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Article Info ABSTRACT 

Article History: 
Carbon dioxide (CO₂) is one of the main factors contributing to global warming. As the 

second largest CO₂ emitter globally, the United States (US) faces increasing political and 

economic pressure to reduce its emissions. Historical emission data exhibits complex 

structural patterns characterized by linear growth, quadratic trends, and periodic 

oscillations. Most existing models fail to capture this multifaceted behavior. In this study, 

we propose a high-order differential equation to represent the dynamic behavior of CO₂ 

emissions in the US. The model integrates linear, quadratic, and oscillatory components to 

reflect both long-term and short-term fluctuations. Nonlinear parameter estimation 

techniques are employed to fit the model to historical emission data with high accuracy. 

The proposed model effectively captures historical emission behavior, demonstrating 

strong goodness of fit and identifying both trend and cyclical components. Model-based 

projections indicate a likely resurgence in emission growth over the next decade, raising 

concerns regarding compliance with climate commitments and potential exposure to 

international carbon pricing instruments. The findings highlight the value of combining 

differential equation modeling with nonlinear estimation in analyzing environmental 

systems. The main limitation of this study is that it focuses only on historical emission 

dynamics, without direct integration of socio-economic drivers. This gap, however, 

highlights opportunities for future research. 
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1. INTRODUCTION 

Global warming is one of the biggest issues facing the world today, characterized by a sustained 

increase in the Earth’s average surface temperature since the pre-industrial era. According to the 

Intergovernmental Panel on Climate Change (IPCC), the global average temperature has increased by 

approximately 1.1℃ compared to pre-industrial levels, with more than half of this rise occurring in the last 

four decades. The World Meteorological Organization (WMO) reported that 2024 was the hottest year ever 

recorded, with global temperatures averaging 1.2℃ above pre-industrial baselines [1]. The consequences of 

such climatic changes extend beyond damaged ecosystems and daily human activities to include rising sea 

levels, altered precipitation patterns, environmental degradation, and a marked increase in the frequency and 

severity of natural disasters [2]–[11]. 

Carbon dioxide (CO₂) is the main greenhouse gas contributing to global warming, driven mostly by 

fossil fuel combustion, energy consumption, and land-use change. Since the pre-industrial era, atmospheric 

CO₂ concentration has increased from approximately 277 ppm to around 472 ppm in 2021 [12]. Global CO₂ 

emissions have climbed from 6 billion tons in 1950 to over 35 billion tons by 2023. This alarming growth 

has placed immense political and environmental pressure on the world’s largest emitters to implement 

emission-reduction strategies [13]. The United States (US), as the second largest CO₂ emitter globally, 

contributing roughly 13% of global emissions, plays a pivotal role in shaping international climate outcomes. 

The US has experienced increasingly severe impacts from climate-related events. In 2023 alone, 

economic losses from hydrometeorological disasters were estimated at $114 billion, including $73 billion 

from severe storms, $14 billion from extreme drought, and $5.5 billion in losses due to the Lahaina wildfire 

in Hawaii [14]. By November 2024, the US had confirmed 24 separate billion-dollar weather and climate 

disasters, ranging from severe storms to tropical cyclones and wildfires [15]. As CO₂ continues to intensify 

the global climate system, understanding its temporal dynamics becomes not only scientifically important but 

also strategically essential for guiding policy and mitigation. 

Numerous studies have been carried out to model CO₂ emissions, but the literature remains dominated 

by regression-based statistical approaches, including Decoupling, the Environmental Kuznets Curve (EKC), 

and the STIRPAT model [16]–[20], For example, Wei et al. [16] valuated the long-run effects of GDP and 

different energy types on Italy’s CO₂ emissions, while Wang et al. [17] integrated the Tapio decoupling 

method with an extended STIRPAT model to analyze economic growth and CO₂ emissions under various 

scenarios. Similarly, Rao et al. [21] used a ridge-regressed STIRPAT model with scenario analysis to forecast 

Hubei’s emissions peaking by 2025. Although these models have successfully identified the drivers of CO₂ 

emissions, they frequently fail to capture the temporal evolution and periodic oscillations found in long-term 

emissions data. 

Capturing the complex, time-dependent behavior of CO₂ emissions requires analytical tools capable of 

accurately modeling such dynamics. Differential equations (DEs) provide a powerful mathematical 

framework for this purpose by explicitly describing the rates of change in a system. For instance, Goreau [22] 

laid the foundation for dynamic modeling of CO₂ emissions, while Tsokos and Xu [23] applied systems of 

differential equations to model CO₂ emissions in the United States, using regression-based estimation 

followed by empirical fitting. Additionally, Han et al. [24] proposed a delayed two-dimensional DE to model 

China’s emissions, Donald et al. [25] provided a coupled system of nonlinear DEs to model multiple 

ecological-economic variables, and Mukhartova [26] used a Navier–Stokes-based model to analyze spatial 

heterogeneity in CO₂ fluxes. While this research contributed dynamic insights into CO₂ emissions, it lacked 

statistical grounding. The approach in Kafle et al. [13] filled this gap by integrating data-driven estimation 

and functional regression into a fourth-order differential operator to capture varying trends, demonstrating 

that such models can successfully represent both linear and cyclical emission behaviors. 

This study builds upon these earlier efforts by proposing a dynamic modeling framework that integrates 

high-order differential equations with nonlinear estimation techniques to investigate CO₂ emission patterns 

in the US. By combining advanced mathematical modeling with empirical environmental data, the research 

aims to uncover critical emission dynamics such as peaks, accelerations, and turning points, thus enabling a 

deeper understanding of the nonlinear and evolving nature of CO₂ emissions. Such findings are vital for 

informing evidence-based climate policy and developing more effective mitigation strategies in the context 

of an increasingly unstable climate system.  

The rest of this paper is organized as follows: Section 2 provides several DE models and their solutions 

for various cases of data such as linear trends, oscillations, and combinations of both. Section 3 presents the 
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results and discussion, beginning with the design of a non-homogeneous DE to capture quadratic behavior in 

the data, followed by parameter estimation, fitting to real data, and prediction. Section 4 summarizes the key 

findings and implications of the study. 

2. RESEARCH METHODS 

2.1 DE’s Modeling for Various Cases 

In analyzing the dynamics of CO₂ emissions, the observed patterns of change can vary widely, ranging 

from linear growth to more complex fluctuations such as oscillations or a combination of both. Therefore, 

the DE approach is employed to systematically capture these patterns.  

Let ℐ(𝑡) be the CO₂ emission function, the first-order DE is given by  

𝐷ℐ(𝑡) = 𝑓(𝑡, ℐ), 

with a differential operator 𝐷 define as the derivative operation with respect to time. We use 𝐷 to simplify 

the writing in representing the dynamics of change in ℐ(𝑡). These operators can be generalized as a linear 

combination of derivatives of various orders, whose homogeneous form is given by Eq. (1). 

𝛽0ℐ(𝑡) + 𝛽1𝐷ℐ(𝑡) + 𝛽2𝐷
2ℐ(𝑡) + ⋯+ 𝛽𝑘𝐷

𝑘ℐ(𝑡) = 0, (1) 

where 𝐷𝑘ℐ(𝑡) is 𝑘th-orders derivative of ℐ(𝑡) and 𝛽’s are parameters that must be estimated.  

a. Linear Trend (Simple Increase or Decrease) 

If emissions grow (or decline) at a steady rate without speeding up or slowing down, then the appropriate 

model satisfies the following equations: 

𝐷2ℐ(𝑡) = 0. (2) 

Eq. (2) indicates that there is no change in the rate of emission growth, implying a constant rate of change. 

Solving this gives: 

ℐ(𝑡) = 𝐶1𝑡 + 𝐶2, (3) 

where 𝐶1 is the slope of the trend (if positive, emissions rise, if negative, they fall) and 𝐶2 is the starting level 

of emission at time 𝑡 = 0.  

b. Oscillatory Tren  

In many real-world scenarios, CO₂ emissions do not follow a simple linear trend but instead exhibit 

fluctuations due to economic cycles, technological shifts, or environmental factors. To capture the oscillatory 

patterns, we use a second-order DE of the form: 

𝐷2ℐ(𝑡) + 𝛽2𝐷ℐ(𝑡) + 𝛽1ℐ(𝑡) = 0. (5) 

The solution to these equations depends on the discriminant 𝛽2
2 − 4𝛽1, which determines whether the system 

exhibits: 1) Pure Harmonic Oscillations; 2) Damped Oscillations. 

If 𝛽1 = −𝜔
2 and 𝛽2 = 0, Eq. (4) is reduced to: 

𝐷2ℐ(𝑡) = −𝜔2ℐ(𝑡), (5) 

where 𝜔 =
2𝜋

𝑇
 is the angular frequency that measures the speed of the system’s oscillation [27].  Assuming 

an exponential form of the solution: 

ℐ(𝑡) = 𝑒𝑟𝑡 , (6)
where 𝑟 is a constant to be determined. The exponential form is chosen because it retains its structural 

properties upon differentiation, which facilitates substitution into the DE. Using Euler’s identity gives 

ℐ(𝑡) = 𝐶1 cos(𝜔𝑡) + 𝐶2 sin(𝜔𝑡) , (7) 

where 𝐶1and 𝐶2 are the oscillation amplitudes, representing the maximum displacement from the equilibrium 

position. The solution given by Eq. (7) describes a system undergoing harmonic oscillation.  
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When 𝛽2 ≠ 0, the system exhibits damped oscillations, a phenomenon where emission fluctuations 

gradually decrease in amplitude over time due to “damping forces” such as emission regulations or 

technological adaptations. Following the same steps to solve Eq. (5), the characteristic equation is given by 

𝑟2 +  𝛽2𝑟 + 𝛽1 = 0, 

with roots 

𝑟1, 𝑟2 =
−𝛽2 ±√𝛽2

2 − 4𝛽1
2

. 

If the condition 𝛽2
2 − 4𝛽1 < 0 holds, then the root becomes complex 

𝑟1, 𝑟2 =
−𝛽2 ± 𝑖√4𝛽1 − 𝛽2

2

2
. 

Thus, the solution for the DE with complex roots is a linear combination of two independent solutions 

ℐ(𝑡) = 𝑒𝑟1𝑡 + 𝑒𝑟2𝑡 . 

Substituting the complex roots, the solution can be written as: 

ℐ(𝑡) = 𝐶1𝑒(

 
−𝛽2+𝑖√4𝛽1−𝛽2

2

2
𝑡

)

 

+ 𝐶2𝑒(

 
−𝛽2−𝑖√4𝛽1−𝛽2

2

2
𝑡

)

 

. 

Using Euler’s identity, the solution for Eq. (4) is 

ℐ(𝑡) = 𝐶1𝑒
𝜙𝑡 cos(𝜉𝑡) + 𝐶2𝑒

𝜙𝑡 sin(𝜉𝑡) , (8) 

where 𝜙 = −
𝛽2

2
 and 𝜉 =

√4𝛽1−𝛽2
2

2
. 

c. Combination of Linear and Oscillatory Tren  

In parts (a) and (b), we discussed DE models that capture linear trends and oscillatory patterns 

separately. However, in reality, CO₂ emissions often exhibit more complex behavior in which increasing or 

decreasing trends are accompanied by oscillations. To model such phenomena, we proposed a higher-order 

DE, specifically a fourth-order DE: 

𝐷4ℐ(𝑡) + 𝛽2𝐷
3ℐ(𝑡) +  𝛽1𝐷

2ℐ(𝑡) = 0. (9) 

To simplify, we introduce an intermediate variable: 

𝐷2ℐ(𝑡) = 𝑢(𝑡). 

Thus, Eq. (9) is reduced to a second-order DE in terms of 𝑢(𝑡): 

𝑢′′(𝑡) +  𝛽2𝑢
′(𝑡) + 𝛽1𝑢(𝑡) = 0. (10) 

Solving the characteristic equations yields a solution structure like Eq. (10) 

𝑢(𝑡) = 𝐶1𝑒
𝜙𝑡 cos(𝜉𝑡) + 𝐶2𝑒

𝜙𝑡 sin(𝜉𝑡). 

Since 𝐷2ℐ(𝑡) = 𝑢(𝑡), the general solution for ℐ(𝑡) is obtained by integrating 𝐷2ℐ(𝑡) twice: 

𝐷ℐ(𝑡) = ∫(𝐶1𝑒
𝜙𝑡 cos(𝜉𝑡) + 𝐶2𝑒

𝜙𝑡 sin(𝜉𝑡))𝑑𝑡 

= 𝐴𝑒𝜙𝑡(𝐵1 cos(𝜉𝑡) + 𝐵2 sin(𝜉𝑡)) + 𝐶3, 

ℐ(𝑡) = ∫(𝐴𝑒𝜙𝑡(𝐵1 cos(𝜉𝑡) + 𝐵2 sin(𝜉𝑡)) + 𝐶3)𝑑𝑡  

= 𝐴2𝑒𝜙𝑡[(𝐵1𝜙 − 𝐵2𝜉) cos(𝜉𝑡) + (𝐵1𝜉 + 𝐵2𝜙) sin(𝜉𝑡)] + 𝐶3𝑡 + 𝐶4, (11) 

where 𝐴 =
1

𝜙2+𝜉2
 ; 𝐵1 = 𝐶1𝜙 − 𝐶2𝜉 and 𝐵2 = 𝐶1𝜉 + 𝐶2𝜙. 
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Figure 1. Various Systems of Dynamics Patterns. The Horizontal Axis 𝒕 Denotes Time, and the Vertical 

Axis 𝓘(𝒕) Represents Emission Intensity: (a) Linear Trend; (b) Harmonic Oscillation; (c) Damped Oscillation; 

(d) Combination of Linear Trend and Damped Oscillation 

This model offers flexibility in capturing both the linear trend (through the term 𝐶3𝑡 + 𝐶4) and damp 

oscillation (𝑒𝜙𝑡 cos(𝜉𝑡) and 𝑒𝜙𝑡 sin(𝜉𝑡)). As such, it provides a more realistic representation of CO₂ emission 

dynamics, which are characterized not only by growth but also by fluctuations driven by various External 

factors.  

2.2 Nonlinear Estimation 

When we are working under a nonlinear model, parameter estimation often requires iterative 

techniques to minimize the residual sum of squares between observed and predicted values [28]. The Gauss–

Newton method is one of the most widely used algorithms for solving nonlinear least squares problems, 

particularly when the model can be locally approximated as linear in the neighborhood of the true parameter 

values [29].  

Let 𝓘 = (ℐ1, ℐ2, … , ℐ𝐼)
′ be the vector of observed data, and 𝓘̂(𝜷) the vector of model prediction based 

on the parameter vector 𝜷 ∈ ℝ𝑛. The aim is to minimize the sum of square errors: 

𝜒2(𝜷) =∑(𝓘𝑖 − ℐ̂(𝑡𝑖; 𝜷))
2

𝑰

𝒊=𝟏

= ‖𝓘 − 𝓘̂(𝜷)‖
2
 . (12) 

The Gauss-Newton method iteratively updates 𝜷 using: 

𝜷𝑘+1 = 𝜷𝑘 + 𝒉𝑘 . (13) 

Where the update step 𝒉𝑘 is obtained by solving the normal equations: 

(𝑱′𝑱)𝒉𝑘 = 𝑱
′ (𝓘 − 𝓘̂(𝜷)) . (14)

Here, 𝑱 =
𝝏𝓘̂(𝜷)

𝝏𝜷
|
𝛽𝑘

∈ ℝ𝐼×𝑛 is the Jacobian matrix evaluated at iteration 𝑘. The Gauss–Newton method 

typically converges faster than gradient descent when the initial parameter estimates are reasonably close to 

the true values. However, in the presence of large residuals or strong nonlinearity, convergence may be slow 

or unstable, necessitating a damped version of the algorithm such as the Levenberg–Marquardt method. In 

this study, the Gauss–Newton method is applied to estimate parameters in a high-order DE model of CO₂ 

emissions. The method provides an efficient solution for refining model coefficients, ensuring that the 

simulated emission trajectory aligns with historical data through least-squares minimization. 

(a) (b) 

(c) (d) 
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2.3 Data 

The data used in this paper is sourced from the Our World in Data website (accessible at 

https://ourworldindata.org/co2-emissions), which contains CO₂ emissions data for each country. The country 

of interest is the US, with an observation period spanning from 1950 to 2023. A summary of the numerical 

data is presented in Table 1. 

Table 1. Data Summary (in 1000 tons) 
Statistics CO₂ Emissions 

Min 2,489,462 

Max 6,132,183 

Mean 4,627,113 

Standard deviation 1,100,958 

𝑄1 3,889,476 

𝑄2 4,900,672 

𝑄3 5,413,394 

Skewness  0.63 

Kurtosis  0.86 

Table 1 presents the summary of CO₂ emissions (in 1000 tons), illustrating the distribution and 

characteristics of the data. It is observed that the average CO₂ emissions over the period from 1950 to 2023 

are 4,627,113 thousand tons, with the lowest CO₂ emissions recorded at 2,489,462 thousand tons (in 1954) 

and the highest at 6,132,183 thousand tons (in 2005). The standard deviation of 1,100,958 thousand tons 

indicates a significant variation in the data. 𝑄1, 𝑄2, and 𝑄3 are 3,889,476; 4,900,672; and 5,413,394 thousand 

tons, respectively. 𝑄2 slightly higher than the mean, suggests that the data distribution is slightly skewed to 

the right (positive), as confirmed by the skewness value of 0.63. This value indicates that most of the data 

points lie below the mean, but some relatively large values pull the distribution to the right. The kurtosis 

value of 0.86 suggests that the data distribution is relatively close to a normal distribution, although it is 

somewhat more peaked than the standard normal distribution. The distribution of CO₂ emissions is shown in 

Fig. 2. 

 
Figure 2. CO₂ emissions in the United States from 1950–2023  

The horizontal axis of Fig. 2 shows the year, and the vertical axis shows annual CO₂ emissions (tons). 

Based on Fig. 2, the data exhibits three main patterns: (1) a linear increasing trend, (2) a quadratic growth 

curve, and (3) cyclic fluctuations.  

https://ourworldindata.org/co2-emissions
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3. RESULTS AND DISCUSSION 

3.1 Modelling Approach  

Subchapter 2.1 has presented several DE models to capture various data patterns, including the linear 

increasing trend and oscillations as given by Eq. (11). However, as observed in Fig. 2, another pattern 

emerges, namely the quadratic pattern, indicated by the increase in CO₂ emissions reaching a peak in 2007, 

followed by a decline towards the end of the observation period. To address this limitation, the solution 

provided by Eq. (11) is modified by adding a quadratic constant term to Eq. (10), thereby transforming the 

homogeneous DE into a non-homogeneous one. This modification aims to enhance the flexibility of the 

model solution, allowing it to better represent the quadratic pattern. 

The non-homogeneous DE by adding a constant function can be written as: 

𝑢′′(𝑡) +  𝛽2𝑢
′(𝑡) + 𝛽1𝑢(𝑡) = 𝜓, (15) 

where 𝜓 is a constant term, the general solution of the non-homogeneous DE consists of two parts: the 

homogeneous solution and the particular solution. The homogeneous solution ℐ𝐻(𝑡) has been derived and is 

given by Eq. (11). The particular solution ℐ𝑃(𝑡) includes the additional contribution from the constant 

function 𝜓. 

Assume the solution 𝑢𝑃(𝑡) takes the constant form  Ψ, that is 

𝑢𝑃(𝑡) = Ψ . (16)
The particular solution is given by 

ℐ𝑃(𝑡) =
𝜓

 2𝛽1
𝑡2 + 𝐶𝑃1𝑡 + 𝐶𝑃2, (17) 

where 𝐶𝑃1 , 𝐶𝑃2 is the integration constant of the solution. The general solution of the non-homogeneous DE 

is given by: 

ℐ(𝑡) = ℐ𝐻(𝑡) + ℐ𝑃(𝑡) 

= 𝐴2𝑒𝜙𝑡[(𝐵1𝜙 − 𝐵2𝜉) cos(𝜉𝑡) + (𝐵1𝜉 + 𝐵2𝜙) sin(𝜉𝑡)] + 𝐶3𝑡 + 𝐶4 +
𝜓

 2𝛽1
𝑡2 + 𝐶𝑃1𝑡 + 𝐶𝑃2 

= 𝐴2𝑒𝜙𝑡[(𝐵1𝜙 − 𝐵2𝜉) cos(𝜉𝑡) + (𝐵1𝜉 + 𝐵2𝜙) sin(𝜉𝑡)] +
𝜓

 2𝛽1
𝑡2 + (𝐶𝑃1 + 𝐶3)𝑡 + (𝐶𝑃2 + 𝐶4)ℐ(𝑡) 

= ℐ𝐻(𝑡) + ℐ𝑃(𝑡) 

= 𝐴2𝑒𝜙𝑡[(𝐵1𝜙 − 𝐵2𝜉) cos(𝜉𝑡) + (𝐵1𝜉 + 𝐵2𝜙) sin(𝜉𝑡)] + 𝐶3𝑡 + 𝐶4 +
𝜓

 2𝛽1
𝑡2 + 𝐶𝑃1𝑡 + 𝐶𝑃2 

= 𝐴2𝑒𝜙𝑡[(𝐵1𝜙 − 𝐵2𝜉) cos(𝜉𝑡) + (𝐵1𝜉 + 𝐵2𝜙) sin(𝜉𝑡)] +
𝜓

 2𝛽1
𝑡2 + (𝐶𝑃1 + 𝐶3)𝑡 + (𝐶𝑃2 + 𝐶4) (18) 

Note that 𝐴2(𝐵1𝜙 − 𝐵2𝜉) and 𝐴2(𝐵1𝜉 + 𝐵2𝜙) are constant, they can be denoted as 𝑐1 and 𝑐2, respectively. 

Similarly, for 
𝜓

 2𝛽1
, (𝐶𝑃1 + 𝐶3) and (𝐶𝑃2 + 𝐶4). Thus, Eq. (18) can be written as: 

ℐ(𝑡) = 𝑐1𝑒
𝜙𝑡 cos(𝜉𝑡) + 𝑐2𝑒

𝜙𝑡 sin(𝜉𝑡) + 𝑐3𝑡
2 + 𝑐4𝑡 + 𝑐5. (19) 

The solution given by Eq. (19) represents the general solution of the non-homogeneous DE, capable 

of capturing patterns of linear growth, quadratic trends, and oscillation. The parameters 𝑐1 and 𝑐2 control the 

initial amplitude and phase of the oscillations. The expression 𝑒−𝜙𝑡 representing the change in amplitude of 

the oscillations over time. If 𝜙 < 0, this factor reflects exponential damping, meaning the oscillations 

gradually decrease. If 𝜙 = 0, the amplitude remains constant, while if 𝜙 > 0, indicating an increase in 

amplitude, reflecting unstable dynamics. 

Additionally, the sinusoidal functions cos(𝜉𝑡) and sin(𝜉𝑡) serve to describe periodic oscillation 

patterns. These functions represent repetitive fluctuations with a specific frequency, where the value of 𝜉 

determines the speed of the oscillation cycles. These sinusoidal functions allow the model to accurately 

capture short-term cyclic dynamics or periodic fluctuations. The combination of these two functions provides 

flexibility in adjusting the initial phase and the scale of the oscillations. 
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The parameter 𝑐3 determines the rate of acceleration or deceleration in the model. If 𝑐3 > 0, the 

function 𝑡2  opens upwards, indicating acceleration; conversely, if 𝑐3 < 0, it indicates deceleration. The 

components 𝑐4 and 𝑐5 represent the linear relationship between time 𝑡 and the change in the value of ℐ(𝑡). 

3.2 Model Prediction 

The solution given by Eq. (19) is subsequently used for estimation and prediction purposes. [13] 

estimates the parameter 𝜷 and the integration coefficients 𝒄 separately, where 𝜷 is estimated through 

functional regression by introducing the differential operator, and 𝒄 is estimated via nonlinear regression. 

However, in this paper, all parameters are estimated simultaneously using nonlinear regression to obtain 

consistent parameter estimates and simplify the estimation process. We use RStudio to estimate the values of 

the parameters [30]. RStudio was selected as the primary computational environment for this study because 

it is open-source, user-friendly, and widely adopted in statistical and data science research. Unlike linear 

regression, there is no explicit form for parameter estimation in nonlinear regression. The computational 

process requires the careful selection of initial values to avoid slow convergence or failure to find the optimal 

solution due to being trapped in a local minimum or exhibiting asymptotic behavior. In this case, the initial 

values are determined through a numerical approach using the Finite Difference Method. This approach 

enables the calculation of function values and their derivatives at time 𝑡 = 0. Since the order of the DE used 

is fourth order, the initial values are determined up to the third-order derivatives.  

 

If 𝜷 = (𝛽1, 𝛽2, 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5)
′ is the vector of parameters to be estimated, then the initial vector is  𝜷𝑖𝑛𝑖𝑡𝑖𝑎𝑙  

given by 

𝜷𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = ((
2𝜋

49,33
)
2

;  0.25 ;𝐷ℐ(0) ; 𝐷2ℐ(0); 𝐷2ℐ(0);  𝐷ℐ(0);  ℐ(0))

′

. 

The selection of initial values for each parameter is based on the characteristics and roles of each parameter. 

The parameter 𝛽1 is given by the square of the angular frequency, 

𝛽1 = 𝜔
2, 

where 𝜔 =
2𝜋

𝑇
. 𝑇 is calculated based on the total observation time and the number of oscillations, where the 

total observation time is 74 years, and the number of oscillations is approximately 1.5: 

𝑇 =
74

1.5
≈ 49.33 𝑦𝑒𝑎𝑟. 

Thus, the initial value for 𝛽1 is given by 

𝛽1 = (
2𝜋

49.33
)
2

. 

The initial value of 𝛽2 is selected randomly such that it satisfies the condition: 𝛽2
2 − 4𝛽1 < 0. The 

parameter estimation for the DE solution is presented in Table 2. The estimated parameter results from both 

models, namely the model without the quadratic component (Model I) and the model with the quadratic 

component (Model II), as presented in Table 2, show significant differences. In Model I, the parameter 

 𝛽1 = 0.0174 indicates a lower damping rate of oscillations compared to Model II 0.0240. The smaller value 

of 𝛽1 in Model I suggests that the amplitude of oscillations in the data decays more slowly over time, which 

does not align well with the observed data pattern. Meanwhile, 𝛽2 in Model I (−0.2368) is also significantly 

smaller in magnitude compared to that in Model II (−0.0135). The low 𝛽₂ value in Model I indicates that 

this model attempts to impose a global pattern, such as acceleration and deceleration, into the oscillatory 

component, leading to distorted parameter estimates. 

Table 2. Parameter Estimation 

Parameter 
Estimation 

Non-Quadratic (Model I) Quadratic (Model II) 

𝛽1 0.0174 0.0240 

𝛽2 −0.2368 −0.0135 
𝑐1 −2.992 × 105 1.790 × 108 
𝑐2 7.368 × 105 −2.216 × 108 
𝑐3 - −9.652 × 105 
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Parameter 
Estimation 

Non-Quadratic (Model I) Quadratic (Model II) 

𝑐4 7.098 × 107 1.158 × 108 
𝑐5 2.451 × 109 2.167 × 109 
𝑅2 0.946 0.9770 

RMSE 0.2531 0.1659 

AIC -191.3517 -251.9000 

 

 

 
Figure 3. Fitting of the DE Solution to US CO₂ Emission Data, 1950–2023 

Gray dots in Fig. 3  above represent observed data. The red line (with quadratic term) captures both 

trend and curvature, while the blue line (without quadratic term) illustrates a simpler trend fit.  

The parameters 𝑐1 and 𝑐2, representing the initial oscillation amplitudes, also exhibit significant 

differences between the two models. In Model I, 𝑐1 = −2.992 × 10
5 and 𝑐2 = −2.992 × 10

5 are 

considerably smaller, indicating that this model fails to accurately represent the oscillation amplitudes. The 

low amplitude values in Model I suggest an overreliance on linear parameters to capture the global trend, 

thereby compromising the model's ability to describe oscillatory fluctuations. Conversely, Model II 

yields 𝑐1 = 1.790 × 10
8 and 𝑐2 = −2.216 × 10

8, demonstrating its superior capability to capture oscillatory 

behavior, particularly in the early period (1950–1980), as observed in the data. This highlights Model II's 

improved representation of dynamic fluctuations compared to Model I. 

The quadratic component 𝑐3𝑡
2 in Model II has a value of 𝑐3 = −9.652 × 10

5, which is crucial for 

capturing the patterns of acceleration and deceleration in the global trend. The parameter 𝑐3 enables Model 

II to represent the curved pattern that cannot be captured by the linear and oscillatory components alone. The 

absence of the quadratic component in Model I forces the model to rely on the linear parameter 𝑐4 and 

oscillations to describe the trend, resulting in unstable estimates for the other parameters. 

The parameter 𝑐5, representing the baseline, has a value of 𝑐5 = 2.451 × 10
9 in Model I and 𝑐5 =

2.167 × 109 in Model II. These values are relatively consistent and indicate that both models are capable of 

accurately capturing the initial CO₂ emission levels. However, Model II provides a more flexible 

representation of the global change patterns. The 𝑅2 value further highlights the superiority of Model II (𝑅2 =
97.7%) in capturing the overall data pattern. Meanwhile, the Root Mean Squared Error (RMSE) shows that 

Model II achieves lower error (RMSE = 0.1659) compared to Model I (RMSE=0.2531), indicating a closer 

fit to the observed data in terms of raw deviations. Furthermore, the Akaike Information Criterion (AIC) also 

supports this finding, where Model II yields the lowest value (𝐴𝐼𝐶 = −251.90) relative to Model I (𝐴𝐼𝐶 =
−191.35). The lower AIC value implies that Model I provides a better trade-off between model complexity 

and goodness-of-fit. A visualization of the fitting results for both models to the 𝐶𝑂2emission data is shown 

in Fig. 3. 
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Model II (red line) demonstrates good performance in capturing the overall data pattern. Model II can 

follow the acceleration in CO₂ emissions before 2007 and the deceleration, thereafter, as indicated by the 

curved shape in the data. In contrast, Model I (blue line) shows that the model does not capture the oscillatory 

pattern as effectively and instead focuses more on the global quadratic trend. Therefore, the best solution 

model for modeling CO₂ emissions is Model II, as given by Eq. (20). 

ℐ(𝑡) = 1.790 × 108 exp(0.0068𝑡) cos(0.1841𝑡) − 2.216 × 108 exp(0.0068𝑡) sin(0.1841𝑡)

−9.652 × 105𝑡2 + 1.158 × 108𝑡 + 2.167 × 109. (20)
 

 

Overall, these results indicate that the model is not only capable of accommodating the long-term dynamics 

of CO₂ emissions but also effectively represents periodic fluctuations with good accuracy. The high 

performance of the model makes this model a reliable tool for explaining the historical patterns of CO₂ 

emissions and predicting future trends. 

 

 

Figure 4. 10-year 𝐂𝐎₂ Emission Prediction with 95% Bootstrap Confidence Interval  

Gray dots represent observed historical data (1950–2023). The red line shows the fitted DE model, the 

dashed black lines represent the 95% bootstrap confidence interval, and the green line projects emissions for 

the forecast period (2024–2033). Fig. 4 shows the projected trajectory of CO₂ emission with 95% confidence 

interval in the US over 10 years ahead, based on Model II. The prediction intervals are estimated by using 

bootstrap resampling. This method aims to quantify the uncertainty of future predictions from the nonlinear 

model without making a specific assumption of error distribution.  In this process, errors from the fitted model 

were resampled with replacement and added to the fitted values to generate a dataset. The model is trained 

on each bootstrap dataset to get new parameter estimates, which are then used to predict future emissions. 

This process is repeated 10,000 iterations, and quantiles are used to produce prediction intervals. The 

broadening interval band shows increasing uncertainty over time, as is common in extrapolative modeling. 

The prediction indicates a potential increase in CO₂ emissions occurring after 2023, following a relative 

decline in the early 2000s. This turning point and the model’s oscillating behavior are compatible with the 

dynamic structure described by high-order DE.  

This finding is particularly relevant when placed within the broader framework of US environmental 

policy, especially the decision to withdraw the US from the Paris climate agreement by President Donald 

Trump in early 2025 once again [31]. This withdrawal may impact the effectiveness of global climate 

mitigation efforts. Larch and Wanner [32] simulate that the US non-participation would eliminate more than 

a third of potential global emissions reduction (up to 31.8% through the reduction of national targets and 

6.4% of the indirect impact of carbon leakage). Furthermore, Frumkin et al. [33] highlight that the 

implications of US withdrawal go beyond environmental degradation, posing a significant risk to public 

health and social resilience. From a geopolitical perspective, Macneil [34] argues that US participation in 
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global climate agreements has historically been a source of systemic instability due to domestic political 

events such as the recurrent cycle of withdrawal and re-engagement.  

3.3 Economic Aspect of CO₂ Emissions 

As discussed in the previous section, the US CO₂ emission data predicts a continued increase in 

emissions over the next decade. This projected trend, if one would realize, not only impacts the environmental 

and health concerns, but also entails considerable economic implications, especially in light of emerging 

international carbon pricing policies such as the European Union’s Carbon Border Adjustment Mechanism 

(CBAM). From a financial perspective, these future economic costs must be evaluated through the lens of 

the time value of money [35], [36], recognizing that the monetary impact of delayed mitigation efforts may 

compound over time, making early action not only environmentally prudent but also economically 

advantageous. 

The CBAM, formally legislated in 2023 and set for full implementation by 2026, imposes carbon tariffs 

on imports of carbon-intensive goods into the EU, aligning the carbon cost of imported goods with those 

produced under the EU Emissions Trading System (EU ETS). Sectors currently covered include steel, 

aluminum, cement, fertilizers, electricity, and hydrogen, industries in which the US is a significant exporter. 

Perdana and Vielle [37] emphasize that the absence of a domestic carbon pricing policy aligned with EU 

standards would result in greater CBAM prices for US exports in these industries. Their computable general 

equilibrium (CGE) modeling shows that unilateral CBAM implementation, particularly under increasing 

emission trajectories, reduces the competitiveness of non-EU exports that lack an equal carbon price. 

The case in Vietnam further illustrates this point. Chu et al. [38] highlight how even a relatively small 

volume of impacted exports may lead to sectoral contraction and reduced export values due to CBAM 

application. Applied to the US, which exports billions of covered goods to the EU annually, the financial 

impact might be significantly greater, especially for small and medium-sized industries with little 

decarbonization capacity. Furthermore, a study by Zhu et al. [39] using GTAP-E simulations shows that the 

CBAM deteriorates the terms of trade of nations with growing emissions while improving those of the EU. 

This implies a macroeconomic disadvantage for the US if emissions continue to increase and carbon-pricing 

policies are not implemented domestically. 

From a trade policy perspective, the growing divergence between U.S. emission trends and EU climate 

ambitions may trigger adverse trade effects beyond direct CBAM costs. Dobranschi et al. [40] argue that 

countries with slower adoption of low-carbon technologies may face output relocation and even retaliatory 

trade measures. To mitigate these risks, Elder et al. [41] suggest adopting domestic carbon-pricing or 

equivalent mitigation policies, accelerating industrial decarbonization and carbon valuation strategies, and 

engaging in climate clubs or bilateral alignment mechanisms with the EU.  

Thus, the projected increase in US emissions not only indicates an environmental trend but also implies 

an economic burden, directly through CBAM tariffs and indirectly through trade diversion, sectoral 

devaluation, and loss of geopolitical economic influence. It is important to note that while the model 

accurately captures historical emission patterns, it does not include explicit covariates related to policy 

decisions, energy transitions, or economic shocks. Therefore, any interpretation of the forecast considering 

political events should be made with caution. While such events may plausibly affect future emissions, this 

relationship is not directly modeled in the differential framework used here. 

3.4 Future Research 

To enhance the robustness of the proposed high-order differential equation model, future research will 

extend the framework by incorporating spatial dimensions that reflect the interconnected nature of regional 

emission dynamics. Specifically, the Generalized Space-Time Autoregressive (GSTAR) model [42], [43] will 

be integrated to capture both spatial dependencies and temporal dynamics across regions. This approach 

allows the modeling of emission interdependencies between neighboring states or regions, acknowledging 

that environmental and economic activities in one location can influence others. By introducing spatial 

autoregressive terms, the GSTAR model can account for regional emission and improve predictive accuracy 

in a geographically disaggregated setting. This enhancement is particularly relevant for evaluating localized 

policy impacts and identifying regional emission hotspots under various regulatory scenarios. 

In addition to spatial considerations, multivariate categorical analysis will be incorporated using the 

Burt matrix [44], which effectively handles complex interactions among discrete socio-economic and policy 
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variables. Variables such as energy portfolio composition, industrial activity types, and regulatory stringency 

levels will be encoded into this matrix structure to explore their joint influence on emission trends. The Burt 

matrix serves as a foundation for applying techniques like Multiple Correspondence Analysis (MCA), which 

can reveal latent associations and clusters within the categorical data. Integrating this analysis into the overall 

modeling framework will enable researchers to systematically identify structural factors that contribute to 

regional differences in emission behaviors and support policy differentiation based on socio-economic 

contexts. 

Finally, to address uncertainty and quantify the risks associated with future emission trajectories, 

probability-based modeling will be incorporated into the analytical framework. Such models provide an 

approach to characterize the likelihood of various emission outcomes under different policies, technological, 

or economic scenarios. By embedding stochastic components into the differential and spatio-temporal 

structures, this extension allows for the estimation of failure probabilities [45], including the risk of exceeding 

carbon targets or policy thresholds, and enhances the capacity of the model to support robust, risk-informed 

decision-making. This probabilistic aspect introduces a critical dimension of realism, enabling more 

comprehensive assessments of environmental and regulatory outcomes in the face of uncertainty. 

4. CONCLUSION 

This study successfully developed a high-order differential equation model capable of capturing three 

key features in the dynamics of CO₂ emissions in the US: (1) a long-term linear trend, (2) a quadratic 

component indicating acceleration or deceleration in the rate of emission growth, and (3) oscillatory behavior 

reflecting short-term periodic fluctuations. By integrating nonlinear estimation techniques into the model 

formulation, the parameters were empirically fitted to historical emission data with a high degree of accuracy 

and statistical significance. The fitting results show that the proposed model not only accurately fits historical 

emission trajectories but also offers strong predictive capacity for future emission dynamics. The model’s 

projections suggest a continued increase in emissions over the next decade, with important implications for 

environmental policy, especially regarding international mechanisms such as the European Union’s Carbon 

Border Adjustment Mechanism (CBAM). Methodologically, this study highlights the effectiveness of 

combining high-order differential equation structures with nonlinear parameter estimation to model the 

complex temporal behavior of carbon emissions. As a flexible and extensible modeling framework, it can be 

further enhanced by incorporating exogenous drivers through integration with established analytical models 

such as STIRPAT. Such integration would support more comprehensive scenario analyses and inform policy 

design aimed at mitigating carbon emissions in both domestic and global contexts. 
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