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1. INTRODUCTION

Wavelets have revolutionized numerical analysis and computational mathematics by providing a robust
framework for approximating and solving complex equations with high accuracy and efficiency. Unlike
traditional methods, wavelets allow the representation of functions with both time and frequency localization,
making them particularly suitable for analyzing problems with varying levels of detail or abrupt changes.
Wavelets are characterized by their compact support, orthogonality, and multiresolution properties, which
enable efficient representation and manipulation of functions across different scales. Legendre multiwavelets,
derived from Legendre polynomials, are widely regarded as one of the most effective types of multiwavelets
due to their compact support, orthogonality, and ease of implementation [1]. By leveraging the polynomial
structure of Legendre functions, these multiwavelets provide a powerful basis for approximating functions
and solving differential equations with improved computational efficiency [2].

Khellat [3] developed the linear Legendre mother wavelets operational matrix of integration and its
application. While Babolian [4] discussed the Numerical solution of differential equations by using the
Chebyshev wavelet operational matrix of integration. Shiralashetti [5] explained the Hermite wavelets
operational matrix of integration for the numerical solution of nonlinear singular initial value problems. Khan
[6] formulated the Haar wavelet operational matrix method for pantograph fractional differential equations.
Ravichandran [7] studied a Hermite-type radial basis function-based differential quadrature approach that
allows for free vibration beams for higher-order equations. Alpert [8] explained a class of bases for the sparse
representation of integral operators. Zhang [9] discussed a generalized collocation method in reproducing
kernel space for solving a weakly singular Fredholm integro-differential equation. Du [10] developed the
least residue method for solving a nonlinear fractional integro-differential equation with a weakly singular
kernel. Later, Khan [11] developed a new method for finding numerical solutions to integro-differential
equations based on Legendre multiwavelets collocation. Matoog [12] formulated a hybrid numerical
technique for solving fractional Fredholm-Volterra integro-differential equations using Ramadan group
integral transform and Hermite polynomials.

Jarczewska [13] introduced multiwavelets and multiwavelet packets of Legendre functions in the direct
method for solving variational problems. Daneshkhah [14] presented an approximation multivariate
distribution with pair copula using the orthonormal polynomial and Legendre multiwavelets basis functions.
Further, Geronimo [15] obtained Alpert multiwavelets and Legendre-Angelesco multiple orthogonal
polynomials. Paul [16] introduced Legendre multiwavelets to solve Carleman-type singular integral
equations. Ashpazzadeh [17] formulated Hermite multiwavelets representation for the sparse solution of the
nonlinear Abel’s integral equation.

Devi [18] developed numerical solutions of a system of linear differential equations using the Haar
wavelet approach. Further, Devi [19] established numerical solutions of integral equations using linear
Legendre multiwavelets. Singh [20] derived a solution of linear differential equations using the operational
matrix of Bernoulli orthonormal polynomials. Furthermore, Kheirdeh [21] studied s-elementary wavelets in
R and their applications in solving integral equations. While Sahani [22] analyzed the numerical solution of
the non-linear Lienard equation using the Haar wavelet method.

Liu [23] discussed the bivariate Hermite polynomials. Kumbinarasaiah [24] discussed applications of
the Hermite wavelet method to nonlinear differential equations arising in heat transfer. Faheem [25] studied
a high-resolution Hermite wavelet technique for solving space-time-fractional partial differential equations.
Further, Pourfattah [26] formulated an algorithm based on the Pseudospectral method for solving Abel’s
integral equation using Hermite cubic spline scaling bases.

Furthermore, Ali [27] developed an adaptive algorithm for numerically solving fractional partial
differential equations using Hermite wavelet artificial neural networks. While Wani [28] explained
generalized 1-Parameter 3-Variable Hermite—Frobenius—Euler Polynomials. Santra [29] determined a
simultaneous space-time Hermite wavelet method for time-fractional nonlinear weakly singular integro-
partial differential equations.

The integration properties of CLMW are specifically derived and utilized to enhance the computational
efficiency and accuracy of the solutions. This paper focuses on employing LLMW, QLMW, and CLMW to
solve HDE of orders zero through five. It is observed that the approximate solution using CLMW closely
matches the exact solution and outperforms the results from LLMW and QLMW. Hermite differential
equations, which play a fundamental role in mathematical physics, quantum mechanics, and signal
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processing, are solved by transforming them into algebraic systems using the operational matrix of integration
of LLMW, QLMW, and CLMW. Through illustrative examples and comparative analyses, this study
demonstrates that the proposed multiwavelet-based approach not only provides highly accurate solutions but
also reduces computational overhead, offering a versatile and efficient method for solving HDE.

2. RESEARCH METHODS
2.1 Hermite Differential Equations (HDE)

The differential equation is of the form

d’y _ dy
W—ZXaﬁ'ZTLy—O, (1)
and is called HDE. The solution of Eq.(1) is known as the Hermite polynomial.

The Hermite polynomials, denoted by H,,(x), is the set of orthogonal polynomials over the domain
(—o0, 0) with a weighting function e~**. Hermite polynomials H,,(x) are defined as

n! 2
Hy(x) = =— ¢ e > +2xzy—n=1gy, 2
") =5 @
where the contour encloses the origin and is traversed in a counterclockwise direction.
2.2 Wavelet

A wavelet is a family of functions based on well well-localized oscillating function v (x) of real
variable x. The function y(x) is called “Mother Wavelet” because all other wavelet functions within the
family are generated from translation and dilation of (x). The following expression is the family of
functions generated from 1 (x) by translation and dilation

1 t—»b
ll)a,b(X)=ﬁll)(T>, a,b€ER, a+0, 3)

where, b is translation parameter and a is dilation parameter.
2.3 Linear Legendre Multiwavelets (LLMW)

The scaling functions for LLMW are defined as
Po(t) = 1,¢01() =V3(2t—1),0<t <1

Now, by the definition of multiresolution analysis (MRA), the corresponding mother wavelets y°(t) and
P1(t) are given as
. —3(4t — 1); 0St<% ) 6t—1); 0
Yo(t) = () =

V3(4t—3); S<t<1 (6t—5) >

Further, by translation and dilation of the mother wavelets 1°(t) and ¥ (t), the LLMW are constructed and
are in the following form

Yl ) = 221/)1'(2"1: —-n), knjeL
Fork=0,1;j=01andn =0,1,
—/3(4t —1);
V3(4t — 3);

IA

t<% (6t — 1);

1 =
<t< 1'%’0(0 (6t — 5);

-

IA
~
AN A
_ N R

Poo(t) =

NIk O
IA
Lan

0
1
2
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—V6(8t—1); 0<t<; V2(12t — 1);
Yoo(t) ={VB(8t —3); <t <3, plo(t) =4V2(12t - 5);
0; ~<t<1 0;
(—V6(8t—5); c<t<?i (V2(2¢e - 7);
Yo () ={V6(Bt —7);  I<t<1,9k,(0) ={v2(12t - 11);
0; 0<t<; 0;

The scaling functions and subfamily members

{Po(8), $1(6), Y5,0(8), Y5,0(8), Y10(8), Y10 (), 21 (2), i1 ()} constitute the LLMW.

2.4 Quadratic Legendre Multiwavelets (QLMW)

The scaling functions for QLMW are defined
Po(t) = 1,0,(t) = V32t —1),¢,(t) =V5(6t> —6t+1),0<t < 1.

By the definition of MRA,

PO(t) =+

P(e) =4

%(—7—F72t——120t2)
§(55-168t4-120t2)
0;

V3(1 — 14t + 30¢2);

V3(17 — 46t + 30t2);
0;

YA = V5(31 - 78t + 48t2);

0;
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0<t<=

2
lct<1
2

Otherwise

0<L“<1
- 2

1<t<1’
5 <

Otherwise

—§\/§(1 —18t+48t%); 0<t<:

lct<t -
2

Otherwise

NIRAIR O

O AlwN R

IA
o~

IA
o~

IA
o~

IA
o~

N IA
~ o+
A N A
Nk B Bl w

AN N A

= NP AR

The QLMW is constructed by translating and dilating of mother wavelet 1(t) and is given by

. LI
PO =229 (2%t —n), knjeL

Fork=0,12;j=01andn = 0,1,

1/J0,00 () =+

lpo,ol(t) =

1/’0,02(15) =

4

%(—7—%72t——120t2)
= (55 — 168t + 120t2);
0;

)

V3(1 — 14t + 30¢t2);

V3(17 — 46t + 30t?);
\0;

—2V5(1 - 18t + 48t2);

§£(31 — 78t + 48t2);
0;

0<t<z

2
let<t s
2

Otherwise

O<t<1
- 2

1<t<1’
> S
Otherwise

0<t<=
2

let<t
2

Otherwise
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I/)1,00(0 =

¢1,02(t) =

695

lpl,lo(t) =
0;

0;

1/J1,12 ) =

1 1
(—5\/5(7 — 144t +480t?); 0<t< 7
1 . 11,
§x/§(55 — 336t +480t%); L <t<s
0; Otherwise
V6(1— 28t +120t2); 0<t<;
1 _
Yo (0 =3V6(17 - 92t +120t2); ;<t<3
0; Otherwise
1 , 1
—5\/10(1 —36t+192¢%); 0<t<;
1 oo 1_ 1,
§x/10(31 — 156t + 192t~); 7 <t< 3
0; Otherwise
—3V20 = 72(-1+26) +120(-1 + 20)%); ;<t<>
~V2(55 —168(—1 +26) + 120(-1+26)2); =<t<1 -
Otherwise
J6(T—14(-1+20) +30(-1+26)2); ;<t<-
1 _
Y11 (0 =9 /6(17 - 46(-1+20) +30(—1+20)2); 2<t<1 >
Otherwise
—g\/10(1 —18(—1 + 20) + 48(—1 + 26)2); 5 <t < 2
§J10(31 —78(—1 + 2t) + 48(—1 + 20)?); % <t<1
Otherwise

0;

2.5 Cubic Legendre Multiwavelets (CLMW)

The scaling functions for CLMW are defined as

Po(t) = 1,1 (8) = V3(2t — 1), ¢, (t) = V5(6t% —

15
— 1—7(—3 + 56t — 216t2% + 224t3);
15
7 (—61 + 296t — 456t2 + 224t3);

0<t<1.
By the definition of MRA,

PO(t) =<

\0;

—11+4 270t — 1320t? + 1680t3

Pl =

V21

I

—619 + 2670t — 3720t? + 1680¢t3

6t + 1), p3(t) = V7(—1 + 12t — 30t2 + 20¢3),

1 <t<l1

2

Otherwise
<t<i
- 2

1

. (-
wo-i

V21

32 (=111 + 450t — 594¢2 + 256t3);

(( 1+ 30t — 174t% + 256t3);

L o—<t<1
2

Otherwise
0<t<=
2

lct<1”’

Otherwise
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(\/:%(—1+36t—246t2+420t3); 03t<§

lp3(t) = 5 2 3 1 "
E(—209 + 804t — 1014t~ + 420t°); > <t<l1
0;
The CLMW is constructed by translating and dilating of mother wavelet y(t) and is given by

Otherwise

) ko
Pl (@) =229/ (2%t —n), knjeZ
Fork =0,1,2,3;j=0,1andn = 0,1,

(—\/%(—3 + 56t —216t2 +224t3); 0<t <§

lpoo O(t) = 15 2 3 1 )
- o (=61 + 296t — 456t% +224t%); S<t<1
0; Otherwise
—11 + 270t — 1320¢t? + 1680¢3 1
; 0<t<-=
V21 2
Y, =1 —619 4+ 2670t — 3720t% + 1680t3 1 ,
’ ; =<t<1
V21 2
0; Otherwise

—\/% (—1+30t—174t% +256t%); 0<t<;

1p20 o(8) = 35 1 ,
’ J;(—111+450t—594t2+256t3); S<t<1

0; Otherwise
(\/g(—1+36t—246t2+420t3); 0<t<
3 t) = < )
¥ o0(®) \/g(—zm + 804t — 10142 + 420t3); % <t<1
0; Otherwise
)
\/3:3(3 — 112t + 864t2 — 1792t3); 0<t<:
0 t — < )
¥ao® \/i:g(—61 +592t — 1824t +1792t3); T<t<;
L0; Otherwise
\/%(—11 + 540t — 5280t2 + 13440¢3); 0<t<;

1 t —
¥10® \/%(—619 + 5340t — 14880t2 + 13440t3); % <t <§

0; Otherwise

(Jg(l—60t+696t2—2048t3); 0<t<-

1/}21 NOE 70 1
: \[1—:(—111+900t—2376t2 +2048t%); 1<t<i

0; Otherwise
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(s 1
— (=1 + 72t — 984t2 + 3360t3); 0<t<-
21 4
Ve® =4[5 . L
— (=209 + 1608t — 4056t% + 3360t3); —-<t<-—
21( + + ) 4 2
\0; Otherwise
)
50 (499 — 2320t + 3552t% — 1792t3) ! <t< >
17 ’ 2° 4
VO =1 3 ,
ﬁ(—1037 + 3760t — 4512t% + 1792t3); 7 <t<l1
\0; Otherwise

1 3
(—3281 + 15900t — 25440t2 + 13440t3); - <t<-
2 4

N
mm

UM OER 3
- + t— t° + t°), —<t<
21( 8689 + 30300t — 35040t% + 13440t3) 2 1
0; Otherwise
70 2 3 1 3
(461 — 2292t + 3768t* — 2048t%); SSt<y
2 () =4 )
V. \/?(—1411 + 4812t — 5448t2 + 2048t3); % <t<l1
\0; Otherwise
\/%(—703 + 3576t — 6024t2 + 3360t3); % <t< %
3. (t) =+ .
P \/zi:(—2447 + 8184t — 9096t2 + 3360t3); % <t<l1
0; Otherwise

2.6 Function Approximations

697

The square integrable function f(t) defined on [0, 1] can be expanded in terms of LLMW, QLMW, and
CLMW, respectively, as follows:

_MFiym@+i§f_¢w@@
i=0 k=0 j=0 n=0

4mF§}m@+i§f CenPin (),
i=0 k=0 j=0 n=0

4mF§}m@+i§f CenWPin (0,

i=0

=
1]
o
.
1]
=]
S
1]
=]

where, ¢; = ((6), () and ¢l , = (£(0), 1], (©).

(4)

(5)

(6)
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After truncating the infinite series, Eqs. (4), (5), and (6) take the following form:

M 1 2k
oo _ T
£ = z A+ ) D > b0 =T,
= k=0 j=0 n=0
M 2 2k1
oo _ T
f© = z Ghi®+ Y Y bl © = 6TV,
i=0 k=0 j=0 n=0
M 3 2kt
oo _ T
f© = z Ghi®+ Y Y bl © = 6TV,
i=0 k=0 j=0 n=0
where,
0 1
C, = [co,cl,cglo,cé'o, s CPEL0r ChY 10 ---'CM,(ZM—1)1C1\1/1,0'C11VI,1' ""CM,(ZM_l)]'
0 1
C0r €15 €2, €000 €300 -+ C1.0» Chp 10 v » Co (-1 Ci.00 CM. 1 e » Co, (21
=, 2 :
CM,O’ CM,l' ey CM,(ZM_]')
0 1 ]
C0» €1y €2, €3, €805 C3.0r -+ Cp.0r Ch 17 s Co (-1 Ci.00 CM1» e Co (21
Gi=|, 2 3 3 3 :
CM,00CM, 15 +es CM,(ZM—l); CM,00CM, 15 s CM’(ZM—l)
and

) = [(PO (t)' ¢1 (t), IPS,O (t), Ip%,O (t), H IIJI(\)/I,O (t)' l»bl(\)/l,l (t)' ] ll)l(\),[’(zM—l) (t)'_
e Vg0 (), Yiar1 (), .o, 1P11\4,(2M—1) ®)

V2O L0 000 W 0y (O, V0 (O V1), 2, iy ()

Y3(t) = I/J%/I,o (t), 1/’1}/11 @), ..., 1/)11\4,(2M—1) ®), Ebﬁl,o ®), lpl%ll @), ..., l/’,?,,,(zM—l) ®),
_lpI%/I,O (t)' l»bl?/l,l (t), s lpls\,/]'(zM—l) (t)

-¢0 (t)' ¢1 (t)' ¢2 (t): ¢8,0 (t)' l/)%,O (t)' H] lpl(\)/I,O (t)! lpl(\)/l,l (t)! ] l/’,?,l'(zM—l)(t):-

[0 (£), 1 (8), P2 (8), 00 (), W50(t), s YRr o (), Wiy 1 (B), .., lPI(\),,’(ZM—l)(t):—

()

(8)

9)

(10)

(11)

(12)

(13)

(14)

(15)

Theorem 1. [8] Let the function f£:[0,1] » R and f € €3[0,1] then GT+ approximates f with mean error

bound as follows:

1 nr
I f—GTyY II< 33k Sup I (x|, (16)
: x€[0,1]
where, |I. || denotes the norm in LZ(]R{) space.
Proof. We see that the factor =% shows the best approximation of the function because if k increases, then
the error decreases rapidly. l
2.7 Operational Matrix of Integration of LLMW, QLMW, and CLMW
The integration of LLMW can be obtained as
t
Jo p@®dt =P P, (17)

where, P is an operational matrix of integration of order (8 x 8) [3], i.e.,
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E ! 0 0 0 0 0 0
2 243
1 1 1 1
- — 0 0 0
2V/3 8 32v2  32V2
0 ! 0 ! ! ! 0 0
8 8v3 16v2 16V2
3 3
0 0 L o 2 20 0
8v3 32 32
P= 1 1 1 1 . (18)
0 _—— = ——— 0 0 —— 0
32v2 162 3242 16v3
3
0 1 1 2 0 0 0 1
3242 16v2 32 1643
1
0 0 0 0 - 0 0
16v3
1
0 0 0 0 0 — 0 0
16V3
The integration of QLMW can be obtained as
t
Jo w@®dt = Q ¥(v), (19)
where, Q is an operational matrix of integration of order (12 x 12) [3].
rl 1
= e 0 0 0 0 0 0 0 0 0 0
1 1
55 0 e 0 0 0 0 0 0 0 0
1 3 3 3
0 2V15 1645 0 128v10 128V10 0 0 0 0
3 5 1 1
0 0 T wr 0 55 25 0 0 0 0
5 1 33 33
0 0 0 T 483 0 6v15 128 128 0 0 0
1 1 1
0 0 0 0 o= 0 N T 0 0 0
Q= 3 1 3 % 1 5 - (20)
0 0 _128m 322 128 16y/10 0 0 96v3 0 0 0
3 1 3 % 1 5
0 0 _128m T 3292 128 _16\/ﬁ 0 0 0 96v3 0 0
5 1
0 0 0 0 0 0 55 0 0 0 T
5 1
0 0 0 0 0 0 0 ~5e5 O 0 0 NG
0 0 0 0 0 0 0 0 —n;ﬁ 0 0
1
0 0 0 0 0 0 0 0 0 o= O 0
The integration of CLMW can be obtained as
t
[ wewde =c yao, 1)
0

where, C is an operational matrix of integration of order (16 x 16).
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% w0 0 0 0 0 0 0 0 0 0 0 0 0 0
—ﬁg 0 ﬁ 0 0 0 0 0 0 0 0 0 0 0 0
0 —T} Tl?s 0 0 0 0 0 0 0 0 0 0 0 0
55 85 85
0 0 - o0 £ 0 0 0 J—; J—; 0 0 0 0 0 0
2435 32 512 512
85
21 29 1 1 1
0 0 0 -0 s O w5 Tan oo 0 0 0 0 0 0
’o 3 [ [ [
85 14 14
0 0 0 0 s O - = = 0 0 0 0 0 0
NE B
85 34 1 1
0 0 0 0 0 -2 0 e 0 0 0 0 0 0
. B s [z 5 [z
34 7 7
0 0 0 0 57 O -2 0 o = 0 0 0 0 0 0
55 o5 s [
42 1 14 1 7 29 1
c=\0 0 0 T512 eavz T s 0o 0 0 v 0 0 Tozvzs © (22)
85 85 5 12
42 1 14 1 7 29 1
0 0 0 5z Tews 1 s 1om © 0 0 pr= A 0 0 192v238
3 [2
29 85
0 0 0 0 0 0 0 0 w0 0 0 =0 0 0
3|2
29 85
0 0 0 0 0 0 0 0 0 ~n 0 0 =0 0
3|2 3
0 0 0 0 0 0 0 0 0 0 -2 9 0 0 e 0
28 28
3|2 3
0 0 0 0 0 0 0 0 0 0 0 -] 0 =
28 28
3
1 34
0 0 0 0 0 0 0 0 -~ 0 0 - 0 0
3
1 34
0 0 0 0 0 0 0 0 0 T 0 0 - 0

2.8 Advantages of CLMW over LLMW and QLMW

CLMW offers several notable advantages over LLMW and QLMW counterparts, making them highly
effective for solving complex differential equations. One of the primary strengths of CLMW lies in its higher
approximation accuracy, which stems from its third-degree polynomial basis. This enhanced degree allows
the wavelets to better capture intricate and smoothly varying features of solutions, outperforming the lower-
order wavelets in precision. Furthermore, CLMW exhibits superior convergence behaviour, enabling faster
attainment of the desired accuracy with fewer basis functions. This results in more efficient computations,
especially beneficial for higher-order or stiff differential equations.

In addition to accuracy and efficiency, CLMW provides improved numerical stability. Their higher
smoothness and stronger orthogonality minimize numerical oscillations and instabilities, particularly in
domains with steep gradients or when iterative solvers are involved. Most notably, the cubic framework of
CLMW enhances its capacity to model complex solution behaviours, such as inflection points, sharp
transitions, and boundary layer phenomena. Such capabilities make CLMW exceptionally well-suited for
tackling higher-order Hermite differential equations, where LLMW and QLMW often fall short in capturing
critical solution features.

3. RESULTS AND DISCUSSION
3.1 Method of Solution of HDE

Consider the following HDE of n-th order

CY 0¥y ony =0, with 0) = d y'(0)=bh (23)
gz 2xg t2ny =0, with y(0)=a and y =b,

where, n = 0,1,2,... and y(x) is an unknown function.

a’y

First approximate a, b, ot

Z—i’, y(x) and 2x, with the help of Subsection 2.6.
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3.1.1 For LLMW

Consider
a= A{¢1(x)'b = B{l/h(x); 2x = X1T¢1(x): 2n = N1T¢1(x)- (24)
Now
% ~ YTy (%), (25)
and
Yo LY x4 y'(0) YT Py () + B (3), 26)
y(0) = [ 2 dx+ y(0) ~ YTP2p; (x) + BT Py (x) + Ath (x). @27)

Substituting Eqgs. (24)-(27) into Eq. (23) yields
Yy (Y = XT9, 0[] COPTY + 9T () By | + Niyp, (D[] (DPPY + Y1 (DPTBy + ()4, =0 (28)
Applying the property of matrix multiplication [4]

PPl () =l (08, ie, PP () = YT (0)E. (29)

Substituting Eq. (29) into Eq. (28) gives
Y — [X1PTY + X{B;| + [N;P?"Y + N;PTB, + N;A,| = 0, (30)
[l = X;PT + Ny P?T|Y = X;B; — N, PTB, — N{A;. (31)

After solving the system of algebraic equations above, i.e., Eq. (31), we obtain Y. Putting the value of Y in
Eq. (27), we can find an approximate solution of the HDE of n-th order.

Algorithm 1. LLMW Algorithm

Input: i,j,n,k,M;i=0,1;j=0,1;n= 0,1,2,...,2k_1,k =0,1,2,....M;M =0,1,2,...
Output: y(t) = YT P2y, (t) + BT Py, (t) + ATy, (0).

1: Computei, j,n, k, M

: Define LLMW v (t) from Eq. (13).

: Introduce the unknown vector C; from Eqg. (10).

: Compute the operational matrix of integration of LLMW “P” from Eq. (17).
: Approximate the terms a, b, 2x and 2n from Eq. (24) in term of LLMW by using Eq. (4).
: Convert Eq. (23) into approximation form by using Steps 1-5.

: Extract the set of algebraic equations as in Eq. (27).

: Solve the system of equations obtained in Step 7.

: Evaluate Y.

10: Increase k and n for a better approximation of y(t).

11: Calculate y(t) = YTP2y,(t) + BT Py, () + ATy, (D).

O©OoO~NO O, WN

3.1.2 For QLMW

Consider
a= Agybz(x), b= B2T¢2(x), 2x = Xlel)z(x), 2n = Nlel)z(x). (32)
Now
% =~ YT, (%), (33)
and
Do L dx+ y'(0) ~ YT Qup(x) + B, (), (34)
*d
y) = | 2 dx+ y(0) = YTQ¥p(0 + BY Qup(x) + AT (). (35
0

Substituting Eqgs. (32)-(35) into Eq. (23) yields
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YL Y = X5, (D) [9l ()QTY + I (x)B, ] + Niy, () [l () Q*Y + ¢l (x)Q"B, + ¥l (x)4,] =0

Applying the property of matrix multiplication [4]
32 (Y3 () = P ()&
Substituting Eq. (37) into Eq. (36) gives
Y — [X2PTY + X3B,| + [N;P?TY + N,PTB, + N, 4,| =0,
[ = X,PT + N,P?T|Y = X,B, — N,PTB, — N, A,.

(36)

(37)

(38)
(39)

After solving the system of algebraic equations above, i.e., Eq. (39), we obtain Y. Putting the value of Y in

Eq. (35), we can find an approximate solution of the HDE of n-th order.

Algorithm 2. QLMW Algorithm

Input: i,j,n,k,M;i=0,1;j =0,1;n = 0,1,2,...,2"‘1,k =0,1,2,....M;M =0,1,2,...
Output: y(t) = YTQ2,(t) + BI Q. (t) + A5, (¢).

1: Computei, j,n, k, M

: Define QLMW 1, (¢t) from Eq. (14).

. Introduce the unknown vector C, from Eq. (11).

: Compute the operational matrix of integration of QLMW “Q” from Eq. (19).
: Approximate the terms a, b, 2x and 2n from Eqg. (32) in term of QLMW by using Eq. (5).
: Convert Eg. (23) into approximation form by using Steps 1-5.

- Extract the set of algebraic equations as in Eg. (35).

: Solve the system of equations obtained in Step 7.

9: Evaluate Y.

10: Increase k and n for a better approximation of y(t).

11:Calculate y(t) = YTQ?1,(t) + BI Qu, (t) + AL, (0).

O~NO O WDN

3.1.3 For CLMW

Consider
a= Ag'l’s(x)' b= B??'l’s(x); 2x = X3T¢’3(x)' 2n = N?,Tl,b?,(x).
Now
dZ
d_x}z/ ~ YT(»DB(X)'
and

Yo Y dx g y(0) 2 YT Cps(x) + BIYs(3),
y(0) = [ L dx+ y(0) = YTC2Ps(x) + BY Cp(x) + A3 ().

Substituting Eqgs. (40)-(43) into Eq. (23) yields

WY = X5, (D[P CACTY + i (0)Bs] + N5y, (D[] CIC™TY + pL(x)CTBs + 95 (x)4s] = 0
Applying the property of matrix multiplication [4]

3 Y3 (OP3 (%) = P35 (x)G.
Substituting Eg. (45) into Eq. (44) gives
Y — [X3CTY + X3B3] + [N3C?TY + N3PTB; + N3A3| =0,
[l = X3CT + N3P?T|Y = X3B3 — N3CT B3 — N3 As.

(40)

(41)

(42)
(43)

(44)

(45)

(46)
(47)

After solving the system of algebraic equations above, i.e., Eq. (47), we obtain Y. Putting the value of Y in

Eq. (43), we can find an approximate solution of the HDE of n-th order.
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Algorithm 3. CLMW Algorithm

Input: i,j,n,k,M;i=0,1;j=0,1;n=0,12,...,2,k=0,12,..., M;M =0,1,2,....
Output: y(t) =~ YTC%5(t) + BECy;(t) + ALp5 (D).

1: Compute i, j,n, k, M

: Define CLMW 3 (t) from Eq. (15).

: Introduce the unknown vector C; from Eq. (12).

: Compute the operational matrix of integration of QLMW “C” Eq. (21).
: Approximate the terms a, b, 2x and 2n from equation (40) in term of CLMW by using Eq. (6).
: Convert Eq. (23) into approximation form by using Steps 1-5.

: Extract the set of algebraic equations as in Eq. (43).

- Solve the system of equations obtained in Step 7.

9: Evaluate Y.

10: Increase k and n for a better approximation of y(t).

11: Calculate y(t) = YT C%5(t) + BI C5(t) + AL5(b).

CO~NOOT A~ WN

Example 1. Consider the HDE for n = 0, i.e., order zero

2
2y _ ZxZ—z =0, y(0)=1, and y'(0)=0. (48)

dx?

The exact solution is

y(x) = 1. (49)

Employing LLMW, QLMW, and CLMW bases along with their operational matrices, the approximate
solution is given as

1, 0<x<1

0; Otherwise’ (50)

00 ={
It is observed that for the problem in this example, the approximate solution is the same as the exact solution.

Example 2. Consider the HDE for n = 1, i.e., order one

2
d—y—ZxZ—i+2y=0, y(0) =0, and y'(0)=2. (51)

dx?
The exact solution is
y(x) = 2x. (52)

Employing LLMW, QLMW, and CLMW bases along with their operational matrices, the approximate
solution is given as

N (2x; 0Zx<1
y0) = {0; Otherwise (53)

Again, it is observed that for the problem in this example, the approximate solution is the same as the exact
solution.

Example 3. Consider the HDE for n = 2, i.e., order two

LY e a0 (0) = —2, and y'(0) =0 (54)
a2 Hge T EH YR = andy o
The exact solution is
y(x) = 4x? — 2. (55)

Using LLMW, QLMW, and CLMW bases along with their corresponding operational matrices, the
approximate solutions are expressed as follows:
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(39, .. 1

24+x, 0Sx<4

61 1 1

~ —£+3x, ZSJC<E
=185y I<x<?,

24 2 4

“2y7x 2<x<1

24 4

0; Otherwise

Y2 0; Otherwise’

~(x):{—2+4x2; 0<x<1
Y3 0; Otherwise’

The exact and approximate solutions of Eq. (54) are illustrated in Fig. 1. Table 1 presents a comparison
of the exact and approximate solutions obtained by LLMW, QLMW, and CLMW. Notably, the approximate
solution for CLMW matches the exact solution and demonstrates superior accuracy compared to LLMW and
QLMW.

— k0

m— y1(x)
—(%)
— y3(x)

2 -

i | . . L 1 s . . 1 s . . 1 . " s 1 . . s 1

0.0 0.2 0.4 0.6 0.8 1.0

Figure 1. The Graph of Exact and Approximate Solutions for LLMW, QLMW, and CLMW

Table 1. Comparison of Exact and Approximate Solutions for LLMW, QLMW, and CLMW
x  Exact:y(x) LLMW:y,(x) QLMW:y,(x) CLMW:y;3(x)

0.1 -1.96 -1.94167 -1.96 -1.96
0.2 -1.84 -1.84167 -1.84 -1.84
0.3 -1.64 -1.64167 -1.64 -1.64
0.4 -1.36 -1.34167 -1.36 -1.36
0.5 -1 -1.04167 -1 -1

0.6 -0.56 -0.541667 -0.56 -0.56
0.7 -0.04 -0.041666 -0.04 -0.04
0.8 0.56 0.558333 0.56 0.56
0.9 1.24 1.25833 1.24 1.24

Example 4. Consider the HDE for n = 3, i.e., order three

d’y _ dy _ . _ Ly
— —2x—+6y=0, with y(0)=0 and y'(0) =—-12. (56)

dx? dx
The exact solution is
y(x) = 8x3 — 12x. (57)

Using LLMW, QLMW, and CLMW bases along with their corresponding operational matrices, the
approximate solutions are expressed as follows:
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( 1
—3.9290533083765706 — 2.472998103453275¢t; 0<t< 2
1 1
—0.8472184254306346 — 8.471019823081729¢; 2 <t< >
y1(x) = 9 1 3, (58)
—0.03621027477645411 — 11.46611079696396¢; > <t< 2
3
—10.74349981063365 + 6.530324978402067¢; 2 <t<l1
0; Otherwise
( 2 1
0.03937440702747928 — 13.223872590567915t + 6.95174072943174t°; 0 <t < Z
1 1
0.9528742641745869 — 18.32816276654199¢ + 12.952885080321302¢; Z <t< E
¥,(x) =4 , 1 3, (59)
3.1726952665293453 — 25.2655869478412t + 18.046996292760326t"; E <t< Z
3
3.133816642737621 — 25.163403688621727t + 17.97888708834267¢%; Z <t<l1
0; Otherwise
(—8.881784197001252 x 1076 — 11.999999999999998t + 1.953992523340275 x 10~ '*¢* + 7.999999999999988t%; 0 <t < %
—8.553925320480403 x 107® — 11.999999999999998¢ + 2.05489288103852 x 10~ 1*t? + 7.999999999999986¢>; i <t< ;
Y3(0) = § _6.472666656430343 x 10716 — 12.t + 2.379991685974288 x 10~ + 7.999999999999984¢%; ; <t< z (60)
3.432026936776186 x 1071 — 12.000000000000004t + 2.783683677425238 x 10~ *t? 4+ 7.999999999999982¢; z <t<1
0; Otherwise

The exact and approximate solutions of Eq. (56) are illustrated in Fig. 2 (a), while Fig. 2 (b) shows the
absolute error of the exact and approximate solutions obtained by CLMW. Table 2 provides a comparison of
the exact and approximate solutions obtained by LLMW, QLMW, and CLMW. The results indicate that
CLMW achieves superior numerical accuracy compared to LLMW and QLMW, with its approximate
solution matching the exact solution.

8.x10"15

6.x10710

4.x10710}

2.x10718}

;D OlZ 0’4 OKG DiB 1’[; 0.2 04 0.6 08 1‘0
(@) (b)
Figure 2. The Graphs of Exact and Approximate Solutions and Absolute Error
(a) The Graph of Exact and Approximate Solutions for LLMW, QLMW, and CLMW, (b) The Graph of the
Absolute Error of Exact and Approximate Solutions Obtained by CLMW

Table 2. Comparison of Exact and Approximate Solutions for LLMW, QLMW, and CLMW
x Exact: y(x) LLMW:y,(x) QLMW:y,(x) CLMW:y3(x)

0.1 -1.192 -1.18282 -1.21135 -1.192
0.2 -2.336 -2.32942 -2.32733 -2.336
0.3 -3.384 -3.38852 -3.37981 -3.384
0.4 -4.288 -4.23463 -4.30593 -4.288
0.5 -5 -5.16555 —4.94835 -5

0.6 -5.472 -5.41285 -5.48974 -5.472
0.7 -5.656 -5.66015 -5.67019 -5.656

0.8 -5.504 -5.51924 -5.49042 -5.504
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x Exact: y(x) LLMW:y,(x) QLMW:y,(x) CLMW:y3(x)
0.9 -4.968 -4.86621 -4.95035 -4.968

Example 5. Consider the HDE for n = 4, i.e., order four

dz_y - ZxQ +8y =0, with y(0)=12 and y'(0)=0 (61)
dx? dx ’ '
The exact solution is
y(x) = 16x* — 48x2 + 12. (62)

Using LLMW, QLMW, and CLMW bases along with their corresponding operational matrices, the
approximate solutions are expressed as follows:

1
(12.46781646828935 — 11.689163563369931t; 0 <t <3
1 1
17.453275148039435 — 32.128007436555514t; — <t < —
4 2
N 1 3
y,(x) =1 23.044670085535344 — 43.86250846027291¢; SSt<y (63)
3
19.808054595788704 — 40.0443244803025¢; - <t <1
0; Otherwise
\
, 1
12.194414315389041 — 5.472409821378477¢ - 23.995991863672657¢"; 0=t <
, 1 1
16.23781745460151 — 24.753241481825686¢ — 10.736016431327272¢%;  — <t <
. , 1 3
v,(x) = {26.168764617741413 — 52.990025965625584¢ + 6.450169869128377t%; SSt<y (64)
3
26.744160519376116 — 54.524235386758306¢ + 7.4714931357687835¢; ZSt<1
0; Otherwise
\
1
(11.999107142857149 + 0.07142857142855874t — 49.28571428571429¢> + 8.000000000000016t3; 0<t< Z
1 1
11.713392857142862 + 3.2142857142857006t — 61.2857142857143t> + 24.000000000000014t3; Z <t< E
~ 1 3
¥,(x) = { 9.641964285714291 + 15.357142857142849¢ — 85.28571428571429¢7 + 40.000000000000014¢*; SSt<y (65)
3
2.784821428571435 + 42.499999999999986t — 121.285714—285714—2‘%2 + 56.000000000000014t3; Z <t<1
0; Otherwise
\

The exact and approximate solutions of Eq. (61) are illustrated in Fig.3 (a), while Fig.3 (b) shows the
absolute error of the exact and approximate solutions obtained by CLMW. Table 3 provides a comparison of
the exact and approximate solutions obtained by LLMW, QLMW, and CLMW. The results show that CLMW
provides better numerical accuracy compared to LLMW and QLMW.
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Figure 3. The Graphs of Exact and Approximate Solutions and Absolute Error
(a) The Graph of Exact and Approximate Solutions for LLMW, QLMW, and CLMW, (b) The Graph of the
Absolute Error of Exact and Approximate Solutions Obtained by CLMW

Table 3. Comparison of Exact and Approximate Solutions for LLMW, QLMW, and CLMW
X Exact:y(x) LLMW:y(x) QLMW:y,(x) CLMW:y3(x)

0.1 11.5216 11.2989 11.4072 11.5214
0.2 10.1056 10.13 10.1401 10.106

0.3 7.8096 7.81487 7.8456 7.80996
0.4 4.7296 4.60207 4.61876 4.72939
05 1 1.11342 1.28629 0.999107
0.6 -3.2064 -3.27283 -3.30319 -3.20661
0.7 -7.6784 -7.65909 -7.76367 -7.67804
0.8 -12.1664 -12.2274 -12.0935 -12.166

0.9 -16.3824 -16.2318 -16.2757 -16.3826

Example 6. Consider the HDE for n = 5, i.e., order five

dzy dy . 1
i 2xa+ 10y =0, with y(0) =0 and y'(0) = 120. (66)
The exact solution is
y(x) = 32x° — 160x3 + 120x. (67)

Using LLMW, QLMW, and CLMW bases along with their corresponding operational matrices, the
approximate solutions are expressed as follows:

1
0.6929982885864265 + 109.49162535907598t; 0 <t < 7
1 1
15.727767304684253 + 53.59213878193939¢; 25t<3
~ 1 3
y1(x) =1466.11256225076067 — 45.0407616273358t; > <t< 7 (68)
3
145.99283478458105 — 151.81697489373812¢; 2St< 1
0; Otherwise

\
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( 1
—0.04928569770808855 + 123.91928377438413t — 51.14461347551531t2; 0<t< Z
) 1 1
—4.94567325113264 + 168.00117260079517t — 151.51138237114097t~; Z <t< E
~ ) 1 3
Y, (x) =4 —20.980999116823664 + 235.67363184565323t — 223.53341447819705¢ ; E <t< Z, (69)
3
—14.793938035448159 + 219.35949096293407t — 212.7399101612205t2; Z <t<l1
0; Otherwise
\
1
(—0.0011100933046233052 + 120.07998491357321t — 1.2449735485994327¢* — 154.3030435168597t3; 0<t<-—
4
1 1
—0.8728022039437281 + 129.17922941381957t — 33.72920026584301¢t* — 114.30296920810378133; - <t<-
4 2
~ 1 3
Y3 (x) = { —11.854615101374808 + 192.38334289485203¢t — 156.2190139610411¢t* — 34.302985250229355t3; - <t<~— (70)
2 4
3
—64.68265005944309 + 399.6809172784151t — 428.7030373842242¢> + 85.69695159118216t3; -<t<1
4
0; Otherwise
\

The exact and approximate solutions of Eq. (66) are illustrated in Fig. 4 (a), while Fig. 4 (b) shows the
absolute error of the exact and approximate solutions obtained by CLMW. Table 4 provides a comparison of
the exact and approximate solutions obtained by LLMW, QLMW, and CLMW. The results show that CLMW
provides better numerical accuracy compared to LLMW and QLMW.

4 0.005p

4 0.004r

1 0.003p

1/ 0.002f

\ Oom\/‘\/\/\/

0.0 012 0[4 OKG 0‘8 1.0 0.2 04 0‘6 O‘8 1.0
(a) (b)
Figure 4. The Graphs of Exact and Approximate Solutions and Absolute Error
(a)The Graph of Exact and Approximate Solutions for LLMW, QLMW, and CLMW, (b) The Graph of the
Absolute Error of Exact and Approximate Solutions Obtained by CLMW

Table 4. Comparison of Exact and Approximate Solutions for LLMW, QLMW, and CLMW
x Exact:y(x) LLMW:y,(x) QLMW:y,(x) CLMW:y3(x)

0.1 11.8403 11.6422 11.8312 11.8401
0.2 22.7302 22.5913 22.6888 22.7307
0.3 31.0877 31.8054 31.8187 31.7592
0.4 38.0877 37.1646 38.013 38.0868
0.5 41 43.4922 40.9725 40.9944
0.6 39.9283 39.0881 39.9512 39.9271
0.7 34.4982 34.584 34.4592 34.5005
0.8 24.5658 24.5393 24.5401 24.569

0.9 10.2557 9.35756 10.3103 10.2538
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4. CONCLUSION

The manuscript presents an effective method for numerically solving HDES of orders zero through five
by leveraging LLMW, QLMW, and CLMW. By employing these methods, the study successfully transforms
these equations into algebraic systems, enabling efficient computational solutions. The integration properties
are derived and effectively utilized, resulting in enhanced computational accuracy and efficiency. Among the
methods, CLMW consistently yields more accurate results, occasionally matching the analytical solutions
exactly.
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