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1. INTRODUCTION

Real numbers are represented in a computer using floating-point numbers, which means they are stored
in a finite format that approximates exact values using a fixed number of bits. Due to this finite precision,
floating-point arithmetic is susceptible to rounding errors, truncation, and loss of significance, particularly in
iterative or large-scale computations. Therefore, controlling and optimizing these errors in numerical
computations is very important to get the desired precision [1]. R, as a programming language designed for
numerical analysis, provides powerful tools for computation [2]. However, it is not immune to truncation
errors, which can lead to significant inaccuracies. To address this, symbolic computation software such as
Yacas (Yet Another Computer Algebra System) [3] and Wolfram Alpha [4][5] can be used. While Wolfram
Alpha offers more advanced features, it comes at a cost, making it less accessible for R users, who require
symbolic computation. The following simple example illustrates how numerical operation errors occur due
to floating-point precision limitations in R [6][7].

A simple numeric example demonstrates that an arithmetic operation, which theoretically should yield
zero, instead produces a very small nonzero value. This discrepancy arises from floating-point representation
and rounding errors [8]. Although such errors may appear negligible in isolation, they can accumulate and
significantly affect results in large-scale computations.

Another important issue occurs when direct equality comparisons are used. A condition that should
logically evaluate as true may instead be evaluated as false due to tiny precision errors, leading to logical
mistakes in programs. Similarly, R may fail to compute the exact inverse of certain matrices because
fractional values such as 4/9 or 1/3 are automatically converted into decimal approximations. When the matrix
is multiplied by its inverse, the result deviates slightly from the identity matrix, producing small numerical
errors, suchas —1.110 x 1071¢ and 5.551 x 10~7, instead of exact zeros [9]. While these errors are small,
they can accumulate in iterative computations, as happened in the Gauss-Jordan row elimination [10]. For
computations requiring high precision, these numerical errors can be problematic.

Errors due to numerical computation can be fatal, especially when the program involves conditional
branching (if-else statement). A condition in the if-else statement that should be TRUE may instead be
evaluated as FALSE due to numerical computation errors [6]. This occurs due to rounding errors in numerical
computation. The output of a matrix operation can be incorrect due to these errors. Although the error may
be small, if the computation involves multiplication with very large numbers, the error can propagate
significantly. An example of this can be seen in Fig. 2. Therefore, it is crucial to develop techniques to
mitigate such issues.

This paper focuses on mitigation techniques for floating-point errors that arise in R computations using
the Ryacas package. The selected computational case is solving a system of linear equations. The solution to
this system is not merely obtained using the built-in solve function in R, but through a step-by-step and
interactive computation. Thus, the output of this research is a custom R function for performing interactive
symbolic computations step by step using the Ryacas package. This R function is an improvement over
conventional interactive numerical computation functions that are prone to floating-point errors [11].

In this research, we propose a solution to mitigate and even eliminate errors arising from numerical
operations, particularly for R users. This paper aims to: 1) Develop a procedure in R that significantly reduces
or eliminates numerical errors, particularly in row operations used to solve linear systems. 2) Explore the
capabilities of the Ryacas and Ryacas0 packages in handling symbolic computations within R.

2. RESEARCH METHODS

This research uses literature and quantitative methods with descriptive and explanatory approaches.
The following are the detailed steps of our research [12][13]:

1. Literature Review:

a. Review up-to-date references about Yacas and Ryacas.

b. Review up-to-date references about R programming features to get an interactive output.
System Design: Construct a pseudo-code describing the system we want to model.

3. Implementation: Build R scripts as simple as possible.

N
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4. Analyze the outputs and validate.
5. Go back to step 3 if the output does not satisfy the requirement.

In the first two steps, we will thoroughly explore the Yacas and Ryacas libraries. We will apply these
libraries to execute row elementary operations. Although R has a built-in function to solve linear systems,
the primary goal of this research is not only to find the solution but to observe the step-by-step process of
obtaining it. This allows for careful identification of errors that may arise at each stage. In the third step, we
will construct a flowchart and write pseudocode to clearly explain our methodology. We will then develop
the corresponding R scripts in Step 4. After the scripts are created, Step 5 will involve running the code,
verifying its logical consistency, and analyzing the outputs. Any errors produced will be investigated and
corrected as needed. Finally, we will compare our results with those obtained by other methods. We will
revisit Step 3 if necessary.

This research limits its computation to only obtaining a numerical solution of a mathematical operation
and obtaining an approximate value, which is closer to the exact value. We focus on developing algebraic
computation methods, particularly for solving systems of linear equations. In this study, we consider only
systems that have a unigue solution, and ignore cases where the system has either infinitely many solutions
or no solution. The R script is designed to facilitate interactive computation, allowing users to observe each
step of the operation [14]. This approach can also be applied to observe the accumulation of numerical errors
at each step. The outcome of this research is an R script, which enables anyone interested to explore, modify,
and extend the method for further applications.

As previously mentioned, the algebraic operations discussed in this paper are those involved in
obtaining solutions for linear systems. The computation does not discuss whether the system possesses a
unique solution, multiple solutions, or no solution. Our script is designed to provide an interactive, step-by-
step computation [12], with the primary goal of enabling users to identify errors that may arise at each stage
of the calculation. We hope that the R script we have produced will be useful and can be further explored and
improved as needed.

Additionally, we note that symbolic computation, as implemented via Ryacas, typically requires more
processing time compared to standard numerical methods in R [15]. This is due to the overhead of
manipulating algebraic expressions rather than raw numbers. However, the symbolic approach provides
clearer insight into each computational step, which is valuable for identifying rounding errors and
understanding the structure of the solution. Numerical methods, while faster and more scalable, may obscure
intermediate steps and accumulate errors silently. Our approach balances these aspects by using symbolic
computation selectively, where transparency and error tracking are most critical.

Symbolic computation is also particularly valuable in domains where accuracy and transparency of
intermediate steps are critical. For instance, in cryptography, symbolic manipulation ensures precise algebraic
transformations that underpin secure encryption algorithms [16]. In aerospace engineering, symbolic methods
are used to derive exact control laws and verify system stability analytically [17]. Financial modeling also
benefits from symbolic approaches, especially in sensitivity analysis and formula validation, where rounding
errors can lead to significant misinterpretations [18]. These examples illustrate the broader relevance of our
symbolic approach beyond numerical linear algebra.

While this study focuses on linear systems with unique solutions, the symbolic framework employed—
particularly via the caracas package—can be extended to higher-dimensional systems and non-linear
equations [19]. Symbolic matrix operations and equation manipulation are inherently scalable, and symbolic
representations of non-linear models can support exact transformations and analytical insights. These
extensions, while beyond the current scope, offer promising directions for future work.

3. RESULTS AND DISCUSSION

Suppose N is the true value of a certain quantity and n is its approximate value, then
N=n+e, €Y

where e is the error term. Numerical computations using computers, especially those involving real numbers,
will always produce approximations and therefore produce errors. One of the primary reasons for this is the
floating-point representation of real numbers, which has a finite precision. In the following illustration, we
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show how an error appears in a very simple computation in R. We use the default parameter options(digits =
7).

> x <= 1/3 + 1/2

> X
[1] 0.8333333
> X - 5/6

[1] -1.110223e-16

Figure 1. R Coding to lllustrate How Errors Arise in Very Simple Calculations in R

Based on Fig. 1, it can be seen that the result of summing two real numbers, 1/3 and 1/2, which yields
0.8333333—an approximation of 5/6. The error of this approximation is —1.110223 x 1076, If we are not
careful in applying arithmetic operations, the successive computations can cause the results to deviate
significantly from the desired results. This happens because R, like most programming languages, relies on
approximate numerical representations rather than exact values [20]. Suppose we continue the operation as
follows:

> x <- (1/3 + 1/2 - 5/6)
>y <- X * 10A16

>y

[1] -1.110223

Figure 2. R Coding to lllustrate How Errors Can Become So Wildly Distorted

In Fig. 2, it is shown that the result of the computation is —1.110223, which deviates significantly
from 0, the expected exact result. If the value of x from the previous computation can be preserved with
greater precision, a more accurate outcome could be achieved.

A library that allows symbolic computation in R, called Ryacas, has been developed by Mikkel
Andersen [21]. Ryacas serves as an interface between R and Computer Algebra software called Yacas (Yet
Another Computer Algebra System), allowing users to perform algebraic manipulations and exact arithmetic
within the R environment. With this library, R users can send unprocessed Yacas strings and other R objects
to the Yacas process and receive exact results in return. Ryacas also supports high-precision arithmetic and
symbolic computations within R. As a result, R users can preserve the exact value throughout their
computations, minimizing numerical errors as long as arithmetic operations are performed.

We will revisit our previous example, which demonstrated numerical errors, and recompute it using the
Ryacas and Ryacas0 libraries (an earlier version of Ryacas) as follows

> library(Ryacas)

> library(Ryacas0)

> rm(Tist = 1s())

> "(1/3 + 1/2 - 5/6) * 10A1le" %>%
- yac_expr() %>% eval()

[1] O

Figure 3. R Code to lllustrate the Use of the Ryacas Package to Correct Floating Point Errors

Based on Fig. 3, it is shown that the computation now appears correct, as the resulting error is zero. More
details of Ryacas can be accessed at https://r-cas.qgithub.io/ryacas/.

Solving a system of linear equations using Gaussian elimination involves a sequence of arithmetic
operations, including row exchanges, row multiplications by a constant, and row additions with a multiple of
another row [22]. These operations are performed consecutively, providing a clear illustration of how
numerical errors can accumulate at each step [23]. The more steps required, the greater the accumulation of
errors, particularly in large-dimensional systems [24].

In this paper, we are going to design an R script that solves systems of linear equations interactively
and step by step. While R provides the built-in solve() function for this purpose, it does not allow users to
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closely observe each arithmetic operation performed during the computation. Additionally, modifying or
improving the built-in function to improve numerical accuracy (minimizing errors) is difficult.

The user-defined function called OBE() has been developed to solve systems of linear equations
interactively and step by step. This function is based on the Gauss-Jordan elimination method, allowing R
users to choose which row operation to perform at each step. The final output is a vector containing the
numerical solution of the linear system [11]. The OBE() function will be used to solve systems of linear
equations, and then we will evaluate the accumulated error resulting from consecutive arithmetic operations.
The full script of OBE() is provided in Appendix 1 (OBE).R. Additionally, the corresponding pseudocode
can be accessed (pseudo_code.pdf), which outlines the step-by-step logic of the computational process.

Suppose the system has dimension k, meaning the solution vector is also k-dimensional. Consequently,
we will obtain k approximate solutions. In this research, we use systems with known exact solutions, allowing
us to compute the numerical error. The error metric we adopt is the maximum relative error, defined as the
largest relative error among all elements in the solution vector (e,,4+)-

(xtrue,i - xapprox,i)

emax = m_ax{ X 100%} 2)
l

xtrue,i

The above function will be used as long as the true solution is not zero. Theoretically, the maximum
relative error (emax) Can be reduced if we preserve exact values at each step, eliminating truncation errors
caused by floating-point representation.

The OBE function is designed with the following three core functions[25][26]:

1. swap() — Performs row exchange.
2. times() — Multiplies a row by a constant
3. multiple() — Adds a multiple of one row to another.

Each of these functions updates the global variable x, ensuring that every change in x is immediately
reflected without the need to store intermediate results in a separate object or variable. This approach
maintains continuity in computations.

As an illustration of the OBE() function, we consider the following system:

600x + 800y = 200 3)
30.001x + 40.002y = 10.001

Initially, we will define the numerical precision up to 15 significant digits, which is commonly used in
floating-point arithmetic. The maximum precision allowed is 20 significant digits, options(digits = 15). We
are then going to define an augmented matrix derived from the above linear system. We can define this matrix
using R.

> Av <- matrix(c(600, 800, 200,

- 30001/1000, 40002/1000, 10001/1000),
- nrow=2, byrow=TRUE)

> print(Av, digits = 15)

[,1] [,2] [,3]

[1,] 600.000 800.000 200.000

[2,] 30.001 40.002 10.001
Figure 4. R Code to Create Av Augmented Matrix

The matrix Av, as illustrated in Fig. 4, is defined as the augmented matrix corresponding to the system
in Eq. (3), where the right-hand side of Eq. (3) is represented by the third column of Av (Av[,3]). This matrix
serves as the input for the OBE() function and is stored in the object OprRow, as defined below.

> OprRow <- OBE(x = Av, row = TRUE)
Figure 5. The Use of the OBE Function with Input is the Av Matrix and Stored in the OprRow Object

The use of the OBE function, illustrated in Fig. 5, involves a Boolean argument called row. When row
is set to TRUE, the function performs row elimination. To obtain the solution of the system in Eq. (3), we
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apply the three fundamental row elementary operations previously defined (swap(), times(), and multiple()).
The R scripts implementing these operations can be found in Appendix 2.R.

At the final step, we obtain a solution as shown in Fig. 6 below.

> solution <- OprRow$output()$Equivalent.Matrix[, 3]
> solution
[1] -1.00000000000710 1.00000000000533

Figure 6. The Result of the Last Step of Elementary Row Operations Using the OBE Function

The solution to the system of linear equations presented in Eq. (3) is shown in Fig. 6, yielding x =
—1.00000000000710 and y = 1.00000000000433, whereas the exact values are x =1 and y = 1. The
true value of the solution is shown in Fig. 7 below.

> X <- -1; y <- 1
> true.val <- c(x, y) # [1] -1 1
> true.val
[1] -1 1
Figure 7. Defining True Values with R Code

The R code used to define the exact values of x and y, created as a vector and stored in an object named
true.val, is shown in Fig. 7.

The absolute error is computed as follows (Fig. 8 below).

> Error <- abs(solution - true.val)
> Error
[1] 7.10187464392220e-12 5.32907051820075e-12

Figure 8. The Absolute Error

The R code used to compute the absolute error with the built-in abs function is presented in Fig. 8. The
absolute error values for the solutions of x and y are 7.10187464392220 x 1072 and
5.32907051820075 x 1012, respectively. These values are stored in a numeric vector object named Error.
The maximum error is shown in Fig. 9 below,

> max(Error)
[1] 7.1018746439222e-12

Figure 9. The Absolute Maximum Error

The R code used to obtain the maximum error by using the built-in max function is displayed in Fig. 9,
yielding a value of 7.1018746439222 x 10712,

The calculation of the relative maximum true error in R is illustrated in Fig. 10 using the following code.

> # absolute relative maximum error

> rel <- abs((solution - true.val) / true.val) * 100
> pasteO(max(rel), " %")

[1] "7.1018746439222e-10 %"

Figure 10. The Absolute Relative Maximum Error

The calculation of the relative maximum true error in R is shown in Fig. 10. This error is obtained by
dividing the maximum true error by the true value and then multiplying the result by 100% [1]. The final
result is stored in an object named rel, with a value of 7.1018746439222 x 10~19%. The paste0 function is
used to append the percentage symbol to the numeric value stored in rel, producing a readable percentage
format.
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Next, we will provide an alternative solution to the above step, which will preserve the exact value on
each step of the row elementary operations. The function OBE() will be modified by applying methods
provided by the packages Ryacas and Ryacas0. Objects such as vectors and matrices will be converted to
"yac_symbol™ objects using the ysym function provided by the Ryacas library. This conversion allows
computations to be performed symbolically, eliminating truncation errors and ensuring that exact arithmetic
is maintained throughout the row operations.

The modified OBE() function will be renamed yac_OBE(), which needs input matrices that have
already been converted into "yac _symbol" objects. This ensures that all computations are performed
symbolically, preserving exact values throughout the operations. The full R script for yac_ OBE() can be
found in Appendix 3 (yac OBE).R

Initially, the matrix is constructed as shown in Fig. 11.

> library(Ryacas)

> AvCh <- matrix(c("600", "800", "200",

+ "30001/1000", "40002/1000", "10001/1000™),
+ nrow=2, byrow=TRUE)

> yac.X <- AvCh %% ysym()

> yac.X

{{ 600, 800, 2003},

{30001/1000, 20001/500, 10001/1000}}
Figure 11. R Code to Create the Augmented Matrix AvCh and then Convert it into the yac_Symbol Objects.G

Similar to Fig. 4, Fig. 11 presents the R code used to define the augmented matrix derived from Eq.
(3); however, in this case, the matrix elements are character-type and stored in an object named AvCh, which
is then passed to the ysym() function from the Ryacas package. The ysym() function requires input elements
to be of character type. The ysym() function available in the Ryacas package is used to convert the AvCh
matrix into a yac_symbol object. The result of the conversion is stored in the yac_x object. Now the yac X
matrix is a matrix with exact elements (avoiding rounding). Matrix yac.x is the 2 x 3 augmented matrix and
is the input of the function yac_OBE.

Here we are going to show the series of row operations. First, the yac_OBE function will be called and
is stored in the OprRow object (Fig. 12).

> OprRow <- yac_OBE(X = yac.Xx, row=TRUE)
Figure 12. R Code to Call the yac_ OBE Function and Store it in the OprRow Object

The use of the user-defined function yac_ OBE is demonstrated in Fig. 12. The complete R code for
this custom function is available via the link in Appendix 3 (yac OBE).R. This function takes two inputs: x and
row. The input x refers to the augmented matrix yac_x, and when the value of row is TRUE, the operation
performed is row processing. The output of this function is stored in an object named OprRow, which contains
three functions: swap(), times(), and multiple(). To invoke the multiple() function, for example, the command
OprRow$multiple() is used. The output of this function can then be passed interactively to the same or other
functions in succession, eventually producing the desired result in the form of an equivalent matrix. This
programming approach facilitates step-by-step row operations until the final result is obtained.

Step 1. We are going to multiply the first row by 1/600 such that the element in the first row and in the first
columnis 1. Fig. 13 below presents the R code for the computation using the yac_OBE function.

> # Step 1: i =1, and k = "1/600"

> i =1; k = "1/600"

> OprRow$times(i, k)

{{ 1, 4/3, 1/3%,
{30001/1000, 20001/500, 10001/1000}}

Figure 13. R Code to Multiply the First Row of the yac.x Matrix by k = 1/600, while Maintaining the Result in
Symbolic Form (Exact Value)
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The R code for step 1 is presented in Fig. 13, where the scalar multiplier k = “1/600” is assigned
a character type as input to preserve its symbolic form. Ryacas requires inputs to be of character type when
performing matrix multiplication with a scalar. The resulting output remains symbolic (i.e., exact), which
ensures accuracy and avoids errors due to rounding. The result is the following matrix,

( 1 4/3 1/3 ) )
30001/1000 20001/500 10001/1000/°

Step 2. We are going to add the multiple of row 1 (by k = —30001/1000) to row 2. As a result, the element
in row 2 and column 1 will be 0. Fig. 14 below presents the R code for this operation.

> # Step 2: 1 =1, j =2, and k = "-30001/1000"
>1i=1; j =2; k ="-30001/1000"

> OprRow$multiple(i, j, k)

{{ 1, 4/3, 1/3},

{ 0, 1/1500, 1/1500%}}

Figure 14. R Code, to Add the Multiple of Row 1 (by k = —30001/1000) to Row 2

The objective of the operation in the second step is to obtain a matrix equivalent to the one obtained in
the previous step, where the element in row 2, column 1 is 0, while preserving the exact form of each element
in the matrix.

The R code for step 2 is presented in Fig. 14, where the result from step 1 is continued by multiplying
row 1 by k = —30001/1000 and adding it to row 2. The function used is OprRow$multiple with inputs i =
1,j=2,andk = "—30001/1000". The output of this function does not need to be stored in a specific R
object, as it is automatically saved and can be used in the subsequent OprRow operations. The result of step
2 is the following matrix,

1 4/3 1/3
(0 1/1500 1/1500)' (5)

Step 3. We are going to multiple row 2 by k = 1500, and as a result, the element in row 2, column 2 will be
1. Fig. 15 below presents the R code for this operation. The objective of the operation in the third step is to
obtain a matrix equivalent to the one obtained in the previous step, where the first nonzero element in row 2
is set to 1, while preserving the exact form of each element in the matrix.

> # Step 3: i = 2, and k = "1500"
> 1 =2; k = "1500"
> OoprRow$times(i, k)
{{ 1, 4/3, 1/3},
{ 0, 1, 1}}
Figure 15. R Code, to Multiple Row 2 by k = 15002

The R code used to perform step 3 is displayed in Fig. 15. In this step, the matrix obtained from step 2
is processed using the function OprRow$times(), with inputs i = 2 and k = 1500. The resulting output is
the following matrix,

(é 4{3 1{3). (6)

Step 4. We are going to add the multiple of row 2 to row 1 (the multiplication factor is k = —4/3). Fig. 16
below presents the R code for this operation.

> # Step 4: i =2, j =3, and k = "-4/3
>1=2; j=1; k ="-4/3"
> OprRow$multiple(i, j, k)
{{ 1! 0! _1}!
{0, 1, 1}}
Figure 16. R Code to Add the Multiple of Row 2 to Row 1 (Multiplication Factor is k = —4/3)
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The R code for performing step 4 is presented in Fig. 16, where the interactive function
OprRow$multiple is applied with inputsi = 2,j = 1,and k = "4/3". The result is the following matrix.

b1 ) @)

The operation in step 4 is the final operation, in which we obtain an equivalent system of linear
equations that is easy to solve. Based on the output matrix from the R code shown in Fig. 16 above, the
equivalent system of linear equations is as follows:

x+0y=-1

Ox+y =1 (®)
It is clear that we obtain the solution directly, namely x = —1 and y = 1. Step 5 below provides the R code
to extract these solution values.

Step 5. In this final step, we have already obtained the solution of the linear system as shown in the last
column of the matrix in the last step.

> # Step 5: The final result is the 3rd column of the Equivalent.Matrix
> yac_solution <- OprRow$output()$Equivalent.Matrix[,3] %%

+ yac_expr() %>% eval()

> yac_solution

[1] -1 1

Figure 17. The R Code to Obtain the Final Solution of the Linear Equation System Expressed by Eq. (3)

The R code involving the function OprRow$output, used at the end of the operation, is presented in
Fig. 17. This function is employed to generate the final output of the elementary row processing. Two
matrices are produced: the original matrix (Original.Matrix), which refers to the initial augmented matrix
used as the input (yac_x), and the equivalent matrix (Equivalent.Matrix), which is the result of the final row
operations. The final solution of the linear system defined by Eq. (3) is provided by the last column—column
3—of the equivalent  matrix. Thus, to obtain the solution, the command
OprRowsSoutput()$Equivalent.Matrix[,3] is used, followed by the functions yac_expr() and eval(). The result
of this command is stored in an object named yac_solution. At the bottom of Fig. 17, the resulting numeric
vector is displayed, consisting of the values —1 and 1, corresponding to x = —1 and y = 1. As one can see,
the obtained solution is exactly the same as the true solution, which is x = —1 and y = 1. Therefore, the
error is 0.

4. CONCLUSION

To achieve higher precision in approximation and minimize floating-point / rounding error, this study
employs the Ryacas package to retain exact values in R computations. We compared the standard OBE()
function with the modified yac_ OBE(), which integrates symbolic processing via Ryacas. The yac_ OBE()
function consistently preserves exact values, unlike OBE(), which introduces a relative error of 7.10 x 10710
%. While seemingly minor, such errors can accumulate in large-scale computations, affecting final results.
The use of the ysym() method enables symbolic arithmetic, emphasizing the importance of symbolic
computation for accuracy. Although converting numeric to symbolic objects can be complex, especially with
many variables, future research may explore alternative R packages to streamline this process. Moreover, this
study is limited to linear systems with unique solutions and does not address non-linear systems or cases with
multiple or no solutions. The scalability of symbolic computation to higher-dimensional matrices also
remains a challenge due to increased computational overhead. These limitations highlight the need for further
exploration into more efficient symbolic frameworks and broader applications in domains where accuracy is
critical. As a direction for future research, we propose extending symbolic computation techniques to non-
linear systems, exploring hybrid symbolic-numeric approaches, and evaluating performance across diverse
application domains such as control systems, optimization, and machine learning.
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