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1. INTRODUCTION 

Wavelets have revolutionized numerical analysis and computational mathematics by providing a robust 

framework for approximating and solving complex equations with high accuracy and efficiency. Unlike 

traditional methods, wavelets allow the representation of functions with both time and frequency localization, 

making them particularly suitable for analyzing problems with varying levels of detail or abrupt changes. 

Wavelets are characterized by their compact support, orthogonality, and multiresolution properties, which 

enable efficient representation and manipulation of functions across different scales. Legendre multiwavelets, 

derived from Legendre polynomials, are widely regarded as one of the most effective types of multiwavelets 

due to their compact support, orthogonality, and ease of implementation [1]. By leveraging the polynomial 

structure of Legendre functions, these multiwavelets provide a powerful basis for approximating functions 

and solving differential equations with improved computational efficiency [2]. 

Khellat [3] developed the linear Legendre mother wavelets operational matrix of integration and its 

application. While Babolian [4] discussed the Numerical solution of differential equations by using the 

Chebyshev wavelet operational matrix of integration. Shiralashetti [5] explained the Hermite wavelets 

operational matrix of integration for the numerical solution of nonlinear singular initial value problems. Khan 

[6] formulated the Haar wavelet operational matrix method for pantograph fractional differential equations. 

Ravichandran [7] studied a Hermite-type radial basis function-based differential quadrature approach that 

allows for free vibration beams for higher-order equations. Alpert [8] explained a class of bases for the sparse 

representation of integral operators. Zhang [9] discussed a generalized collocation method in reproducing 

kernel space for solving a weakly singular Fredholm integro-differential equation. Du [10] developed the 

least residue method for solving a nonlinear fractional integro-differential equation with a weakly singular 

kernel. Later, Khan [11] developed a new method for finding numerical solutions to integro-differential 

equations based on Legendre multiwavelets collocation. Matoog [12] formulated a hybrid numerical 

technique for solving fractional Fredholm-Volterra integro-differential equations using Ramadan group 

integral transform and Hermite polynomials. 

Jarczewska [13] introduced multiwavelets and multiwavelet packets of Legendre functions in the direct 

method for solving variational problems. Daneshkhah [14] presented an approximation multivariate 

distribution with pair copula using the orthonormal polynomial and Legendre multiwavelets basis functions. 

Further, Geronimo [15] obtained Alpert multiwavelets and Legendre-Angelesco multiple orthogonal 

polynomials. Paul [16] introduced Legendre multiwavelets to solve Carleman-type singular integral 

equations. Ashpazzadeh [17] formulated Hermite multiwavelets representation for the sparse solution of the 

nonlinear Abel’s integral equation.  

Devi [18] developed numerical solutions of a system of linear differential equations using the Haar 

wavelet approach. Further, Devi [19] established numerical solutions of integral equations using linear 

Legendre multiwavelets. Singh [20] derived a solution of linear differential equations using the operational 

matrix of Bernoulli orthonormal polynomials. Furthermore, Kheirdeh [21] studied s-elementary wavelets in 

R and their applications in solving integral equations. While Sahani [22] analyzed the numerical solution of 

the non-linear Lienard equation using the Haar wavelet method. 

Liu [23] discussed the bivariate Hermite polynomials. Kumbinarasaiah [24] discussed applications of 

the Hermite wavelet method to nonlinear differential equations arising in heat transfer. Faheem [25] studied 

a high-resolution Hermite wavelet technique for solving space-time-fractional partial differential equations. 

Further, Pourfattah [26] formulated an algorithm based on the Pseudospectral method for solving Abel’s 

integral equation using Hermite cubic spline scaling bases. 

Furthermore, Ali [27] developed an adaptive algorithm for numerically solving fractional partial 

differential equations using Hermite wavelet artificial neural networks. While Wani [28] explained 

generalized 1-Parameter 3-Variable Hermite–Frobenius–Euler Polynomials. Santra [29] determined a 

simultaneous space–time Hermite wavelet method for time-fractional nonlinear weakly singular integro-

partial differential equations. 

The integration properties of CLMW are specifically derived and utilized to enhance the computational 

efficiency and accuracy of the solutions. This paper focuses on employing LLMW, QLMW, and CLMW to 

solve HDE of orders zero through five. It is observed that the approximate solution using CLMW closely 

matches the exact solution and outperforms the results from LLMW and QLMW. Hermite differential 

equations, which play a fundamental role in mathematical physics, quantum mechanics, and signal 
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processing, are solved by transforming them into algebraic systems using the operational matrix of integration 

of LLMW, QLMW, and CLMW. Through illustrative examples and comparative analyses, this study 

demonstrates that the proposed multiwavelet-based approach not only provides highly accurate solutions but 

also reduces computational overhead, offering a versatile and efficient method for solving HDE.  

2. RESEARCH METHODS 

2.1 Hermite Differential Equations (HDE) 

The differential equation is of the form  

𝑑2𝑦

𝑑𝑥2
− 2𝑥

𝑑𝑦

𝑑𝑥
+ 2𝑛𝑦 = 0, (1) 

and is called HDE. The solution of Eq.(1) is known as the Hermite polynomial. 

The Hermite polynomials, denoted by 𝐻𝑛(𝑥), is the set of orthogonal polynomials over the domain 

(−∞,∞) with a weighting function 𝑒−𝑥
2
. Hermite polynomials 𝐻𝑛(𝑥) are defined as 

𝐻𝑛(𝑥) =
𝑛!

2𝜋𝑖
∮ 𝑒−𝑥

2+2𝑥𝑧𝑥−𝑛−1𝑑𝑥, (2) 

where the contour encloses the origin and is traversed in a counterclockwise direction. 

2.2 Wavelet 

A wavelet is a family of functions based on well well-localized oscillating function 𝜓(𝑥) of real 

variable 𝑥. The function 𝜓(𝑥) is called “Mother Wavelet” because all other wavelet functions within the 

family are generated from translation and dilation of 𝜓(𝑥). The following expression is the family of 

functions generated from 𝜓(𝑥) by translation and dilation  

𝜓𝑎,𝑏(𝑥) =
1

√𝑎
𝜓 (

𝑡 − 𝑏

𝑎
) ,    𝑎, 𝑏 ∈ 𝑅,    𝑎 ≠ 0, (3) 

where, 𝑏 is translation parameter and 𝑎 is dilation parameter. 

2.3 Linear Legendre Multiwavelets (LLMW) 

The scaling functions for LLMW are defined as  

 𝜙0(𝑡) = 1, 𝜙1(𝑡) = √3(2𝑡 − 1),0 ≤ 𝑡 < 1 

Now, by the definition of multiresolution analysis (MRA), the corresponding mother wavelets 𝜓0(𝑡) and 

𝜓1(𝑡) are given as  

 𝜓0(𝑡) = {
−√3(4𝑡 − 1); 0 ≤ 𝑡 <

1

2

√3(4𝑡 − 3);
1

2
≤ 𝑡 < 1

,𝜓1(𝑡) = {
(6𝑡 − 1); 0 ≤ 𝑡 <

1

2

(6𝑡 − 5);
1

2
≤ 𝑡 < 1

. 

Further, by translation and dilation of the mother wavelets 𝜓0(𝑡) and 𝜓1(𝑡), the LLMW are constructed and 

are in the following form 

 𝜓𝑘,𝑛
𝑗 (𝑡) = 2

𝑘

2𝜓𝑗(2𝑘𝑡 − 𝑛),        𝑘, 𝑛, 𝑗 ∈ ℤ. 

For 𝑘 = 0,1 ; 𝑗 = 0,1 and 𝑛 = 0,1,  

 𝜓0,0
0 (𝑡) = {

−√3(4𝑡 − 1); 0 ≤ 𝑡 <
1

2

√3(4𝑡 − 3);
1

2
≤ 𝑡 < 1

,𝜓0,0
1 (𝑡) = {

(6𝑡 − 1); 0 ≤ 𝑡 <
1

2

(6𝑡 − 5);
1

2
≤ 𝑡 < 1

, 
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 𝜓1,0
0 (𝑡) =

{
 
 

 
 −√6(8𝑡 − 1); 0 ≤ 𝑡 <

1

4

√6(8𝑡 − 3);
1

4
≤ 𝑡 <

1

2

0;
1

2
≤ 𝑡 < 1

, 𝜓1,0
1 (𝑡) =

{
 
 

 
 √2(12𝑡 − 1); 0 ≤ 𝑡 <

1

4

√2(12𝑡 − 5);
1

4
≤ 𝑡 <

1

2

0;
1

2
≤ 𝑡 < 1

, 

 𝜓1,1
0 (𝑡) =

{
 
 

 
 −√6(8𝑡 − 5);

1

2
≤ 𝑡 <

3

4

√6(8𝑡 − 7);
3

4
≤ 𝑡 < 1

0; 0 ≤ 𝑡 <
1

2

, 𝜓1,1
1 (𝑡) =

{
 
 

 
 √2(12𝑡 − 7);

1

2
≤ 𝑡 <

3

4

√2(12𝑡 − 11);
3

4
≤ 𝑡 < 1

0; 0 ≤ 𝑡 <
1

2

. 

The scaling functions and subfamily members 

{𝜙0(𝑡), 𝜙1(𝑡), 𝜓0,0
0 (𝑡), 𝜓0,0

1 (𝑡), 𝜓1,0
0 (𝑡), 𝜓1,0

1 (𝑡), 𝜓1,1
0 (𝑡), 𝜓1,1

1 (𝑡)} constitute the LLMW. 

2.4 Quadratic Legendre Multiwavelets (QLMW) 

The scaling functions for QLMW are defined 

𝜙0(𝑡) = 1, 𝜙1(𝑡) = √3(2𝑡 − 1), 𝜙2(𝑡) = √5(6𝑡
2 − 6𝑡 + 1),0 ≤ 𝑡 ≤ 1. 

By the definition of MRA,  

 𝜓0(𝑡) = {

1

3
(−7 + 72𝑡 − 120𝑡2); 0 ≤ 𝑡 <

1

2
1

3
(55 − 168𝑡 + 120𝑡2);

1

2
≤ 𝑡 < 1

0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

𝜓1(𝑡) =

{
 
 

 
 √3(1 − 14𝑡 + 30𝑡2); 0 ≤ 𝑡 <

1

2

√3(17 − 46𝑡 + 30𝑡2);
1

2
≤ 𝑡 < 1

0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

 𝜓2(𝑡) = {

−
1

3
√5(1 − 18𝑡 + 48𝑡2); 0 ≤ 𝑡 <

1

2
1

3
√5(31 − 78𝑡 + 48𝑡2);

1

2
≤ 𝑡 < 1

0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. 

The QLMW is constructed by translating and dilating of mother wavelet 𝜓(𝑡) and is given by  

 𝜓𝑗𝑘,𝑛(𝑡) = 2
𝑘

2𝜓𝑗(2𝑘𝑡 − 𝑛),      𝑘, 𝑛, 𝑗 ∈ ℤ 

For 𝑘 = 0,1,2 ; 𝑗 = 0,1 and 𝑛 = 0,1, 

 𝜓0,0
0(𝑡) = {

1

3
(−7 + 72𝑡 − 120𝑡2); 0 ≤ 𝑡 <

1

2
1

3
(55 − 168𝑡 + 120𝑡2);

1

2
≤ 𝑡 < 1

0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

𝜓0,0
1(𝑡) =

{
 
 

 
 √3(1 − 14𝑡 + 30𝑡2); 0 ≤ 𝑡 <

1

2

√3(17 − 46𝑡 + 30𝑡2);
1

2
≤ 𝑡 < 1

0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

 𝜓0,0
2(𝑡) = {

−
1

3
√5(1 − 18𝑡 + 48𝑡2); 0 ≤ 𝑡 <

1

2
1

3
√5(31 − 78𝑡 + 48𝑡2);

1

2
≤ 𝑡 < 1

0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 
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𝜓1,0
0(𝑡) =

{
 
 

 
 −

1

3
√2(7 − 144𝑡 + 480𝑡2); 0 ≤ 𝑡 <

1

4
1

3
√2(55 − 336𝑡 + 480𝑡2);

1

4
≤ 𝑡 <

1

2
0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

 𝜓1,0
1(𝑡) = {

√6(1 − 28𝑡 + 120𝑡2); 0 ≤ 𝑡 <
1

4

√6(17 − 92𝑡 + 120𝑡2);
1

4
≤ 𝑡 <

1

2

0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

𝜓1,0
2(𝑡) =

{
 
 

 
 −

1

3
√10(1 − 36𝑡 + 192𝑡2); 0 ≤ 𝑡 <

1

4
1

3
√10(31 − 156𝑡 + 192𝑡2);

1

4
≤ 𝑡 <

1

2
0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

 𝜓1,1
0(𝑡) = {

−
1

3
√2(7 − 72(−1 + 2𝑡) + 120(−1 + 2𝑡)2);

1

2
≤ 𝑡 <

3

4
1

3
√2(55 − 168(−1 + 2𝑡) + 120(−1 + 2𝑡)2);

3

4
≤ 𝑡 < 1

0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

 𝜓1,1
1(𝑡) = {

√6(1 − 14(−1 + 2𝑡) + 30(−1 + 2𝑡)2);
1

2
≤ 𝑡 <

3

4

√6(17 − 46(−1 + 2𝑡) + 30(−1 + 2𝑡)2);
3

4
≤ 𝑡 < 1

0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

 𝜓1,1
2(𝑡) = {

−
1

3
√10(1 − 18(−1 + 2𝑡) + 48(−1 + 2𝑡)2);

1

2
≤ 𝑡 <

3

4
1

3
√10(31 − 78(−1 + 2𝑡) + 48(−1 + 2𝑡)2);

3

4
≤ 𝑡 < 1

0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. 

2.5 Cubic Legendre Multiwavelets (CLMW) 

The scaling functions for CLMW are defined as 

𝜙0(𝑡) = 1, 𝜙1(𝑡) = √3(2𝑡 − 1), 𝜙2(𝑡) = √5(6𝑡
2 − 6𝑡 + 1), 𝜙3(𝑡) = √7(−1 + 12𝑡 − 30𝑡

2 + 20𝑡3),
0 ≤ 𝑡 ≤ 1. 

By the definition of MRA, 

𝜓0(𝑡) =

{
 
 
 

 
 
 
−√

15

17
(−3 + 56𝑡 − 216𝑡2 + 224𝑡3); 0 ≤ 𝑡 <

1

2

√
15

17
(−61 + 296𝑡 − 456𝑡2 + 224𝑡3);

1

2
≤ 𝑡 < 1

0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,  

𝜓1(𝑡) =

{
 
 

 
 
−11 + 270𝑡 − 1320𝑡2 + 1680𝑡3

√21
; 0 ≤ 𝑡 <

1

2

−619 + 2670𝑡 − 3720𝑡2 + 1680𝑡3

√21
;
1

2
≤ 𝑡 < 1

0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

 𝜓2(𝑡) =

{
 
 

 
 −√

35

17
(−1 + 30𝑡 − 174𝑡2 + 256𝑡3); 0 ≤ 𝑡 <

1

2

√
35

17
(−111 + 450𝑡 − 594𝑡2 + 256𝑡3);

1

2
≤ 𝑡 < 1

0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 
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 𝜓3(𝑡) =

{
 
 

 
 √

5

42
(−1 + 36𝑡 − 246𝑡2 + 420𝑡3); 0 ≤ 𝑡 <

1

2

√
5

42
(−209 + 804𝑡 − 1014𝑡2 + 420𝑡3);

1

2
≤ 𝑡 < 1

0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. 

The CLMW is constructed by translating and dilating of mother wavelet 𝜓(𝑡) and is given by 

 𝜓𝑗𝑘,𝑛(𝑡) = 2
𝑘

2𝜓𝑗(2𝑘𝑡 − 𝑛),      𝑘, 𝑛, 𝑗 ∈ ℤ 

For 𝑘 = 0,1,2,3; 𝑗 = 0,1 and 𝑛 = 0,1, 

 𝜓00,0(𝑡) =

{
 
 

 
 −√

15

17
(−3 + 56𝑡 − 216𝑡2 + 224𝑡3); 0 ≤ 𝑡 <

1

2

√
15

17
(−61 + 296𝑡 − 456𝑡2 + 224𝑡3);

1

2
≤ 𝑡 < 1

0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

𝜓10,0(𝑡) =

{
 
 

 
 
−11 + 270𝑡 − 1320𝑡2 + 1680𝑡3

√21
; 0 ≤ 𝑡 <

1

2

−619 + 2670𝑡 − 3720𝑡2 + 1680𝑡3

√21
;
1

2
≤ 𝑡 < 1

0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,  

 𝜓20,0(𝑡) =

{
 
 

 
 −√

35

17
(−1 + 30𝑡 − 174𝑡2 + 256𝑡3); 0 ≤ 𝑡 <

1

2

√
35

17
(−111 + 450𝑡 − 594𝑡2 + 256𝑡3);

1

2
≤ 𝑡 < 1

0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

 𝜓30,0(𝑡) =

{
 
 

 
 √

5

42
(−1 + 36𝑡 − 246𝑡2 + 420𝑡3); 0 ≤ 𝑡 <

1

2

√
5

42
(−209 + 804𝑡 − 1014𝑡2 + 420𝑡3);

1

2
≤ 𝑡 < 1

0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

 𝜓01,0(𝑡) =

{
 
 

 
 √

30

17
(3 − 112𝑡 + 864𝑡2 − 1792𝑡3); 0 ≤ 𝑡 <

1

4

√
30

17
(−61 + 592𝑡 − 1824𝑡2 + 1792𝑡3);

1

4
≤ 𝑡 <

1

2

0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

 𝜓11,0(𝑡) =

{
 
 

 
 √

2

21
(−11 + 540𝑡 − 5280𝑡2 + 13440𝑡3); 0 ≤ 𝑡 <

1

4

√
2

21
(−619 + 5340𝑡 − 14880𝑡2 + 13440𝑡3);

1

4
≤ 𝑡 <

1

2

0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

 𝜓21,0(𝑡) =

{
 
 

 
 √

70

17
(1 − 60𝑡 + 696𝑡2 − 2048𝑡3); 0 ≤ 𝑡 <

1

4

√
70

17
(−111 + 900𝑡 − 2376𝑡2 + 2048𝑡3);

1

4
≤ 𝑡 <

1

2

0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 



BAREKENG: J. Math. & App., vol. 20(1), pp. 0691- 0710, Mar, 2026.  697 

 

𝜓31,0(𝑡) =

{
 
 
 

 
 
 
√
5

21
(−1 + 72𝑡 − 984𝑡2 + 3360𝑡3); 0 ≤ 𝑡 <

1

4

√
5

21
(−209 + 1608𝑡 − 4056𝑡2 + 3360𝑡3);

1

4
≤ 𝑡 <

1

2

0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

𝜓01,1(𝑡) =

{
 
 
 

 
 
 
√
30

17
(499 − 2320𝑡 + 3552𝑡2 − 1792𝑡3);

1

2
≤ 𝑡 <

3

4

√
30

17
(−1037 + 3760𝑡 − 4512𝑡2 + 1792𝑡3);

3

4
≤ 𝑡 < 1

0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

𝜓11,1(𝑡) =

{
 
 
 

 
 
 
√
2

21
(−3281 + 15900𝑡 − 25440𝑡2 + 13440𝑡3);

1

2
≤ 𝑡 <

3

4

√
2

21
(−8689 + 30300𝑡 − 35040𝑡2 + 13440𝑡3);

3

4
≤ 𝑡 < 1

0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

 𝜓21,1(𝑡) =

{
 
 

 
 √

70

17
(461 − 2292𝑡 + 3768𝑡2 − 2048𝑡3);

1

2
≤ 𝑡 <

3

4

√
70

17
(−1411 + 4812𝑡 − 5448𝑡2 + 2048𝑡3);

3

4
≤ 𝑡 < 1

0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

 𝜓31,1(𝑡) =

{
 
 

 
 √

5

21
(−703 + 3576𝑡 − 6024𝑡2 + 3360𝑡3);

1

2
≤ 𝑡 <

3

4

√
5

21
(−2447 + 8184𝑡 − 9096𝑡2 + 3360𝑡3);

3

4
≤ 𝑡 < 1

0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. 

2.6 Function Approximations 

The square integrable function 𝑓(𝑡) defined on [0, 1] can be expanded in terms of LLMW, QLMW, and 

CLMW, respectively, as follows: 

𝑓(𝑡) =∑

1

𝑖=0

𝑐𝑖𝜙𝑖(𝑡) +∑

∞

𝑘=0

∑

1

𝑗=0

∑

2𝑘−1

𝑛=0

𝑐𝑘,𝑛
𝑗
𝜓𝑘,𝑛
𝑗 (𝑡), (4) 

𝑓(𝑡) =∑

2

𝑖=0

𝑐𝑖𝜙𝑖(𝑡) +∑

∞

𝑘=0

∑

2

𝑗=0

∑

2𝑘−1

𝑛=0

𝑐𝑘,𝑛
𝑗
𝜓𝑘,𝑛
𝑗 (𝑡), (5) 

𝑓(𝑡) =∑

3

𝑖=0

𝑐𝑖𝜙𝑖(𝑡) +∑

∞

𝑘=0

∑

3

𝑗=0

∑

2𝑘−1

𝑛=0

𝑐𝑘,𝑛
𝑗
𝜓𝑘,𝑛
𝑗 (𝑡), (6) 

where, 𝑐𝑖 = ⟨𝑓(𝑡), 𝜙𝑖(𝑡)⟩ and 𝑐𝑘,𝑛
𝑗
= ⟨𝑓(𝑡), 𝜓𝑘,𝑛

𝑗
(𝑡)⟩. 
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After truncating the infinite series, Eqs. (4), (5), and (6) take the following form: 

𝑓(𝑡) =∑

1

𝑖=0

𝑐𝑖𝜙𝑖(𝑡) +∑

𝑀

𝑘=0

∑

1

𝑗=0

∑

2𝑘−1

𝑛=0

𝑐𝑘,𝑛
𝑗
𝜓𝑘,𝑛
𝑗 (𝑡) = 𝐶1

𝑇Ψ1(𝑡), (7) 

𝑓(𝑡) =∑

2

𝑖=0

𝑐𝑖𝜙𝑖(𝑡) +∑

𝑀

𝑘=0

∑

2

𝑗=0

∑

2𝑘−1

𝑛=0

𝑐𝑘,𝑛
𝑗
𝜓𝑘,𝑛
𝑗 (𝑡) = 𝐶2

𝑇Ψ2(𝑡), (8) 

𝑓(𝑡) =∑

3

𝑖=0

𝑐𝑖𝜙𝑖(𝑡) +∑

𝑀

𝑘=0

∑

3

𝑗=0

∑

2𝑘−1

𝑛=0

𝑐𝑘,𝑛
𝑗
𝜓𝑘,𝑛
𝑗 (𝑡) = 𝐶3

𝑇Ψ3(𝑡), (9) 

where, 

𝐶1 = [𝑐0, 𝑐1, 𝑐0,0
0 , 𝑐0,0

1 , … , 𝑐𝑀,0
0 , 𝑐𝑀,1

0 , … , 𝑐
𝑀,(2𝑀−1)
0 , 𝑐𝑀,0

1 , 𝑐𝑀,1
1 , … , 𝑐

𝑀,(2𝑀−1)
1

] , (10) 

𝐶2 = [
𝑐0, 𝑐1, 𝑐2, 𝑐0,0

0 , 𝑐0,0
1 , … , 𝑐𝑀,0

0 , 𝑐𝑀,1
0 , … , 𝑐

𝑀,(2𝑀−1)
0 , 𝑐𝑀,0

1 , 𝑐𝑀,1
1 , … , 𝑐

𝑀,(2𝑀−1)
1 ,

𝑐𝑀,0
2 , 𝑐𝑀,1

2 , … , 𝑐
𝑀,(2𝑀−1)
2 ] , (11) 

𝐶3 = [
𝑐0, 𝑐1, 𝑐2, 𝑐3, 𝑐0,0

0 , 𝑐0,0
1 , … , 𝑐𝑀,0

0 , 𝑐𝑀,1
0 , … , 𝑐

𝑀,(2𝑀−1)
0 , 𝑐𝑀,0

1 , 𝑐𝑀,1
1 , … , 𝑐

𝑀,(2𝑀−1)
1 ,

𝑐𝑀,0
2 , 𝑐𝑀,1

2 , … , 𝑐
𝑀,(2𝑀−1)
2 , 𝑐𝑀,0

3 , 𝑐𝑀,1
3 , … , 𝑐

𝑀,(2𝑀−1)
3 ] , (12) 

and  

𝜓1(𝑡) = [
𝜙0(𝑡), 𝜙1(𝑡), 𝜓0,0

0 (𝑡), 𝜓0,0
1 (𝑡),… , 𝜓𝑀,0

0 (𝑡), 𝜓𝑀,1
0 (𝑡),… , 𝜓

𝑀,(2𝑀−1)
0 (𝑡),

𝜓𝑀,0
1 (𝑡), 𝜓𝑀,1

1 (𝑡), … , 𝜓
𝑀,(2𝑀−1)
1 (𝑡)

] , (13) 

𝜓2(𝑡) = [
𝜙0(𝑡), 𝜙1(𝑡), 𝜙2(𝑡), 𝜓0,0

0 (𝑡), 𝜓0,0
1 (𝑡),… , 𝜓𝑀,0

0 (𝑡), 𝜓𝑀,1
0 (𝑡),… , 𝜓

𝑀,(2𝑀−1)
0 (𝑡),

𝜓𝑀,0
1 (𝑡), 𝜓𝑀,1

1 (𝑡), … , 𝜓
𝑀,(2𝑀−1)
1 (𝑡), 𝜓𝑀,0

2 (𝑡), 𝜓𝑀,1
2 (𝑡), … , 𝜓

𝑀,(2𝑀−1)
2 (𝑡)

] , (14) 

𝜓3(𝑡) =

[
 
 
 
 
𝜙0(𝑡), 𝜙1(𝑡), 𝜙2(𝑡), 𝜓0,0

0 (𝑡), 𝜓0,0
1 (𝑡),… , 𝜓𝑀,0

0 (𝑡), 𝜓𝑀,1
0 (𝑡),… , 𝜓

𝑀,(2𝑀−1)
0 (𝑡),

𝜓𝑀,0
1 (𝑡), 𝜓𝑀,1

1 (𝑡), … , 𝜓
𝑀,(2𝑀−1)
1 (𝑡), 𝜓𝑀,0

2 (𝑡), 𝜓𝑀,1
2 (𝑡), … , 𝜓

𝑀,(2𝑀−1)
2 (𝑡),

𝜓𝑀,0
3 (𝑡), 𝜓𝑀,1

3 (𝑡), … , 𝜓
𝑀,(2𝑀−1)
3 (𝑡) ]

 
 
 
 

. (15) 

Theorem 1. [8] Let the function 𝑓: [0,1] → ℝ and 𝑓 ∈ 𝐶3[0,1] then 𝐺𝑇𝜓 approximates f with mean error 

bound as follows: 

∥ 𝑓 − 𝐺𝑇𝜓 ∥≤
1

3!23𝑘
sup
𝑥∈[0,1]

|𝑓′′′(𝑥)|, (16) 

where, ∥. ∥ denotes the norm in 𝐿2(ℝ) space.  

Proof. We see that the factor 
1

3!23𝑘
 shows the best approximation of the function because if 𝑘 increases, then 

the error decreases rapidly. ∎ 

2.7 Operational Matrix of Integration of LLMW, QLMW, and CLMW 

The integration of LLMW can be obtained as  

∫
𝑡

0
𝜓(𝑡)𝑑𝑡 = 𝑃  𝜓(𝑡), (17) 

where, 𝑃 is an operational matrix of integration of order (8 × 8) [3], i.e.,  
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𝑃 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1

2

1

2√3
0 0 0 0 0 0

−
1

2√3
0

1

8
0

1

32√2

1

32√2
0 0

0 −
1

8
0

1

8√3
−

1

16√2

1

16√2
0 0

0 0 −
1

8√3
0

√
3

2

32

√
3

2

32
0 0

0 −
1

32√2

1

16√2
−

1

32√2
0 0

1

16√3
0

0 −
1

32√2
−

1

16√2
−
√
3

2

32
0 0 0

1

16√3

0 0 0 0 −
1

16√3
0 0 0

0 0 0 0 0
1

16√3
0 0

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. (18) 

The integration of QLMW can be obtained as  

∫
𝑡

0
𝜓(𝑡)𝑑𝑡 = 𝑄  𝜓(𝑡), (19)

where, 𝑄 is an operational matrix of integration of order (12 × 12) [3]. 

𝑄 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1

2

1

2√3
0 0 0 0 0 0 0 0 0 0

−
1

2√3
0

1

2√15
0 0 0 0 0 0 0 0 0

0 −
1

2√15
0

3

16√5
0 0

3

128√10

3

128√10
0 0 0 0

0 0 −
3

16√5
0

5

48√3
0 −

1

32√2

1

32√2
0 0 0 0

0 0 0 −
5

48√3
0

1

6√15

3√
3

2

128

3√
3

2

128
0 0 0 0

0 0 0 0 −
1

6√15
0 −

1

16√10

1

16√10
0 0 0 0

0 0 −
3

128√10

1

32√2
−
3√

3

2

128

1

16√10
0 0

5

96√3
0 0 0

0 0 −
3

128√10
−

1

32√2
−
3√

3

2

128
−

1

16√10
0 0 0

5

96√3
0 0

0 0 0 0 0 0 −
5

96√3
0 0 0

1

12√15
0

0 0 0 0 0 0 0 −
5

96√3
0 0 0

1

12√15

0 0 0 0 0 0 0 0 −
1

12√15
0 0 0

0 0 0 0 0 0 0 0 0 −
1

12√15
0 0

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. (20) 

The integration of CLMW can be obtained as  

∫
𝑡

0

𝜓(𝑡)𝑑𝑡 = 𝐶  𝜓(𝑡), (21) 

where, 𝐶  is an operational matrix of integration of order (16 × 16). 
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𝐶 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1

2

1

2√3
0 0 0 0 0 0 0 0 0 0 0 0 0 0

−
1

2√3
0

1

2√15
0 0 0 0 0 0 0 0 0 0 0 0 0

0 −
1

2√15
0

1

2√35
0 0 0 0 0 0 0 0 0 0 0 0

0 0 −
1

2√35
0

√
85

21

32
0 0 0

√
85

42

512

√
85

42

512
0 0 0 0 0 0

0 0 0 −
√
85

21

32
0

29

24√595
0

1

96√238
−

1

64√2

1

64√2
0 0 0 0 0 0

0 0 0 0 −
29

24√595
0

3√
3

85

14
0

√
85

14

128

√
85

14

128
0 0 0 0 0 0

0 0 0 0 0 −
3√

3

85

14
0

√
3

34

14
−

1

8√42

1

8√42
0 0 0 0 0 0

0 0 0 0 −
1

96√238
0 −

√
3

34

14
0

5√
17

7

1024

5√
17

7

1024
0 0 0 0 0 0

0 0 0 −
√
85

42

512

1

64√2
−
√
85

14

128

1

8√42
−
5√

17

7

1024
0 0

29

48√595
0 0 0

1

192√238
0

0 0 0 −
√
85

42

512
−

1

64√2
−
√
85

14

128
−

1

8√42
−
5√

17

7

1024
0 0 0

29

48√595
0 0 0

1

192√238

0 0 0 0 0 0 0 0 −
29

48√595
0 0 0

3√
3

85

28
0 0 0

0 0 0 0 0 0 0 0 0 −
29

48√595
0 0 0

3√
3

85

28
0 0

0 0 0 0 0 0 0 0 0 0 −
3√

3

85

28
0 0 0

√
3

34

28
0

0 0 0 0 0 0 0 0 0 0 0 −
3√

3

85

28
0 0 0

√
3

34

28

0 0 0 0 0 0 0 0 −
1

192√238
0 0 0 −

√
3

34

28
0 0 0

0 0 0 0 0 0 0 0 0 −
1

192√238
0 0 0 −

√
3

34

28
0 0

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.   (22) 

2.8 Advantages of CLMW over LLMW and QLMW 

CLMW offers several notable advantages over LLMW and QLMW counterparts, making them highly 

effective for solving complex differential equations. One of the primary strengths of CLMW lies in its higher 

approximation accuracy, which stems from its third-degree polynomial basis. This enhanced degree allows 

the wavelets to better capture intricate and smoothly varying features of solutions, outperforming the lower-

order wavelets in precision. Furthermore, CLMW exhibits superior convergence behaviour, enabling faster 

attainment of the desired accuracy with fewer basis functions. This results in more efficient computations, 

especially beneficial for higher-order or stiff differential equations. 

In addition to accuracy and efficiency, CLMW provides improved numerical stability. Their higher 

smoothness and stronger orthogonality minimize numerical oscillations and instabilities, particularly in 

domains with steep gradients or when iterative solvers are involved. Most notably, the cubic framework of 

CLMW enhances its capacity to model complex solution behaviours, such as inflection points, sharp 

transitions, and boundary layer phenomena. Such capabilities make CLMW exceptionally well-suited for 

tackling higher-order Hermite differential equations, where LLMW and QLMW often fall short in capturing 

critical solution features. 

3. RESULTS AND DISCUSSION 

3.1 Method of Solution of HDE 

Consider the following HDE of 𝑛-th order  

𝑑2𝑦

𝑑𝑥2
− 2𝑥

𝑑𝑦

𝑑𝑥
+ 2𝑛𝑦 = 0,    𝑤𝑖𝑡ℎ    𝑦(0) = 𝑎    and    𝑦′(0) = 𝑏, (23) 

where, 𝑛 = 0,1,2, . .. and 𝑦(𝑥) is an unknown function. 

First approximate 𝑎, 𝑏, 
𝑑2𝑦

𝑑𝑥2
,
𝑑𝑦

𝑑𝑥
, 𝑦(𝑥) and 2𝑥, with the help of Subsection 2.6. 
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3.1.1 For LLMW 

Consider 

𝑎 = 𝐴1
𝑇𝜓1(𝑥), 𝑏 = 𝐵1

𝑇𝜓1(𝑥), 2𝑥 = 𝑋1
𝑇𝜓1(𝑥), 2𝑛 = 𝑁1

𝑇𝜓1(𝑥). (24) 

Now 
𝑑2𝑦

𝑑𝑥2
  ≈ 𝑌𝑇𝜓1(𝑥), (25) 

and 
𝑑𝑦

𝑑𝑥
= ∫

𝑥

0

𝑑2𝑦

𝑑𝑥2
  𝑑𝑥 +  𝑦′(0) ≈ 𝑌𝑇  𝑃𝜓1(𝑥) + 𝐵1

𝑇𝜓1(𝑥), (26)

𝑦(𝑥) = ∫
𝑥

0

𝑑𝑦

𝑑𝑥
  𝑑𝑥 +   𝑦(0) ≈ 𝑌𝑇𝑃2𝜓1(𝑥) + 𝐵1

𝑇   𝑃𝜓1(𝑥) + 𝐴1
𝑇𝜓1(𝑥). (27) 

Substituting Eqs. (24)-(27) into Eq. (23) yields  

𝜓
1
𝑇(𝑥)𝑌 − 𝑋1

𝑇𝜓
1
(𝑥)[𝜓

1
𝑇(𝑥)𝑃𝑇𝑌 + 𝜓

1
𝑇(𝑥)𝐵1] + 𝑁1

𝑇𝜓
1
(𝑥)[𝜓

1
𝑇(𝑥)𝑃2𝑇𝑌 + 𝜓

1
𝑇(𝑥)𝑃𝑇𝐵1 + 𝜓1

𝑇(𝑥)𝐴1] = 0 (28) 

Applying the property of matrix multiplication [4] 

𝑐𝑖
𝑇𝜓𝑖(𝑥)𝜓𝑖

𝑇(𝑥) ≈ 𝜓𝑖
𝑇(𝑥)𝑐𝑖̃,    i. e., 𝑐1

𝑇𝜓1(𝑥)𝜓1
𝑇(𝑥) ≈ 𝜓1

𝑇(𝑥)𝑐1̃. (29) 

Substituting Eq. (29) into Eq. (28) gives  

𝑌 − [𝑋1̃𝑃
𝑇𝑌 + 𝑋1̃𝐵1] + [𝑁1̃𝑃

2𝑇𝑌 +𝑁1̃𝑃
𝑇𝐵1 +𝑁1̃𝐴1] = 0, (30) 

[𝐼 − 𝑋1̃𝑃
𝑇 +𝑁1̃𝑃

2𝑇]𝑌 = 𝑋1̃𝐵1 −𝑁1̃𝑃
𝑇𝐵1 −𝑁1̃𝐴1. (31) 

After solving the system of algebraic equations above, i.e., Eq. (31), we obtain 𝑌. Putting the value of 𝑌 in 

Eq. (27), we can find an approximate solution of the HDE of 𝑛-th order. 

Algorithm 1. LLMW Algorithm 

Input: 𝑖, 𝑗, 𝑛, 𝑘,𝑀; 𝑖 = 0,1; 𝑗 = 0,1; 𝑛 = 0,1,2, . . . , 2𝑘−1, 𝑘 = 0,1,2, . . . , 𝑀;𝑀 = 0,1,2, . ... 
Output: 𝑦(𝑡) ≈ 𝑌𝑇𝑃2𝜓1(𝑡) + 𝐵1

𝑇𝑃𝜓1(𝑡) + 𝐴1
𝑇𝜓1(𝑡). 

1: Compute𝑖, 𝑗, 𝑛, 𝑘, 𝑀 

2: Define LLMW 𝜓1(𝑡) from Eq. (13). 

3: Introduce the unknown vector 𝐶1 from Eq. (10). 

4: Compute the operational matrix of integration of LLMW “𝑃” from Eq. (17). 

5: Approximate the terms 𝑎, 𝑏, 2𝑥 and 2𝑛 from Eq. (24) in term of LLMW by using Eq. (4). 

6: Convert Eq. (23) into approximation form by using Steps 1-5. 

7: Extract the set of algebraic equations as in Eq. (27). 

8: Solve the system of equations obtained in Step 7. 

9: Evaluate 𝑌. 
10: Increase 𝑘 and 𝑛 for a better approximation of 𝑦(𝑡). 
11: Calculate 𝑦(𝑡) ≈ 𝑌𝑇𝑃2𝜓1(𝑡) + 𝐵1

𝑇𝑃𝜓1(𝑡) + 𝐴1
𝑇𝜓1(𝑡). 

3.1.2 For QLMW 

Consider 

𝑎 = 𝐴2
𝑇𝜓2(𝑥),    𝑏 = 𝐵2

𝑇𝜓2(𝑥), 2𝑥 = 𝑋2
𝑇𝜓2(𝑥), 2𝑛 = 𝑁2

𝑇𝜓2(𝑥). (32) 

Now 
𝑑2𝑦

𝑑𝑥2
  ≈ 𝑌𝑇𝜓2(𝑥), (33) 

and 
𝑑𝑦

𝑑𝑥
= ∫

𝑥

0

𝑑2𝑦

𝑑𝑥2
  𝑑𝑥 +  𝑦′(0) ≈ 𝑌𝑇  𝑄𝜓2(𝑥) + 𝐵2

𝑇𝜓2(𝑥), (34) 

𝑦(𝑥) = ∫
𝑥

0

𝑑𝑦

𝑑𝑥
  𝑑𝑥 +   𝑦(0) ≈ 𝑌𝑇𝑄2𝜓2(𝑥) + 𝐵2

𝑇   𝑄𝜓2(𝑥) + 𝐴2
𝑇𝜓2(𝑥). (35) 

Substituting Eqs. (32)-(35) into Eq. (23) yields  
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𝜓
2
𝑇(𝑥)𝑌 − 𝑋2

𝑇𝜓
2
(𝑥)[𝜓

2
𝑇(𝑥)𝑄𝑇𝑌 + 𝜓

2
𝑇(𝑥)𝐵2] + 𝑁2

𝑇𝜓
2
(𝑥)[𝜓

2
𝑇(𝑥)𝑄2𝑇𝑌 + 𝜓

2
𝑇(𝑥)𝑄𝑇𝐵2 + 𝜓2

𝑇(𝑥)𝐴2]  = 0 (36) 

Applying the property of matrix multiplication [4] 

𝑐2
𝑇𝜓2(𝑥)𝜓2

𝑇(𝑥) ≈ 𝜓2
𝑇(𝑥)𝑐2̃. (37) 

Substituting Eq. (37) into Eq. (36) gives 

𝑌 − [𝑋2̃𝑃
𝑇𝑌 + 𝑋2̃𝐵2] + [𝑁2̃𝑃

2𝑇𝑌 +𝑁2̃𝑃
𝑇𝐵2 +𝑁2̃𝐴2] = 0, (38) 

[𝐼 − 𝑋2̃𝑃
𝑇 +𝑁2̃𝑃

2𝑇]𝑌 = 𝑋2̃𝐵2 −𝑁2̃𝑃
𝑇𝐵2 −𝑁2̃𝐴2. (39) 

After solving the system of algebraic equations above, i.e., Eq. (39), we obtain 𝑌. Putting the value of 𝑌 in 

Eq. (35), we can find an approximate solution of the HDE of 𝑛-th order. 

Algorithm 2. QLMW Algorithm 

Input: 𝑖, 𝑗, 𝑛, 𝑘,𝑀; 𝑖 = 0,1; 𝑗 = 0,1; 𝑛 = 0,1,2, . . . , 2𝑘−1, 𝑘 = 0,1,2, . . . , 𝑀;𝑀 = 0,1,2, . ... 
Output: 𝑦(𝑡) ≈ 𝑌𝑇𝑄2𝜓2(𝑡) + 𝐵2

𝑇𝑄𝜓2(𝑡) + 𝐴2
𝑇𝜓2(𝑡). 

1: Compute𝑖, 𝑗, 𝑛, 𝑘, 𝑀 

2: Define QLMW 𝜓2(𝑡) from Eq. (14). 
3: Introduce the unknown vector 𝐶2 from Eq. (11). 

4: Compute the operational matrix of integration of QLMW “𝑄” from Eq. (19). 

5: Approximate the terms 𝑎, 𝑏, 2𝑥 and 2𝑛 from Eq. (32) in term of QLMW by using Eq. (5). 

6: Convert Eq. (23) into approximation form by using Steps 1-5. 

7: Extract the set of algebraic equations as in Eq. (35). 

8: Solve the system of equations obtained in Step 7. 

9: Evaluate 𝑌. 
10: Increase 𝑘 and 𝑛 for a better approximation of 𝑦(𝑡). 
11:Calculate 𝑦(𝑡) ≈ 𝑌𝑇𝑄2𝜓2(𝑡) + 𝐵2

𝑇𝑄𝜓2(𝑡) + 𝐴2
𝑇𝜓2(𝑡). 

3.1.3 For CLMW 

Consider 

𝑎 = 𝐴3
𝑇𝜓3(𝑥),    𝑏 = 𝐵3

𝑇𝜓3(𝑥), 2𝑥 = 𝑋3
𝑇𝜓3(𝑥), 2𝑛 = 𝑁3

𝑇𝜓3(𝑥). (40) 

Now 
𝑑2𝑦

𝑑𝑥2
  ≈ 𝑌𝑇𝜓3(𝑥), (41) 

and 
𝑑𝑦

𝑑𝑥
= ∫

𝑥

0

𝑑2𝑦

𝑑𝑥2
  𝑑𝑥 +  𝑦′(0) ≈ 𝑌𝑇  𝐶𝜓3(𝑥) + 𝐵3

𝑇𝜓3(𝑥), (42)

𝑦(𝑥) = ∫
𝑥

0

𝑑𝑦

𝑑𝑥
  𝑑𝑥 +   𝑦(0) ≈ 𝑌𝑇𝐶2𝜓3(𝑥) + 𝐵3

𝑇  𝐶𝜓3(𝑥) + 𝐴3
𝑇𝜓3(𝑥). (43) 

Substituting Eqs. (40)-(43) into Eq. (23) yields  

𝜓
3
𝑇(𝑥)𝑌 − 𝑋3

𝑇𝜓
3
(𝑥)[𝜓

3
𝑇(𝑥)𝐶𝑇𝑌 + 𝜓

3
𝑇(𝑥)𝐵3] + 𝑁3

𝑇𝜓
3
(𝑥)[𝜓

3
𝑇(𝑥)𝐶2𝑇𝑌 + 𝜓

3
𝑇(𝑥)𝐶𝑇𝐵3 + 𝜓3

𝑇(𝑥)𝐴3] = 0 (44) 

Applying the property of matrix multiplication [4] 

𝑐3
𝑇𝜓3(𝑥)𝜓3

𝑇(𝑥) ≈ 𝜓3
𝑇(𝑥)𝑐3̃. (45) 

Substituting Eq. (45) into Eq. (44) gives 

𝑌 − [𝑋3̃𝐶
𝑇𝑌 + 𝑋3̃𝐵3] + [𝑁3̃𝐶

2𝑇𝑌 +𝑁3̃𝑃
𝑇𝐵3 +𝑁3̃𝐴3] = 0, (46) 

[𝐼 − 𝑋3̃𝐶
𝑇 +𝑁3̃𝑃

2𝑇]𝑌 = 𝑋3̃𝐵3 −𝑁3̃𝐶
𝑇𝐵3 −𝑁3̃𝐴3. (47) 

After solving the system of algebraic equations above, i.e., Eq. (47), we obtain 𝑌. Putting the value of 𝑌 in 

Eq. (43), we can find an approximate solution of the HDE of 𝑛-th order. 
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Algorithm 3. CLMW Algorithm 

Input: 𝑖, 𝑗, 𝑛, 𝑘,𝑀; 𝑖 = 0,1; 𝑗 = 0,1; 𝑛 = 0,1,2, . . . , 2𝑘−1, 𝑘 = 0,1,2, . . . , 𝑀;𝑀 = 0,1,2, . ... 
Output: 𝑦(𝑡) ≈ 𝑌𝑇𝐶2𝜓3(𝑡) + 𝐵3

𝑇𝐶𝜓3(𝑡) + 𝐴3
𝑇𝜓3(𝑡). 

1: Compute 𝑖, 𝑗, 𝑛, 𝑘,𝑀 

2: Define CLMW 𝜓3(𝑡) from Eq. (15). 

3: Introduce the unknown vector 𝐶3 from Eq. (12). 

4: Compute the operational matrix of integration of QLMW “C” Eq. (21). 

5: Approximate the terms 𝑎, 𝑏, 2𝑥 and 2𝑛 from equation (40) in term of CLMW by using Eq. (6). 

6: Convert Eq. (23) into approximation form by using Steps 1-5. 

7: Extract the set of algebraic equations as in Eq. (43). 

8: Solve the system of equations obtained in Step 7. 

9: Evaluate 𝑌. 
10: Increase 𝑘 and 𝑛 for a better approximation of 𝑦(𝑡). 
11: Calculate 𝑦(𝑡) ≈ 𝑌𝑇𝐶2𝜓3(𝑡) + 𝐵3

𝑇𝐶𝜓3(𝑡) + 𝐴3
𝑇𝜓3(𝑡). 

Example 1. Consider the HDE for 𝑛 = 0, i.e., order zero 

𝑑2𝑦

𝑑𝑥2
− 2𝑥

𝑑𝑦

𝑑𝑥
= 0,    𝑦(0) = 1,    and    𝑦′(0) = 0. (48) 

The exact solution is  

𝑦(𝑥) = 1. (49) 

Employing LLMW, QLMW, and CLMW bases along with their operational matrices, the approximate 

solution is given as  

 𝑦̃(𝑥) = {
1; 0 ≤ 𝑥 < 1
0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 . (50) 

It is observed that for the problem in this example, the approximate solution is the same as the exact solution. 

Example 2. Consider the HDE for 𝑛 = 1, i.e., order one 

𝑑2𝑦

𝑑𝑥2
− 2𝑥

𝑑𝑦

𝑑𝑥
+ 2𝑦 = 0,    𝑦(0) = 0,    and    𝑦′(0) = 2. (51) 

The exact solution is 

𝑦(𝑥) = 2𝑥. (52) 

Employing LLMW, QLMW, and CLMW bases along with their operational matrices, the approximate 

solution is given as  

𝑦̃(𝑥) = {
2𝑥; 0 ≤ 𝑥 < 1
0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  . (53) 

Again, it is observed that for the problem in this example, the approximate solution is the same as the exact 

solution. 

Example 3. Consider the HDE for 𝑛 = 2, i.e., order two 

𝑑2𝑦

𝑑𝑥2
− 2𝑥

𝑑𝑦

𝑑𝑥
+ 4𝑦 = 0,    𝑦(0) = −2,   and    𝑦′(0) = 0. (54) 

The exact solution is  

𝑦(𝑥) = 4𝑥2 − 2. (55) 

Using LLMW, QLMW, and CLMW bases along with their corresponding operational matrices, the 

approximate solutions are expressed as follows:  
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 𝑦1
∼
(𝑥) =

{
 
 
 

 
 
 −

49

24
+ 𝑥; 0 ≤ 𝑥 <

1

4

−
61

24
+ 3𝑥;

1

4
≤ 𝑥 <

1

2

−
85

24
+ 5𝑥;

1

2
≤ 𝑥 <

3

4

−
121

24
+ 7𝑥;

3

4
≤ 𝑥 < 1

0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

𝑦2
∼
(𝑥) = {

−2 + 4𝑥2; 0 ≤ 𝑥 < 1
0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 , 

 𝑦3
∼
(𝑥) = {

−2 + 4𝑥2; 0 ≤ 𝑥 < 1
0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. 

The exact and approximate solutions of Eq. (54) are illustrated in Fig. 1. Table 1 presents a comparison 

of the exact and approximate solutions obtained by LLMW, QLMW, and CLMW. Notably, the approximate 

solution for CLMW matches the exact solution and demonstrates superior accuracy compared to LLMW and 

QLMW. 

 
Figure 1. The Graph of Exact and Approximate Solutions for LLMW, QLMW, and CLMW 

Table 1. Comparison of Exact and Approximate Solutions for LLMW, QLMW, and CLMW 

𝒙 𝑬𝒙𝒂𝒄𝒕: 𝒚(𝒙) 𝑳𝑳𝑴𝑾: 𝒚̃𝟏(𝒙) 𝑸𝑳𝑴𝑾: 𝒚̃𝟐(𝒙) 𝑪𝑳𝑴𝑾: 𝒚̃𝟑(𝒙) 

0.1 -1.96 -1.94167 -1.96 -1.96 

0.2 -1.84 -1.84167 -1.84 -1.84 

0.3 -1.64 -1.64167 -1.64 -1.64 

0.4 -1.36 -1.34167 -1.36 -1.36 

0.5 -1 -1.04167 -1 -1 

0.6 -0.56 -0.541667 -0.56 -0.56 

0.7 -0.04 -0.041666 -0.04 -0.04 

0.8 0.56 0.558333 0.56 0.56 

0.9 1.24 1.25833 1.24 1.24 

 
Example 4. Consider the HDE for 𝑛 = 3, i.e., order three 

𝑑2𝑦

𝑑𝑥2
− 2𝑥

𝑑𝑦

𝑑𝑥
+ 6𝑦 = 0,    with    𝑦(0) = 0    and    𝑦′(0) = −12. (56) 

The exact solution is  

𝑦(𝑥) = 8𝑥3 − 12𝑥. (57) 

Using LLMW, QLMW, and CLMW bases along with their corresponding operational matrices, the 

approximate solutions are expressed as follows: 
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𝑦1
∼
(𝑥) =

{
 
 
 
 

 
 
 
 −3.9290533083765706 − 2.472998103453275𝑡; 0 ≤ 𝑡 <

1

4

−0.8472184254306346 − 8.471019823081729𝑡;
1

4
≤ 𝑡 <

1

2

−0.03621027477645411 − 11.46611079696396𝑡;
1

2
≤ 𝑡 <

3

4

−10.74349981063365 + 6.530324978402067𝑡;
3

4
≤ 𝑡 < 1

0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (58) 

𝑦
2

∼
(𝑥) =

{
 
 
 
 

 
 
 
 0.03937440702747928 − 13.223872590567915𝑡 + 6.95174072943174𝑡

2; 0 ≤ 𝑡 <
1

4

0.9528742641745869 − 18.32816276654199𝑡 + 12.952885080321302𝑡2;
1

4
≤ 𝑡 <

1

2

3.1726952665293453 − 25.2655869478412𝑡 + 18.046996292760326𝑡2;
1

2
≤ 𝑡 <

3

4

3.133816642737621 − 25.163403688621727𝑡 + 17.97888708834267𝑡2;
3

4
≤ 𝑡 < 1

0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (59) 

𝑦
3

∼
(𝑥) =

{
  
 

  
 −8.881784197001252 × 10

−16 − 11.999999999999998𝑡 + 1.953992523340275 × 10−14𝑡2 + 7.999999999999988𝑡3; 0 ≤ 𝑡 <
1

4

−8.553925320480403 × 10−16 − 11.999999999999998𝑡 + 2.05489288103852 × 10−14𝑡2 + 7.999999999999986𝑡3;
1

4
≤ 𝑡 <

1

2

−6.472666656430343 × 10−16 − 12. 𝑡 + 2.379991685974288 × 10−14𝑡2 + 7.999999999999984𝑡3;
1

2
≤ 𝑡 <

3

4

3.432026936776186 × 10−16 − 12.000000000000004𝑡 + 2.783683677425238 × 10−14𝑡2 + 7.999999999999982𝑡3;
3

4
≤ 𝑡 < 1

0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. (60) 

The exact and approximate solutions of Eq. (56) are illustrated in Fig. 2 (a), while Fig. 2 (b) shows the 

absolute error of the exact and approximate solutions obtained by CLMW. Table 2 provides a comparison of 

the exact and approximate solutions obtained by LLMW, QLMW, and CLMW. The results indicate that 

CLMW achieves superior numerical accuracy compared to LLMW and QLMW, with its approximate 

solution matching the exact solution. 

 
              (a)                                                                                   (b) 

Figure 2. The Graphs of Exact and Approximate Solutions and Absolute Error 

(a) The Graph of Exact and Approximate Solutions for LLMW, QLMW, and CLMW, (b) The Graph of the 

Absolute Error of Exact and Approximate Solutions Obtained by CLMW 

Table 2. Comparison of Exact and Approximate Solutions for LLMW, QLMW, and CLMW 

𝒙 𝑬𝒙𝒂𝒄𝒕: 𝒚(𝒙) 𝑳𝑳𝑴𝑾: 𝒚̃𝟏(𝒙) 𝑸𝑳𝑴𝑾: 𝒚̃𝟐(𝒙) 𝑪𝑳𝑴𝑾: 𝒚̃𝟑(𝒙) 

0.1 -1.192 -1.18282 -1.21135 -1.192 

0.2 -2.336 -2.32942 -2.32733 -2.336 

0.3 -3.384 -3.38852 -3.37981 -3.384 

0.4 -4.288 -4.23463 -4.30593 -4.288 

0.5 -5 -5.16555 –4.94835 -5 

0.6 -5.472 -5.41285 -5.48974 –5.472 

0.7 -5.656 -5.66015 –5.67019 -5.656 

0.8 -5.504 -5.51924 -5.49042 -5.504 
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𝒙 𝑬𝒙𝒂𝒄𝒕: 𝒚(𝒙) 𝑳𝑳𝑴𝑾: 𝒚̃𝟏(𝒙) 𝑸𝑳𝑴𝑾: 𝒚̃𝟐(𝒙) 𝑪𝑳𝑴𝑾: 𝒚̃𝟑(𝒙) 

0.9 -4.968 -4.86621 -4.95035 -4.968 

Example 5. Consider the HDE for 𝑛 = 4, i.e., order four 

𝑑2𝑦

𝑑𝑥2
− 2𝑥

𝑑𝑦

𝑑𝑥
+ 8𝑦 = 0,    with    𝑦(0) = 12    and    𝑦′(0) = 0. (61) 

The exact solution is  

𝑦(𝑥) = 16𝑥4 − 48𝑥2 + 12. (62) 

Using LLMW, QLMW, and CLMW bases along with their corresponding operational matrices, the 

approximate solutions are expressed as follows: 

𝑦
1

∼
(𝑥) =

{
 
 
 
 

 
 
 
 12.46781646828935 − 11.689163563369931𝑡; 0 ≤ 𝑡 <

1

4

17.453275148039435 − 32.128007436555514𝑡;
1

4
≤ 𝑡 <

1

2

23.044670085535344 − 43.86250846027291𝑡;
1

2
≤ 𝑡 <

3

4

19.808054595788704 − 40.0443244803025𝑡;
3

4
≤ 𝑡 < 1

0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (63) 

𝑦
2

∼
(𝑥) =

{
 
 
 
 

 
 
 
 12.194414315389041 − 5.472409821378477𝑡 − 23.995991863672657𝑡

2; 0 ≤ 𝑡 <
1

4

16.23781745460151 − 24.753241481825686𝑡 − 10.736016431327272𝑡2;
1

4
≤ 𝑡 <

1

2

26.168764617741413 − 52.990025965625584𝑡 + 6.450169869128377𝑡2;
1

2
≤ 𝑡 <

3

4

26.744160519376116 − 54.524235386758306𝑡 + 7.4714931357687835𝑡2;
3

4
≤ 𝑡 < 1

0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (64) 

𝑦
3

∼
(𝑥) =

{
 
 
 
 

 
 
 
 11.999107142857149 + 0.07142857142855874𝑡 − 49.28571428571429𝑡

2
+ 8.000000000000016𝑡

3
; 0 ≤ 𝑡 <

1

4

11.713392857142862 + 3.2142857142857006𝑡 − 61.2857142857143𝑡
2
+ 24.000000000000014𝑡

3
;

1

4
≤ 𝑡 <

1

2

9.641964285714291 + 15.357142857142849𝑡 − 85.28571428571429𝑡
2
+ 40.000000000000014𝑡

3
;

1

2
≤ 𝑡 <

3

4

2.784821428571435 + 42.499999999999986𝑡 − 121.28571428571429𝑡
2
+ 56.000000000000014𝑡

3
;

3

4
≤ 𝑡 < 1

0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. (65) 

The exact and approximate solutions of Eq. (61) are illustrated in Fig.3 (a), while Fig.3 (b) shows the 

absolute error of the exact and approximate solutions obtained by CLMW. Table 3 provides a comparison of 

the exact and approximate solutions obtained by LLMW, QLMW, and CLMW. The results show that CLMW 

provides better numerical accuracy compared to LLMW and QLMW. 
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Figure 3. The Graphs of Exact and Approximate Solutions and Absolute Error 

(a) The Graph of Exact and Approximate Solutions for LLMW, QLMW, and CLMW, (b) The Graph of the 

Absolute Error of Exact and Approximate Solutions Obtained by CLMW 

Table 3. Comparison of Exact and Approximate Solutions for LLMW, QLMW, and CLMW 

𝒙 𝑬𝒙𝒂𝒄𝒕: 𝒚(𝒙) 𝑳𝑳𝑴𝑾: 𝒚̃𝟏(𝒙) 𝑸𝑳𝑴𝑾: 𝒚̃𝟐(𝒙) 𝑪𝑳𝑴𝑾: 𝒚̃𝟑(𝒙) 

0.1 11.5216 11.2989 11.4072 11.5214 

0.2 10.1056 10.13 10.1401 10.106 

0.3 7.8096 7.81487 7.8456 7.80996 

0.4 4.7296 4.60207 4.61876 4.72939 

0.5 1 1.11342 1.28629 0.999107 

0.6 -3.2064 -3.27283 -3.30319 -3.20661 

0.7 -7.6784 -7.65909 -7.76367 -7.67804 

0.8 -12.1664 -12.2274 -12.0935 -12.166 

0.9 -16.3824 -16.2318 -16.2757 -16.3826 

Example 6. Consider the HDE for 𝑛 = 5, i.e., order five 

𝑑2𝑦

𝑑𝑥2
− 2𝑥

𝑑𝑦

𝑑𝑥
+ 10𝑦 = 0,    with    𝑦(0) = 0    and    𝑦′(0) = 120. (66) 

The exact solution is  

𝑦(𝑥) = 32𝑥5 − 160𝑥3 + 120𝑥. (67) 

Using LLMW, QLMW, and CLMW bases along with their corresponding operational matrices, the 

approximate solutions are expressed as follows: 

𝑦1
∼
(𝑥) =

{
 
 
 
 

 
 
 
 0.6929982885864265 + 109.49162535907598𝑡; 0 ≤ 𝑡 <

1

4

15.727767304684253 + 53.59213878193939𝑡;
1

4
≤ 𝑡 <

1

2

66.11256225076067 − 45.0407616273358𝑡;
1

2
≤ 𝑡 <

3

4

145.99283478458105 − 151.81697489373812𝑡;
3

4
≤ 𝑡 < 1

0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (68) 
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𝑦
2

∼
(𝑥) =

{
 
 
 
 

 
 
 
 −0.04928569770808855 + 123.91928377438413𝑡 − 51.14461347551531𝑡

2; 0 ≤ 𝑡 <
1

4

−4.94567325113264 + 168.00117260079517𝑡 − 151.51138237114097𝑡2;
1

4
≤ 𝑡 <

1

2

−20.980999116823664 + 235.67363184565323𝑡 − 223.53341447819705𝑡2;
1

2
≤ 𝑡 <

3

4

−14.793938035448159 + 219.35949096293407𝑡 − 212.7399101612205𝑡2;
3

4
≤ 𝑡 < 1

0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (69) 

𝑦
3

∼
(𝑥) =

{
 
 
 
 

 
 
 
 −0.0011100933046233052 + 120.07998491357321𝑡 − 1.2449735485994327𝑡

2
− 154.3030435168597𝑡

3
; 0 ≤ 𝑡 <

1

4

−0.8728022039437281 + 129.17922941381957𝑡 − 33.72920026584301𝑡
2
− 114.30296920810378𝑡

3
;

1

4
≤ 𝑡 <

1

2

−11.854615101374808 + 192.38334289485203𝑡 − 156.2190139610411𝑡
2
− 34.302985250229355𝑡

3
;

1

2
≤ 𝑡 <

3

4

−64.68265005944309 + 399.6809172784151𝑡 − 428.7030373842242𝑡
2
+ 85.69695159118216𝑡

3
;

3

4
≤ 𝑡 < 1

0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. (70) 

The exact and approximate solutions of Eq. (66) are illustrated in Fig. 4 (a), while Fig. 4 (b) shows the 

absolute error of the exact and approximate solutions obtained by CLMW. Table 4 provides a comparison of 

the exact and approximate solutions obtained by LLMW, QLMW, and CLMW. The results show that CLMW 

provides better numerical accuracy compared to LLMW and QLMW. 

 
     (a)                                                           (b)                        

Figure 4. The Graphs of Exact and Approximate Solutions and Absolute Error 

(a)The Graph of Exact and Approximate Solutions for LLMW, QLMW, and CLMW, (b) The Graph of the 

Absolute Error of Exact and Approximate Solutions Obtained by CLMW 

Table 4. Comparison of Exact and Approximate Solutions for LLMW, QLMW, and CLMW 

𝒙 𝑬𝒙𝒂𝒄𝒕: 𝒚(𝒙) 𝑳𝑳𝑴𝑾: 𝒚̃𝟏(𝒙) 𝑸𝑳𝑴𝑾: 𝒚̃𝟐(𝒙) 𝑪𝑳𝑴𝑾: 𝒚̃𝟑(𝒙) 

0.1 11.8403 11.6422 11.8312 11.8401 

0.2 22.7302 22.5913 22.6888 22.7307 

0.3 31.0877 31.8054 31.8187 31.7592 

0.4 38.0877 37.1646 38.013 38.0868 

0.5 41 43.4922 40.9725 40.9944 

0.6 39.9283 39.0881 39.9512 39.9271 

0.7 34.4982 34.584 34.4592 34.5005 

0.8 24.5658 24.5393 24.5401 24.569 

0.9 10.2557 9.35756 10.3103 10.2538 
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4. CONCLUSION 

The manuscript presents an effective method for numerically solving HDEs of orders zero through five 

by leveraging LLMW, QLMW, and CLMW. By employing these methods, the study successfully transforms 

these equations into algebraic systems, enabling efficient computational solutions. The integration properties 

are derived and effectively utilized, resulting in enhanced computational accuracy and efficiency. Among the 

methods, CLMW consistently yields more accurate results, occasionally matching the analytical solutions 

exactly. 
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