested Copula 0.58557 0.13632 0.14709
Elliptical Copula (t) 0.54700 0.13688 0.13438
Linear Regression 0.56461 0.13808 0.13894

Asymmetric Archimedean Copula (Clayton)  0.64323 0.14261 0.15190
Symmetric Archimedean Copula (Clayton) 1.32170 0.35305 0.31786

From Table 9, the Generalized Nested Copula Model demonstrates the best overall performance,
achieving the lowest MAPE and wMAPE, confirming its superior ability to model financial dependencies.
The Elliptical Copula (t-Copula) Regression follows closely behind, showing strong predictive accuracy,
particularly in capturing tail dependencies. Linear Regression, while performing relatively well, lacks the
flexibility to handle complex dependency structures, making it less effective than copula-based approaches.
The Asymmetric Archimedean Copula Model, despite allowing for different dependency strengths in the
lower and upper tails, does not outperform elliptical copulas or linear regression. Lastly, the Symmetric
Archimedean Copula Model performs the worst, highlighting its limitations in modeling real-world financial
relationships due to its rigid structure.

The results indicate that nested copula models outperform traditional linear regression and simpler
copula structures by better capturing nonlinear and asymmetric dependencies. The Generalized Nested
Copula Model, which combines BB8-180 and t-Copula layers, successfully adapts to varying dependency
structures, making it the most effective model for stock price prediction. The Elliptical Copula (t-Copula)
Regression also exhibits strong predictive power, particularly due to its ability to model tail dependencies,
which are crucial in financial markets. This confirms that models capable of handling extreme market
conditions tend to perform better in stock price forecasting.

The underperformance of the Symmetric and Asymmetric Archimedean Copulas suggests that a single-
parameter dependency structure is insufficient for capturing the complexity of stock market data. While the
Asymmetric Archimedean Copula improves upon its symmetric counterpart, it still fails to match the
accuracy of elliptical and nested copula models. This reinforces the notion that financial time series data
require greater modeling flexibility, which can be achieved through hybrid or hierarchical copula structures.

Overall, the findings emphasize the importance of selecting an appropriate copula model for financial
forecasting. While linear regression remains a simple and interpretable baseline model, it is outperformed by
copula-based approaches that incorporate nonlinear, asymmetric, and tail-dependent relationships. The
Generalized Nested Copula Model emerges as the most effective, proving that combining multiple
dependency structures enhances predictive accuracy in financial markets. However, it should be noted that
these findings are specific to the dataset employed in this study and may not necessarily generalize to other
time periods or market conditions. Future research could explore further refinements in copula selection and
parameter estimation to optimize predictive performance even further.
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4. CONCLUSION

This study has demonstrated the effectiveness of Generalized Nested Copula Regression in predicting
Bank Mandiri's (BMRI) stock price based on Exchange Rates and the Nikkei 225 Index. By comparing
multiple models, we found that traditional linear regression methods fail to capture the complex, nonlinear
dependencies inherent in financial data. Copula-based models, particularly the Generalized Nested Copula,
emerged as the most effective approach for modeling stock price movements by allowing for both asymmetric
and tail-dependent relationships.

The findings reveal that BMRI stock prices are significantly influenced by both exchange rates and the
Nikkei 225, with the latter showing a stronger correlation. While Elliptical Copulas, especially t-Copula
Regression, provided a strong baseline for capturing tail dependencies, the Generalized Nested Copula Model
outperformed all alternatives by adapting to varied dependency structures, leading to the lowest RMSE,
MAPE, and wMAPE values. This result highlights the importance of hybrid copula models in accurately
predicting financial trends, particularly in highly volatile markets.

From a broader perspective, this research underscores the need for more sophisticated statistical
techniques in financial forecasting. The superiority of copula-based models suggests that market analysts,
investors, and policymakers should move beyond traditional regression techniques and adopt more flexible,
dependencies-aware approaches. Future research could further refine copula selection strategies, incorporate
additional economic indicators, and explore dynamic copula structures to enhance forecasting accuracy. By
leveraging these advanced methodologies, financial market predictions can become more precise, resilient,
and adaptable to changing economic conditions.
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