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Article Info ABSTRACT 

Article History: 
Water is a vital resource whose quality directly affects public health. In Gresik Regency, 

water treatment processes must be closely monitored, particularly during production. PT 

PP Krakatau Tirta, a key provider of clean water in the region, plays a strategic role in 

treating raw water from the heavily polluted Bengawan Solo River. Ensuring that the 

treated water consistently meets health standards is crucial, highlighting the need for an 

effective process. This study aims to evaluate the clean water production process and 

assess the process capability in maintaining the quality of water produced by PT PP 

Krakatau Tirta Gresik. Laboratory data on key parameters, including pH, dissolved iron, 

and total dissolved solids, were collected daily from November 25, 2022, to May 31, 2023. 

These mandatory indicators were analyzed using Multivariate Exponentially Weighted 

Moving Variance (MEWMV) and Moving Average (MEWMA) control charts to assess 

process performance. A key contribution of this research lies in optimizing smoothing 

parameters to enhance control chart performance. Sixteen combinations of (ω,λ) were 

tested for MEWMV, with the optimal configuration found at (λ = 0.4) and (ω = 0.4), 

indicating that process variability is statistically stable. For MEWMA, nine values of λ 

were evaluated, and the optimal weight (λ=0.9) was identified as optimal, yielding a 

stable process mean after removing two out-of-control points.  PT PP Krakatau Tirta, 

which plays a strategic role in treating raw water from the polluted Bengawan Solo River, 

was selected as a case study to evaluate the effectiveness of advanced monitoring 

methods. The results indicate that its clean water production process is well-controlled 

and capable, with water quality consistently meeting health and safety standards. 
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1. INTRODUCTION 

Clean water is a basic need for human life because it plays an important role in maintaining health, 

improving welfare, and supporting the productive activities of the community [1]. A clean lifestyle in the 

surrounding environment will maintain water quality, while an unclean lifestyle can pollute it [2]. The impact 

experienced by humans when consuming unclean water is damage to internal organs such as the heart, 

stomach, and kidneys [3]. However, ensuring access to safe and adequate clean water remains a significant 

challenge, particularly amid rapid population growth, urbanization, and industrial expansion, as seen in 

Gresik Regency, East Java.  

Gresik Regency, as a strategic industrial area with 6,653 business units in 2020, faces public concerns 

regarding the quality of clean water, especially in the southern region and around the Benowo Landfill. The 

turbid and smelly raw water from the Bengawan Solo River was exacerbated by the waste of 63 companies 

dumped into the river from 2020 to 2021. As a result, around 33% of residents choose to use PDAM services 

to get safer water [4]. PT PP Krakatau Tirta, a water management company in Gresik, produces clean water 

with a capacity of 1000 liters per second. The distribution is divided into 650 liters/second for PDAM Gresik 

and 350 liters/second for the industrial areas JIIPE [5]. Given the condition of the Bengawan Solo River, 

which is vulnerable to pollution, monitoring the quality of water production is very crucial. Currently, 

production quality control at PT PP Krakatau Tirta is still limited to matching laboratory test results with the 

standards set by the Ministry of Health. This approach is not enough to detect irregularities or small changes 

that may occur systematically in the production process. 

However, the challenge faced in water quality monitoring is the multivariate nature of the data, which 

involves many interrelated parameters. In the context of PT PP Krakatau Tirta, several important parameters 

monitored include pH, Dissolved Iron, and Dissolved Solids. The Dissolved Solids variable will logically be 

high when the Dissolved Iron concentration is also high, as more acidic water (lower pH) tends to increase 

the solubility of iron. These three parameters are important indicators in determining water quality because 

they can affect the taste, color, smell, and safety of water for human health [6]. The use of traditional 

monitoring methods that focus on only one variable at a time (univariate) is not effective enough in detecting 

small but significant changes in the combination of these parameters [7]. Therefore, more sophisticated and 

comprehensive statistical methods are needed for comprehensive and responsive monitoring of water quality. 

One of the approaches that can be used is the application of a multivariate control chart [8], including 

the T² Hotelling control chart [9]-[12], EWMA (Exponentially Weighted Moving Average) [13], [14], 

MEWMA (Multivariate EWMA), and MEWMV (Multivariate Exponentially Weighted Moving Variance). 

The T² Hotelling control chart is suitable for monitoring process stability, assuming a multivariate normal 

distribution [15]. Meanwhile, EWMA and MEWMA are more sensitive in detecting small shifts in process 

averages, with MEWMA capable of handling multivariate data. The MEWMV is useful for monitoring 

process variations from a diversity perspective, without assuming changes in the average process [16], [17]. 

MEWMA is effective in monitoring the average shift between intercorrelated parameters, while MEWMV 

focuses on controlling variations in the production process. Both methods provide a relevant early warning 

system for the clean water treatment industry [18]. When compared to T² Hotelling and Generalized Variance, 

MEWMA and MEWMV are more sensitive in detecting small shifts, so it is more appropriate to be used to 

control the quality of water production at PT PP Krakatau Tirta proactively and based on strong statistical 

data [19].  

Research on the comparison between MEWMA and T2 Hotelling control charts in polyester fabric 

production show that in the MEWMA control chart, with a value of 𝜆 = 0.7, the upper control limit (UCL) is 

14.56021, and the process average is statistically controlled. On the other hand, in the T2 Hotelling control 

chart with a UCL of 10.10928 is statistically controlled after eliminating uncontrolled data four times. Thus, 

it can be concluded that the MEWMA control chart is more sensitive than the T2 Hotelling’s control chart in 

detecting shifts in the process average [20]. Previous research [16] applied MEWMV and MEWMA to 

cardboard quality control at PT Y Kediri, showing the effectiveness of both diagrams in detecting out-of-

control process points and helping identify the causes of multivariate product defects. Furthermore, Pratama 

and team [21] applied the MEWMA control diagram combined with VARIMA (1,1,2) time series modeling 

to the quality of white granulated sugar at Madukismo Sugar Factory, and proved that this method can 

accommodate data autocorrelation and remains accurate in detecting process shifts even though the 

observations are not independent.  
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The novelty of this research lies in the application of MEWMV and MEWMA control charts for 

monitoring clean water quality from polluted river sources, such as the Bengawan Solo, enhanced by the 

case-based optimization of Weighting parameters (𝜔, 𝜆) in MEWMV, and 𝜆 in MEWMA [22]. These 

parameters play a critical role in determining the sensitivity and responsiveness of the control charts, 

as they regulate the influence of historical data in detecting small shifts in the process, thereby 

improving early warning capabilities in water quality monitoring. MEWMV and MEWMA are more 

sensitive than univariate control charts, T²-Hotelling, and Generalized Variance (GV), particularly in 

detecting small shifts in multivariate processes [23], [24]. Their use of exponential weighting on historical 

data allows them to capture subtle, consistent changes over time and remain robust even when normality 

assumptions are violated [25]. Univariate charts ignore the correlation between variables, and traditional 

multivariate methods that rely on multinormality [18]. This approach supports more accurate and adaptive 

monitoring of complex systems, enabling early detection of variability and small mean shifts to promote 

proactive quality control in the clean water treatment industry [26]. This study aims to evaluate the clean 

water production process and assess the capability of PT PP Krakatau Tirta Gresik in maintaining water 

quality by focusing on key variables such as pH, dissolved iron, and total dissolved solids obtained through 

laboratory testing.  

2. RESEARCH METHODS 

2.1. Data Collection 

The research data used were obtained from the water company PT PP Krakatau Tirta Gresik. Several 

clean water quality variables directly related to human health include pH, Dissolved Iron (mg/liter), and 

Dissolved Solids (mg/liter), which will be presented in Table 1. The analysis of MEWMA and MEWMV 

is carried out through the stages of forming a weight matrix, calculating monitoring statistics, and 

evaluating the control limit, which can be seen in the image flow chart, Fig.1. 

 
Figure 1. Research Flow Charts 
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Table 1. Research Data 

Observation to- pH  
Dissolved iron 

(mg/L) 

Dissolved solids 

(mg/L) 

1 7.50 0.0002 249.78 

2 7.59 0.0002 249.72 

3 7.42 0.0002 249.75 

⋮  ⋮ ⋮ ⋮ 

189 7.67 0.0002 250.80 

Data source: PT PP Krakatau Tirta Gresik 

2.2. Variable Dependency Test 

The Bartlett test is a statistical method that can test several data groups from populations with the same 

variance. Bartlett’s test of sphericity is a form of variable dependency test that is used to test whether there is 

a significant dependency or correlation between variables in a dataset. Bartlett’s test is a crucial first step in 

identifying variable dependencies before implementing multivariate-based quality control [27]. Bartlett’s 

Test of Sphericity is considered significant if the p-value is less than 0.05, indicating correlation among 

variables. This indicates that the data are suitable for multivariate analysis because there is a dependence 

between variables [28]. The formula for Bartlett’s test of sphericity is presented in Eq. (1), which is used to 

determine whether the correlation matrix significantly differs from the identity matrix, indicating the presence 

of relationships among variables. 

𝜒2(𝐁) = − [(𝑁 − 1) −
(2𝑝 + 5)

6
] 𝑙𝑛|𝑹| (1) 

Where: 

𝑁 : Number of Observations. 

𝑝 : Number of Variables. 
|𝑹| : Determinant of Correlation Matrix. 

Hypothesis: 

𝐻0  : Identity correlation matrix. 

𝐻1 : Not an identity correlation matrix. 

The null hypothesis (𝐻0) is rejected if the calculated chi-square statistic in Eq. (1) exceeds the critical chi-

square value 𝜒
(

(𝑝+1)(𝑝−2)

2
;𝛼)

2  at the specified 𝛼 level. 

2.2. Multivariate Normal Distribution Test 

In testing the assumption of multivariate normal distribution using the Mardia test [29]. Multivariate  

Skewness and Kurtosis will be used [30]. Multivariate skewness is defined as 𝑏1 and Multivariate kurtosis is 

defined as 𝑏2, with the following Eqs. (2)-(5): 

𝑏1 =
1

𝑛2
∑ {(𝑿𝒊 − 𝑿̅𝒊)𝑇𝑺−𝟏(𝑿𝒋 − 𝑿̅𝒋)}

3𝑛

𝑖,𝑗=1
, (2) 

𝑏2 =
1

𝑛
∑ {(𝑿𝒊 − 𝑿̅𝒊)𝑇𝑺−𝟏(𝑿𝒊 − 𝑿̅𝒊)}

2𝑛

𝑖=1
. (3) 

Where: 

𝑏1  : Skewness Value. 

𝑏2 : Kurtosis Value. 

𝑺−𝟏 : Variance-Covariance Matrix. 

𝑿𝒊  : Observation of row 𝑖. 
𝑿̅𝒊  : Row average. 

𝑿̅𝒋 : Column average. 

Hypothesis: 

𝐻0 : Data is distributed normally, multivariate. 

𝐻1 : Data is not distributed normally, multivariate. 
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With the following statistical test formula: 

𝑧1 =
𝑁

6
𝑏1, (4) 

𝑧2 =
𝑏2, 𝑘 − 𝑘(𝑘 + 2)

√8𝑘(𝑘 + 2)
𝑁

 . (5)
 

The null hypothesis (𝐻0) is rejected if the value of the test statistic 𝑧1 exceeds the chi-square critical value 

with degrees of freedom 
(𝑘+1)(𝑘+2)

6
 and the value 𝑧2 of exceeds the critical value 𝑍𝛼 

2.3. Multivariate Exponentially Weighted Moving Variance (MEWMV) Control Chart 

The MEWMV control chart is one of the control charts that is useful for viewing a process from a 

variability perspective and without the assumption that there is no change in the average [16]. The MEWMV 

control chart is different from other control charts. The difference is that there is no assumption that the 

average must be controlled during the analysis process. The MEWMV control chart without any changes in 

the average process can detect changes in variability with very high sensitivity. 

The control limit formula used in this control chart is as follows, Eq. (6): 

𝐸[𝑡𝑟(𝑽𝒎)] ± 𝐿√𝑉𝑎𝑟[𝑡𝑟(𝑽𝒎)] = 𝑝 × 𝑡𝑟(𝑸) ± 𝐿√2𝑝 ∑ ∑ 𝑞𝑖𝑗
2

𝑚

𝑗=1

𝑚

𝑖=1

, (6) 

where:  

𝐸[𝑡𝑟(𝑽𝒎)] = 𝐸[𝑡𝑟(𝐗𝐐𝐗𝐓)] = 𝑝 ∑ 𝑞𝑖𝑖

𝑚

𝑖=1

= 𝑝 ∙ 𝑡𝑟(𝐐 ). 

With 𝑽𝒎 is the covariance matrix of the data X, size 𝑚 × 𝑝. X is a data matrix, and Q is a weighted 

rectangular matrix with an 𝑚 × 𝑚 at the time 𝑝 =  1 so 𝑡𝑟(𝑽𝒎) will be the MEWMV equation. The value 

of 𝐿 is a constant that depends on the specified 𝑝, 𝜔, and 𝜆. The value of 𝐿 is significant for finding the 

Average Run Length (ARL) value [18].  

2.4. Multivariate Exponentially Weighted Moving Average (MEWMA) Control Chart 

The MEWMA control chart is one of the control charts that helps find tiny shifts in the mean of 

multivariate data with individual samples [31]. This control chart will collect information from the past, so it 

has a very high sensitivity in analyzing mean shifts. This control chart will also be robust to normality in 

individual observations. The robust nature of the normal assumptions possessed by the MEWMA control 

chart makes this control chart still usable for analysis, even though the data used is not normally distributed 

[23]. The MEWMA control chart is based on the following Eqs. (7)-(9): 

𝒁𝒊 = 𝜆𝑿𝒊 + (1 − 𝜆)𝒁𝒊−𝟏, (7) 

where the value of 𝑍0 = 0 and 0 ≤ 𝜆 ≤ 1. The process of plotting data on a control chart can use the 

following Eq. (8): 

𝑇𝑖
2 = 𝒁𝒊

𝑻 ∑ 𝒁𝒊

−1

𝑍𝑖

. (8) 

The data are considered out of control if the value of 𝑇𝑖
2 exceeds ℎ4  >  0. This value is used to obtain 

the Average Run Length (ARL) value, which will be controlled with the variance-covariance matrix. The 

covariance matrix 𝚺 is analogous to the variance in univariate data [32], as follows Eq. (9): 

𝛴𝒁𝒊 =
𝜆

2 − 𝜆
[1 − (1 − 𝜆)2𝑖]𝜮 (9) 
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2.5. Capability Process 

The capability analysis process functions to determine the capability, using the multivariate process 

capability analysis calculation [33], [34]. The capability values of 𝑀𝐶𝑝 and 𝑀𝐶𝑝𝑘 are obtained by first 

calculating the 𝐶𝑝  and 𝐶𝑝𝑘 values for each variable [35]. These are calculated using the following formulas 

in Eq. (10). 

𝐶𝑝(𝑋𝑖) =
𝑈𝐶𝐿 − 𝐿𝐶𝐿

6𝜎
, 

𝐶𝑝𝑘(𝑋𝑖) = 𝑚𝑖𝑛 {
𝑈𝐶𝐿 − 𝜇

3𝜎
,
𝜇 − 𝐿𝐶𝐿

3𝜎
} . (10) 

Description: 

UCL : Upper Control Limit. 

LCL : Lower Control Limit. 

𝜎  : Standard Deviation. 

𝜇  : Average. 

After the 𝐶𝑝 and 𝐶𝑝𝑘 values of each variable have been found, to find the value of the capabilities 𝑀𝐶𝑝 and 

𝑀𝐶𝑝𝑘 [35], can use the following formula, Eq. (11). 

𝑀𝐶𝑝 = ∑ 𝑊𝑖𝐶𝑝(𝑋𝑖)
𝑃

𝑖=1
, 

𝑀𝐶𝑝𝑘 = ∑ 𝑊𝑖𝐶𝑝𝑘(𝑋𝑖)
𝑃

𝑖=1
. (11) 

Description: 

𝑀𝐶𝑝 : Multivariate data precision level. 

𝑀𝐶𝑝𝑘 : Multivariate data accuracy level. 

𝑊𝑖 is a weighting with ∑ 𝑊𝑖 = 1𝑃
𝑖=1 , which has been set by the company regarding the weighting of 

each variable, if not specified, then the value of 𝑊𝑖 =
1

𝑚
 where 𝑚 is the number of variables used. Decision 

making on the Bartlett correlation is whether the capability value of 𝑀𝐶𝑝 and 𝑀𝐶𝑝𝑘 produced is > 1, then 

the data is capable of explaining the truth of the analysis [36]. 

3. RESULTS AND DISCUSSION 

3.1. Descriptive Statistics 

To find out the characteristics of each variable, descriptive statistics will be carried out, which will be 

presented in Table 2.  

Table 2. Descriptive Statistics of Research Data 

Variable Minimum Maximum Mean Standard Deviation 

pH 6.5 8.21 7.3956 0.34193 

Dissolved Iron 0.0001 0.0021 0.0013 0.00088 

Dissolved Solid 248.90 249.9961 249.75 0.43343 

Based on the statistical analysis results in Table 2, the pH variable has an average value of 7.3956 with 

a standard deviation of 0.34193, indicating relatively low variation in the data. The pH values range from 6.5 

to 8.21, which falls within the acceptable specification limit of 6.5–8.5 as set by the Ministry of Health 

Regulation. This suggests that the water quality in terms of pH meets the applicable health standards. For the 

Dissolved Iron variable, the average concentration is 0.0013 mg/L with a relatively small standard deviation, 

and the observed values are still well below the regulatory limit of < 0.2 mg/L. Similarly, the dissolved solids 

variable has an average of 249.9961 mg/L, which remains under the maximum allowable limit of < 300 mg/L. 

Therefore, it can be concluded that all the analyzed water quality parameters are pH (no unit), Dissolved Iron 

(mg/L), and Total Dissolved Solids (mg/L), comply with the health standards set by the government. 
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Laboratory results that have been entered into the standards of the Ministry of Health do not necessarily 

mean that the quality of production from PT PP Krakatau Tirta Gresik is statistically controlled. To determine 

whether the laboratory result data is no longer statistically out, an analysis will be carried out using a Box 

Plot, presented in Fig. 2.  

 
Figure 2. Box Plot of pH, Dissolved Iron, and Dissolved Solids 

(Source: Minitab Processing Results) 

Based on Fig. 2, in the pH variable, there are four outlier observations, indicating that the quality of 

pH production at PT PP Krakatau Tirta Gresik is still not controlled. Therefore, in order to monitor and 

improve these quality issues, control charts based on the MEWMV and MEWMA methods will be applied, 

as both are effective in detecting small shifts and multivariate deviations in the production process. 

3.2. Variable Dependency Test 

The requirement for using the MEWMV and MEWMA methods is that the data used must correlate 

with variables. The correlation test results using the Bartlett’s Test method can be presented in Table 3. 

Table 3. Bartlett’s Test 

Chi-Square Test df 𝒑-value 

53.237 3 0.000 

It can be seen from Table 3 that the 𝑝-value of 0.000 means that the 𝑝-value < 𝛼 (with 𝛼 = 0.05), 

which means rejecting 𝐻0 so that the data is not included in the identity matrix and can be said to be correlated, 

which means there is a relationship between the three variables (pH, Dissolved Iron, and Dissolved Solids). 

3.3. Multivariate Normal Distribution Test 

After conducting the variable dependency test, a multivariate regular data normality test will be 

performed using Mardia’s Test method. The results of the multivariate regular test will be presented in Table 

4. 

Table 4. Mardia’s Test 

Test Statistic 𝒑-value 

Mardia Skewness 246.68 2.70 × 10−47 

Mardia Kurtosis 8.3 0.00 

Based on Table 4, it can be concluded that the 𝑝-value of Mardia Skewness is  
2.70 × 10−47, and the 𝑝-value of Mardia Kurtosis is 0.00. Both 𝑝-values are smaller than alpha (𝛼 = 0.05), 

which means that they fail to reject 𝐻0. The data is not multivariate normally distributed.  
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This study uses the MEWMV and MEWMA methods, which do not affect the assumption of 

multivariate normal distribution. Although the data used is not multivariate normally distributed, the analysis 

can still be continued using these methods. This shows the advantages of the MEWMV and MEWMA 

methods, which can analyze data that does not meet the assumption of normal distribution [18]. 

3.4. Quality Control in the Variance Water Treatment Process 

Several studies that are the reference sources for this research state that the most optimal weighting is 

between 0.1 and 0.9. To find the optimal weighting, a combination of weightings from 0.1 to 0.9 will be used 

for 𝜔 and 𝜆 as follows. 

Table 5. Experiments with Equal Weighting Combinations 

𝝎 𝝀 L 𝐦𝐚𝐱  𝒕𝒓(𝑽𝒎) UCL LCL Sum Out of control 

0.1 0.1 2.7900 50582 3.9057 1.2100 176 

0.2 0.2 3.3086 39966 4.0856 0.1811 135 

0.3 0.3 3.6602 30599 3.9520 -0.4932 27 

0.4 0.4 3.9219 22481 3.5767 -0.8767 19 

0.5 0.5 4.1191 15612 3.0099 -1.0099 13 

0.6 0.6 4.2715 9991 2.3104 -0.9390 10 

0.7 0.7 4.3836 5620 1.5468 -0.7160 8 

0.8 0.8 4.4590 2497 0.8134 -0.4134 6 

0.9 0.9 4.4984 624 0.2394 -0.1303 4 

The effect of weighting parameters on the MEWMV control chart, along with two important findings, 

is presented in Table 5. First, as the weighting value 𝜔 increases, the number of observations that fall outside 

the control limits decreases, indicating improved process stability. Second, the maximum value of 𝒕𝒓(𝑽𝒎), 

which reflects the variability within the system, tends to decrease as the 𝜆 value increases, suggesting that a 

higher 𝜆 results in smoother monitoring of the process. Furthermore, the experiment also reveals that the 

observations identified during the burn-in period coincide with those detected as out-of-control when using 

the weighting combination of 𝜔 = 0.4 and 𝜆 = 0.4. This reinforces the results visualized in Fig. 3, confirming 

that the weighting achieves a balance between sensitivity and stability in detecting shifts. 

 
(a) 

 
 

(b) 

Figure 3. Experiment with the Exact Weighting of is (a) 𝝎 = 𝟎. 𝟒; and (b) 𝝀 = 𝟎. 𝟒 

(Source: Matlab Processing Results) 

As shown in Fig. 3, the variance is statistically controlled when the weighting is 𝜔 = 0.4 and 𝜆 =
0.4. However, to determine the most optimal weighting combination that ensures better sensitivity in 

detecting process shifts, further analysis will be conducted by testing various combinations of 𝜆 and 𝜔 ranging 

from 0.1 to 0.9. The results of this analysis, which aim to identify the most stable and responsive configuration 

for the control chart, are summarized in Table 6. 
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Table 6. Experiment Using Weighting Combination 0.1 - 0.4 

𝝎 

 

 

(a) 

𝝀 

 

 

(b) 

L 

 

 

(c) 

𝐦𝐚𝐱  𝒕𝒓(𝑽𝒎) 

 

 

(d) 

UCL 

 

 

(e) 

LCL 

 

 

(f) 

UCL – LCL 

 

 

(f) 

𝐦𝐚𝐱  𝒕𝒓(𝑽𝒎)-

UCL 

 

(g) 

Sum 

Out of 

control 

(h) 

0.1 0.1 2.7900 50582 3.9057 1.2100 2.6957 50578 176 

0.1 0.2 2.7939 39966 3.2733 0.9934 2.2799 39963 176 

0.1 0.3 2.7949 30599 2.6644 0.7918 1.8726 30596 175 

0.1 0.4 2.7988 22481 2.0945 0.6055 1.4890 22479 175 

0.2 0.1 3.3105 50582 4.8756 0.2402 4.6354 50577 138 

0.2 0.2 3.3086 39966 4.0856 0.1811 3.9045 39962 135 

0.2 0.3 3.3164 30599 3.3359 0.1229 3.2130 30596 124 

0.2 0.4 3.3213 22481 2.6240 0.0760 2.5480 22478 97 

0.3 0.1 3.6484 50582 5.7717 -0.6559 5.7717 50576 47 

0.3 0.2 3.6523 39966 4.8395 -0.5728 4.8395 39961 30 

0.3 0.3 3.6602 30599 3.9520 -0.4932 3.9520 30595 27 

0.3 0.4 3.6699 22481 3.1118 -0.4118 3.1118 22478 26 

0.4 0.1 3.8984 50582 6.6407 -1.5249 6.6407 50575 45 

0.4 0.2 3.9063 39966 5.5684 -1.3018 5.5684 39960 24 

0.4 0.3 3.9121 30599 4.5438 -1.0850 4.5438 30594 20 

0.4 0.4 3.9219 22481 3.5767 -0.8767 3.5767 22477 19 

From Table 6, it can be concluded that based on two evaluation criteria, namely the difference value 

of (max  𝑡𝑟(𝑉𝑚) – UCL) and the number of out-of-control observations, the weighting with a value of 𝜔 =
0.4 and 𝜆 = 0.4 is considered the most optimal weighting, because it has the smallest difference of 

(max  𝑡𝑟(𝑉𝑚) – UCL) Column (g), which is 22477. This difference reflects how far the maximum value of 

𝑡𝑟(𝑉𝑚) is from the upper control limit (UCL), and a smaller value indicates less uncontrolled variation. In 

addition, the number of out-of-control observations was found to be the least in this weighting, which was 19 

observations. This shows that this weighting setting produces a better level of change detection. Considering 

both criteria, the weighting with a value of 𝜔 = 0.4 and 𝜆 = 0.4 is regarded as the most optimal for creating 

an MEWMV control chart in this study. 

3.5. Quality Control in the Mean Water Treatment Process 

Process variability has been controlled using optimum weighting, namely, 𝜔 = 0.4 and 𝜆 = 0.4. For 

that, it will be continued for control in terms of the process mean. The diagram that will be used here is the 

MEWMA control diagram. The initial step of a series of control processes is determining the weighting 𝜆 of 

0.1 to 0.9, with a difference between the weightings of 0.1. The weighting here helps determine the value of 

𝑇𝑖
2 as the point of each observation. The results of each experiment will be presented in Table 7.  

Table 7. Experiment Using Weighting 0.1 - 0.9 

λ max 𝑻𝒊
𝟐 UCL difference Sum Out of control 

0.1 278.9 12.4 266.5 98 

0.2 294.2 13.39 280.81 69 

0.3 242.5 13.79 228.71 53 

0.4 195.4 13.99 181.41 48 

0.5 158 14.1 143.9 45 

0.6 130.1 14.16 115.94 40 

0.7 112.6 14.19 98.41 34 

0.8 95.38 14.21 81.17 31 

0.9 79.73 14.21 65.52 26 

Based on Table 7 containing the evaluation results of the MEWMA control chart, it can be seen that 

the weighting with a value of 0.9 is the most optimum weighting value to detect the mean process of PT PP 

Krakatau Tirta Gresik because it has the smallest out-of-control observation and the difference between the 

maximum value of 𝑇𝑖
2 and the Control Limit is also the smallest.  

To control the mean production process of PT PP Krakatau Tirta Gresik, cause detection will be carried 

out by searching for out-of-control data, and data removal will be carried out in the observation. Data cleaned 
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from out-of-control observations will be analyzed again using the most optimal weighting, namely 0.9, as 

seen in Fig. 4. 

 
(a) 

 
(b) 

Figure 4. Detection of (a) First Cause, (b) Second Cause 
(Source: Matlab Processing Results) 

Based on Fig. 4, it can be seen that for image (a), there are still three observations out of control, so 

that detection is still carried out in image (b). In image (b), no more observations are out of control, meaning 

the mean process is statistically controlled. To see whether the production process of PT PP Krakatau Tirta 

Gresik is classified as good production or not, it can be seen from how many times the cause detection process 

and elimination of out-of-control data are carried out. If the maximum cause detection process is two times, 

then the production process of PT PP Krakatau Tirta Gresik is classified as good production. From the 

analysis that has been carried out, the cause detection process was only carried out two times, and the mean 

process was statistically controlled, meaning that the production process of PT PP Krakatau Tirta Gresik is 

classified as good production. 

3.6 Process Capability Analysis of Production Water Quality 

To see whether the process that has been carried out is good or not, a process capability analysis will be 

carried out, and previously, the 𝐶𝑝 and 𝐶𝑝𝑘 values of each variable will be sought, which will be presented in 

Table 8. 

Table 8. Univariate Process Capability 

Variable 𝑪𝒑 𝑪𝒑𝒌 

pH 0.97 0.88 

Dissolved Iron 37.88 0.49 

Dissolved Solids 115.36 38.91 

From Table 8, the 𝐶𝑝 and 𝐶𝑝𝑘 values of each variable are obtained, which are used to find the value of the 

capabilities 𝑀𝐶𝑝 and 𝑀𝐶𝑝𝑘 , and the results of the 𝑀𝐶𝑝 and 𝑀𝐶𝑝𝑘 values can be seen in Table 9. 

Table 9. Multivariate Process Capability 

𝑴𝑪𝒑 𝑴𝑪𝒑𝒌 

50.89 13.29 

To determine whether the data is capable, the capability values of 𝑀𝐶𝑝 and 𝑀𝐶𝑝𝑘  must be more than 

one (> 1). From Table 9, it is known that the capability values obtained from the analysis that has been 

carried out are 𝑀𝐶𝑝 of 50.89 and 𝑀𝐶𝑝𝑘 of 13.29, both of which are > 1. As a result, it can be concluded that 

the clean water production process at PT PP Krakatau Tirta Gresik meets the criteria of a capable production 

system. 

When the data is not normally distributed or contains outliers, a control map based on Median Absolute 

Deviation (MAD) becomes a more robust alternative. MAD effectively monitors process averages and 
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variability due to its extreme value-resistant nature [37]. However, in the context of multivariate processes, 

control maps such as the Multivariate Exponentially Weighted Moving Average (MEWMA) and the 

Multivariate Exponentially Weighted Moving Median Variance (MEWMV) were developed to increase the 

sensitivity of cumulatively small changes on multiple variables at once. MEWMA gives exponential weight 

to the latest data to detect changes in multivariate process averages, while MEWMV combines median 

strength and exponential weights to monitor variability in a more resilient manner to outliers, making them a 

powerful complement to the monitoring of abnormal multivariate quality and containing outliers. 

To address the limitations of MEWMA and MEWMV in detecting small variations and dealing with 

outliers, multivariate control maps based on bivariate ranked set schemes [35] were developed. This method 

quickly detects changes in the average process and measures the capabilities of the process effectively. In 

addition, a new multivariate process monitoring scheme that is more adaptive and robust can be developed, 

namely, the two robust MEMWA [25]. This method uses rank-based Lepage and Cucconi testing based on 

marginal distribution and pseudo-copula to detect shifts in product quality features and dependency 

structures.  

MEWMA and MEWMV control maps have been widely used in multivariate process control to 

monitor averages and variability simultaneously. However, both have limitations in detecting small changes 

in the process when the data is distributed and complex or involves high dimensions. Therefore, for further 

research, the development and application of the Exponentially Weighted Moving Average Max Multivariate 

(EWMA Max-Mchart) control chart [38] is a strategic step because this method offers a higher sensitivity in 

detecting process shifts, both on averages and variability simultaneously in multivariate contexts.  

Water sampling is still mostly done using the conventional fixed-interval method (FSI), without paying 

attention to real-time quality changes. The Variable Sampling Intervals (VSI) approach is now more 

developed because it can adjust the interval based on process conditions. The VSI-MEWMA CoDa control 

chart [39] is more effective at detecting uncontrollable conditions through ATS degradation.  

4. CONCLUSION 

This research confirms that quality control of the clean water production process at PT PP Krakatau 

Tirta Gresik can be done more effectively by applying the Multivariate Exponentially Weighted Moving 

Variance (MEWMV) and Multivariate Exponentially Weighted Moving Average (MEWMA) methods. Both 

methods are proven to sensitively detect variability and mean shifts without relying on the assumption of 

normal distribution. Statistical control results show that the variability process is statistically under control at 

the optimal weighting of 𝜔 = 0.4 and 𝜆 = 0.4, while the average process is under control after two cause 

detections using optimal weighting of 𝜆 = 0.9. In addition, the process capability analysis yielded values that 

far exceeded the minimum limit (> 1), indicating that the company’s water production process is in a good 

category and suitable for consumption.  
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