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Article Info ABSTRACT 

Article History: 
Urban hydrological challenges, such as flooding and water resource management, require 

accurate rainfall data to support sustainable development. This study investigates the use 

of Recurrent Neural Networks (RNN) for spatial interpolation of monthly rainfall data 

across 31 districts in Surabaya, Indonesia, and compares its performance with the 

geostatistical method Cokriging. Elevation data were incorporated as an additional 

variable to account for geographical variability. The dataset was divided into training (26 

locations) and testing (5 locations) subsets, with testing locations treated as missing data 

points to simulate real-world conditions. The results show that the RNN-based interpolation 

method achieved progressively lower Root Mean Square Error (RMSE) values from 

January (48.65) to April (13.78), indicating higher accuracy compared to the Cokriging 

method. These findings underscore the potential of RNN in addressing data gaps and spatial 

variability, offering robust solutions for hydrological applications in urban environments. 

This approach not only supports flood risk mitigation strategies but also contributes to 

optimizing drainage systems and water resource planning. Further research is 

recommended to incorporate additional environmental variables and extend the 

application to broader spatial and temporal contexts. 
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1. INTRODUCTION 

Rainfall is an important parameter in hydrology, climatology, and water resources management studies 

[1], [2]. Accurate and complete rainfall data is needed for various applications, including flood planning and 

management, irrigation, and regional spatial planning [3], [4]. In the city of Surabaya, one of the largest cities 

in Indonesia with a high level of urbanization, reliable rainfall data is vital to support sustainable 

development, disaster mitigation, and effective hydrological planning [5]. However, collecting rainfall data 

in the field often faces challenges, as rain gauges spread across various locations can experience damage, 

data loss, or operational disruptions due to extreme weather and other technical issues. These limitations lead 

to gaps in rainfall data, which hinder accurate hydrological analysis and decision-making processes [6], [7]. 

Missing data is a value that is not available on a particular object, which can be caused by data 

corruption, errors in recording values, damage to measuring instruments, or conditions that do not allow 

measurement [8]. Missing data categories are divided into three, namely Missing Completely at Random 

(MCAR), Missing at Random (MAR), and Missing Not at Random (MNAR) [9]. To address this issue, 

interpolation methods are often used to estimate values at unknown locations by leveraging surrounding data 

points [10]. Spatial interpolation methods, such as Inverse Distance Weight (IDW) and kriging, are used to 

estimate the value of an unknown location point by utilizing values from other points in the same area [11]. 

This method has been used widely, but is often unable to capture complex spatial patterns in rainfall data 

[12]. Rainfall interpolation is the process of estimating rainfall values in locations that do not have direct 

measurement data, based on data from known surrounding locations [13], [14].  

Interpolation methods can generally be categorized into two main approaches, namely deterministic 

methods and geostatistical methods. Deterministic methods, such as Inverse Distance Weighting (IDW) and 

Radial Basis Function (RBF), use direct mathematical relationships between data points to generate new 

value estimates [15]. Meanwhile, geostatistical methods such as Ordinary Kriging (OK) and Universal 

Kriging (UK) utilize statistical models to consider spatial correlations in the data used [16]. 

Several studies have compared the effectiveness of interpolation methods in various applications. For 

example, a study in Portugal found that Empirical Bayesian Kriging Regression (EBKR) provided more 

accurate results in rainfall estimation compared to other methods [17]. Meanwhile, in Canada, the Spatio-

Temporal Kriging (STK) method was superior to Thiessen Polygons (TP) and IDW in modeling maximum 

temperature [15]. 

With the advancement of computing technology, various new approaches have been developed to 

improve the accuracy of spatial interpolation. One of the prominent innovations is the combination of 

interpolation methods with machine learning, which allows for more complex and adaptive spatial modeling 

[16]. In addition, hybrid methods such as IDW-RBF Neural Network (IDW-RBFNN) have been introduced 

to overcome the limitations of conventional methods by combining the strengths of deterministic approaches 

and artificial neural networks [18]. 

In recent years, advancements in computing technology and machine learning algorithms have enabled 

more accurate data interpolation [19]. Artificial neural network (ANN) methods, which fall into the deep 

learning category, such as Deep Feedforward Neural Networks, Convolutional Neural Networks, and 

Recurrent Neural Networks, offer a more adaptive approach and are able to capture non-linear relationships 

in data [20]. Among these, Recurrent Neural Networks (RNN) are particularly effective in processing 

sequential data, such as rainfall time series, due to their ability to incorporate past information and model 

temporal dependencies [21]. This makes RNN a promising method for improving spatial interpolation 

accuracy, particularly in the hydrological domain, where precise rainfall data is crucial for flood modelling, 

watershed management, and water resource planning [22]. 

The city of Surabaya, with its predominantly lowland topography, is highly vulnerable to flooding, 

particularly during the rainy season. Accurate rainfall data plays a critical role in hydrological applications, 

such as flood risk mapping, drainage system optimization, and early warning systems. However, the lack of 

complete rainfall data often hampers the ability to develop reliable hydrological models [23], [24]. By 

utilizing historical rainfall data and applying an RNN for spatial interpolation, this study aims to provide 

more accurate rainfall estimates. These estimates can serve as a foundation for hydrological planning, 

enabling policymakers and urban planners to design more effective flood mitigation strategies and optimize 

water resource management in Surabaya. 
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2. RESEARCH METHODS 

 2.1 Data Source 

Surabaya, one of Indonesia’s largest metropolitan cities, was chosen as the study area due to its 

complex geographical characteristics and hydrological challenges. The city is predominantly a lowland area 

with some hilly regions in the southern part, making it particularly vulnerable to flooding during the rainy 

season. Additionally, the high level of urbanization and rapid infrastructure development often place 

significant pressure on its drainage systems and water resource management. With varied rainfall distribution 

across its 31 districts, Surabaya provides an ideal context for testing the effectiveness of the RNN-based 

spatial interpolation method in producing accurate rainfall estimates to support sustainable water management 

and flood risk mitigation [23], [5]. 

The dataset employed in this study was sourced from the Centre for Hydrometeorology and Remote 

Sensing (CHRS), accessible via https://chrsdata.eng.uci.edu. Monthly rainfall data (January 2024-April 2024) 

were gathered for 31 districts within Surabaya City, Indonesia, and supplemented with elevation data (in 

meters above sea level) to account for geographical variability. These data were systematically divided into 

two subsets: 26 locations for training the RNN model and 5 locations for testing, which were deliberately 

treated as missing data points to simulate real-world data gaps. The inclusion of elevation as an additional 

variable provides a more comprehensive perspective, capturing the influence of topographical variations on 

rainfall distribution. Surabaya’s geographical characteristics, predominantly lowland interspersed with 

modest elevations in its southern regions, present a unique challenge for spatial interpolation. This structured 

approach aims to assess the effectiveness of RNN in providing accurate rainfall estimates and addressing 

critical gaps in hydrological. 

2.2 Methods 

Cokriging is a geostatistical interpolation technique that extends ordinary Kriging by incorporating one 

or more secondary variables to improve prediction accuracy. Unlike ordinary Kriging, which relies solely on 

the spatial autocorrelation of the primary variable, Cokriging also considers the cross-correlation between the 

primary and secondary variables. This makes it particularly useful in cases where the primary data are limited 

but correlated auxiliary data are available. In the context of rainfall estimation, elevation is often regarded as 

an important predictor, since topography plays a significant role in influencing rainfall patterns. 

In this study, Cokriging was applied by combining rainfall observations as the primary variable and 

elevation as the secondary covariate. The interpolation was performed using the gstat package in R, which 

enables modelling of both variograms and cross-variograms as the basis for the estimation process. By 

integrating elevation into the interpolation, Cokriging was expected to provide a more reliable estimation of 

rainfall distribution in Surabaya compared to relying on rainfall data alone. This method served as the 

geostatistical benchmark for evaluating the performance of the RNN-based approach [25], [26]. 

Traditional spatial interpolation methods, such as IDW and Kriging, are widely used; they often 

struggle to capture complex non-linear spatial patterns, particularly in datasets with high variability or 

missing data [27]. Recent advancements in machine learning have introduced neural networks as a promising 

alternative for spatial interpolation. Unlike conventional methods, neural networks, particularly RNNs, excel 

in handling sequential and dependent data, making them suitable for datasets with temporal and spatial 

variability. By leveraging their ability to model non-linear relationships and incorporate contextual 

information through hidden states, RNN-based spatial interpolation offers a more adaptive and robust 

approach for estimating rainfall in areas without direct measurements. This study explores the use of RNN to 

address limitations in traditional methods, aiming to improve spatial interpolation accuracy for hydrological 

applications [4], [28]. 

Artificial neural networks are a form of simulation of the human brain’s ability to learn using neurons 

and dendrites. The structure of an artificial neural network can change, namely in the form of changes in 

weight values. When training is performed on different inputs, the weight values change dynamically until a 

balanced value is reached. When this value is reached, it indicates that each input is connected to the expected 

output [29]. 

One method of artificial neural networks is the Feedforward Neural Network. Feedforward generally 

consists of an input layer, a hidden layer, and an output layer. The input layer is the place to enter information 

that will be processed by the artificial neural network. In many studies, this information is usually called 

https://chrsdata.eng.uci.edu/
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features. This feature is the benchmark when making predictions. Features are passed through the hidden 

layers until they finally reach the output layer, where the result of the output layer is a prediction [30]. 

Feedforward neural networks have the assumption that the data is independent [31]. This assumption 

makes feedforward inappropriate for use in time series prediction cases such as sequence labelling. This is 

because context features play a big role in sequence labelling. Context features that are often used in the case 

of sequence labelling imply that their data is not independent. In other words, data depends on other data 

(dependent). Even so, feedforward can still be used for sequence labelling cases, but with limitations. For 

example, a study that combines context features (3 words before and 2 words after) with other features 

(current word). The context feature for this method is usually called context windows. The disadvantage of 

this method is that the context features are limited, and new parameters arise that must be thought about and 

looked for, namely, the number of words before and after. Therefore, an algorithm is needed that can 

accommodate the needs of time series prediction, such as sequence labelling [32], [33]. 

 

Figure 1. Elman RNN Network Topology 

Recurrent Neural Networks (RNN) network architecture is like a feed-forward network architecture. 

The difference from the RNN method is that the RNN network architecture allows the flow to loop back to 

the previous layer, as shown in Fig. 1. The form shown in Fig. 1 is a simplification of the actual RNN form. 

If described, the complete form will be as shown in Fig. 2. The RNN network architecture consists of an input 

layer, a hidden layer, and an output layer. The number of timesteps is unlimited so that the RNN can meet 

the needs of sequence labelling, which allows complete input of sequential data directly into the RNN. Each 

hidden layer is associated with hidden layers included in the previous time step, which is the source of the 

benefits of the RNN. This hidden layer connection allows information to flow from previous data to the next 

data, so that the prediction process always considers past information. This is the contextual information 

required for sequence labelling [34]. 

 

Figure 2. Unfolding Elman RNN 

Fig. 2 illustrates the architecture of the Unfolding Elman Recurrent Neural Network, which is 

specifically designed to capture temporal dependencies in sequential data. This network comprises three 

primary layers: the input layer, the hidden layer, and the output layer. A distinctive feature of the Elman RNN 

is the inclusion of context units, which store information from previous time steps (hidden states) and 

integrate it with the current input [35]. This mechanism enables the network to “remember” patterns from 

prior data, making it particularly effective for processing sequential datasets, such as monthly rainfall data. 
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The unfolding process expands the network across multiple time steps, where each step connects the hidden 

layer’s state from the previous step to the next, thereby generating more informed predictions. This 

architecture is particularly well-suited for hydrological modelling, as it allows for dynamic pattern 

recognition in rainfall data over time [36], [33]. The Elman RNN model consisted of an input layer with three 

predictor variables (latitude, longitude, elevation), one hidden layer with 5–25 neurons using the sigmoid 

activation function, and an output layer with a linear activation function. The model was trained with a 

learning rate of 0.01, a maximum of 1000 epochs, and an error tolerance of 0.0001. Training was conducted 

using the backpropagation through time algorithm with mean squared error as the loss function. 

Learning with a Recurrent Neural Network is implemented by giving random initial values for all 

weights between the input-hidden layer and the hidden-output layer, learning rate, error tolerance, and 

maximum epoch. Each hidden layer unit 𝑧𝑗 is added with input 𝑥𝑖 multiplied by weight 𝑣𝑖𝑗 and combined 

with the context layer 𝑦ℎ  multiplied by test weight 𝑢ℎ𝑗 and added with bias 𝑣0𝑗 as follows in Eq. (1): 

𝑧𝑖𝑛𝑗 = ∑ ∑ 𝑥𝑖𝑣𝑖𝑗 +
𝑚

𝑗=1

𝑛

𝑖=1
∑ ∑ 𝑦ℎ𝑢ℎ𝑗 + 𝑣0𝑗

𝑚

𝑗=1

𝑚

ℎ=1
. (1) 

The activation function used is a binary sigmoid as in Eq. (2): 

𝑧𝑗 =  
1

1 + 𝑒
−(∑ ∑ 𝑥𝑖𝑣𝑖𝑗+𝑚

𝑗=1
𝑛
𝑖=1 ∑ ∑ 𝑦ℎ𝑢ℎ𝑗+𝑣0𝑗

𝑚
𝑗=1

𝑚
ℎ=1 )

. (2) 

Then the output value will be sent to all output layers. The signal is sent to all neurons in the output layer and 

context units in the input layer. This step is done as many times as the number of hidden layers. Each output 

neuron sums the weighted input signals with Eq. (3): 

𝑦𝑘 =   𝑤0𝑘 + ∑ 𝑧𝑗𝑤𝑗𝑘

𝑚

𝑗=1
+ 𝜃𝑘. (3) 

Then learning is carried out by improving the bias value by changing the weight value and changing 

the correlation value. This process is carried out continuously until it reaches the error tolerance.  By 

implementing the RNN-based interpolation method, this study aims to produce reliable rainfall estimates, 

which are critical for hydrological applications such as flood risk modelling and water resource management 

in Surabaya. 

Although this study employed a basic Elman RNN architecture, more advanced models such as LSTM 

and GRU were not explored. This choice was consistent with the relatively small size and short temporal 

span of the dataset, where a simple RNN was considered sufficient. Nevertheless, future research may 

examine LSTM or GRU to capture longer-term dependencies when larger datasets become available. 

2.3 Data Preprocessing and Workflow 

Prior to model implementation, the rainfall dataset was subjected to several preprocessing steps. First, 

missing values in the testing locations were deliberately introduced to simulate real-world conditions, while 

training locations contained complete data. Outlier detection was performed by examining rainfall 

distributions and removing values beyond three standard deviations from the monthly mean. All input 

variables (rainfall, latitude, longitude, and elevation) were normalized using min–max scaling to ensure 

consistent ranges for the neural network training process. For feature processing, elevation data (meters above 

sea level) were integrated as an additional predictor variable alongside spatial coordinates (latitude and 

longitude) and rainfall data. This integration allowed the model to capture the influence of topography on 

rainfall distribution. 

The overall analysis workflow consisted of four main steps: 

1. Data preparation: splitting rainfall data into training (26 locations) and testing (5 locations). Out 

of the 31 districts, 26 were randomly selected for training and 5 for testing, ensuring representation 

across different geographical areas of Surabaya. The testing locations were deliberately excluded 

from training to simulate missing data scenarios and to provide an unbiased evaluation of model 

performance. 
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2. Model development: implementing spatial interpolation using Cokriging and RNN. Cokriging 

was performed with the gstat package in R, while the RNN model was trained using the keras and 

tensorflow packages. 

3. Model evaluation: predicted rainfall values at the testing locations were compared to actual 

observations. The Root Mean Square Error (RMSE) was calculated as the primary evaluation 

metric to assess model accuracy. 

4. Result interpretation: RMSE values and interpolation maps from both methods were compared to 

evaluate the relative strengths of Cokriging and RNN for spatial rainfall estimation. 

All analyses were performed using open-source software in the R programming language (version 

4.3.1) within the RStudio environment. The following R packages were employed: keras and tensorflow for 

implementing the Recurrent Neural Network (RNN) models, neuralnet for network training and visualization, 

and gstat for geostatistical interpolation (Cokriging) [40], [41]. The experiments were run on a workstation 

equipped with an Intel Core i7 processor, 16 GB RAM, and a Windows 11 operating system [37], [38]. 

3. RESULTS AND DISCUSSION 

3.1 Data Explanation 

The city of Surabaya, as the capital of East Java Province, Indonesia, is located on the north coast of 

East Java Province, or precisely between 7° 9′- 7° 21′ South Latitude and 112° 36′ – 112° 54′ East Longitude. 

The city of Surabaya borders the Madura Strait to the north and east, Sidoarjo Regency to the south, and 

Gresik Regency to the west. The area of the City of Surabaya is 52,087 hectares, with a land area of 33,048 

hectares or 63.45% and a sea area managed by the City Government of 19,039 hectares or 36.55%.  

 

Figure 3. Land Surface Elevation Map of Surabaya City 

Based on Fig. 3, the height in Surabaya is 0-46 meters above sea level (m asl). Topographically, 80% 

of Surabaya City is lowland, with a height of 3 - 6 meters above sea level (m above sea level), except in the 

southern part there are two sloping hills in the Lidah area (Lakarsantri District) and Gayungan with a height 

of 25 - 50 m above sea level. The distribution of monthly rainfall data in the City of Surabaya in 2024 is 
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presented in Fig. 4. The data presented is in the form of rainfall values, average values, and maximum values 

of monthly rainfall in the City of Surabaya in 2024. 

 

Figure 4. Histogram of Monthly Rainfall Data in the City of Surabaya in 2024 

Based on Fig. 4, it can be concluded that in January-April 2024, the highest rainfall is in January and 

decreases until March, and begins to experience a slight increase in April. This fluctuation is in line with the 

pattern of the rainy season in the city of Surabaya, namely the dry season occurs in April-October, and the 

rainy season occurs in November-April. 

3.2 Spatial Interpolation using Cokriging 

The first step to perform interpolation using the cokriging method is to obtain the empirical 

semivariogram value and the matching process with the theoretical semivariogram by creating a 

crossvariogram plot for the Height and rainfall for January-April 2024 in Surabaya City. Based on the 

crossvariogram model formed, the cokriging analysis model for Surabaya City rainfall in January 2024 is as 

follows: 

a. Height Model 

𝛾(ℎ) = 55.2 (1 − 𝑒𝑥𝑝 (
−3ℎ2

6.7952
)). 

b. January Rainfall Model 

𝛾(ℎ) = {
1.104 (1.5 (

ℎ

3.969
) − 0.5 (

ℎ

3.969
)

3

) , 0 < ℎ ≤  3.969

1.104 ,                                                                     ℎ > 3.969

. 

c. Cokriging Model 

𝛾(ℎ) = {
1.098 (1.5 (

ℎ

4.090
) − 0.5 (

ℎ

4.090
)

3

) , 0 < ℎ ≤  4.090

1.098 ,                                                                    ℎ > 4.090

. 

After obtaining the best crossvariogram model, cokriging interpolation is then carried out. The results 

of the interpolation of rainfall for January-April 2024 using the cokriging method in Surabaya City can be 

seen in Fig. 5.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5.  Cokriging Interpolation Result Map (a) January, (b) February, (c) March, and (d) April 2024 

The map in Fig. 5 shows the results of the January-April 2024 rainfall estimation using cokriging. The 

contour map of the distribution of rainfall in the city of Surabaya is grouped with different color gradations. 

The highest rainfall interpolation in January is in the Ampelgading area, indicated by the lighter map contour 

color, meaning that the January rainfall interpolation results in the Genteng area are 760-780 mm/month. The 

lowest rainfall interpolation results are in the Kalipare area, indicated by the darker map contour color, 

meaning that the January rainfall interpolation results in the Pakis hamlet area and its surroundings range 

from 660-680 mm/month. The results of rainfall interpolation in the city of Surabaya in January vary from 

around 660-780 mm/month.  

3.3 Spatial Interpolation Using RNN 

The interpolation process is carried out using the RNN method, which uses latitude, longitude, height, 

and rainfall data from nearby areas as input. To determine the best network architecture, try several neurons 

in the hidden layer with the number of neurons limited to 5, 10, and 15 neurons in the hidden layer. The 

number of neurons in the output layer is one, namely in the form of the estimated value of the rainfall at the 

ith location. Root Mean Square Error (RMSE) is the square root of the mean squared error (MSE). Taking 

the root does not affect the relative ranks of models, but it yields a metric with the same units as 𝑦, which 

conveniently represents the typical or standard error for normally distributed errors [39]. The RMSE value of 

the RNN model based on the number of neurons in the hidden layer can be seen in Table 1. 

Table 1. RMSE of RNN Model by Hidden Layer Neurons 

Month 
RMSE 

5 neurons 10 neurons 15 neurons 20 neurons 25 neurons 

January 31.8190 31.4110 15.9801 22.6978 17.3431 

February 22.4209 20.2998 19.0117 20.2998 34.4188 

March 23.6189 24.3695 20.0946 21.2365 19.0572 

April 11.9375 8.4599 7.0489 8.1623 10.9900 

Based on Table 1, the number of neurons used in the hidden layer in January, February, and April was 

15 neurons because it had the smallest RMSE value. Interpolation of residual values in March has the smallest 
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RMSE value with a number of neurons in the hidden layer of 25 neurons. The RNN architecture for 

interpolation results for January rainfall can be seen in Fig. 6. 

 

  Figure 6. Residual RNN Architecture from Interpolation of Rainfall in January 

Based on Fig. 6, the number of neurons in the input layer is 4. The number of neurons in the hidden 

layer for each location follows the results in Table 1. The number of neurons in the context layer is the same 

as the number of neurons in the hidden layer. The number of neurons in the output layer is 1. The error target 

used is 0.0001 with a maximum iteration of 1000. In the interpolation of January rainfall data, an activation 

model is used from the input layer to the hidden layer using the sigmoid activation method. The activation 

function in the hidden layer to the input layer uses a linear activation method. The number of neurons in the 

hidden layer used is 15.  

Based on the network architecture in Fig. 5, the function formed for interpolating January rainfall can be 

written as follows: 

January Rainfall Interpolation Model: 

𝑦
𝑘

= w0𝑘 +  ∑ (
1

1 + 𝑒
−(∑ ∑ 𝑥𝑖𝑣𝑖𝑗+15

𝑗=1
4
𝑖=1 ∑ ∑ 𝑦ℎ𝑢ℎ𝑗+𝑣0𝑗

15
𝑗=1

15
ℎ=1 )

)

15

j=1

wjk + 𝑒𝑘 

The results of rainfall interpolation using the RNN interpolation method are presented in Fig. 7. 
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(c)       (d) 

 

(e) 

Figure 7. Plot of RNN Interpolation (a) Actual and Predicted Rainfall Values in Tegalsari, (b) Actual and 

Predicted Rainfall Values in Tenggilis Mejoyo, (c) Actual and Predicted Rainfall Values in Wiyung, (d) Actual 

and Predicted Rainfall Values in Wonocolo, (e) Actual and Predicted Rainfall Values in Wonokromo 

Based on the plot between the actual value and the interpolated value, the interpolated value-RNN has 

a higher diversity when compared to the actual value. The Root Mean Square Error (RMSE) was calculated 

for the RNN interpolation method to evaluate its accuracy relative to Cokriging. 

Table 2. RMSE Value from the Interpolation 

Location Rainfall (mm) 

January February March April 

Tegalsari Actual 725 584 138 255 

Prediction 680.8394 572.3268 163.0038 265.2305 

Tenggilis Mejoyo Actual 674 584 138 255 

Prediction 748.1353 566.7817 166.4277 266.5332 

Wiyung Actual 712 540 151 284 

Prediction 727.5042 614.0448 160.3877 309.8776 

Wonocolo Actual 722 532 155 272 

Prediction 695.343 581.4022 169.6113 278.2572 

Wonokromo Actual 694 584 138 255 

Prediction 752.6313 582.6005 172.5659 256.5382 

RMSE 48.6514 40.885 24.2064 13.7757 

Based on Table 2, the RMSE value from the RNN method shows that the rainfall interpolation results 

gave the best RMSE value in April, with an RMSE value of 13.7757. Table 2 presents the Root Mean Square 

Error (RMSE) values derived from rainfall interpolation across five districts in Surabaya: Tegalsari, Tenggilis 

Mejoyo, Wiyung, Wonocolo, and Wonokromo for January to April. The results indicate a clear trend of 
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decreasing RMSE values from January (48.6514) to April (13.7757), suggesting improved interpolation 

accuracy during months with lower rainfall variability. This trend highlights the robustness of the applied 

interpolation method in capturing rainfall patterns during more stable climatic conditions. Among the 

districts, Wonokromo exhibits the lowest RMSE in April, demonstrating the method’s ability to deliver 

accurate predictions in specific locations with consistent rainfall distribution. Conversely, higher errors 

observed in January suggest challenges in modelling rainfall patterns during periods of extreme variability, 

often associated with the peak of the rainy season. The results of this study are in line with previous research 

that demonstrated the reliability of Cokriging for rainfall interpolation in Indonesia. At the same time, our 

findings show that the Elman RNN can provide competitive or even superior accuracy, particularly during 

periods of lower rainfall variability. This supports earlier studies that highlighted the potential of neural 

networks in hydrological applications, while also emphasizing the role of dataset characteristics in shaping 

model performance. Unlike studies based on longer or denser datasets, the present work relied on limited 

spatial and temporal coverage, which underscores both its novelty and its limitations. These insights confirm 

that RNNs can serve as a useful complement to traditional geostatistical methods, while future research 

should aim at broader validation using larger datasets. 

Despite these promising results, some limitations of the dataset should be acknowledged. Although the 

dataset in this study consists of only 31 districts (26 for training and 5 for testing), the results still provide 

meaningful insights for spatial rainfall interpolation in Surabaya. The relatively small dataset size may limit 

the robustness and generalizability of the RNN model, as neural networks generally benefit from larger 

amounts of training data. Consequently, potential biases or uncertainties may arise due to limited spatial 

coverage and variability. Nevertheless, by integrating elevation and spatial coordinates, the model was able 

to capture essential geographical patterns and deliver competitive accuracy compared to Cokriging. Future 

research should expand the dataset to include longer temporal coverage and additional monitoring stations, 

which would improve the reliability and applicability of the model in broader hydrological contexts. Overall, 

the present findings already demonstrate the applicability of RNN for urban hydrological analysis in 

Surabaya. 

This study demonstrates the potential of Recurrent Neural Networks (RNNs) in spatial rainfall 

interpolation, showing competitive accuracy compared to the Cokriging method. The findings suggest that 

RNN can effectively capture spatial and temporal patterns of rainfall, making it a promising tool for 

hydrological applications in urban areas such as Surabaya. However, several limitations should be 

acknowledged. The dataset was restricted to 31 districts with a short temporal coverage (January–April 2024), 

which may reduce the robustness and generalizability of the results. Future research should address these 

limitations by incorporating longer rainfall records, additional monitoring stations, and other environmental 

variables to strengthen the model’s reliability. Despite these constraints, the present findings provide a 

meaningful contribution and demonstrate the applicability of RNN for urban hydrological studies, offering a 

foundation for more comprehensive analyses in the future. 

4. CONCLUSION 

This study applied Cokriging and Recurrent Neural Network (RNN) methods for spatial rainfall 

interpolation in Surabaya. The results showed that the RNN model achieved competitive accuracy compared 

to Cokriging, particularly during months with lower rainfall variability. By integrating elevation and spatial 

coordinates, the RNN was able to capture essential geographical patterns and improve the representation of 

rainfall distribution. Although the dataset was limited to 31 districts with a short temporal coverage, the 

findings still provide valuable insights and confirm the potential of RNN as a complementary tool to 

geostatistical methods. Future research should incorporate larger datasets, longer temporal records, and 

additional predictor variables to further enhance the robustness and generalizability of the model. 
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