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1. INTRODUCTION

Global warming is one of the biggest issues facing the world today, characterized by a sustained
increase in the Earth’s average surface temperature since the pre-industrial era. According to the
Intergovernmental Panel on Climate Change (IPCC), the global average temperature has increased by
approximately 1.1°C compared to pre-industrial levels, with more than half of this rise occurring in the last
four decades. The World Meteorological Organization (WMO) reported that 2024 was the hottest year ever
recorded, with global temperatures averaging 1.2°C above pre-industrial baselines [1]. The consequences of
such climatic changes extend beyond damaged ecosystems and daily human activities to include rising sea
levels, altered precipitation patterns, environmental degradation, and a marked increase in the frequency and
severity of natural disasters [2]-[11].

Carbon dioxide (COz) is the main greenhouse gas contributing to global warming, driven mostly by
fossil fuel combustion, energy consumption, and land-use change. Since the pre-industrial era, atmospheric
CO: concentration has increased from approximately 277 ppm to around 472 ppm in 2021 [12]. Global CO:
emissions have climbed from 6 billion tons in 1950 to over 35 billion tons by 2023. This alarming growth
has placed immense political and environmental pressure on the world’s largest emitters to implement
emission-reduction strategies [13]. The United States (US), as the second largest CO: emitter globally,
contributing roughly 13% of global emissions, plays a pivotal role in shaping international climate outcomes.

The US has experienced increasingly severe impacts from climate-related events. In 2023 alone,
economic losses from hydrometeorological disasters were estimated at $114 billion, including $73 billion
from severe storms, $14 billion from extreme drought, and $5.5 billion in losses due to the Lahaina wildfire
in Hawaii [14]. By November 2024, the US had confirmed 24 separate billion-dollar weather and climate
disasters, ranging from severe storms to tropical cyclones and wildfires [15]. As CO: continues to intensify
the global climate system, understanding its temporal dynamics becomes not only scientifically important but
also strategically essential for guiding policy and mitigation.

Numerous studies have been carried out to model CO: emissions, but the literature remains dominated
by regression-based statistical approaches, including Decoupling, the Environmental Kuznets Curve (EKC),
and the STIRPAT model [16]-[20], For example, Wei et al. [16] valuated the long-run effects of GDP and
different energy types on Italy’s CO: emissions, while Wang et al. [17] integrated the Tapio decoupling
method with an extended STIRPAT model to analyze economic growth and CO: emissions under various
scenarios. Similarly, Rao et al. [21] used a ridge-regressed STIRPAT model with scenario analysis to forecast
Hubei’s emissions peaking by 2025. Although these models have successfully identified the drivers of CO:
emissions, they frequently fail to capture the temporal evolution and periodic oscillations found in long-term
emissions data.

Capturing the complex, time-dependent behavior of CO. emissions requires analytical tools capable of
accurately modeling such dynamics. Differential equations (DES) provide a powerful mathematical
framework for this purpose by explicitly describing the rates of change in a system. For instance, Goreau [22]
laid the foundation for dynamic modeling of CO. emissions, while Tsokos and Xu [23] applied systems of
differential equations to model CO. emissions in the United States, using regression-based estimation
followed by empirical fitting. Additionally, Han et al. [24] proposed a delayed two-dimensional DE to model
China’s emissions, Donald et al. [25] provided a coupled system of nonlinear DEs to model multiple
ecological-economic variables, and Mukhartova [26] used a Navier—Stokes-based model to analyze spatial
heterogeneity in CO: fluxes. While this research contributed dynamic insights into CO- emissions, it lacked
statistical grounding. The approach in Kafle et al. [13] filled this gap by integrating data-driven estimation
and functional regression into a fourth-order differential operator to capture varying trends, demonstrating
that such models can successfully represent both linear and cyclical emission behaviors.

This study builds upon these earlier efforts by proposing a dynamic modeling framework that integrates
high-order differential equations with nonlinear estimation techniques to investigate CO. emission patterns
in the US. By combining advanced mathematical modeling with empirical environmental data, the research
aims to uncover critical emission dynamics such as peaks, accelerations, and turning points, thus enabling a
deeper understanding of the nonlinear and evolving nature of CO: emissions. Such findings are vital for
informing evidence-based climate policy and developing more effective mitigation strategies in the context
of an increasingly unstable climate system.

The rest of this paper is organized as follows: Section 2 provides several DE models and their solutions
for various cases of data such as linear trends, oscillations, and combinations of both. Section 3 presents the



BAREKENG: J. Math. & App., vol. 20(2), pp. 1215- 1228, Jun, 2026. 1217

results and discussion, beginning with the design of a non-homogeneous DE to capture quadratic behavior in
the data, followed by parameter estimation, fitting to real data, and prediction. Section 4 summarizes the key
findings and implications of the study.

2. RESEARCH METHODS

2.1 DE’s Modeling for Various Cases

In analyzing the dynamics of CO2 emissions, the observed patterns of change can vary widely, ranging
from linear growth to more complex fluctuations such as oscillations or a combination of both. Therefore,
the DE approach is employed to systematically capture these patterns.

Let 7(t) be the CO. emission function, the first-order DE is given by
Di(t) = f(¢,9),

with a differential operator D define as the derivative operation with respect to time. We use D to simplify
the writing in representing the dynamics of change in 7(t). These operators can be generalized as a linear
combination of derivatives of various orders, whose homogeneous form is given by Eq. (1).

BoI () + p1DI() + Bz D2I(E) + -+ + B D*I() = 0, ey
where D*7(t) is kth-orders derivative of 7(t) and B’s are parameters that must be estimated.

a. Linear Trend (Simple Increase or Decrease)

If emissions grow (or decline) at a steady rate without speeding up or slowing down, then the appropriate
model satisfies the following equations:
D?3(t) = 0. (2)

Eq. (2) indicates that there is no change in the rate of emission growth, implying a constant rate of change.
Solving this gives:
I(t) = Cit + Cy, 3)

where C; is the slope of the trend (if positive, emissions rise, if negative, they fall) and C, is the starting level
of emission at time t = 0.

b. Oscillatory Tren

In many real-world scenarios, CO: emissions do not follow a simple linear trend but instead exhibit
fluctuations due to economic cycles, technological shifts, or environmental factors. To capture the oscillatory
patterns, we use a second-order DE of the form:

D%3(t) + B,DI(t) + p1I(t) = 0. (5)

The solution to these equations depends on the discriminant 82 — 4, , which determines whether the system
exhibits: 1) Pure Harmonic Oscillations; 2) Damped Oscillations.
If B, = —w? and B, =0, Eq. (4) is reduced to:

D2I(t) = —w?7(0), (5)

where w = 27" is the angular frequency that measures the speed of the system’s oscillation [27]. Assuming

an exponential form of the solution:

7(t) = ™, (6)
where r is a constant to be determined. The exponential form is chosen because it retains its structural
properties upon differentiation, which facilitates substitution into the DE. Using Euler’s identity gives

J(t) = C; cos(wt) + C, sin(wt), @)

where C;and C, are the oscillation amplitudes, representing the maximum displacement from the equilibrium
position. The solution given by Eq. (7) describes a system undergoing harmonic oscillation.
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When B, # 0, the system exhibits damped oscillations, a phenomenon where emission fluctuations
gradually decrease in amplitude over time due to “damping forces” such as emission regulations or
technological adaptations. Following the same steps to solve Eq. (5), the characteristic equation is given by

T'2+ ﬁ2T+ﬁ’1 :0,
with roots

—B2 VB3 - Y

Tl, TZ =
If the condition 2 — 4, < 0 holds, then the root becomes complex
—B, V4B, — B3

2
Thus, the solution for the DE with complex roots is a linear combination of two independent solutions

I(t) = ent + e™2t,

Substituting the complex roots, the solution can be written as:

~Bo+i 4,3 ) (—ﬂz—i [48,-53 )
R ——t
+ Ce .

Tl,rz =

2 2

() = C1e<
Using Euler’s identity, the solution for Eq. (4) is
I(t) = Cre®t cos(ét) + C,e®?tsin(ét),
2

where ¢ = —%andf =

c. Combination of Linear and Oscillatory Tren

(8)

In parts (a) and (b), we discussed DE models that capture linear trends and oscillatory patterns
separately. However, in reality, CO. emissions often exhibit more complex behavior in which increasing or
decreasing trends are accompanied by oscillations. To model such phenomena, we proposed a higher-order

DE, specifically a fourth-order DE:

D*3(t) + B,D33(t) + B,D?I(t) = 0.
To simplify, we introduce an intermediate variable:

D?3(t) = u(d).
Thus, Eq. (9) is reduced to a second-order DE in terms of u(t):
u""(t) + Bu'(t) + Bu(t) = 0.

Solving the characteristic equations yields a solution structure like Eq. (10)

u(t) = C,e®t cos(ét) + C,e®t sin(ét).
Since D27(t) = u(t), the general solution for 7(t) is obtained by integrating D27(t) twice:

DI(t) = J(Cle‘l’t cos(&t) + C,e®tsin(ét))de
= Ae®t (B, cos(ét) + B, sin(ét)) + Cs,
7(t) = f(Ae‘if’t(B1 cos(&t) + B, sin(ét)) + C3)dt
= A2eP'[(B,p — B,&) cos(ét) + (B1€ + By) sin(ét)] + C3t + C,

Whel’eA = Bl = Cld) - ng and BZ = le + Cz(l)

1 .
p2+82 '

9)

(10)

(11)
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Figure 1. Various Systems of Dynamics Patterns. The Horizontal Axis ¢ Denotes Time, and the Vertical
Axis J(t) Represents Emission Intensity: (a) Linear Trend; (b) Harmonic Oscillation; (¢) Damped Oscillation;
(d) Combination of Linear Trend and Damped Oscillation

This model offers flexibility in capturing both the linear trend (through the term C5t + C,) and damp
oscillation (e?t cos(&t) and et sin(&t)). As such, it provides a more realistic representation of CO- emission
dynamics, which are characterized not only by growth but also by fluctuations driven by various External
factors.

2.2 Nonlinear Estimation

When we are working under a nonlinear model, parameter estimation often requires iterative
techniques to minimize the residual sum of squares between observed and predicted values [28]. The Gauss—
Newton method is one of the most widely used algorithms for solving nonlinear least squares problems,
particularly when the model can be locally approximated as linear in the neighborhood of the true parameter
values [29].

Let 7 = (91,75, ..., ;)" be the vector of observed data, and 7(f) the vector of model prediction based
on the parameter vector B € R™. The aim is to minimize the sum of square errors:

I

A 2 ~ 2
@B =) (3:-1p) =[1-3B|". (12)
i=1
The Gauss-Newton method iteratively updates S using:

Bi+1 = Bi + hy. (13)

Where the update step hy is obtained by solving the normal equations:
UDh =7 (7-3B)). (14)
Here, J = 63—2‘? € R™™™ js the Jacobian matrix evaluated at iteration k. The Gauss—Newton method

Bk

typically converges faster than gradient descent when the initial parameter estimates are reasonably close to
the true values. However, in the presence of large residuals or strong nonlinearity, convergence may be slow
or unstable, necessitating a damped version of the algorithm such as the Levenberg—Marquardt method. In
this study, the Gauss—Newton method is applied to estimate parameters in a high-order DE model of CO:
emissions. The method provides an efficient solution for refining model coefficients, ensuring that the
simulated emission trajectory aligns with historical data through least-squares minimization.
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2.3 Data

The data used in this paper is sourced from the Our World in Data website (accessible at
https://ourworldindata.org/co2-emissions), which contains CO- emissions data for each country. The country
of interest is the US, with an observation period spanning from 1950 to 2023. A summary of the numerical
data is presented in Table 1.

Table 1. Data Summary (in 1000 tons)

Statistics CO: Emissions
Min 2,489,462

Max 6,132,183

Mean 4,627,113
Standard deviation 1,100,958

0, 3,889,476

Q, 4,900,672

Q5 5,413,394
Skewness 0.63

Kurtosis 0.86

Table 1 presents the summary of CO. emissions (in 1000 tons), illustrating the distribution and
characteristics of the data. It is observed that the average CO. emissions over the period from 1950 to 2023
are 4,627,113 thousand tons, with the lowest CO. emissions recorded at 2,489,462 thousand tons (in 1954)
and the highest at 6,132,183 thousand tons (in 2005). The standard deviation of 1,100,958 thousand tons
indicates a significant variation in the data. Q,, @, and Q5 are 3,889,476; 4,900,672; and 5,413,394 thousand
tons, respectively. @, slightly higher than the mean, suggests that the data distribution is slightly skewed to
the right (positive), as confirmed by the skewness value of 0.63. This value indicates that most of the data
points lie below the mean, but some relatively large values pull the distribution to the right. The kurtosis
value of 0.86 suggests that the data distribution is relatively close to a normal distribution, although it is
somewhat more peaked than the standard normal distribution. The distribution of CO. emissions is shown in
Fig. 2.
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Figure 2. CO2 emissions in the United States from 1950-2023

The horizontal axis of Fig. 2 shows the year, and the vertical axis shows annual CO: emissions (tons).
Based on Fig. 2, the data exhibits three main patterns: (1) a linear increasing trend, (2) a quadratic growth
curve, and (3) cyclic fluctuations.
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3. RESULTS AND DISCUSSION

3.1 Modelling Approach

Subchapter 2.1 has presented several DE models to capture various data patterns, including the linear
increasing trend and oscillations as given by Eg. (11). However, as observed in Fig. 2, another pattern
emerges, namely the quadratic pattern, indicated by the increase in CO- emissions reaching a peak in 2007,
followed by a decline towards the end of the observation period. To address this limitation, the solution
provided by Eq. (11) is modified by adding a quadratic constant term to Eq. (10), thereby transforming the
homogeneous DE into a non-homogeneous one. This modification aims to enhance the flexibility of the
model solution, allowing it to better represent the quadratic pattern.

The non-homogeneous DE by adding a constant function can be written as:
u"(6) + Bou'(8) + Bru(t) =9, (15)

where 1 is a constant term, the general solution of the non-homogeneous DE consists of two parts: the
homogeneous solution and the particular solution. The homogeneous solution 74 (t) has been derived and is
given by Eq. (11). The particular solution Jp(t) includes the additional contribution from the constant
function .

Assume the solution up (t) takes the constant form W, that is

The particular solution is given by
_Y .
Ip(t) = ==t + Cpit + Cpy, 17)
24

where Cp, , Cp, is the integration constant of the solution. The general solution of the non-homogeneous DE
is given by:

I(&) =Ty () + Ip () ”

= A%e®Pt[(B;¢p — B,&) cos(ét) + (By& + By) sin(ét)] + Cat + Cy + Wtz + Cpyt + Cpy
1

= A%e®[(By¢ — B,§) cos(&t) + (B1€ + By) sin(§t)] + ziﬁlt2 + (Cpy + C3)t + (Cpz + C,)I(1)
=TJy(t) + Ip(0)

— A2ePt[(Byp — B,E) cos(€t) + (ByE + Byh) sin(€)] + Cat + Cy + %ﬂ + Cpyt + Cpy
1
= A%e®[(B,¢ — B,&) cos(&t) + (B1€ + B,) sin(Et)] + Ziﬁltz + (Cpy + C3)t + (Cpy + C,)  (18)

Note that A2(B;¢ — B,&) and A%(B;¢ + B,¢) are constant, they can be denoted as c; and c,, respectively.
Similarly, for %, (Cpy + C3) and (Cpy + C4). Thus, Eq. (18) can be written as:
1

I(t) = c,e®t cos(ét) + c,e®tsin(ét) + c3t? + ¢yt + cs. (19)

The solution given by Eq. (19) represents the general solution of the non-homogeneous DE, capable
of capturing patterns of linear growth, quadratic trends, and oscillation. The parameters c¢; and c, control the
initial amplitude and phase of the oscillations. The expression e ~? representing the change in amplitude of
the oscillations over time. If ¢ < 0, this factor reflects exponential damping, meaning the oscillations
gradually decrease. If ¢ = 0, the amplitude remains constant, while if ¢ > 0, indicating an increase in
amplitude, reflecting unstable dynamics.

Additionally, the sinusoidal functions cos(ét) and sin(ét) serve to describe periodic oscillation
patterns. These functions represent repetitive fluctuations with a specific frequency, where the value of &
determines the speed of the oscillation cycles. These sinusoidal functions allow the model to accurately
capture short-term cyclic dynamics or periodic fluctuations. The combination of these two functions provides
flexibility in adjusting the initial phase and the scale of the oscillations.
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The parameter c; determines the rate of acceleration or deceleration in the model. If ¢; > 0, the
function t? opens upwards, indicating acceleration; conversely, if c; < 0, it indicates deceleration. The
components c, and cs represent the linear relationship between time t and the change in the value of 7(t).

3.2 Model Prediction

The solution given by Eq. (19) is subsequently used for estimation and prediction purposes. [13]
estimates the parameter B and the integration coefficients ¢ separately, where B is estimated through
functional regression by introducing the differential operator, and c is estimated via nonlinear regression.
However, in this paper, all parameters are estimated simultaneously using nonlinear regression to obtain
consistent parameter estimates and simplify the estimation process. We use RStudio to estimate the values of
the parameters [30]. RStudio was selected as the primary computational environment for this study because
it is open-source, user-friendly, and widely adopted in statistical and data science research. Unlike linear
regression, there is no explicit form for parameter estimation in nonlinear regression. The computational
process requires the careful selection of initial values to avoid slow convergence or failure to find the optimal
solution due to being trapped in a local minimum or exhibiting asymptotic behavior. In this case, the initial
values are determined through a numerical approach using the Finite Difference Method. This approach
enables the calculation of function values and their derivatives at time t = 0. Since the order of the DE used
is fourth order, the initial values are determined up to the third-order derivatives.

If B = (B1, B2, €1, C2, C3, €4, C5)' IS the vector of parameters to be estimated, then the initial vector is Binitiar
given by
!
2

T
Binitial = (m) ; 0.25;D7(0) ; D23(0); D?7(0); DI(0); 7(0)

The selection of initial values for each parameter is based on the characteristics and roles of each parameter.
The parameter S, is given by the square of the angular frequency,

p1 = w?,
where w = 2?” T is calculated based on the total observation time and the number of oscillations, where the
total observation time is 74 years, and the number of oscillations is approximately 1.5:

T_74
" 15

2
b= (4;7;3) '

The initial value of B, is selected randomly such that it satisfies the condition: 2 — 48, < 0. The
parameter estimation for the DE solution is presented in Table 2. The estimated parameter results from both
models, namely the model without the quadratic component (Model 1) and the model with the quadratic
component (Model I1), as presented in Table 2, show significant differences. In Model I, the parameter
B, = 0.0174 indicates a lower damping rate of oscillations compared to Model 11 0.0240. The smaller value
of B; in Model | suggests that the amplitude of oscillations in the data decays more slowly over time, which
does not align well with the observed data pattern. Meanwhile, 8, in Model | (—0.2368) is also significantly
smaller in magnitude compared to that in Model Il (—0.0135). The low £, value in Model | indicates that
this model attempts to impose a global pattern, such as acceleration and deceleration, into the oscillatory
component, leading to distorted parameter estimates.

~ 49.33 year.

Thus, the initial value for g, is given by

Table 2. Parameter Estimation

Parameter - Estimation -
Non-Quadratic (Model 1) Quadratic (Model 11)
B1 0.0174 0.0240
B> —0.2368 —0.0135
1 —2.992 x 10° 1.790 x 108
Cy 7.368 x 10° —2.216 x 108

cs - —9.652 x 10°
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Parameter - Estimation -
Non-Quadratic (Model 1) Quadratic (Model 11)
Cq 7.098 x 107 1.158 x 108
Cs 2.451 x 10° 2.167 x 10°
R? 0.946 0.9770
RMSE 0.2531 0.1659
AlIC -191.3517 -251.9000

Ge+09

Ee+09

Legend

4a2+09

CO2 Emission

Observed Data
= With Quadratic Term

= Without Quadratic Term
Je+09

1960 1980 2000 2020
Year

Figure 3. Fitting of the DE Solution to US CO: Emission Data, 1950-2023

Gray dots in Fig. 3 above represent observed data. The red line (with quadratic term) captures both
trend and curvature, while the blue line (without quadratic term) illustrates a simpler trend fit.

The parameters ¢; and c,, representing the initial oscillation amplitudes, also exhibit significant
differences between the two models. In Model 1, ¢; =—2.992 x 10° and ¢, = —2.992 x 10° are
considerably smaller, indicating that this model fails to accurately represent the oscillation amplitudes. The
low amplitude values in Model | suggest an overreliance on linear parameters to capture the global trend,
thereby compromising the model's ability to describe oscillatory fluctuations. Conversely, Model Il
yields c; = 1.790 x 108 and ¢, = —2.216 x 108, demonstrating its superior capability to capture oscillatory
behavior, particularly in the early period (1950-1980), as observed in the data. This highlights Model Il's
improved representation of dynamic fluctuations compared to Model I.

The quadratic component c;t? in Model 11 has a value of c; = —9.652 x 10°, which is crucial for
capturing the patterns of acceleration and deceleration in the global trend. The parameter c5 enables Model
I1 to represent the curved pattern that cannot be captured by the linear and oscillatory components alone. The
absence of the quadratic component in Model | forces the model to rely on the linear parameter c, and
oscillations to describe the trend, resulting in unstable estimates for the other parameters.

The parameter cs, representing the baseline, has a value of cs = 2.451 x 10° in Model | and c¢5 =
2.167 x 10% in Model 11. These values are relatively consistent and indicate that both models are capable of
accurately capturing the initial CO. emission levels. However, Model Il provides a more flexible
representation of the global change patterns. The R? value further highlights the superiority of Model Il (R? =
97.7%) in capturing the overall data pattern. Meanwhile, the Root Mean Squared Error (RMSE) shows that
Model 11 achieves lower error (RMSE = 0.1659) compared to Model | (RMSE=0.2531), indicating a closer
fit to the observed data in terms of raw deviations. Furthermore, the Akaike Information Criterion (AIC) also
supports this finding, where Model 1l yields the lowest value (AIC = —251.90) relative to Model | (AIC =
—191.35). The lower AIC value implies that Model | provides a better trade-off between model complexity
and goodness-of-fit. A visualization of the fitting results for both models to the C0,emission data is shown
in Fig. 3.
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Model Il (red line) demonstrates good performance in capturing the overall data pattern. Model 11 can
follow the acceleration in CO- emissions before 2007 and the deceleration, thereafter, as indicated by the
curved shape in the data. In contrast, Model I (blue line) shows that the model does not capture the oscillatory
pattern as effectively and instead focuses more on the global quadratic trend. Therefore, the best solution
model for modeling CO- emissions is Model I, as given by Eqg. (20).

7(t) = 1.790 x 108 exp(0.0068t) cos(0.1841¢t) — 2.216 x 108 exp(0.0068t) sin(0.1841¢)
—9.652 x 105t2 + 1.158 x 108t + 2.167 x 10°. (20)

Overall, these results indicate that the model is not only capable of accommaodating the long-term dynamics
of CO: emissions but also effectively represents periodic fluctuations with good accuracy. The high
performance of the model makes this model a reliable tool for explaining the historical patterns of CO-
emissions and predicting future trends.

6e+09

Se+09

4e+09

CC; Emission

Legend

® Observed
3e+09
= Forecast

1960 1980 2000 2020
Year

Figure 4. 10-year CO, Emission Prediction with 95% Bootstrap Confidence Interval

Gray dots represent observed historical data (1950-2023). The red line shows the fitted DE model, the
dashed black lines represent the 95% bootstrap confidence interval, and the green line projects emissions for
the forecast period (2024-2033). Fig. 4 shows the projected trajectory of CO. emission with 95% confidence
interval in the US over 10 years ahead, based on Model 1l. The prediction intervals are estimated by using
bootstrap resampling. This method aims to quantify the uncertainty of future predictions from the nonlinear
model without making a specific assumption of error distribution. In this process, errors from the fitted model
were resampled with replacement and added to the fitted values to generate a dataset. The model is trained
on each bootstrap dataset to get new parameter estimates, which are then used to predict future emissions.
This process is repeated 10,000 iterations, and quantiles are used to produce prediction intervals. The
broadening interval band shows increasing uncertainty over time, as is common in extrapolative modeling.
The prediction indicates a potential increase in CO. emissions occurring after 2023, following a relative
decline in the early 2000s. This turning point and the model’s oscillating behavior are compatible with the
dynamic structure described by high-order DE.

This finding is particularly relevant when placed within the broader framework of US environmental
policy, especially the decision to withdraw the US from the Paris climate agreement by President Donald
Trump in early 2025 once again [31]. This withdrawal may impact the effectiveness of global climate
mitigation efforts. Larch and Wanner [32] simulate that the US non-participation would eliminate more than
a third of potential global emissions reduction (up to 31.8% through the reduction of national targets and
6.4% of the indirect impact of carbon leakage). Furthermore, Frumkin et al. [33] highlight that the
implications of US withdrawal go beyond environmental degradation, posing a significant risk to public
health and social resilience. From a geopolitical perspective, Macneil [34] argues that US participation in
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global climate agreements has historically been a source of systemic instability due to domestic political
events such as the recurrent cycle of withdrawal and re-engagement.

3.3 Economic Aspect of CO2 Emissions

As discussed in the previous section, the US CO. emission data predicts a continued increase in
emissions over the next decade. This projected trend, if one would realize, not only impacts the environmental
and health concerns, but also entails considerable economic implications, especially in light of emerging
international carbon pricing policies such as the European Union’s Carbon Border Adjustment Mechanism
(CBAM). From a financial perspective, these future economic costs must be evaluated through the lens of
the time value of money [35], [36], recognizing that the monetary impact of delayed mitigation efforts may
compound over time, making early action not only environmentally prudent but also economically
advantageous.

The CBAM, formally legislated in 2023 and set for full implementation by 2026, imposes carbon tariffs
on imports of carbon-intensive goods into the EU, aligning the carbon cost of imported goods with those
produced under the EU Emissions Trading System (EU ETS). Sectors currently covered include steel,
aluminum, cement, fertilizers, electricity, and hydrogen, industries in which the US is a significant exporter.
Perdana and Vielle [37] emphasize that the absence of a domestic carbon pricing policy aligned with EU
standards would result in greater CBAM prices for US exports in these industries. Their computable general
equilibrium (CGE) modeling shows that unilateral CBAM implementation, particularly under increasing
emission trajectories, reduces the competitiveness of non-EU exports that lack an equal carbon price.

The case in Vietnam further illustrates this point. Chu et al. [38] highlight how even a relatively small
volume of impacted exports may lead to sectoral contraction and reduced export values due to CBAM
application. Applied to the US, which exports billions of covered goods to the EU annually, the financial
impact might be significantly greater, especially for small and medium-sized industries with little
decarbonization capacity. Furthermore, a study by Zhu et al. [39] using GTAP-E simulations shows that the
CBAM deteriorates the terms of trade of nations with growing emissions while improving those of the EU.
This implies a macroeconomic disadvantage for the US if emissions continue to increase and carbon-pricing
policies are not implemented domestically.

From a trade policy perspective, the growing divergence between U.S. emission trends and EU climate
ambitions may trigger adverse trade effects beyond direct CBAM costs. Dobranschi et al. [40] argue that
countries with slower adoption of low-carbon technologies may face output relocation and even retaliatory
trade measures. To mitigate these risks, Elder et al. [41] suggest adopting domestic carbon-pricing or
equivalent mitigation policies, accelerating industrial decarbonization and carbon valuation strategies, and
engaging in climate clubs or bilateral alignment mechanisms with the EU.

Thus, the projected increase in US emissions not only indicates an environmental trend but also implies
an economic burden, directly through CBAM tariffs and indirectly through trade diversion, sectoral
devaluation, and loss of geopolitical economic influence. It is important to note that while the model
accurately captures historical emission patterns, it does not include explicit covariates related to policy
decisions, energy transitions, or economic shocks. Therefore, any interpretation of the forecast considering
political events should be made with caution. While such events may plausibly affect future emissions, this
relationship is not directly modeled in the differential framework used here.

3.4 Future Research

To enhance the robustness of the proposed high-order differential equation model, future research will
extend the framework by incorporating spatial dimensions that reflect the interconnected nature of regional
emission dynamics. Specifically, the Generalized Space-Time Autoregressive (GSTAR) model [42], [43] will
be integrated to capture both spatial dependencies and temporal dynamics across regions. This approach
allows the modeling of emission interdependencies between neighboring states or regions, acknowledging
that environmental and economic activities in one location can influence others. By introducing spatial
autoregressive terms, the GSTAR model can account for regional emission and improve predictive accuracy
in a geographically disaggregated setting. This enhancement is particularly relevant for evaluating localized
policy impacts and identifying regional emission hotspots under various regulatory scenarios.

In addition to spatial considerations, multivariate categorical analysis will be incorporated using the
Burt matrix [44], which effectively handles complex interactions among discrete socio-economic and policy
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variables. Variables such as energy portfolio composition, industrial activity types, and regulatory stringency
levels will be encoded into this matrix structure to explore their joint influence on emission trends. The Burt
matrix serves as a foundation for applying techniques like Multiple Correspondence Analysis (MCA), which
can reveal latent associations and clusters within the categorical data. Integrating this analysis into the overall
modeling framework will enable researchers to systematically identify structural factors that contribute to
regional differences in emission behaviors and support policy differentiation based on socio-economic
contexts.

Finally, to address uncertainty and quantify the risks associated with future emission trajectories,
probability-based modeling will be incorporated into the analytical framework. Such models provide an
approach to characterize the likelihood of various emission outcomes under different policies, technological,
or economic scenarios. By embedding stochastic components into the differential and spatio-temporal
structures, this extension allows for the estimation of failure probabilities [45], including the risk of exceeding
carbon targets or policy thresholds, and enhances the capacity of the model to support robust, risk-informed
decision-making. This probabilistic aspect introduces a critical dimension of realism, enabling more
comprehensive assessments of environmental and regulatory outcomes in the face of uncertainty.

4. CONCLUSION

This study successfully developed a high-order differential equation model capable of capturing three
key features in the dynamics of CO: emissions in the US: (1) a long-term linear trend, (2) a quadratic
component indicating acceleration or deceleration in the rate of emission growth, and (3) oscillatory behavior
reflecting short-term periodic fluctuations. By integrating nonlinear estimation techniques into the model
formulation, the parameters were empirically fitted to historical emission data with a high degree of accuracy
and statistical significance. The fitting results show that the proposed model not only accurately fits historical
emission trajectories but also offers strong predictive capacity for future emission dynamics. The model’s
projections suggest a continued increase in emissions over the next decade, with important implications for
environmental policy, especially regarding international mechanisms such as the European Union’s Carbon
Border Adjustment Mechanism (CBAM). Methodologically, this study highlights the effectiveness of
combining high-order differential equation structures with nonlinear parameter estimation to model the
complex temporal behavior of carbon emissions. As a flexible and extensible modeling framework, it can be
further enhanced by incorporating exogenous drivers through integration with established analytical models
such as STIRPAT. Such integration would support more comprehensive scenario analyses and inform policy
design aimed at mitigating carbon emissions in both domestic and global contexts.

Author Contributions

Udjianna S. Pasaribu: Conceptualization, methodology, Formal Analysis, Writing-Original Draft, Writing-
Review and Editing, Funding Acquisition. Adilan W. Mahdiyasa: Conceptualization, Data Curation, Formal
Analysis, Writing-Original Draft, Writing-Review and Editing. Asrul Irfanullah: Formal Analysis,
Methodology, Validation, Software, Writing-Original Draft, Writing-Review and Editing. All authors
discussed the results and contributed to the final manuscript.

Funding Statement

This work was funded by ITB Research Programme 2025 “Riset Unggulan ITB” with grant number
841/1T1.B07.1/TA.00/2025

Acknowledgment
We would like to thank four anonymous reviewers for their insightful and constructive comments.

Declarations
The authors declare no competing interests.



BAREKENG: J. Math. & App., vol. 20(2), pp. 1215- 1228, Jun, 2026. 1227

Declaration of Generative Al and Al-assisted Technologies

Generative Al tools (e.g., ChatGPT) were used solely for language refinement, including grammar, spelling,
and clarity. The scientific content, analysis, interpretation, and conclusions were developed entirely by the
authors. All final text was reviewed and approved by the authors.

REFERENCES

(1]
(2]

(3]

(4]

5]

(6]

[7]

(8]

(0]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

WMO, “STATE OF THE GLOBAL CLIMATE 2023,” World Meteorological Organization, 2024.

D. K. Espoir and R. Sunge, “CO2 EMISSIONS AND ECONOMIC DEVELOPMENT IN AFRICA: EVIDENCE FROM A
DYNAMIC SPATIAL PANEL MODEL,” Journal of Environmental Management, vol. 300, p. 113617, 2021. doi:
https://doi.org/0.1016/j.jenvman.2021.113617.

A. W. Mahdiyasa, D. J. Large, B. P. Muljadi, M. Icardi, and S. Triantafyllou, “MPEAT—A FULLY COUPLED
MECHANICAL-ECOHYDROLOGICAL MODEL OF PEATLAND DEVELOPMENT,” Ecohydrology, vol. 15, no. 1, p.
€2361, 2022. doi: https://doi.org/10.1002/ec0.2361.

A. W. Mahdiyasa, D. J. Large, M. Icardi, and B. P. Muljadi, “MPEAT2D — A FULLY COUPLED MECHANICAL-
ECOHYDROLOGICAL MODEL OF PEATLAND DEVELOPMENT IN TWO DIMENSIONS,” Earth Surface Dynamics,
vol. 12, no. 4, pp. 929-952, 2024. doi: https://doi.org/10.5194/esurf-12-929-2024.

F. Ren and D. H. Long, “CARBON EMISSION FORECASTING AND SCENARIO ANALYSIS IN GUANGDONG
PROVINCE BASED ON OPTIMIZED FAST LEARNING NETWORK,” J Cleaner Production, vol. 317(6), 2021. doi:
https://doi.org/10.1016/j.jclepro.2021.128408.

A. W. Mahdiyasa, D. J. Large, B. P. Muljadi, and M. Icardi, “MODELLING THE INFLUENCE OF MECHANICAL-
ECOHYDROLOGICAL FEEDBACK ON THE NONLINEAR DYNAMICS OF PEATLANDS,” Ecological Modelling, vol.
478, p. 110299, 2023. doi: https://doi.org/10.1016/j.ecolmodel.2023.110299.

U. Mukhaiyar et al., “THE GENERALIZED STAR MODELLING WITH THREE-DIMENSIONAL OF SPATIAL
WEIGHT MATRIX IN PREDICTING THE INDONESIA PEATLAND’S WATER LEVEL,” Environmental Sciences
Europe, vol. 36, no. 1, p. 180, 2024. doi: https://doi.org/10.1186/s12302-024-00979-6.

M. Gao, H. Yang, Q. Goh, “ANOVEL METHOD FOR CARBON EMISSION FORECASTING BASED ON GOMPERTZ’S
LAW AND FRACTIONAL GREY MODEL: EVIDENCE FROM AMERICAN INDUSTRIAL SECTOR,” Renewable
Energy, vol. 181, pp. 803-819, Jan. 2022. doi: https://doi.org/10.1016/j.renene.2021.09.072.

A. P. Ozora Situngkir, A. W. Mahdiyasa, K. N. Sari, and U. S. Pasaribu, “MODELLING PEATLAND FIRE RISK AND
ECONOMIC LOSSES IN INDONESIA,” in 2025 5th International Conference on Innovative Research in Applied Science,
Engineering and Technology (IRASET), May 2025, pp. 1-6. doi: https://doi.org/10.1109/IRASET64571.2025.11008022.

A. W. Mahdiyasa, U. S. Pasaribu, and B. P. Muljadi, “MECHANICAL STABILITY MODELLING OF PEATLAND WITH
COUPLED HYDRO-MECHANICAL APPROACH,” in 2025 5th International Conference on Innovative Research in
Applied Science, Engineering and Technology (IRASET), May 2025, pp. 1-7. doi:
https://doi.org/10.1109/IRASET64571.2025.11008015.

K. N. Sari, U. S. Pasaribu, U. Mukhaiyar, A. W. Mahdiyasa, D. N. Choesin, and F. Al’Muzakki, “PREDICTION OF
GROUNDWATER LEVELS TO MITIGATE THE RISK OF INCREASED CARBON EMISSIONS DUE TO PEATLAND
FIRES THROUGH ANISOTROPIC SEMIVARIOGRAM MODELING WITH OUTLIER MODIFICATION,” in
Proceedings of International Conference on Computers and Industrial Engineering, (CIE), 2024, pp. 1761-1774.

EEA, “ATMOSPHERIC GREENHOUSE GAS CONCENTRATION,” European Environment Agency, 2024.
https://www.eea.europa.eu/en/analysis/indicators/atmospheric-greenhouse-gas-concentrations?activeAccordion=ecdb3bcf-
bbe9-4978-b5¢f-0b136399d9f8 (accessed Aug. 13, 2024).

R. C. Kafle, K. P. Pokhrel, N. Khanal, and C. P. Tsokos, “DIFFERENTIAL EQUATION MODEL OF CARBON DIOXIDE
EMISSION USING FUNCTIONAL LINEAR REGRESSION,” Journal of Applied Statistics, vol. 46, no. 7, pp. 1246-1259,
2019. doi: https://doi.org/10.1080/02664763.2018.1542667.

AON, “CLIMATE AND CATASTROPHE INSIGHT,” 2024. [Online]. Available: https://assets.aon.com/-
/media/files/aon/reports/2024/climate-and-catastrophe-insights-report.pdf

NCEI, “U.S. BILLION-DOLLAR WEATHER AND CLIMATE DISASTERS,” NOAA National Centers for Environmental
Information, 2024. https://www.ncei.noaa.gov/access/billions / (accessed Jan. 09, 2024).

Z. Wei, K. Wei, and J. Liu, “DECOUPLING RELATIONSHIP BETWEEN CARBON EMISSIONS AND ECONOMIC
DEVELOPMENT AND PREDICTION OF CARBON EMISSIONS IN HENAN PROVINCE: BASED ON TAPIO
METHOD AND STIRPAT MODEL,” Environmental Science and Pollution Research, vol. 30, no. 18, pp. 52679-52691,
2023. doi: https://doi.org/10.1007/s11356-023-26051-z.

S. Wang, T. Zhao, H. Zheng, and J. Hu, “THE STIRPAT ANALYSIS ON CARBON EMISSION IN CHINESE CITIES: AN
ASYMMETRIC LAPLACE DISTRIBUTION MIXTURE MODEL,” Sustainability (Switzerland), vol. 9, no. 12, 2017. doi:
https://doi.org/10.3390/su9122237.

E. M. Farouki and S. Aissaoui, “NEXUS BETWEEN ECONOMY, RENEWABLE ENERGY, POPULATION AND
ECOLOGICAL FOOTPRINT: EMPIRICAL EVIDENCE USING STIRPAT MODEL IN MOROCCO,” Procedia Computer
Science, vol. 236, pp. 67-74, 2024. doi: https://doi.org/10.1016/j.procs.2024.05.005.

D. C. Pattak et al., “THE DRIVING FACTORS OF ITALY’S CO2 EMISSIONS BASED ON THE STIRPAT MODEL:
ARDL, FMOLS, DOLS, AND CCR APPROACHES,” Energies, vol. 16, no. 15, pp. 1-21, 2023. doi:
https://doi.org/10.3390/en16155845.

J. M. Montero, G. Fernandez-Avilés, and T. Laureti, “A LOCAL SPATIAL STIRPAT MODEL FOR OUTDOOR NOX
CONCENTRATIONS IN THE COMMUNITY OF MADRID, SPAIN,” Mathematics, vol. 9, no. 6, 2021. doi:
https://doi.org/10.3390/math9060677.

C. Rao, Q. Huang, L. Chen, M. Goh, and Z. Hu, “FORECASTING THE CARBON EMISSIONS IN HUBEI PROVINCE



https://doi.org/0.1016/j.jenvman.2021.113617
https://doi.org/10.1002/eco.2361
https://doi.org/10.5194/esurf-12-929-2024
https://doi.org/10.1016/j.jclepro.2021.128408
https://doi.org/10.1016/j.ecolmodel.2023.110299
https://doi.org/10.1186/s12302-024-00979-6
https://doi.org/10.1016/j.renene.2021.09.072
https://doi.org/10.1109/IRASET64571.2025.11008022
https://doi.org/10.1109/IRASET64571.2025.11008015
https://doi.org/10.1080/02664763.2018.1542667
https://doi.org/10.1007/s11356-023-26051-z
https://doi.org/10.3390/su9122237
https://doi.org/10.1016/j.procs.2024.05.005
https://doi.org/10.3390/en16155845
https://doi.org/10.3390/math9060677

1228

[22]

[23]

[24]

[25]

[26]

[27]

(28]
[29]
[30]
[31]
(32]
[33]
[34]

(35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Pasaribu, etal. DYNAMIC MODELING OF CARBON DIOXIDE EMISSIONS USING HIGH-ORDER ...

UNDER THE BACKGROUND OF CARBON NEUTRALITY: A NOVEL STIRPAT EXTENDED MODEL WITH RIDGE
REGRESSION AND SCENARIO ANALYSIS,” Environmental Science and Pollution Research, vol. 30, no. 20, pp. 57460-
57480, 2023. doi: https://doi.org/10.1007/s11356-023-26599-w.

T. J. Goreau, “BALANCING ATMOSPHERIC CARBON DIOXIDE,” AMBIO, vol. 19, pp. 230-236, 1990, [Online].
Available: https://www.jstor.org/stable/4313702

C. P. Tsokos and Y. Xu, “MODELING CARBON DIOXIDE EMISSIONS WITH A SYSTEM OF DIFFERENTIAL
EQUATIONS,” Nonlinear Analysis, Theory, Methods and Applications, vol. 71, no. 12, pp. €1182-e1197, 2009. doi:
https://doi.org/10.1016/j.na.2009.01.146.

L. Han, H. Sui, and Y. Ding, “MATHEMATICAL MODELING AND STABILITY ANALYSIS OF A DELAYED
CARBON ABSORPTION-EMISSION MODEL ASSOCIATED WITH CHINA’S ADJUSTMENT OF INDUSTRIAL
STRUCTURE,” Mathematics, vol. 10, no. 17, 2022. doi: https://doi.org/10.3390/math10173089.

P. Donald, M. Mayengo, and A. G. Lambura, “MATHEMATICAL MODELING OF VEHICLE CARBON DIOXIDE
EMISSIONS,” Heliyon, vol. 10, no. 2, p. €23976, 2024. doi: https://doi.org/10.1016/j.heliyon.2024.e23976.

I. Mukhartova, J. Kurbatova, D. Tarasov, R. Gibadullin, A. Sogachev, and A. Olchev, “MODELING TOOL FOR
ESTIMATING CARBON DIOXIDE FLUXES OVER A NON-UNIFORM BOREAL PEATLAND,” Atmosphere, vol. 14,
no. 4, pp. 1-21, 2023. doi: https://doi.org/10.3390/atmos14040625.

R. Haberman, MATHEMATICAL MODEL: MECHANICAL VIBRATIONS, POPULATION DYNAMICS, AND TRAFFIC
FLOW. AN INTRODUCTION TO APPLIED MATHEMATICS. New Jersey: SIAM, 1998. doi:
https://doi.org/10.1137/1.9781611971156

G. A F. Seber and C. J. Wild, NONLINEAR REGRESSION. Canada: Wiley-Interscience, 2003.doi:
https://doi.org/10.1002/9780471722199

A. Bjorck, NUMERICAL METHOD FOR LEAST SQUARES PROBLEM. Siam, 1996. doi:
https://doi.org/10.1137/1.9781611971484.

P. Team, “RSTUDIO: INTEGRATED DEVELOPMENT ENVIRONMENT FOR R.” Posit Software, PBC, Boston, 2025.
[Online]. Available: http://ww.posit.co/

E. Lazarou and G. Leclerc, “US WITHDRAWAL FROM THE PARIS CLIMATE AGREEMENT AND FROM THE WHO,”
2025.

M. Larch and J. Wanner, “THE CONSEQUENCES OF NON-PARTICIPATION IN THE PARIS AGREEMENT,” European
Economic Review, vol. 163, 2024. doi: https://doi.org/10.1016/j.euroecorev.2024.104699.

H. Frumkin, A. Haines, and M. Rao, “THE USWITHDRAWAL FROM THE PARIS CLIMATE AGREEMENT: COULD
IT TRUMP PROGRESS ON CLIMATE CHANGE AND HEALTH?,” London, 2025. doi: https://doi.org/10.1136/bmj.r185.
R. MacNeil, “THE CASE FOR A PERMANENT US WITHDRAWAL FROM THE PARIS ACCORD,” AUSTRALIAN
JOURNAL OF INTERNATIONAL AFFAIRS, 2025. doi: https://doi.org/10.1080/10357718.2025.2482701.

A. Widyawan, U. S. Pasaribu, Henintyas, and D. Permana, “ESTIMATION OF CUSTOMER LIFETIME VALUE OF A
HEALTH INSURANCE WITH INTEREST RATES OBEYING UNIFORM DISTRIBUTION,” 2015. doi:
https://doi.org/10.1063/1.4936458

A. W. Mahdiyasa, U. S. Pasaribu, and K. N. Sari, “MODELING CUSTOMER LIFETIME VALUE WITH MARKOV
CHAIN IN THE INSURANCE INDUSTRY,” Barekeng,  vol. 19, no. 1, 2025. doi:
https://doi.org/10.30598/barekengvol19iss1pp687-696.

S. Perdana and M. Vielle, CARBON BORDER ADJUSTMENT MECHANISM IN THE TRANSITION TO NET-ZERO
EMISSIONS: COLLECTIVE IMPLEMENTATION AND DISTRIBUTIONAL IMPACTS, vol. 25. Springer Japan, 2023. doi:
https://doi.org/10.1007/s10018-023-00361-5.

H. L. Chu et al., “THE ECONOMIC IMPACTS OF THE EUROPEAN UNION’S CARBON BORDER ADJUSTMENT
MECHANISM ON DEVELOPING COUNTRIES: THE CASE OF VIETNAM,” Fulbright Review of Economics and Policy,
vol. 4, no. 1, pp. 1-17, 2024. doi: https://doi.org/10.1108/FREP-03-2024-0011.

J. Zhu, Y. Zhao, and L. Zheng, “THE IMPACT OF THE EU CARBON BORDER ADJUSTMENT MECHANISM ON
CHINA’S EXPORTS TO THE EU,” Energies, vol. 17, no. 2, 2024. doi: https://doi.org/10.3390/en17020509.

M. Dobranschi, D. Nerudovd, V. Solilova, and K. Stadler, “CARBON BORDER ADJUSTMENT MECHANISM
CHALLENGES AND IMPLICATIONS: THE CASE OF VISEGRAD COUNTRIES,” Heliyon, vol. 10, 2024. doi:
https://doi.org/10.1016/j.heliyon.2024.e30976.

M. Elder, S. Hopkinson, X. Zhou, Y. Arino, and K. Matsushita, “IMPLICATIONS OF THE EU’S CARBON BORDER
ADJUSTMENT MECHANISM (CBAM) FOR ASEAN: AN ARGUMENT FOR MORE AMBITIOUS CARBON
PRICING,” 2025.

U. Mukhaiyar, A. W. Mahdiyasa, T. Prastoro, B. C. Suherlan, U. S. Pasaribu, and S. W. Indratno, “SPATIAL AND TIME
SERIES MODELLING FOR THE GROUNDWATER LEVEL OF PEATLANDS IN RIAU AND CENTRAL
KALIMANTAN, INDONESIA,” in Decision Mathematics, Statistical Learning and Data Mining, W. F. Wan Yaacob, Y. B.
Wah, and O. U. Mehmood, Eds. Springer Nature Singapore, 2024, pp. 89-104. doi: https://doi.org/10.1007/978-981-97-3450-
4 7

U. Mukhaiyar, A. W. Mahdiyasa, K. N. Sari, and N. T. Noviana, “THE GENERALIZED STAR MODELING WITH
MINIMUM SPANNING TREE APPROACH OF SPATIAL WEIGHT MATRIX,” Frontiers in Applied Mathematics and
Statistics, vol. 10, 2024. doi: https://doi.org/10.3389/fams.2024.1417037

A. W. Mahdiyasa and U. S. Pasaribu, “MULTIPLE CORRESPONDENCE ANALYSIS USING BURT MATRIX: ASTUDY
OF BANDUNG INSTITUTE OF TECHNOLOGY STUDENT CHARACTERISTICS,” in IOP Conference Series: Materials
Science and Engineering, 2019, vol. 598, no. 1, p. 12012. doi: https://doi.org/10.1088/1757-899X/598/1/012012.

A. W. Mahdiyasa and A. Grahito, “PROBABILITY OF FAILURE MODEL IN MECHANICAL COMPONENT BECAUSE
OF FATIGUE,” in Journal of Physics: Conference Series, 2019, vol. 1245, no. 1, p. 12053. doi: https://doi.org/10.1088/1742-
6596/1245/1/012053



https://doi.org/10.1007/s11356-023-26599-w
https://doi.org/10.1016/j.na.2009.01.146
https://doi.org/10.3390/math10173089
https://doi.org/10.1016/j.heliyon.2024.e23976
https://doi.org/10.3390/atmos14040625
https://doi.org/10.1137/1.9781611971156
https://doi.org/10.1002/9780471722199
https://doi.org/10.1137/1.9781611971484
https://doi.org/10.1016/j.euroecorev.2024.104699
https://doi.org/10.1136/bmj.r185
https://doi.org/10.1080/10357718.2025.2482701
https://doi.org/10.1063/1.4936458
https://doi.org/10.30598/barekengvol19iss1pp687-696
https://doi.org/10.1007/s10018-023-00361-5
https://doi.org/10.1108/FREP-03-2024-0011
https://doi.org/10.3390/en17020509
https://doi.org/10.1016/j.heliyon.2024.e30976
https://doi.org/10.1007/978-981-97-3450-4_7
https://doi.org/10.1007/978-981-97-3450-4_7
https://doi.org/10.3389/fams.2024.1417037
https://doi.org/10.1088/1757-899X/598/1/012012
https://doi.org/10.1088/1742-6596/1245/1/012053
https://doi.org/10.1088/1742-6596/1245/1/012053

	DYNAMIC MODELING OF CARBON DIOXIDE EMISSIONS USING HIGH-ORDER DIFFERENTIAL EQUATIONS AND NONLINEAR ESTIMATION
	1. INTRODUCTION
	2. RESEARCH METHODS
	2.1 DE’s Modeling for Various Cases
	2.2 Nonlinear Estimation
	2.3 Data

	3. RESULTS AND DISCUSSION
	3.1 Modelling Approach
	3.2 Model Prediction
	3.3 Economic Aspect of CO₂ Emissions
	3.4 Future Research

	4. CONCLUSION
	Author Contributions
	Funding Statement
	Acknowledgment
	Declarations
	Declaration of Generative AI and AI-assisted Technologies
	REFERENCES


