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1. INTRODUCTION

Rainfall is an important parameter in hydrology, climatology, and water resources management studies
[1], [2]. Accurate and complete rainfall data is needed for various applications, including flood planning and
management, irrigation, and regional spatial planning [3], [4]. In the city of Surabaya, one of the largest cities
in Indonesia with a high level of urbanization, reliable rainfall data is vital to support sustainable
development, disaster mitigation, and effective hydrological planning [5]. However, collecting rainfall data
in the field often faces challenges, as rain gauges spread across various locations can experience damage,
data loss, or operational disruptions due to extreme weather and other technical issues. These limitations lead
to gaps in rainfall data, which hinder accurate hydrological analysis and decision-making processes [6], [7].

Missing data is a value that is not available on a particular object, which can be caused by data
corruption, errors in recording values, damage to measuring instruments, or conditions that do not allow
measurement [8]. Missing data categories are divided into three, namely Missing Completely at Random
(MCAR), Missing at Random (MAR), and Missing Not at Random (MNAR) [9]. To address this issue,
interpolation methods are often used to estimate values at unknown locations by leveraging surrounding data
points [10]. Spatial interpolation methods, such as Inverse Distance Weight (IDW) and kriging, are used to
estimate the value of an unknown location point by utilizing values from other points in the same area [11].
This method has been used widely, but is often unable to capture complex spatial patterns in rainfall data
[12]. Rainfall interpolation is the process of estimating rainfall values in locations that do not have direct
measurement data, based on data from known surrounding locations [13], [14].

Interpolation methods can generally be categorized into two main approaches, namely deterministic
methods and geostatistical methods. Deterministic methods, such as Inverse Distance Weighting (IDW) and
Radial Basis Function (RBF), use direct mathematical relationships between data points to generate new
value estimates [15]. Meanwhile, geostatistical methods such as Ordinary Kriging (OK) and Universal
Kriging (UK) utilize statistical models to consider spatial correlations in the data used [16].

Several studies have compared the effectiveness of interpolation methods in various applications. For
example, a study in Portugal found that Empirical Bayesian Kriging Regression (EBKR) provided more
accurate results in rainfall estimation compared to other methods [17]. Meanwhile, in Canada, the Spatio-
Temporal Kriging (STK) method was superior to Thiessen Polygons (TP) and IDW in modeling maximum
temperature [15].

With the advancement of computing technology, various new approaches have been developed to
improve the accuracy of spatial interpolation. One of the prominent innovations is the combination of
interpolation methods with machine learning, which allows for more complex and adaptive spatial modeling
[16]. In addition, hybrid methods such as IDW-RBF Neural Network (IDW-RBFNN) have been introduced
to overcome the limitations of conventional methods by combining the strengths of deterministic approaches
and artificial neural networks [18].

In recent years, advancements in computing technology and machine learning algorithms have enabled
more accurate data interpolation [19]. Artificial neural network (ANN) methods, which fall into the deep
learning category, such as Deep Feedforward Neural Networks, Convolutional Neural Networks, and
Recurrent Neural Networks, offer a more adaptive approach and are able to capture non-linear relationships
in data [20]. Among these, Recurrent Neural Networks (RNN) are particularly effective in processing
sequential data, such as rainfall time series, due to their ability to incorporate past information and model
temporal dependencies [21]. This makes RNN a promising method for improving spatial interpolation
accuracy, particularly in the hydrological domain, where precise rainfall data is crucial for flood modelling,
watershed management, and water resource planning [22].

The city of Surabaya, with its predominantly lowland topography, is highly vulnerable to flooding,
particularly during the rainy season. Accurate rainfall data plays a critical role in hydrological applications,
such as flood risk mapping, drainage system optimization, and early warning systems. However, the lack of
complete rainfall data often hampers the ability to develop reliable hydrological models [23], [24]. By
utilizing historical rainfall data and applying an RNN for spatial interpolation, this study aims to provide
more accurate rainfall estimates. These estimates can serve as a foundation for hydrological planning,
enabling policymakers and urban planners to design more effective flood mitigation strategies and optimize
water resource management in Surabaya.
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2. RESEARCH METHODS

2.1 Data Source

Surabaya, one of Indonesia’s largest metropolitan cities, was chosen as the study area due to its
complex geographical characteristics and hydrological challenges. The city is predominantly a lowland area
with some hilly regions in the southern part, making it particularly vulnerable to flooding during the rainy
season. Additionally, the high level of urbanization and rapid infrastructure development often place
significant pressure on its drainage systems and water resource management. With varied rainfall distribution
across its 31 districts, Surabaya provides an ideal context for testing the effectiveness of the RNN-based
spatial interpolation method in producing accurate rainfall estimates to support sustainable water management
and flood risk mitigation [23], [5].

The dataset employed in this study was sourced from the Centre for Hydrometeorology and Remote
Sensing (CHRS), accessible via https://chrsdata.eng.uci.edu. Monthly rainfall data (January 2024-April 2024)
were gathered for 31 districts within Surabaya City, Indonesia, and supplemented with elevation data (in
meters above sea level) to account for geographical variability. These data were systematically divided into
two subsets: 26 locations for training the RNN model and 5 locations for testing, which were deliberately
treated as missing data points to simulate real-world data gaps. The inclusion of elevation as an additional
variable provides a more comprehensive perspective, capturing the influence of topographical variations on
rainfall distribution. Surabaya’s geographical characteristics, predominantly lowland interspersed with
modest elevations in its southern regions, present a unique challenge for spatial interpolation. This structured
approach aims to assess the effectiveness of RNN in providing accurate rainfall estimates and addressing
critical gaps in hydrological.

2.2 Methods

Cokriging is a geostatistical interpolation technique that extends ordinary Kriging by incorporating one
or more secondary variables to improve prediction accuracy. Unlike ordinary Kriging, which relies solely on
the spatial autocorrelation of the primary variable, Cokriging also considers the cross-correlation between the
primary and secondary variables. This makes it particularly useful in cases where the primary data are limited
but correlated auxiliary data are available. In the context of rainfall estimation, elevation is often regarded as
an important predictor, since topography plays a significant role in influencing rainfall patterns.

In this study, Cokriging was applied by combining rainfall observations as the primary variable and
elevation as the secondary covariate. The interpolation was performed using the gstat package in R, which
enables modelling of both variograms and cross-variograms as the basis for the estimation process. By
integrating elevation into the interpolation, Cokriging was expected to provide a more reliable estimation of
rainfall distribution in Surabaya compared to relying on rainfall data alone. This method served as the
geostatistical benchmark for evaluating the performance of the RNN-based approach [25], [26].

Traditional spatial interpolation methods, such as IDW and Kriging, are widely used; they often
struggle to capture complex non-linear spatial patterns, particularly in datasets with high variability or
missing data [27]. Recent advancements in machine learning have introduced neural networks as a promising
alternative for spatial interpolation. Unlike conventional methods, neural networks, particularly RNNs, excel
in handling sequential and dependent data, making them suitable for datasets with temporal and spatial
variability. By leveraging their ability to model non-linear relationships and incorporate contextual
information through hidden states, RNN-based spatial interpolation offers a more adaptive and robust
approach for estimating rainfall in areas without direct measurements. This study explores the use of RNN to
address limitations in traditional methods, aiming to improve spatial interpolation accuracy for hydrological
applications [4], [28].

Artificial neural networks are a form of simulation of the human brain’s ability to learn using neurons
and dendrites. The structure of an artificial neural network can change, namely in the form of changes in
weight values. When training is performed on different inputs, the weight values change dynamically until a
balanced value is reached. When this value is reached, it indicates that each input is connected to the expected
output [29].

One method of artificial neural networks is the Feedforward Neural Network. Feedforward generally
consists of an input layer, a hidden layer, and an output layer. The input layer is the place to enter information
that will be processed by the artificial neural network. In many studies, this information is usually called
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features. This feature is the benchmark when making predictions. Features are passed through the hidden
layers until they finally reach the output layer, where the result of the output layer is a prediction [30].

Feedforward neural networks have the assumption that the data is independent [31]. This assumption
makes feedforward inappropriate for use in time series prediction cases such as sequence labelling. This is
because context features play a big role in sequence labelling. Context features that are often used in the case
of sequence labelling imply that their data is not independent. In other words, data depends on other data
(dependent). Even so, feedforward can still be used for sequence labelling cases, but with limitations. For
example, a study that combines context features (3 words before and 2 words after) with other features
(current word). The context feature for this method is usually called context windows. The disadvantage of
this method is that the context features are limited, and new parameters arise that must be thought about and
looked for, namely, the number of words before and after. Therefore, an algorithm is needed that can
accommaodate the needs of time series prediction, such as sequence labelling [32], [33].

Output Layer O

e

Hidden Layer

Input Layer Context Layer

Figure 1. EIman RNN Network Topology

Recurrent Neural Networks (RNN) network architecture is like a feed-forward network architecture.
The difference from the RNN method is that the RNN network architecture allows the flow to loop back to
the previous layer, as shown in Fig. 1. The form shown in Fig. 1 is a simplification of the actual RNN form.
If described, the complete form will be as shown in Fig. 2. The RNN network architecture consists of an input
layer, a hidden layer, and an output layer. The number of timesteps is unlimited so that the RNN can meet
the needs of sequence labelling, which allows complete input of sequential data directly into the RNN. Each
hidden layer is associated with hidden layers included in the previous time step, which is the source of the
benefits of the RNN. This hidden layer connection allows information to flow from previous data to the next
data, so that the prediction process always considers past information. This is the contextual information
required for sequence labelling [34].

Figure 2. Unfolding Elman RNN

Fig. 2 illustrates the architecture of the Unfolding Elman Recurrent Neural Network, which is
specifically designed to capture temporal dependencies in sequential data. This network comprises three
primary layers: the input layer, the hidden layer, and the output layer. A distinctive feature of the EIman RNN
is the inclusion of context units, which store information from previous time steps (hidden states) and
integrate it with the current input [35]. This mechanism enables the network to “remember” patterns from
prior data, making it particularly effective for processing sequential datasets, such as monthly rainfall data.
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The unfolding process expands the network across multiple time steps, where each step connects the hidden
layer’s state from the previous step to the next, thereby generating more informed predictions. This
architecture is particularly well-suited for hydrological modelling, as it allows for dynamic pattern
recognition in rainfall data over time [36], [33]. The EIman RNN model consisted of an input layer with three
predictor variables (latitude, longitude, elevation), one hidden layer with 5-25 neurons using the sigmoid
activation function, and an output layer with a linear activation function. The model was trained with a
learning rate of 0.01, a maximum of 1000 epochs, and an error tolerance of 0.0001. Training was conducted
using the backpropagation through time algorithm with mean squared error as the loss function.

Learning with a Recurrent Neural Network is implemented by giving random initial values for all
weights between the input-hidden layer and the hidden-output layer, learning rate, error tolerance, and
maximum epoch. Each hidden layer unit z; is added with input x; multiplied by weight v;; and combined
with the context layer y, multiplied by test weight u;,; and added with bias v, ; as follows in Eq. (1):

n m m m
Zinj = Z Z X;Vij +Z Z YnUnj + Voj - €Y)
i=1 j=1 h=1 j=1

The activation function used is a binary sigmoid as in Eq. (2):

5 = - @
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Then the output value will be sent to all output layers. The signal is sent to all neurons in the output layer and
context units in the input layer. This step is done as many times as the number of hidden layers. Each output
neuron sums the weighted input signals with Eq. (3):

m
Yk = Wog + Z 1Zjok + Bk' (3)
]:

Then learning is carried out by improving the bias value by changing the weight value and changing
the correlation value. This process is carried out continuously until it reaches the error tolerance. By
implementing the RNN-based interpolation method, this study aims to produce reliable rainfall estimates,
which are critical for hydrological applications such as flood risk modelling and water resource management
in Surabaya.

Although this study employed a basic EIman RNN architecture, more advanced models such as LSTM
and GRU were not explored. This choice was consistent with the relatively small size and short temporal
span of the dataset, where a simple RNN was considered sufficient. Nevertheless, future research may
examine LSTM or GRU to capture longer-term dependencies when larger datasets become available.

2.3 Data Preprocessing and Workflow

Prior to model implementation, the rainfall dataset was subjected to several preprocessing steps. First,
missing values in the testing locations were deliberately introduced to simulate real-world conditions, while
training locations contained complete data. Outlier detection was performed by examining rainfall
distributions and removing values beyond three standard deviations from the monthly mean. All input
variables (rainfall, latitude, longitude, and elevation) were normalized using min—max scaling to ensure
consistent ranges for the neural network training process. For feature processing, elevation data (meters above
sea level) were integrated as an additional predictor variable alongside spatial coordinates (latitude and
longitude) and rainfall data. This integration allowed the model to capture the influence of topography on
rainfall distribution.

The overall analysis workflow consisted of four main steps:

1. Data preparation: splitting rainfall data into training (26 locations) and testing (5 locations). Out
of the 31 districts, 26 were randomly selected for training and 5 for testing, ensuring representation
across different geographical areas of Surabaya. The testing locations were deliberately excluded
from training to simulate missing data scenarios and to provide an unbiased evaluation of model
performance.
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2. Model development: implementing spatial interpolation using Cokriging and RNN. Cokriging

was performed with the gstat package in R, while the RNN model was trained using the keras and
tensorflow packages.

3. Model evaluation: predicted rainfall values at the testing locations were compared to actual
observations. The Root Mean Square Error (RMSE) was calculated as the primary evaluation
metric to assess model accuracy.

Result interpretation: RMSE values and interpolation maps from both methods were compared to
evaluate the relative strengths of Cokriging and RNN for spatial rainfall estimation.

All analyses were performed using open-source software in the R programming language (version
4.3.1) within the RStudio environment. The following R packages were employed: keras and tensorflow for
implementing the Recurrent Neural Network (RNN) models, neuralnet for network training and visualization,
and gstat for geostatistical interpolation (Cokriging) [40], [41]. The experiments were run on a workstation
equipped with an Intel Core i7 processor, 16 GB RAM, and a Windows 11 operating system [37], [38].

3. RESULTS AND DISCUSSION

3.1 Data Explanation

The city of Surabaya, as the capital of East Java Province, Indonesia, is located on the north coast of
East Java Province, or precisely between 7° 9'- 7° 21’ South Latitude and 112° 36— 112° 54’ East Longitude.
The city of Surabaya borders the Madura Strait to the north and east, Sidoarjo Regency to the south, and
Gresik Regency to the west. The area of the City of Surabaya is 52,087 hectares, with a land area of 33,048
hectares or 63.45% and a sea area managed by the City Government of 19,039 hectares or 36.55%.
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Figure 3. Land Surface Elevation Map of Surabaya City

Based on Fig. 3, the height in Surabaya is 0-46 meters above sea level (m asl). Topographically, 80%
of Surabaya City is lowland, with a height of 3 - 6 meters above sea level (m above sea level), except in the
southern part there are two sloping hills in the Lidah area (Lakarsantri District) and Gayungan with a height
of 25 - 50 m above sea level. The distribution of monthly rainfall data in the City of Surabaya in 2024 is
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presented in Fig. 4. The data presented is in the form of rainfall values, average values, and maximum values
of monthly rainfall in the City of Surabaya in 2024.

Histogram of Monthly Rainfall Data in the
City of Surabaya in 2024

900
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Figure 4. Histogram of Monthly Rainfall Data in the City of Surabaya in 2024

Based on Fig. 4, it can be concluded that in January-April 2024, the highest rainfall is in January and
decreases until March, and begins to experience a slight increase in April. This fluctuation is in line with the
pattern of the rainy season in the city of Surabaya, namely the dry season occurs in April-October, and the
rainy season occurs in November-April.

3.2 Spatial Interpolation using Cokriging

The first step to perform interpolation using the cokriging method is to obtain the empirical
semivariogram value and the matching process with the theoretical semivariogram by creating a
crossvariogram plot for the Height and rainfall for January-April 2024 in Surabaya City. Based on the
crossvariogram model formed, the cokriging analysis model for Surabaya City rainfall in January 2024 is as
follows:

a. Height Model

—3h?
y(h) = 55.2 (1 —exp (m)>

b. January Rainfall Model

h AN
. 5 |e==)-05(—= < 3.
y(h) = {1 104 (1 > (3.969) 05 (3.969) )'0 <h = 3969

1.104, h > 3.969
¢. Cokriging Model

h hoy®
: 5 (=) = 0.5 (= < 4.
y(h) = {1 098 (1 > (4.090) 03 (4.090) )'0 <h = 409
1.098, h > 4.090

After obtaining the best crossvariogram model, cokriging interpolation is then carried out. The results
of the interpolation of rainfall for January-April 2024 using the cokriging method in Surabaya City can be
seen in Fig. 5.
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Figure 5. Cokriging Interpolation Result Map (a) January, (b) February, (c) March, and (d) April 2024

The map in Fig. 5 shows the results of the January-April 2024 rainfall estimation using cokriging. The
contour map of the distribution of rainfall in the city of Surabaya is grouped with different color gradations.
The highest rainfall interpolation in January is in the Ampelgading area, indicated by the lighter map contour
color, meaning that the January rainfall interpolation results in the Genteng area are 760-780 mm/month. The
lowest rainfall interpolation results are in the Kalipare area, indicated by the darker map contour color,
meaning that the January rainfall interpolation results in the Pakis hamlet area and its surroundings range
from 660-680 mm/month. The results of rainfall interpolation in the city of Surabaya in January vary from
around 660-780 mm/month.

3.3 Spatial Interpolation Using RNN

The interpolation process is carried out using the RNN method, which uses latitude, longitude, height,
and rainfall data from nearby areas as input. To determine the best network architecture, try several neurons
in the hidden layer with the number of neurons limited to 5, 10, and 15 neurons in the hidden layer. The
number of neurons in the output layer is one, namely in the form of the estimated value of the rainfall at the
ith location. Root Mean Square Error (RMSE) is the square root of the mean squared error (MSE). Taking
the root does not affect the relative ranks of models, but it yields a metric with the same units as y, which
conveniently represents the typical or standard error for normally distributed errors [39]. The RMSE value of
the RNN model based on the number of neurons in the hidden layer can be seen in Table 1.

Table 1. RMSE of RNN Model by Hidden Layer Neurons

RMSE
Month
5 neurons 10 neurons 15 neurons 20 neurons 25 neurons
January 31.8190 31.4110 15.9801 22.6978 17.3431
February 22.4209 20.2998 19.0117 20.2998 34.4188
March 23.6189 24.3695 20.0946 21.2365 19.0572
April 11.9375 8.4599 7.0489 8.1623 10.9900

Based on Table 1, the number of neurons used in the hidden layer in January, February, and April was
15 neurons because it had the smallest RMSE value. Interpolation of residual values in March has the smallest
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RMSE value with a number of neurons in the hidden layer of 25 neurons. The RNN architecture for
interpolation results for January rainfall can be seen in Fig. 6.

Figure 6. Residual RNN Architecture from Interpolation of Rainfall in January

Based on Fig. 6, the number of neurons in the input layer is 4. The number of neurons in the hidden
layer for each location follows the results in Table 1. The number of neurons in the context layer is the same
as the number of neurons in the hidden layer. The number of neurons in the output layer is 1. The error target
used is 0.0001 with a maximum iteration of 1000. In the interpolation of January rainfall data, an activation
model is used from the input layer to the hidden layer using the sigmoid activation method. The activation

function in the hidden layer to the input layer uses a linear activation method. The number of neurons in the
hidden layer used is 15.

Based on the network architecture in Fig. 5, the function formed for interpolating January rainfall can be
written as follows:

January Rainfall Interpolation Model:

15

1
= wy, + Z wy +e
yk Ok <1 + e—(2?=1 }21xi”ij‘*’Z}%ilz}£1yhuhj+'70j)> ke k

j=1

The results of rainfall interpolation using the RNN interpolation method are presented in Fig. 7.
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Figure 7. Plot of RNN Interpolation (a) Actual and Predicted Rainfall Values in Tegalsari, (b) Actual and
Predicted Rainfall Values in Tenggilis Mejoyo, (c) Actual and Predicted Rainfall VValues in Wiyung, (d) Actual
and Predicted Rainfall Values in Wonocolo, (e) Actual and Predicted Rainfall VValues in Wonokromo

Based on the plot between the actual value and the interpolated value, the interpolated value-RNN has
a higher diversity when compared to the actual value. The Root Mean Square Error (RMSE) was calculated
for the RNN interpolation method to evaluate its accuracy relative to Cokriging.

Table 2. RMSE Value from the Interpolation

Location Rainfall (mm)
January February March April

Tegalsari Actual 725 584 138 255
Prediction 680.8394  572.3268 163.0038  265.2305

Tenggilis Mejoyo Actual 674 584 138 255
Prediction 748.1353  566.7817 166.4277  266.5332

Wiyung Actual 712 540 151 284
Prediction 727.5042  614.0448 160.3877  309.8776

Wonocolo Actual 722 532 155 272
Prediction 695.343 581.4022 169.6113  278.2572

Wonokromo Actual 694 584 138 255
Prediction 752.6313  582.6005 172.5659  256.5382
RMSE 48.6514 40.885 24.2064 13.7757

Based on Table 2, the RMSE value from the RNN method shows that the rainfall interpolation results
gave the best RMSE value in April, with an RMSE value of 13.7757. Table 2 presents the Root Mean Square
Error (RMSE) values derived from rainfall interpolation across five districts in Surabaya: Tegalsari, Tenggilis
Mejoyo, Wiyung, Wonocolo, and Wonokromo for January to April. The results indicate a clear trend of
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decreasing RMSE values from January (48.6514) to April (13.7757), suggesting improved interpolation
accuracy during months with lower rainfall variability. This trend highlights the robustness of the applied
interpolation method in capturing rainfall patterns during more stable climatic conditions. Among the
districts, Wonokromo exhibits the lowest RMSE in April, demonstrating the method’s ability to deliver
accurate predictions in specific locations with consistent rainfall distribution. Conversely, higher errors
observed in January suggest challenges in modelling rainfall patterns during periods of extreme variability,
often associated with the peak of the rainy season. The results of this study are in line with previous research
that demonstrated the reliability of Cokriging for rainfall interpolation in Indonesia. At the same time, our
findings show that the EIman RNN can provide competitive or even superior accuracy, particularly during
periods of lower rainfall variability. This supports earlier studies that highlighted the potential of neural
networks in hydrological applications, while also emphasizing the role of dataset characteristics in shaping
model performance. Unlike studies based on longer or denser datasets, the present work relied on limited
spatial and temporal coverage, which underscores both its novelty and its limitations. These insights confirm
that RNNs can serve as a useful complement to traditional geostatistical methods, while future research
should aim at broader validation using larger datasets.

Despite these promising results, some limitations of the dataset should be acknowledged. Although the
dataset in this study consists of only 31 districts (26 for training and 5 for testing), the results still provide
meaningful insights for spatial rainfall interpolation in Surabaya. The relatively small dataset size may limit
the robustness and generalizability of the RNN model, as neural networks generally benefit from larger
amounts of training data. Consequently, potential biases or uncertainties may arise due to limited spatial
coverage and variability. Nevertheless, by integrating elevation and spatial coordinates, the model was able
to capture essential geographical patterns and deliver competitive accuracy compared to Cokriging. Future
research should expand the dataset to include longer temporal coverage and additional monitoring stations,
which would improve the reliability and applicability of the model in broader hydrological contexts. Overall,
the present findings already demonstrate the applicability of RNN for urban hydrological analysis in
Surabaya.

This study demonstrates the potential of Recurrent Neural Networks (RNNSs) in spatial rainfall
interpolation, showing competitive accuracy compared to the Cokriging method. The findings suggest that
RNN can effectively capture spatial and temporal patterns of rainfall, making it a promising tool for
hydrological applications in urban areas such as Surabaya. However, several limitations should be
acknowledged. The dataset was restricted to 31 districts with a short temporal coverage (January—April 2024),
which may reduce the robustness and generalizability of the results. Future research should address these
limitations by incorporating longer rainfall records, additional monitoring stations, and other environmental
variables to strengthen the model’s reliability. Despite these constraints, the present findings provide a
meaningful contribution and demonstrate the applicability of RNN for urban hydrological studies, offering a
foundation for more comprehensive analyses in the future.

4. CONCLUSION

This study applied Cokriging and Recurrent Neural Network (RNN) methods for spatial rainfall
interpolation in Surabaya. The results showed that the RNN model achieved competitive accuracy compared
to Cokriging, particularly during months with lower rainfall variability. By integrating elevation and spatial
coordinates, the RNN was able to capture essential geographical patterns and improve the representation of
rainfall distribution. Although the dataset was limited to 31 districts with a short temporal coverage, the
findings still provide valuable insights and confirm the potential of RNN as a complementary tool to
geostatistical methods. Future research should incorporate larger datasets, longer temporal records, and
additional predictor variables to further enhance the robustness and generalizability of the model.

Author Contributions

Danang Ariyanto: Conceptualization, Data Curation, Methodology, Writing — Original Draft, Supervision.
A’yunin Sofro: Funding Acquisition, Project Administration, Writing — Review and Editing. Riskyana Dewi
| Puspitasari: Data Curation, Formal Analysis, Visualization. Riska Wahyu Romadhonia: Software,
Investigation, Validation. Hernando Ombao: Supervision, Writing — Review and Editing. All authors have
read and approved the final manuscript.



1196 Ariyanto, etal. SPATIAL INTERPOLATION OF RAINFALL DATA USING COKRIGING AND RECURRENT ...

Funding Statement

This research was funded by Universitas Negeri Surabaya (UNESA) through its internal research program
Penelitian Dasar Non-APBN in 2024. The funding agency had no role in the design of the study, data
collection, analysis, interpretation, or writing of the manuscript.

Acknowledgment

The authors would like to express their deepest gratitude to Universitas Negeri Surabaya (UNESA) for the
continuous institutional support provided throughout the course of this research. The university’s
encouragement, academic environment, and access to facilities have been instrumental in enabling the authors
to complete the study. The support extended reflects UNESA’s strong commitment to advancing research
and innovation, and the authors greatly appreciate the opportunity to contribute to this academic endeavor.

Declarations

The authors declare no competing interests.

Declaration of Generative Al and Al-assisted Technologies

Generative Al tools (e.g., ChatGPT) were used solely for language refinement, including grammar, spelling,
and clarity. The scientific content, analysis, interpretation, and conclusions were developed entirely by the
authors. All final text was reviewed and approved by the authors.

REFERENCES

[1] Hartanto, S. Humaidi, E. Frida, N. Ananda, and M. Sinambela, “SPATIAL EVALUATION RAINFALL ESTIMATION ON
WEATHER RADAR USING MARSHALL-PALMER REFLECTIVITY-RAINFALL RATE IN BANTEN,” Journal of
Water and Land Development, no. No 62, pp. 193-200, 2024. doi: https://doi.org/10.24425/jwld.2024.151567.

[2] E. P. Dewi, R. Juniatmoko, V. Arida, F. Fachruddin, and P. Pribadyo., “HIDROLOGI TEKNIK DAN
AGROKLIMATOLOGI,” 2023.

[3] E.T.Asmorowati, A. Rahmawati, D. Sarasanty, A. A. Kurniawan, M. A. Rudiyanto, E. Nadya, M. W. Nugroho and Findia.,
DRAINASE PERKOTAAN. Perkumpulan Rumah Cemerlang Indonesia, 2021.

[4] O. Baydaroglu and 1. Demir, “TEMPORAL AND SPATIAL SATELLITE DATA AUGMENTATION FOR DEEP
LEARNING-BASED RAINFALL NOWCASTING,” Journal of Hydroinformatics, vol. 26, no. 3, pp. 589-607, 2024. doi:
https://doi.org/10.2166/hydro.2024.235.

[5] A.Pamungkas and S. Purwitaningsih, “IS SURABAYA BEING PLANNED AS A LOW-RISK CITY?,” International Review
for Spatial Planning and Sustainable Development, vol. 9, no. 1, pp. 78-92, 2021. doi: https://doi.org/10.14246/irspsda.9.1_78.

[6] D. Lettenmaier, “JOURNAL OF GEOGRAPHY & NATURAL ROLE OF RAINFALL IN HYDROLOGICAL MODELING
AND WATER RESOURCE PLANNING,” vol. 14, no. 1000319, pp. 1-2, 2024. doi: https://doi.org/10.35841/2167-
0587.24.14.319.

[7]1 E. Pilecka, J. Zieba, and D. Szwarkowski, “ANALYSIS OF THE BEHAVIOUR OF THE HIGH AND STEEP SLOPE OF A
ROAD MADE THROUGH WASTE UNDER THE INFLUENCE OF RAINFALL,” Archives of Civil Engineering, vol. 67,
no. No 2, pp. 293-307, 2021. doi: https://doi.org/10.24425/ace.2021.137169.

[8] M. Sholihin and S. E. Puspita Ghaniy Anggraini, ANALISIS DATA PENELITIAN MENGGUNAKAN SOFTWARE STATA.
Penerbit Andi, 2021.

[9] M. R. A. Prasetya and A. M. Priyatno, “PENANGANAN IMPUTASI MISSING VALUES PADA DATA TIME SERIES
DENGAN MENGGUNAKAN METODE DATA MINING,” Jurnal Informasi dan Teknologi, pp. 52-62, 2023. doi:
https://doi.org/10.37034/jidt.v5i2.324

[10] M. L. Syukur, “PENERAPAN METODE ROBUST KRIGING PADA DATA CURAH HUJAN WILAYAH SULAW ESI
SELATAN UNTUK MENGESTIMASI ADANYA OUTLIER YANG DISEBABKAN OLEH DATA HILANG,” 2023,
Universitas Hasanuddin.

[11] A. P. Putra, “SPATIAL PATTERN OF SULFUR DIOXIDE DISPERSION AND AFFECTED SETTLEMENT AREAS IN
SERANG REGENCY BANTEN PROVINCE POLA SPASIAL DISPERSI GAS SULFUR DIOKSIDA DAN AREA
PERMUKIMAN TERDAMPAK DI KABUPATEN SERANG,” Jurnal Sains dan Teknologi Mitigasi Bencana, vol. 15, no. 1,
2020. doi: https://doi.org/10.29122/jstmb.v15i1.4117

[12] F. Rizkiansyah, “IMPLEMENTASI METODE HYBRID AUTOREGRESSIVE INTEGRATED MOVING AVERAGE
(ARIMA)-ARTIFICIAL NEURAL NETWORK (ANN) DALAM PERAMALAN HARGA MATA UANG KRIPTO,” 2022.

[13] N.J.C.Konin, Y. A. N’go, G. E. Soro, and B. T. A. Goula, “IMPACT OF RAINFALL TRENDS ON FLOOD IN AGNEBY
WATERSHED,” Journal of Water and Land Development, no. No 52, pp. 9-20, 2022. doi:
https://doi.org/10.24425/jwld.2021.139938.

[14] N. Annisa, “ANALISIS SEBARAN SALINITAS AIR BERBASIS SISTEM INFORMASI GEOGRAFIS (STUDI KASUS
SUNGAI TALLO),” 2023, Universitas Hasanuddin.



https://doi.org/10.24425/jwld.2024.151567
https://doi.org/10.2166/hydro.2024.235
https://doi.org/10.14246/irspsda.9.1_78
https://doi.org/10.35841/2167-0587.24.14.319
https://doi.org/10.35841/2167-0587.24.14.319
https://doi.org/10.24425/ace.2021.137169
https://doi.org/10.37034/jidt.v5i2.324
https://doi.org/10.29122/jstmb.v15i1.4117
https://doi.org/10.24425/jwld.2021.139938

BAREKENG: J. Math. & App., vol. 20(2), pp. 1185- 1198, Jun, 2026. 1197

[15]

[16]

[17]

(18]
[19]
[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

(28]

[29]

[30]

[31]

(32]
(33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]

[41]

Y. Saliba and A. Barbulescu, “A COMPARATIVE EVALUATION OF SPATIAL INTERPOLATION TECHNIQUES FOR
MAXIMUM TEMPERATURE SERIES IN THE MONTREAL REGION, CANADA,” Romanian Reports in Physics, vol. 76,
no. 1, pp. 1-15, 2024. doi: https://doi.org/10.59277/RomRepPhys.2024.76.701.

M. Zhang, D. Yu, Y. Li, and L. Zhao, “DEEP GEOMETRIC NEURAL NETWORK FOR SPATIAL INTERPOLATION,”
GIS: Proceedings of the ACM International Symposium on Advances in Geographic Information Systems, 2022. doi:
https://doi.org/10.1145/3557915.3561008.

A. Antal, P. M. P. Guerreiro, and S. Cheval, “COMPARISON OF SPATIAL INTERPOLATION METHODS FOR
ESTIMATING THE PRECIPITATION DISTRIBUTION IN PORTUGAL,” Theoretical and Applied Climatology, vol. 145,
no. 3, pp. 1193-1206, 2021. doi: https://doi.org/10.1007/s00704-021-03675-0

P. Pradabmook and T. Laosuwan, “ESTIMATION OF PM10 USING SPATIAL INTERPOLATION TECHNIQUES,”
International Journal on Technical and Physical Problems of Engineering, vol. 13, no. 4, pp. 33-39, 2021.

G. Urva et al., PENERAPAN DATA MINING DI BERBAGAI BIDANG: Konsep, Metode, dan Studi Kasus. PT. Sonpedia
Publishing Indonesia, 2023.

S. Rifky, L. P. I. Kharisma, A. R. Afendi and 1. Zulfa, Artificial INTELLIGENCE: TEORI DAN PENERAPAN Al DI
BERBAGAI BIDANG. PT. Sonpedia Publishing Indonesia, 2024.

M. A. Faishol, E. Endroyono, and A. N. Irfansyah, “PREDICT URBAN AIR POLLUTION IN SURABAYA USING
RECURRENT NEURAL NETWORK-LONG SHORT TERM MEMORY,” Jurnal limiah Teknologi Informasi, vol. 18, no.
2, pp. 102-114, 2020. doi: https://doi.org/10.12962/j24068535.v18i2.2988

Z.Chen, Z. Li, X. Tang, L. Chen, and N. Chen, “STPNet: ARECURRENT NEURAL NETWORK FOR SPATIOTEMPORAL
PROCESSES PREDICTIVE LEARNING,” Journal of Supercomputing, vol. 81, no. 1, 2025. doi:
https://doi.org/10.1007/s11227-024-06823-1.

H. Febrianto, A. Fariza, and J. Hasim, “URBAN FLOOD RISK MAPPING USING ANALYTIC HIERARCHY PROCESS
AND NATURAL BREAK CLASSIFICATION (CASE STUDY: SURABAYA, EAST JAVA, INDONESIA),” 2016, pp.
148-154. doi: https://doi.org/10.1109/KCIC.2016.7883639.

Y. R. Savitri, R. Kakimoto, R. A. Begum, N. Anwar, W. Wardoyo, and E. Suryani, “THE APPLICATION OF AHP TO
DETERMINE THE PRIORITY DRAINAGE SYSTEM ON FLOOD MITIGATION IN SURABAYA — INDONESIA,”
Journal of Disaster Research, vol. 17, no. 3, pp. 431-443, 2022. doi: https://doi.org/10.20965/jdr.2022.p0431.

C. M. Duff, “USING SPACETIME GEOSTATISTICAL ANALYSIS TO IMPROVE INTERPOLATION,” Journal of
Hydrology, 2025. doi: https://doi.org/10.1016/j.jhydrol.2024.131987.

T. Page, “INTERPOLATION OF RAINFALL OBSERVATIONS DURING EXTREME EVENTS: COMPARING NNI, OK,
AND CK,” Hydrological Processes, vol. 36, no. 11, p. e14758, 2022. doi: https://doi.org/10.1002/hyp.14758.

Q. Hu, Z. Li, L. Wang, Y. Huang, Y. Wang, and L. Li, “RAINFALL SPATIAL ESTIMATIONS: A REVIEW FROM
SPATIAL INTERPOLATION TO MULTI-SOURCE DATA MERGING,” Water, vol. 11, no. 3, 2019. doi:
https://doi.org/10.3390/w11030579.

M. A. Faishol, E. Endroyono, and A. N. Irfansyah, “PREDICT URBAN AIR POLLUTION IN SURABAYA USING
RECURRENT NEURAL NETWORK-LONG SHORT TERM MEMORY,” Jurnal limiah Teknologi Informasi, vol. 18, no.
2, pp. 102-114, 2020. doi: https://doi.org/10.12962/j24068535.v18i2.a988

I. F. Damanik, “PENERAPAN METODE JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI NILAI TUKAR
PETANI SUBSEKTOR TANAMAN PANGAN MENGGUNAKAN ALGORITMA CONJUGATE GRADIENT POLA-
REBIERI,” SkripsiKu-2022, vol. 1, no. 2, 2022.

M. Zakaria, L. Pagiling, and W. O. S. N. Alam, “SISTEM PENYIRAMAN OTOMATIS TANAMAN SEMUSIM BERBASIS
JARINGAN SARAF TIRUAN MULTILAYER PERCEPTRON,” Jurnal Fokus Elektroda: Energi Listrik, Telekomunikasi,
Komputer, Elektronika Dan Kendali, vol. 7, no. 1, p. 35, 2022. doi: https://doi.org/10.33772/jfe.v7i1.24050

W Tri Zahrotun, “PERAMALAN HARGA GABAH KERING PANEN DI INDONESIA MENGGUNAKAN METODE
HYBRID AUTOREGRESSIVE INTEGRATED MOVING AVERAGE EXOGENOUS (ARIMAX)-FEED FORWARD
NEURAL NETWORK (FFNN),” 2022, Universitas Muhammadiyah Semarang.

Z. C. Lipton, J. Berkowitz, and C. Elkan, “A CRITICAL REVIEW OF RECURRENT NEURAL NETWORKS FOR
SEQUENCE LEARNING,” pp. 1-38, 2015.

C.-C. Peng and G. D. Magoulas, “SEQUENCE PROCESSING WITH RECURRENT NEURAL NETWORKS,” Encyclopedia
of Artificial Intelligence, pp. 1411-1417, 2011. doi: https://doi.org/10.4018/978-1-59904-849-9.ch207.

G. R. Kanagachidambaresan, A. Ruwali, D. Banerjee, and K. B. Prakash, “RECURRENT NEURAL NETWORK,”
Programming with TensorFlow: Solution for Edge Computing Applications, pp. 53-61, 2021.

J. L. Elman, “FINDING STRUCTURE IN TIME,” Cognitive Science, vol. 14, no. 2, pp. 179-211, 1990. doi:
https://doi.org/10.1207/s15516709c091402 1.

A. Bond, P. M. Léger, and S. Sénécal, THE EFFECT OF DEVICE-AFFORDANCE ALIGNMENT WITH THE USER GOAL
ON USER EXPERIENCE, vol. 12423 LNCS. Springer International Publishing, 2020. doi: https://doi.org/10.1007/978-3-030-
60114-0 3.

R Core Team, “R: A LANGUAGE AND ENVIRONMENT FOR STATISTICAL COMPUTING,” 2023, Vienna, Austria.
RStudio Team, “RSTUDIO: INTEGRATED DEVELOPMENT ENVIRONMENT FOR R,” 2023, Boston, MA.

T. O. Hodson, “ROOT MEAN SQUARE ERROR (RMSE) OR MEAN ABSOLUTE ERROR (MAE): WHEN TO USE THEM
OR NOT,” Geoscientific Model Development Discussions, vol. 2022, pp. 1-10, 2022. doi: https://doi.org/10.5194/gmd-2022-
64

E. J. Pebesma, “MULTIVARIABLE GEOSTATISTICS IN S: THE GSTAT PACKAGE,” Computers & Geosciences, vol.
30, no. 7, pp. 683-691, Dec. 2004. doi: https://doi.org/10.1016/j.cage0.2004.03.012.

B. Griler, E. Pebesma, and G. Heuvelink, “SPATIO-TEMPORAL INTERPOLATION USING GSTAT,” The R Journal, vol.
8, no. 1, pp. 204-218, Aug. 2016. doi: https://doi.org/10.32614/RJ-2016-014.



https://doi.org/10.59277/RomRepPhys.2024.76.701
https://doi.org/10.1145/3557915.3561008
https://doi.org/10.1007/s00704-021-03675-0
https://doi.org/10.12962/j24068535.v18i2.a988
https://doi.org/10.1007/s11227-024-06823-1
https://doi.org/10.1109/KCIC.2016.7883639
https://doi.org/10.20965/jdr.2022.p0431
https://doi.org/10.1016/j.jhydrol.2024.131987
https://doi.org/10.1002/hyp.14758
https://doi.org/10.3390/w11030579
https://doi.org/10.12962/j24068535.v18i2.a988
https://doi.org/10.33772/jfe.v7i1.24050
https://doi.org/10.4018/978-1-59904-849-9.ch207
https://doi.org/10.1207/s15516709cog1402_1
https://doi.org/10.1007/978-3-030-60114-0_3
https://doi.org/10.1007/978-3-030-60114-0_3
https://doi.org/10.5194/gmd-2022-64
https://doi.org/10.5194/gmd-2022-64
https://doi.org/10.1016/j.cageo.2004.03.012.
https://doi.org/10.32614/RJ-2016-014

1198 Ariyanto, etal. SPATIAL INTERPOLATION OF RAINFALL DATA USING COKRIGING AND RECURRENT ...



	SPATIAL INTERPOLATION OF RAINFALL DATA USING COKRIGING AND RECURRENT NEURAL NETWORKS FOR HYDROLOGICAL APPLICATIONS IN SURABAYA, INDONESIA
	1. INTRODUCTION
	2. RESEARCH METHODS
	2.1 Data Source
	2.2 Methods
	2.3 Data Preprocessing and Workflow

	3. RESULTS AND DISCUSSION
	3.1 Data Explanation
	3.2 Spatial Interpolation using Cokriging
	3.3 Spatial Interpolation Using RNN

	4. CONCLUSION
	Author Contributions
	Funding Statement
	Acknowledgment
	Declarations
	Declaration of Generative AI and AI-assisted Technologies
	REFERENCES


