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Article Info ABSTRACT 

Article History: 
Metaheuristic algorithms are widely used for solving complex optimization problems, but 

their performance often depends on the initialization strategy. This study proposes an 

enhanced Giant Trevally Optimizer (GTO) by introducing quasi-random Sobol sequences 

in the initialization phase, yielding the Sobol-initialized Giant Trevally Optimizer (SGTO). 

The algorithm was tested on forty benchmark functions, five engineering design problems, 

and an epidemiological model case study. Experimental results show that SGTO 

consistently outperforms the original GTO in terms of achieving optimal solutions, 

convergence, and its ability to maintain a consistent solution across multiple independent 

runs. Furthermore, the epidemiological case study demonstrates the adaptability of SGTO 

for tackling more complex real-world problems. This work is the first to adapt Sobol 

sequences for the GTO and apply it to an epidemiological model. These findings confirm 

that quasi-random initialization substantially improves exploration and exploitation, 

establishing SGTO as a versatile and reliable optimization tool. 
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1. INTRODUCTION 

Optimization plays a crucial role in a wide range of scientific and engineering domains, including 

structural design, control systems, machine learning, and scheduling problems [1]. These problems typically 

require finding the best configuration of decision variables that either minimizes or maximizes an objective 

function, often under a set of constraints. However, in many real-world applications, the objective functions 

involved are often found to be nonlinear, non-differentiable, high-dimensional, multimodal, or non-convex, 

which have proven difficult to solve using analytical or classical mathematical methods such as gradient 

descent [2], [3]. To overcome these challenges, researchers have turned to more flexible and adaptive 

optimization strategies, such as metaheuristic algorithms [4], [5].  

Metaheuristic algorithms have gained widespread attention due to their ability to search complex, 

nonlinear, and multimodal landscapes without relying on gradient information or strict mathematical 

assumptions such as convexity or differentiability. Inspired by natural processes such as biological evolution, 

swarm intelligence, and physical phenomena, metaheuristic algorithms offer a balance between exploration 

and exploitation that enables them to find near-optimal solutions even in challenging search spaces. Several 

well-known examples include Genetic Algorithms (GA) [6], Particle Swarm Optimization (PSO) [7], 

Teaching-Learning Based Optimization (TLBO) [8], and Gravitational Search Algorithm (GSA) [9], each 

drawing inspiration from different natural phenomena to tackle diverse optimization problems. The success 

of these approaches has led to a growing domain of research dedicated to developing novel and more 

specialized metaheuristics in order to solve increasingly complex and high-dimensional problem domains. 

Among the new generation of bio-inspired optimization algorithms, one of the recent developments is 

the Giant Trevally Optimizer (GTO), a swarm-based metaheuristic algorithm inspired by the intelligent 

hunting behavior of Caranx ignobilis, a predatory fish known for its strategic attacks on seabirds [10]. GTO 

simulates this behavior through three main phases: extensive search, area selection, and prey attack. In the 

extensive search phase, the algorithm exhaustively investigates various regions of the search space. And then, 

during the area selection phase, the search agents concentrate on the neighborhood of higher-quality solutions 

inside the featured space. Finally, in the prey attack phase, agents exploit the selected regions to refine 

solutions and converge toward the global optimum. By modeling these strategies mathematically, GTO offers 

an effective balance between exploration and exploitation, enabling it to effectively solve complex 

optimization problems. 

One of the main concerns regarding the procedure of seeking optimality is the randomness involved in 

the search space [11]. In many metaheuristic algorithms, including GTO, the initial random distribution of 

search agents plays a critical role in determining the quality of the search process. A poorly initialized 

population may fail to cover the search space adequately, leading to premature convergence and suboptimal 

solutions. Motivated by this observation, this study proposes an enhancement to GTO’s initialization phase 

by incorporating a quasi-random low-discrepancy sequence, aiming to generate an initial population that is 

more uniformly distributed across the search space. The modified GTO is expected to improve its exploration 

capability, accelerate convergence, and achieve higher solution accuracy.  

The novelty and contribution of this research lie in the design of an improved version of the GTO, 

named the Sobol-initialized Giant Trevally Optimizer (SGTO), which is capable of providing a more uniform 

and effective exploration of the search space, reducing the likelihood of poor initial agent distribution and 

improving overall optimization performance which results in better convergence to optimal solutions and 

faster optimization. The proposed SGTO enhances the original GTO by incorporating a quasi-random low-

discrepancy sequence during the initialization phase to generate search agents that are evenly distributed 

across the search space. The mathematical formulation of the modified initialization is provided, and the 

original flowchart of GTO is rewritten with indentation for clarity. Forty objective functions of unimodal, 

multimodal, separable, and non-separable types have been utilized to evaluate the effectiveness of the 

proposed SGTO in optimization. Furthermore, SGTO is applied to five complex engineering design problems 

as well as adapted to solve a system of differential equations arising in epidemiological modeling. Finally, 

the performance of SGTO is compared against the original GTO, demonstrating faster convergence and 

higher solution accuracy across the tested problems. 

The paper is organized as follows: Section 2 presents research methods, along with the details of the 

proposed algorithm, proposed flow chart, and the pseudo code; Section 3 explains the numerical results and 

discussion. Finally, concluding remarks are provided in section 4. 
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2. RESEARCH METHODS 

To investigate the impact of the proposed modification, this section presents the research methodology 

adopted in the study. First, the structure and working mechanism of the original GTO are briefly reviewed to 

establish a baseline understanding. Then, the proposed improvement focusing on the initialization phase is 

described in detail, including the mathematical incorporation of quasi-random principles. Finally, the 

experimental setup, benchmark problems, and evaluation procedures used to assess and compare the 

performance of the modified algorithm are outlined. 

2.1 Giant Trevally Optimizer (GTO) 

The Giant Trevally Optimizer (GTO) is a bio-inspired metaheuristic algorithm designed to solve global 

optimization problems by mimicking the predatory behavior of giant trevally (Caranx ignobilis), which are 

found in the Indian and Pacific Oceans. These fish select prey-dense areas and start to stalk their prey, then 

leap out of the water to catch the prey mid-air. Their hunting behaviors serve as the biological foundation for 

modeling the three main phases of GTO: extensive search, choosing an area, and chasing and attacking prey. 

The optimization process begins with a random initialization of the population, where each agent (giant 

trevallies) represents a candidate solution to the optimization problem. Each agent’s position is initialized 

using  Eq. (1): 

𝑋𝑖,𝑗(0) = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝑗 + (𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝑗 − 𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝑗) × 𝑅, (1) 

where 𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝑗, 𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝑗 represent the lower and upper bound values on the defined problem for the 

𝑗𝑡ℎ dimension, and 𝑅 is a random number in the interval [0,1] that is generated by a uniform distribution. 

The extensive search phase is the first step in GTO’s iterative process, where search agents perform a 

broad exploration of the search space. This phase simulates the foraging behavior of giant trevallies as they 

travel long distances in search of prey, which can be done by using the Levy flight that is often exhibited by 

marine predators [12], [13]. Thus, allowing agents to explore distant areas and avoid becoming trapped in 

local optima. Mathematically, the position update during this phase can be expressed as Eq. (2): 

𝑋(𝑡 + 1) = 𝑋𝑏𝑒𝑠𝑡(𝑡) × 𝑅 + 𝐿𝑒𝑣𝑦(𝑑) × (𝑀𝑖𝑛𝑖𝑚𝑢𝑚 + (𝑀𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑀𝑖𝑛𝑖𝑚𝑢𝑚) × 𝑅), (2) 

where 𝑋(𝑡 + 1) denotes the next position of the agents, 𝑋𝑏𝑒𝑠𝑡(𝑡) is the best obtained solution during the last 

search iteration, and 𝐿𝑒𝑣𝑦(𝑑) is a random step vector drawn from the Levy distribution in 𝑑-dimensional 

space. 

 
Figure 1. Visual Distortion in GTO Following the Principle of Light Refraction 

In the choosing area phase, each agent selects promising regions within the search space based on the 

current knowledge of the population. This phase simulates the behavior of giant trevallies in identifying and 

selecting the best area in terms of the amount of prey where they can hunt for prey. Thus, directing agents 

toward areas that contain better solutions, enhancing the balance between diversification and intensification. 

This behavior is mathematically simulated in Eq. (3).  
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𝑋(𝑡 + 1) = 𝑋𝑏𝑒𝑠𝑡(𝑡) × 𝒜 × 𝑅 − 𝑋𝑖(𝑡) × 𝑅 +
1

𝑁
∑ 𝑋𝑗(𝑡)

𝑁

𝑗=1
, (3) 

where 𝒜 is a special parameter to control the rate of changing position, 𝑋𝑖(𝑡) is the location of the 𝑖𝑡ℎ giant 

trevally, and 𝑁 is the number of giant trevallies. The value of 𝒜 = 0.4 was chosen based on empirical studies 

and systematic tuning to balance exploration and exploitation effectively during the search process. 

Finally, the attacking phase simulates the Giant Trevally’s attack by leaping out of the water to catch 

the prey mid-air. The mathematical model involves visual distortion due to light refractions, launching speed, 

and the jumping slope function. Fig. 1 demonstrates how the giant trevally perceives its prey due to light 

refraction at the interface between water and air. The bird’s actual position is shown above the water, while 

the bird’s position perceived by the giant trevally from below is displaced due to the bending of light rays. 

This perceptual distortion alters the trajectory of the jump. The giant trevally does not aim directly at the 

position of the prey, but rather at the distorted position as perceived through the refraction angle. The 

inclusion of this behavior in the GTO algorithm mimics how the solution agent adjusts its movement direction 

not only based on the best-known solution but also under a distortion term that introduces nonlinearity and 

adaptive search variability. This mechanism contributes to diversifying the search path, improving the 

algorithm’s ability to escape local optima, and mimicking nature’s imperfect yet effective decision-making 

processes. The following Eq. (4) represents a compact form of the original GTO update mechanisms, obtained 

by merging multiple expressions for brevity without altering their computational structure. 

𝑋(𝑡 + 1) = 𝑋𝑖(𝑡) × sin(𝜃2) × 𝐹𝑜𝑏𝑗(𝑋𝑖(𝑡)) +
𝜂2

𝜂1
sin(𝜃2) × |𝑋𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑖(𝑡)| + ℋ, (4) 

where 𝐹𝑜𝑏𝑗(𝑋𝑖(𝑡)) is the fitness value of 𝑋𝑖(𝑡), 𝜂1 = 1.00029, and 𝜂2 = 1.33 represents the absolute 

refractive index of air and water, 𝜃2 is the angle of refraction given by a random number in the interval 

[0°, 360°], and ℋ represents the jumping slope function that gradually decreases over time to control the 

algorithm’s transition from the exploration phase to the exploitation phase, which is given in Eq. (5). 

ℋ = 𝑅 × (2 − 𝑡 ×
2

𝑇
) , (5) 

where 𝑇 is the maximum number of iterations allowed during the optimization process. 

Overall, GTO dynamically transitions between exploration and exploitation, enabling robust search 

capabilities over complex landscapes. Further detailed mathematical modeling of each phase and parameter 

setting guidelines can be found in the original paper. 

2.2 Proposed Modification 

In the first step of GTO, an initial population of agents is generated randomly. One of the difficulties 

with using random numbers is their tendency to generate unevenly spaced points in the search space. While 

such numbers may follow a uniform probability distribution 𝑈[0, 1] in a stochastic sense, they often fail to 

achieve equidistribution, a more desirable form of uniformity in the context of optimization. This lack of 

uniformity can lead to poorly spread initial populations, especially in high-dimensional search spaces, 

resulting in clustering and inadequate coverage. Therefore, it is beneficial to generate a population of points 

in the search region such that the deviation from uniformity is minimum. This deviation is called discrepancy, 

which is measured as follows. 

 
 (a) (b) 

Figure 2. Scatter Plot of the first 100 Points of (a) Sobol Sequence of Points, and (b) Pseudo-Random of Points 
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Let 𝑄 ⊆ [0, 1]𝑛 be an arbitrary axially parallel 𝑛-dimensional rectangle in the unit cube [0, 1]𝑛 ⊂ ℝ𝑛. 

and let 𝑥1, 𝑥2, … , 𝑥𝑁 ∈ [0, 1]𝑛 be a set of 𝑁 points. The idea of discrepancy is that for an evenly distributed 

point set, the proportion of points lying inside the rectangle 𝑄 should correspond to the volume of 𝑄. Let # 

denote the number of points and 𝑣𝑜𝑙 denote the volume of 𝑛-dimensional rectangle, then we expect that 

# 𝑜𝑓 𝑥𝑖 ∈ 𝑄

# 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑜𝑖𝑛𝑡𝑠
≈

𝑣𝑜𝑙(𝑄)

𝑣𝑜𝑙([0,1]𝑛)
, (6) 

for as many rectangles as possible. Then, the discrepancy of the point set is defined by 

𝐷𝑁 ≔ sup
𝑄

|
# 𝑜𝑓 𝑥𝑖 ∈ 𝑄

𝑁
− 𝑣𝑜𝑙(𝑄)| . (7) 

A lower value of 𝐷𝑁 indicates a more uniform distribution of points, that is 𝐷𝑁 → 0 as 𝑁 → ∞. Next, 

a sequence of points 𝑥1, 𝑥2, … , 𝑥𝑁, … ∈ ℝ𝑛 is called low-discrepancy sequence if there is a constant 𝐶𝑛 such 

that for all 𝑁, 

𝐷𝑁 ≤
𝐶𝑛(ln 𝑁)𝑛

𝑁
. (8) 

Sequences with low discrepancy are also referred to as quasi-random numbers. Among the various 

constructions of such sequences, the Sobol sequence is one of the most widely used due to its ability to 

produce uniformly distributed points, especially in high-dimensional spaces [14]-[16].  

 
Figure 3. Detailed Pseudo-Code of SGTO 

Initialize the number of giant trevallies 𝑁 and the maximum number of iterations 𝑇 

Initialize objective function 𝐹𝑜𝑏𝑗(𝑥), dimension 𝐷, and its respective bounds 

Generate Sobol sequence of points {𝑆𝑖 ∈ [0, 1]𝐷 | 𝑖 = 1, 2, … , 𝑁} 

Initialize the populations of giant trevallies by using (9) 

for each giant trevally 𝑖 = 1 to 𝑁 

 Calculate objective function 𝐹𝑜𝑏𝑗(𝑋) of the current giant trevally 

end for 

Sort the value of 𝐹𝑜𝑏𝑗(𝑋𝑖) and the population 𝑋𝑖 

Determine the global best solution as 𝐹𝑏𝑒𝑠𝑡 

Determine the best location as 𝑋𝑏𝑒𝑠𝑡  

while 𝑡 < 𝑇 (maximum number of iterations) 

 for each giant trevally 𝑖 = 1 to 𝑁 

Calculate new best position for extensive search using (2) 

  if 𝐹𝑜𝑏𝑗(𝑋𝑖(𝑡)) < 𝐹𝑜𝑏𝑗(𝑋𝑏𝑒𝑠𝑡) 

   Replace 𝑋𝑏𝑒𝑠𝑡  with 𝑋𝑖(𝑡) 

   if 𝐹𝑜𝑏𝑗(𝑋𝑖(𝑡)) < 𝐹𝑏𝑒𝑠𝑡  

    Replace 𝐹𝑏𝑒𝑠𝑡 with 𝐹𝑜𝑏𝑗(𝑋𝑖(𝑡)) 

   end if 

  end if 

Calculate 𝑋𝑖(𝑡) for choosing area using (3) 

  if 𝐹𝑜𝑏𝑗(𝑋𝑖(𝑡)) < 𝐹𝑜𝑏𝑗(𝑋𝑏𝑒𝑠𝑡) 

   Replace 𝑋𝑏𝑒𝑠𝑡  with 𝑋𝑖(𝑡) 

   if 𝐹𝑜𝑏𝑗(𝑋𝑖(𝑡)) < 𝐹𝑏𝑒𝑠𝑡  

    Replace 𝐹𝑏𝑒𝑠𝑡 with 𝐹𝑜𝑏𝑗(𝑋𝑖(𝑡)) 

   end if 

  end if 

Switch from exploration to exploitation using (5) 

Calculate 𝑋𝑖(𝑡) for attacking phase using (4) 

  if 𝐹𝑜𝑏𝑗(𝑋𝑖(𝑡)) < 𝐹𝑜𝑏𝑗(𝑋𝑏𝑒𝑠𝑡) 

   Replace 𝑋𝑏𝑒𝑠𝑡  with 𝑋𝑖(𝑡) 

   if 𝐹𝑜𝑏𝑗(𝑋𝑖(𝑡)) < 𝐹𝑏𝑒𝑠𝑡  

    Replace 𝐹𝑏𝑒𝑠𝑡 with 𝐹𝑜𝑏𝑗(𝑋𝑖(𝑡)) 

   end if 

  end if 

𝑡 = 𝑡 + 1  

end while 
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Sobol sequences are a type of low-discrepancy quasi-random sequences characterized by their ability 

to produce points that are evenly and uniformly distributed within a multi-dimensional space. Unlike purely 

random sequences that may exhibit clustering or gaps, Sobol sequences minimize discrepancy, ensuring that 

points fill the search space more systematically. This property makes them especially valuable in high-

dimensional optimization and integration tasks. By employing Sobol sequences during the initialization phase 

of GTO, the algorithm benefits from enhanced exploration of the search space due to better spatial coverage 

of initial agents. This systematic coverage improves both the speed of convergence and the likelihood of 

escaping local optima, thereby increasing the overall efficiency and robustness of the optimization process. 

In the proposed modification, the Sobol sequence is employed during the initialization phase of GTO. 

Specifically, instead of generating each search agent’s position using uniformly distributed random numbers, 

a sequence of quasi-random vectors is generated using the Sobol sequence. These vectors, defined within the 

unit hypercube [0, 1]𝑛 are then linearly scaled to match the predefined lower and upper bounds of the 

problem’s search space. This modification aims to enhance the algorithm’s early-stage exploration by 

improving the spatial coverage of the search agents. To distinguish this variant, the algorithm is hereafter 

referred to as the Sobol-initialized Giant Trevally Optimizer (SGTO). In SGTO, the initial position of each 

search agent in the population is generated as follows. 

Let 𝑆𝑖 ∈ [0, 1]𝑗 denote the 𝑖𝑡ℎ point generated by the Sobol sequence, where 𝑗 is the number of decision 

variables (dimensions) and 𝑖 = 1, 2, . . . , 𝑁, with 𝑁 being the population size. Similar to Eq. (1), each Sobol 

point is scaled to the problem’s search space by the following transformation: 

𝑋𝑖,𝑗(0) = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝑗 + (𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝑗 − 𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝑗) × 𝑆𝑖,𝑗,   (9) 

where 𝑋𝑖,𝑗 represents the initial position of the 𝑖𝑡ℎ agent in the 𝑗𝑡ℎ dimension. Fig. 2 illustrates the distribution 

of 100 two-dimensional points generated by using the Sobol sequence and 100 points generated by using a 

pseudo-random number generator. Visual inspection reveals that the Sobol sequence provides more even 

coverage of the space, while the pseudo-random points exhibit clustering and leave noticeable gaps. 

Aside from the modified initialization, the core behavior and mathematical model of the original GTO 

algorithm remain unchanged, allowing a focused assessment of the impact of modified initialization on 

convergence and accuracy. Additionally, the pseudo-code of the proposed SGTO is presented in Fig. 3. 

2.3 Experimental Setup 

To evaluate the effectiveness of the proposed SGTO algorithm, a set of numerical experiments was 

carried out across three problem domains: benchmark optimization functions, classical engineering design 

problems, and an epidemiological model case study. These experiments aim to assess SGTO’s performance 

in terms of convergence behavior, solution quality, and consistency across multiple independent runs. In all 

test cases, SGTO was compared exclusively against the original GTO with identical control parameters to 

ensure a fair and controlled comparison. The case study serves as a demonstration of SGTO’s practical 

applicability to dynamic real-world scenarios. Details of the problems, parameter settings, and performance 

metrics are provided in the following subsections. 

2.3.1 Benchmark Function 

The first group of tests comprises 40 benchmark functions with four characteristics: unimodal, 

multimodal, separable, and non-separable. For each function, both SGTO and GTO were executed for 300 

independent runs to capture variability in performance. The population size was set to 30 giant trevallies, and 

the maximum number of iterations was fixed at 1000 iterations. 

For each test case, four primary performance indicators were recorded: the best objective function 

value achieved, the average (mean) of objective function values across 300 runs, the standard deviation of 

the objective function values obtained across 300 runs, and the worst objective function value obtained. The 

mean and standard deviations are formulated in Eqs. (10) and (11). 

𝑀𝑒𝑎𝑛 =
1

𝑅𝑢𝑛
∑ 𝐹𝑏𝑒𝑠𝑡

𝑅𝑢𝑛

𝑖=1
, (10) 

𝑆𝑡𝑑 =  √
1

𝑅𝑢𝑛
(𝐹𝑏𝑒𝑠𝑡 − 𝑀𝑒𝑎𝑛)2, (11) 
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where 𝐹𝑏𝑒𝑠𝑡 is the global solution and 𝑅𝑢𝑛 is the number of independent runs. It is obvious that the smaller 

the values of the four criteria, the algorithm are capable to produce more stable and reliable solutions. 

Additionally, convergence behavior was analyzed by plotting the evolution of the best-found solution over 

iterations for selected problems. Execution time for each test case was also monitored to evaluate 

computational efficiency. 

Each function is defined within a bounded search domain, and optimization aims to minimize the 

objective function value. The detailed mathematical formulations, dimensions, bounds, and optimal values 

for each benchmark function are presented in the original paper and fully described in  [17] and [18]. 

2.3.2 Engineering Design Problem 

To evaluate the practical applicability of SGTO, five well-known engineering design problems were 

implemented in the second group of tests. These problems are frequently used in the optimization literature 

due to their nonlinear, constrained nature and real-world relevance. The objective in each case is to find the 

optimal design parameters that minimize a specific cost function while satisfying a set of structural, 

mechanical, or manufacturing constraints. 

For each problem, both algorithms were executed for 300 independent runs, the population size was 

set to 30 giant trevallies, and the maximum number of iterations was fixed at 3000 iterations. The mean and 

standard deviations of the best obtained solutions are then calculated by using Eqs. (10) and (11). Each 

function is defined within a bounded search domain, and optimization aims to minimize the objective function 

value. The detailed problems and illustrations are fully described in [19]-[24]. 

2.3.3 Epidemiological Model Case Study 

To further evaluate the practical applicability of the proposed SGTO algorithm, a COVID-19 model 

case study was implemented in the third test. Specifically, the dataset and the SEAR (Susceptible, Exposed, 

Acute, Recovery) model presented in [25] are utilized without modification. The SEAR model, as depicted 

in Fig. 4, captures the compartmental dynamics of COVID-19 transmission, dividing the population into 

Susceptible (𝑆), Exposed (𝐸), Acute (𝐴), and Recovered (𝑅) compartments.  

 
 

Figure 4. Transmission Diagram of the SEAR Mathematical Model for COVID-19 Spread in Indonesia 

The interactions among these compartments are governed by the system of differential equations 

shown in Eqs. (12), (13), (14), (15), which describe the time evolution of each population group based on 

disease transmission rates, recovery rates, and natural death rates. 

𝑑𝑆

𝑑𝑡
= Λ −

𝑝𝛽𝑆𝐴

𝑁
− 𝜇𝑆, (12) 

𝑑𝐸

𝑑𝑡
=

𝑝𝛽𝑆𝐴

𝑁
− (𝜇 + 𝜀)𝐸, (13) 

𝑑𝐴

𝑑𝑡
= 𝜀𝐸 − (𝛼 + 𝛾 + 𝜇)𝐴, (14) 

𝑑𝑅

𝑑𝑡
= 𝛾𝐴 − 𝜇𝑅, (15) 

where 𝑆 is the number of healthy individuals who are vulnerable to the disease, 𝐸 is the number of individual 

who have been exposed to the virus but are not yet infectious, 𝐴 is the number of individuals who are actively 

infected and infectious, 𝑅 is the number of individuals who have recovered and are assumed to have 

permanent immunity, 𝑁 is the total population size at a given time, 𝑝 is the migration factor, Λ is the 
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recruitment rate of new susceptible, 𝛽 is the transmission rate of the virus, 𝜀 is rate of progression from 

exposure to acute, 𝛼 is disease-induced mortality rate, 𝛾 is the recovery rate, and 𝜇 is the natural death rate.  

In this study, the migration parameter 𝑝 is set to 1, consistent with the assumption in the referenced 

paper that the migration rate remains at a normal level. The natural death rate 𝜇 is set to 0.0000384037 based 

on the average life expectancy in Indonesia, to account for background mortality in all compartments. This 

choice ensures methodological consistency, allowing for a direct comparison of algorithm performance using 

the same model structure and data. 

Based on the models above, the objective of this problem is to minimize the error percentage 

determined by the value of five model parameters: 𝛽, 𝜀, 𝛼, 𝛾, and Λ. The objective function of this problem is 

formulated in Eq. (16) as follows. 

Minimize:  

𝑓(𝑋) =
1

4𝑛
∑ (|

𝑤𝑖 − 𝑤𝑖
∗

𝑤𝑖
∗  | + |

𝑥𝑖 − 𝑥𝑖
∗

𝑥𝑖
∗  | + |

𝑦𝑖 − 𝑦𝑖
∗

𝑦𝑖
∗  | + |

𝑧𝑖 − 𝑧𝑖
∗

𝑧𝑖
∗  |)

𝑛

𝑖=1
, (16) 

where 𝑛 is the data size, 𝑤𝑖 , 𝑥𝑖, 𝑦𝑖 , 𝑧𝑖 is the number of cases in 𝑖𝑡ℎ-day obtained from the model solutions for 

each variable, and 𝑤𝑖
∗, 𝑥𝑖

∗, 𝑦𝑖
∗, 𝑧𝑖

∗ is the number of cases in 𝑖𝑡ℎ-day based on the real data for each variable, 

namely 𝑆𝑖, 𝐸𝑖 , 𝐴𝑖, 𝑅𝑖, and 𝑆𝑖
∗, 𝐸𝑖

∗, 𝐴𝑖
∗, 𝑅𝑖

∗ respectively. 

The purpose of this case study is to illustrate how real-world problems can be treated as optimization 

tasks, thus allowing the application of advanced optimization techniques. Particularly, the test is employed 

to check the validity of SGTO and GTO to be applied to a real-world problem involving a dataset. To ensure 

consistency and comparability, this paper will use the same COVID-19 dataset used in the literature. This 

approach not only aligns comparative analysis with the existing literature but also maintains methodological 

rigor by utilizing identical data and model structures.  

3. RESULTS AND DISCUSSION 

This section presents the comparative performance of SGTO and GTO based on their optimization 

results across three problem domains: benchmark functions, engineering design problems, and an 

epidemiological model. The primary objective is to examine the influence of incorporating a Sobol sequence 

in the initialization phase on the convergence behavior, solution quality, and computational efficiency across 

different problem types. 

3.1 Results on Benchmark Functions 

First, the descriptive statistical analysis presents the best (minimum), worst (maximum), mean, and 

standard deviation of optimization results for each benchmark function. As shown in Table 1, SGTO 

consistently outperformed GTO in terms of best and mean objective function values across all 40 benchmark 

functions, indicating the efficacy of quasi-random initialization in achieving superior global search coverage. 

This improvement is particularly evident in complex multimodal functions, suggesting that quasi-random 

initialization enhances the algorithm's early-stage exploration capability. 

Table 1. Comparison of Optimization Results Obtained for 40 Benchmark Functions 

Function Initialization 
Indicator 

Best Mean Std. Worst 

F1 Uniform 0 0 0 0 

 Sobol 0 0 0 0 

F2 Uniform 0 0 0 0 

 Sobol 0 0 0 0 

F3 Uniform 0 0 0 0 

 Sobol 0 0 0 0 

F4 Uniform 3.38525e-07 2.92321e-05 2.59196e-05 0.000144772 

 Sobol 1.25941e-07 2.78514e-05 2.26393e-05 0.000111131 

F5 Uniform 2.798e-08 7.11114e-05 0.000163472 0.001400477 

 Sobol 5.8661e-09 6.77195e-05 0.000163353 0.001496631 
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Function Initialization 
Indicator 

Best Mean Std. Worst 

F6 Uniform -0.999999999 -0.999994359 8.07969e-06 -0.999942243 

 Sobol -1 -0.999994844 7.40329e-06 -0.999937562 

F7 Uniform 0 0 0 0 

 Sobol 0 0 0 0 

F8 Uniform 5.26122e-11 3.34209e-06 8.71266e-06 9.89232e-05 

 Sobol 1.74029e-12 3.27968e-06 8.02896e-06 7.9745e-05 

F9 Uniform -49.99679961 -49.974143 0.017657015 -49.91002395 

 Sobol -49.99918951 -49.97510998 0.017065942 -49.90639252 

F10 Uniform -209.7419641 -208.4276972 0.818360554 -205.0789349 

 Sobol -209.8337961 -208.5022905 0.812124732 -205.3469735 

F11 Uniform 0 0 0 0 

 Sobol 0 0 0 0 

F12 Uniform 0 0 0 0 

 Sobol 0 0 0 0 

F13 Uniform 0 3.2232e-266 0 2.0915e-264 

 Sobol 0 0 0 0 

F14 Uniform 0 0 0 0 

 Sobol 0 0 0 0 

F15 Uniform 2.88863e-10 3.95297e-05 6.81962e-05 0.000539295 

 Sobol 6.54265e-11 3.86996e-05 8.96985e-05 0.00078598 

F16 Uniform 0.361200905 0.519630123 0.046317335 0.561227875 

 Sobol 0.335928346 0.518470912 0.045585594 0.561218823 

F17 Uniform 0.998003838 4.043044755 3.163046766 10.76318076 

 Sobol 0.998003838 3.601954815 1.611273813 4.950491316 

F18 Uniform 0.397887496 0.397923624 6.61164e-05 0.398687607 

 Sobol 0.39788746 0.397912308 2.43179e-05 0.39804469 

F19 Uniform 0 0 0 0 

 Sobol 0 0 0 0 

F20 Uniform 0 0 0 0 

 Sobol 0 0 0 0 

F21 Uniform -12300.45544 -6938.720956 1587.407462 -4230.529436 

 Sobol -12543.04909 -9687.180084 1462.894813 -8282.324765 

F22 Uniform -1.801303277 -1.779556247 0.110360158 -1.213885896 

 Sobol -1.801303407 -1.787402461 0.088641985 -1.213928373 

F23 Uniform 0 0 0 0 

 Sobol 0 0 0 0 

F24 Uniform -1.031628452 -1.03162643 2.43465e-06 -1.031610792 

 Sobol -1.031628453 -1.031626501 2.19649e-06 -1.031613702 

F25 Uniform 0.18 0.18 2.22045e-16 0.18 

 Sobol 0.18 0.18 2.22045e-16 0.18 

F26 Uniform 0 0 0 0 

 Sobol 0 0 0 0 

F27 Uniform -186.7308888 -186.7051266 0.051282519 -186.3108865 

 Sobol -186.7309062 -186.7095935 0.029478442 -186.5577986 

F28 Uniform 3.000002172 4.170346413 7.707063001 84.02092422 

 Sobol 3.000000107 3.991951289 5.074167186 30.000341 

F29 Uniform 0.000307638 0.000318621 1.32023e-05 0.000462732 

 Sobol 0.000307569 0.000318333 1.03873e-05 0.000375863 

F30 Uniform -10.15295453 -10.13252176 0.017005832 -10.04382616 

 Sobol -10.15318733 -10.13287387 0.015353458 -10.05663323 

F31 Uniform -10.40237253 -10.3798188 0.018875398 -10.30688898 

 Sobol -10.40271789 -10.38176051 0.020988182 -10.19237174 

F32 Uniform -10.53589419 -10.51277832 0.018866881 -10.41872719 

 Sobol -10.53619789 -10.51418148 0.016738175 -10.44138049 

F33 Uniform 0.006411844 20.0135309 39.66525575 39.66525575 

 Sobol 0.005819206 13.34216806 17.52652296 172.0519372 

F34 Uniform 0 0 0 0 

 Sobol 0 0 0 0 

F35 Uniform -3.8627775 -3.859679781 0.006847554 -3.804867162 

 Sobol -3.862781547 -3.862620891 0.000238942 -3.860818898 
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Function Initialization 
Indicator 

Best Mean Std. Worst 

F36 Uniform -3.321943883 -3.279385233 0.065068461 -3.10532123 

 Sobol -3.321965501 -3.318085905 0.019773765 -3.156633643 

F37 Uniform 0 0 0 0 

 Sobol 0 0 0 0 

F38 Uniform 4.44089e-16 4.44089e-16 0 4.44089e-16 

 Sobol 4.44089e-16 4.44089e-16 0 4.44089e-16 

F39 Uniform 0.011107381 0.027136237 0.008466955 0.058664404 

 Sobol 5.71962e-05 0.026634453 0.008825925 0.054782729 

F40 Uniform -2.423112689 -1.153174657 0.301352462 -1.080726151 

 Sobol -2.423118765 -1.573883678 0.743770693 -0.907991324 

* Std: Standard deviation. 

Nonetheless, in 5 out of 40 test cases, SGTO exhibited slightly higher standard deviations compared 

to GTO. Additionally, despite its superior optimization performance, SGTO showed marginally higher 

computational demands in certain execution-time metrics. Specifically, SGTO demonstrated slightly longer 

execution times than GTO in all three measured execution-time metrics in 6 out of 40 test cases. However, 

these time differences were minimal, often amounting to mere fractions of a second, as depicted in Table 2. 

Taken together, these findings highlight a performance trade-off, where SGTO consistently provides better 

solution quality while incurring only minor increases in variability and computational costs. Despite these 

small compromises, the improved results suggest that the benefits of SGTO generally outweigh the 

computational overhead. 

Table 2. Execution Time Results for 6 Benchmark Functions Where SGTO Exhibits Longer Runtime 

Function 
Best  Mean Standard Deviation 

GTO SGTO GTO SGTO GTO SGTO 

F14 0.90625 2.234375 1.066927083 2.90671875 0.22176295 0.473256746 

F16 0.875 1.09375 0.969114583 1.256145833 0.179727886 0.199159175 

F17 6.609375 6.734375 7.782291667 9.375520833 0.754003349 0.920652291 

F18 0.375 0.40625 0.473333333 0.514010417 0.14912447 0.172908344 

F25 0.359375 0.390625 0.454791667 0.469010417 0.12709375 0.144368339 

F31 0.625 0.640625 0.84203125 0.850208333 0.191348035 0.219605371 

The modest increase in SGTO’s execution time can be traced primarily to the added computational 

overhead of quasi-random initialization and its downstream effects on each optimization run. SGTO replaces 

purely random sampling with Sobol sequences to seed its initial population. Generating these sequences 

requires extra arithmetic, such as matrix operations, bit-wise scrambling, and gray-code conversions, 

compared to simple pseudorandom draws [26], [27]. 

 
 (a) (b) 

Figure 5. Function Plot and Convergence Curve for Selected Benchmark Functions:  

(a) F4, (b) F5, (c) F6, (d) F8, (e) F9, (f) F16, (g) F17, (h) F18, (i) F21, (j) F22, (k) F24, (l) F28, (m) F30, (n) F35, 

(o) F39, and (p) F40 
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Figure 5. (Continued.) Function Plot and Convergence Curve for Selected Benchmark Functions:  
(a) F4, (b) F5, (c) F6, (d) F8, (e) F9, (f) F16, (g) F17, (h) F18, (i) F21, (j) F22, (k) F24, (l) F28, 

(m) F30, (n) F35, (o) F39, and (p) F40 
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Figure 5. (Continued.) Function Plot and Convergence Curve for Selected Benchmark Functions:  
(a) F4, (b) F5, (c) F6, (d) F8, (e) F9, (f) F16, (g) F17, (h) F18, (i) F21, (j) F22, (k) F24, (l) F28, 

(m) F30, (n) F35, (o) F39, and (p) F40 

Fig. 5 illustrates the convergence behavior of both SGTO and GTO across several benchmark 

functions, highlighting the optimization trajectories and the rate at which optimal solutions are approached. 

Notably, SGTO’s convergence curve often begins with a lower value (approaching the optimal solution) or 

descends faster, which is attributable to the more equidistributed initialization of search agents facilitated by 

Sobol sequences. This improved initial spatial coverage enables SGTO to rapidly identify promising regions 

of the search space, thus accelerating the search process and reaching optimal or near-optimal solutions faster 

than GTO. As iterations progress, both algorithms exhibit steady convergence; however, SGTO’s accelerated 

early-stage exploration and exploitation contribute to more efficient fitness improvement and a more robust 

convergence profile. These observations affirm the benefit of Sobol initialization in enhancing GTO’s 

convergence behavior without altering its core search mechanisms. 

3.2 Results on Engineering Design Problems 

As a matter of fact, metaheuristic algorithms are not designed to solve constrained optimization 

problems directly [28]. Therefore, we used the straightforward death penalty technique to transform the 

original problems to their unconstrained form. This technique involves a complete removal of any infeasible 

solution from the population. The primary limitation of the straightforward death penalty technique is that it 

can significantly reduce the algorithm’s ability to find the global optimal solution, particularly when the 

feasible region is small or difficult to reach. This is because the technique enforces strict exclusion of 

infeasible solutions, which can overly restrict the search space, preventing the algorithm from exploring 

potentially promising regions that are close to the constraint boundaries [29]. 

3.2.1 Cantilever Beam 

This problem involves the weight optimization of a cantilever beam with a square cross-section. The 

beam is supported at the leftmost block, and there is a given vertical force at the free end, as shown in Fig. 6. 

The design variables are 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, representing the widths of the square cross-section of each five 

beam segments. Each segments have a fixed and uniform thickness. The objective is to determine the optimal 

width of each beam segments that minimize the total weight of the beam, subject to stress constraints. The 

bound constraints are set as 0.01 ≤ 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 ≤ 100. The mathematical formulation is given as 

follows. 

Minimize: 

𝑓(𝑋) = 0.0624(𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5). (17) 
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Subject to: 

𝑔(𝑋) =
61

𝑥1
3 +

37

𝑥2
3 +

19

𝑥3
3 +

7

𝑥4
3 +

1

𝑥5
3 − 1 ≤ 0. (18) 

 
Figure 6. Cantilever Beam Design 

Table 3 presents the five best solutions obtained by SGTO and GTO for this problem. It can be 

observed that SGTO offers better solutions compared to GTO. Furthermore, Table 4 compares the statistical 

results of SGTO and GTO, showing that SGTO consistently yields more reliable results based on the best, 

mean, standard deviation, and even the worst possible weight of the cantilever beam. 

Table 3. Comparison of the Best Results of the Cantilever Beam Design 

 𝒇(𝒙) 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 

GTO 

1.340164074 6.017553256 5.340219595 4.508685432 3.504463145 2.106066942 

1.340218176 5.939619531 5.368692254 4.505261136 3.486172194 2.178110264 

1.340310371 6.020577963 5.214085021 4.521381761 3.553881483 2.16940664 

1.340324582 6.007727763 5.295937455 4.422739076 3.55515644 2.197999868 

1.340382554 6.068366176 5.268713318 4.513413896 3.432460414 2.19753585 

SGTO 

1.340083573 6.054008663 5.292576344 4.477170684 3.493057772 2.158884816 

1.340090057 6.27784226 5.288057144 4.486191097 3.48077355 2.192996181 

1.340200147 6.070563763 5.237281837 4.524809644 3.507188152 2.137723065 

1.340323951 6.020890548 5.387370025 4.430588565 3.465515659 2.175185696 

1.340400678 5.995763649 5.347262759 4.556968567 3.456662285 2.124122836 

Table 4. Comparison of Statistical Results of the Cantilever Beam Design 

 Best Mean Std. Worst 

GTO 1.340164074 1.34198915 0.001047075 1.346851792 

SGTO 1.340083573 1.341886592 0.001039628 1.345402422 

3.2.2 Three-Bar Truss 

This problem seeks to minimize the weight of a statically loaded three-bar truss under stress, buckling, 

and deflection constraints. The design variables are the cross-sectional areas 𝑥1 and 𝑥2. The objective is to 

minimize the total weight of the truss, which is directly proportional to the sum of the products of each bar’s 

length and its corresponding cross-sectional area, as illustrated in Fig. 7. The bound constraints are set as 0 ≤
𝑥1, 𝑥2 ≤ 1. The length of the bar is set as 𝑙 = 100 𝑐𝑚, the applied vertical load is 𝑃 = 2 𝑘𝑁/𝑐𝑚2, and the 

allowable axial stress is 𝜎 = 2 𝑘𝑁/𝑐𝑚2. The optimization model can be expressed as follows. 

Minimize:  

𝑓(𝑋) = 2√2𝑥1 + 𝑥2 × 𝑙. (19) 

Subject to:      

𝑔1(𝑋) =
√2𝑥1 + 𝑥2

√2𝑥1
2 + 2𝑥1𝑥2

𝑃 − 𝜎 ≤ 0, (20) 

𝑔2(𝑋) =
𝑥2

√2𝑥1
2 + 2𝑥1𝑥2

𝑃 − 𝜎 ≤ 0, (21) 

𝑔3(𝑋) =
𝑥2

√2𝑥2 + 𝑥1

𝑃 − 𝜎 ≤ 0. (22) 
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Figure 7. Three-Bar Truss Design 

Table 5 presents the five best solutions obtained by SGTO and GTO for this problem, where SGTO 

consistently produced better solutions compared to GTO. Table 6 further compares the statistical results for 

both algorithms, showing that SGTO delivers more reliable results across all performance indicators. Notably, 

SGTO achieved a lower total weight for the truss design. 

Table 5. Comparison of the Best Results of the Three-Bar Truss Design 

 𝒇(𝒙) 𝒙𝟏 𝒙𝟐 

GTO 

263.8915812 0.788668938 0.408191288 

263.8915973 0.788449927 0.408786857 

263.8917638 0.788134957 0.409679163 

263.8917881 0.788681762 0.408165228 

263.8918346 0.788940584 0.407433272 

SGTO 

263.8915222 0.788448514 0.408804094 

263.8915399 0.788711975 0.408048165 

263.8915637 0.788345792 0.409090389 

263.8915748 0.788971889 0.407319253 

263.8916043 0.789011549 0.407205429 

Table 6. Comparison of Statistical Results of the Three-Bar Truss Design 

 Best Mean Std. Worst 

GTO 263.8915812 263.9541945 0.095367583 264.516143 

SGTO 263.8915222 263.9076591 0.013671271 263.9381255 

3.2.3 Gear Train Design 

The gear train design problem is an unconstrained optimization. As shown in Fig. 8, the design 

variables are 𝑥1, 𝑥2, 𝑥3, 𝑥4, representing the number of teeth on every four gears, which must be integers 

(discrete). The objective is to minimize the squared error between a desired gear ratio and the actual gear 

ratio in a four-gear train. The bound constraints are set as 12 ≤ 𝑥1, 𝑥2, 𝑥3, 𝑥4 ≤ 60. The mathematical 

formulation is as follows. 

Minimize: 

𝑓(𝑋) = (
1

6.931
−

𝑥2𝑥3

𝑥1𝑥4
)

2
(23) 

 
Figure 8. Gear Train Design 

Table 7 shows the five best solutions obtained by SGTO and GTO for the gear train design problem, 

where SGTO demonstrates superior performance in finding optimal solutions. In Table 8, the statistical 
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comparison between the two algorithms reveals that SGTO consistently provides more reliable results across 

all evaluation metrics. The solutions offered by SGTO are remarkably different from GTO, allowing it to 

achieve further reduction in the error of gear ratio. 

Table 7. Comparison of the Best Results of the Gear Train Design 

 𝒇(𝒙) 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 

GTO 

1.72316e-16 31.13911389 12.00723064 12.3368186 32.97127337 

4.53724e-16 33.15643026 12.01598039 12.01756859 30.18585922 

6.89852e-16 30.59516067 12.02656554 12 32.69384127 

7.72546e-16 36.97451388 12.00117943 12 26.99594392 

9.15741e-16 36.01354871 12 12 27.7135641 

SGTO 

2.27287e-17 33.11543814 12 19.37586573 48.66399625 

6.09345e-17 39.67469654 12 13.71374923 28.74879932 

1.93234e-16 24.07521196 12 12.00152053 41.46133255 

4.88555e-16 40.90261779 12 16.54622811 33.64534467 

5.20659e-16 31.23611307 12 12 31.95224195 

Table 8. Comparison of Statistical Results of the Gear Train Design 

 Best Mean Std. Worst 

GTO 1.72316e-16 2.15526e-11 6.79982e-11 9.37141e-10 

SGTO 2.27287e-17 9.52217e-12 2.74286e-11 3.37508e-10 

However, while the results obtained are promising, they do not fully align with the nature of this 

problem, as the design variables in gear train design must be discrete rather than continuous. For instance, it 

would not make sense for the number of teeth of a gear to be fractional. To address this, each design variable 

is rounded to the nearest integer after every iteration, ensuring that the designs are feasible. Table 9 presents 

the results from these adjusted problems, showcasing the performance of SGTO and GTO when the design 

variables comply with the nature of the problem. This adjustment provides a more realistic comparison, taking 

into account the inherent constraints of the problem. Notably, SGTO continues to lead in terms of solution 

quality, which is also supported by statistical results shown in Table 10. 

Table 9. Comparison of the Best Results of the Gear Train Design (Adjusted) 

 𝒇(𝒙) 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 

GTO 

9.92158e-10 47 13 12 23 

9.92158e-10 23 12 13 47 

9.92158e-10 47 12 13 23 

9.92158e-10 47 12 26 46 

9.92158e-10 47 12 13 23 

SGTO 

2.30782e-11 53 13 20 34 

2.30782e-11 34 13 20 53 

9.93988e-11 57 13 31 49 

1.54505e-10 43 13 21 44 

9.92158e-10 47 13 12 23 

Table 10. Comparison of Statistical Results of the Gear Train Design (Adjusted) 

 Best Mean Std. Worst 

GTO 9.92158e-10 3.67909e-08 1.23241e-07 7.77863e-07 

SGTO 2.30782e-11 1.48469e-08 4.52698e-08 7.77863e-07 

3.2.4 Pressure Vessel Design 

The purpose of this problem is to minimize the manufacturing costs of a cylindrical pressure vessel 

capped by hemispherical heads on both ends. The design variables are the thickness of the shell 𝑥1, thickness 

of the head 𝑥2, the inner radius 𝑥3, and the length of the cylindrical section of the vessel 𝑥4, depicted in Fig. 

9. The objective is to minimize the total costs, which include welding, material, and forming, while also 

satisfying constraints related to the required internal volume, structural stress limits, and practical design 

bounds on the vessel dimensions. The bound constraints are set as 1 × 0.0625 ≤ 𝑥1, 𝑥2 ≤ 99 × 0.0625 and 

10 ≤ 𝑥3, 𝑥4 ≤ 200. The optimization model of the problem is given as follows. 
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Minimize: 

𝑓(𝑋) = 0.06224𝑥1𝑥3𝑥4 + 1.7781𝑥2𝑥3
2 + 3.1661𝑥1

2𝑥4 + 19.84𝑥1
2𝑥3. (24) 

Subject to: 

𝑔1(𝑋) = −𝑥1 + 0.0193𝑥3 ≤ 0, (25) 

𝑔2(𝑋) = −𝑥2 + 0.00954𝑥3 ≤ 0, (26) 

𝑔3(𝑋) = −𝜋𝑥3
2𝑥4 −

4

3
𝜋𝑥3

3 + 1296000 ≤ 0, (27) 

𝑔4(𝑋) = 𝑥4 − 240 ≤ 0. (28) 

 

 
Figure 9. Pressure Vessel Design 

Table 11 displays the five best solutions obtained by SGTO and GTO for the pressure vessel design 

problem. Similarly, SGTO exceeds GTO in terms of finding optimal solutions. Observe that the length of the 

cylindrical section (𝑥4) are remarkably different in each of the solutions SGTO provided, thus allowing 

SGTO to reach a lower objective value. The statistical results of both algorithms are shown in Table 12, 

which confirms that SGTO consistently produced a more reliable result in achieving a reduction of the 

pressure vessel manufacturing costs. 

Table 11. Comparison of the Best Results of the Pressure Vessel Design 

 𝒇(𝒙) 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 

GTO 

5913.017322 0.781356548 0.385077476 40.54152241 198.2777099 

5980.2784 0.79316822 0.393010242 41.09569262 192.4257825 

6001.28558 0.783797749 0.422008016 40.9449089 191.7374971 

6006.915316 0.786290719 0.421551683 40.89372303 193.1272677 

6017.331945 0.840533891 0.411123734 43.58954469 159.5219976 

SGTO 

5898.752718 0.787042751 0.390855263 41.04821232 190.1232608 

5928.354891 0.780282512 0.382311872 40.71082551 195.5657763 

5932.05526 0.780912511 0.393473847 40.79963814 194.4433666 

5941.481586 0.789391661 0.397240478 40.93157913 192.5303594 

5950.806141 0.797182002 0.387449719 41.17052399 188.7615467 

Table 12. Comparison of Statistical Results of the Pressure Vessel Design 

 Best Mean Std. Worst 

GTO 5913.017322 6806.528085 353.5090536 7441.603852 

SGTO 5898.752718 6258.942484 119.1210598 6442.458823 

3.2.5 Piston Lever Design 

This problem focuses on minimizing the volume of a piston lever mechanism, which is critical for 

reducing material costs and improving system efficiency. The design variables are the piston height 𝑥1, base 

width 𝑥2, piston diameter 𝑥3, and stroke length 𝑥4, which is shown in Fig. 10. The objective is to minimize 

the volume enclosed by the piston, while also satisfying constraints related to the force balance, moment 

resistance, geometric design feasibility, and mechanical integrity. The bound constraints are set as 0.05 ≤
𝑥1, 𝑥2, 𝑥3 ≤ 500 and 0.05 ≤ 𝑥4 ≤ 120. The lever operating angle is 𝜃 = 45°, the applied load is 𝑄 =
10000 𝑙𝑏𝑠, the total lever length is 𝐿 = 240 𝑖𝑛, the maximum allowable bending moment is 𝑀𝑚𝑎𝑥 =
1.8 × 106 𝑙𝑏𝑠 𝑖𝑛, and the oil pressure is 𝑃 = 1500 𝑝𝑠𝑖. The complete optimization model is given as follows. 
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Minimize: 

𝑓(𝑋) =
1

4
𝜋𝑥3

2(𝐿2 − 𝐿1). (29) 

Subject to:       

𝑔1(𝑋) = 𝑄𝐿𝑐𝑜𝑠𝜃 − 𝑅 × 𝐹 ≤ 0, (30) 

𝑔2(𝑥) = 𝑄(𝐿 − 𝑥4) − 𝑀𝑚𝑎𝑥 ≤ 0, (31) 

𝑔3(𝑥) = 1.2(𝐿2 − 𝐿1) − 𝐿1 ≤ 0, (32) 

𝑔4(𝑥) =
𝑥3

2
− 𝑥2 ≤ 0, (33) 

where, 

𝑅 =
|−𝑥4(𝑥4 sin 𝜃 + 𝑥1) + 𝑥1(𝑥2 − 𝑥4 cos 𝜃)|

√(𝑥4 − 𝑥2)2 + 𝑥1
2

, (34) 

𝐹 =
𝜋𝑃𝑥3

2

4
, (35) 

𝐿1 = √(𝑥4 − 𝑥2)2 + 𝑥1
2, (36) 

𝐿2 = √(𝑥4 sin 𝜃 + 𝑥1)2 + (𝑥2 − 𝑥4 cos 𝜃)2. (37) 

The best obtained results for piston lever design are shown in Table 13. According to the findings, both 

SGTO and GTO agreed on setting the value of piston height (𝑥1), but mostly differs in the value of stroke 

length (𝑥4). This leads to SGTO being able to reach the lowest possible volume enclosed by the piston. 

Looking at the statistical results in Table 14, the variability of both algorithms is significant, which is expected 

due to the implementation of the straightforward death penalty technique. It is worth mentioning here that it 

is also possible that the number of initial populations is inadequate, considering the given number of design 

variables. However, this problem can be avoided by setting up a larger initial population. 

 
Figure 10. Piston Lever Design 

Table 13. Comparison of the Best Results of the Piston Lever Design 

 𝒇(𝒙) 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 

GTO 

8.921285544 0.05 2.088772581 4.157604232 115.8149417 

9.437447522 0.05 2.201104582 4.169782409 116.037304 

9.490468868 0.05 2.12913255 4.24740004 110.8052399 

9.578598853 0.05 2.139014616 4.257475882 110.5049002 

9.624589647 0.05 2.162282806 4.246069156 112.3216578 
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 𝒇(𝒙) 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 

SGTO 

8.727356528 0.05 2.094263341 4.107733368 118.6226458 

9.170561899 0.05 2.184519507 4.1260692 118.3761426 

9.258473179 0.05 2.217913681 4.11603762 120 

9.289918569 0.05 2.171350396 4.164422308 116.505379 

9.355160917 0.05 2.127282663 4.219436668 112.9556048 

Table 14. Comparison of Statistical Results of the Piston Lever Design 

 Best Mean Std. Worst 

GTO 8.921285544 152.6466053 242.0550117 1337.639627 

SGTO 8.727356528 181.9788569 265.8432291 1162.233957 

 

Considering the execution time, SGTO exhibits slightly higher computational demands in certain 

cases. While SGTO outperforms GTO in solution quality, the execution time for some of the problems is less 

efficient, indicating a trade-off between solution quality and computational cost. However, unlike in the first 

test group on benchmark functions, where SGTO was completely defeated on all terms for six functions listed 

in Table 2, SGTO was only inferior in either the mean or standard deviation of the computation time. In Table 

15 below, the execution time for each of the five engineering design problems is presented, highlighting 

where SGTO’s performance is compromised by longer computation times compared to GTO. 

Table 15. Execution Time Results for Engineering Design Problems 

Problem 
Best  Mean Standard Deviation 

GTO SGTO GTO SGTO GTO SGTO 

A 0.828125 0.671875 1.507916667 0.75078125 0.421405011 0.119971276 

B 3.953125 1.234375 4.94203125 4.037239583 0.783599472 2.736155212 

C1 1.15625 1 1.75421875 1.23640625 0.351648288 0.348900567 

C2 1.328125 1.046875 1.847864583 1.265572917 0.483685831 0.275654696 

D 4.296875 1.4375 6.035104167 5.55984375 1.900235505 1.924024105 

E 4.21875 4.21875 5.142083333 6.177239583 0.720718867 0.880936722 

* C1: Gear Train Design, C2: Gear Train Design (Adjusted). 

3.3 Results on Epidemiological Model 

In this section, we present the application of the proposed SGTO algorithm along with the GTO 

algorithm to estimate five parameters of the SEAR model in the context of COVID-19 transmission dynamics, 

as shown in Fig. 4 and Eqs. (12), (13), (14), (15). To approach this estimation task, we convert the system of 

differential equations into an optimization framework. The objective is to minimize the error in predicting 

the population dynamics over time, which is calculated by using Eq. (16). The model parameters are treated 

as design variables, adjusted iteratively to minimize the error, ensuring that the model best fits the observed 

data and accurately reflects the epidemic's progression.  

For comparison and validation purposes, we directly adopt the parameter values obtained by the 

Genetic Algorithm (GA) as reported in the reference. This result serves as a benchmark for evaluating the 

performance of GTO and SGTO. By comparing the results obtained from GTO and SGTO with those from 

GA, we ensure that the parameters estimated by GTO and SGTO are consistent with previous findings, 

confirming the relevance and accuracy of these new optimization approaches. 

Table 16. Comparison of the Best Result of the COVID-19 Model 

 

Parameter 

Genetic Algorithm Giant Trevally Optimizer 

Mutation Probability (0.125) Uniform Sobol 

𝛽 0.99102 0.46706746 0.34861697 

𝜀 0.0083116 0.0023645444 0.0024009698 

𝛼 0.18169 0.0056193593 9.8876343e-05 

𝛾 0.012122 0.0098240005 0.0099419019 

Λ 552.2431 8004.7041 9117.2999 
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Parameter 

Genetic Algorithm Giant Trevally Optimizer 

Mutation Probability (0.125) Uniform Sobol 

𝑓(𝑥) 0.1317 0.062077 0.057693 

 

Based on the results in Table 16, it can be observed that both GTO and SGTO effectively minimized 

the objective function. According to the findings, both GTO and SGTO discover remarkably different 

parameter values than those estimated by GA, which allows GTO and SGTO to achieve a significantly lower 

error. It is worth mentioning that the use of Eq. (16) as the objective function provided a clear and quantifiable 

measure of the model’s predictive accuracy. 

 
Figure 11. Comparison of Estimated and Actual Active Cases by GA, GTO, and SGTO for the COVID-19 

Model 

Furthermore, by taking the obtained parameter values to simulate the number of active cases, it is 

evident from Fig. 11 that the results generated by SGTO are closely aligned with the real data. In contrast, 

the result obtained by GTO is consistent with those from the GA, though they exhibit a closer fit to the real 

data compared to the GA estimates. This observation suggests a significant improvement in model 

performance following the optimization of parameters, highlighting the practicality of SGTO and GTO as 

valuable tools for calibrating epidemiological models and simulating disease transmission dynamics. 

4. CONCLUSION 

This paper proposes the Sobol-initialized Giant Trevally Optimizer (SGTO), which leverages low-

discrepancy Sobol sequences during initialization to improve global exploration and mitigate premature 

convergence, addressing a key limitation of conventional metaheuristics. Experimental results consistently 

show that SGTO outperforms the original GTO in solution quality across diverse benchmarks and engineering 

problems, with only minor increases in computational time for certain test cases. Since GTO itself was 

previously validated against standard metaheuristics, the improved performance of SGTO suggests clear 

advantages in high-dimensional and complex search spaces. Furthermore, the successful application of SGTO 

in calibrating epidemiological models, such as those used for COVID-19 transmission dynamics, highlights 

its practical relevance and versatility in addressing real-world optimization challenges. While direct 

comparisons with other algorithms remain a task for future research, SGTO demonstrates strong real-world 

applicability and robustness. 

Nevertheless, several research gaps remain open for future research. While this study has demonstrated 

the effectiveness of implementing the Sobol sequence in the initialization phase, further exploration into 

hybrid strategies that incorporate physics-inspired mechanisms or adaptive search behaviors could yield even 

more powerful algorithms. Additionally, extending the application of SGTO to combinatorial optimization 

problems, such as quadratic embedding and domination in graph theory, presents a compelling direction for 

future work. Finally, investigating alternative low-discrepancy sequences or randomized initialization 
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methods may further enhance the balance between exploration and exploitation, potentially leading to even 

more robust and efficient optimization algorithms. 

Author Contributions 

Ikhsan Rizqi Az-Zukruf As-Shidiq: Conceptualization, Validation, Writing – Original Draft, Writing – 

Review and Editing. E. Andry Dwi Kurniawan: Methodology, Software, Visualization. Kuntjoro Adji 

Sidarto: Supervision. All authors discussed the results and contributed to the final manuscript. 

Funding Statement  

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit 

sectors. 

Acknowledgment  

The authors gratefully acknowledge the Department of Mathematics, Institut Teknologi Bandung, for 

providing the computational resources essential for this research. We also thank the reviewers for their 

valuable comments and suggestions, which contributed to the improvement of this manuscript. Additionally, 

we extend our appreciation to Aminatus Sa’adah for helpful discussions and support during the development 

of this work. 

Declarations 

The authors declare that there are no conflicts of interest in this study.  

Declaration of Generative AI and AI-assisted Technologies 

Generative AI tools (e.g., ChatGPT) were used solely for language refinement, including grammar, spelling, 

and clarity. The scientific content, analysis, interpretation, and conclusions were developed entirely by the 

authors. All final text was reviewed and approved by the authors. 

REFERENCES 

[1] M. Khadivi, T. Charter, M. Yaghoubi, M. Jalayer, M. Ahang, A. Shojaeinasab, and H. Najjaran, “DEEP REINFORCEMENT 

LEARNING FOR MACHINE SCHEDULING: METHODOLOGY, THE STATE-OF-THE-ART, AND FUTURE 

DIRECTIONS,” Oct. 2023. doi: https://doi.org/10.1016/j.cie.2025.110856. 

[2] G. B. Fotopoulos, P. Popovich, and N. H. Papadopoulos, “REVIEW NON-CONVEX OPTIMIZATION METHOD FOR 

MACHINE LEARNING,” Oct. 2024. doi: 10.48550/arXiv.2410.02017. 

[3] F. Jiang, Y. Zhou, J. Liu, and Y. Ma, “ON HIGH DIMENSIONAL POISSON MODELS WITH MEASUREMENT ERROR: 

HYPOTHESIS TESTING FOR NONLINEAR NONCONVEX OPTIMIZATION,” Dec. 2022. doi: 

https://doi.org/10.1214/22-AOS2248. 

[4] X.-S. Yang, NATURE INSPIRED METAHEURISTIC ALGORITHMS. U.K.: Luniver Press, 2010. 

[5] A. Darwish, “BIO-INSPIRED COMPUTING: ALGORITHMS REVIEW, DEEP ANALYSIS, AND THE SCOPE OF 

APPLICATIONS,” Future Computing and Informatics Journal, vol. 3, no. 2, pp. 231–246, Dec. 2018. doi: 

https://doi.org/10.1016/j.fcij.2018.06.001. 

[6] D. Whitley, "A GENETIC ALGORITHM TUTORIAL," Department of Computer Science, Colorado State University, Fort 

Collins, CO, USA, 1993. 

[7] R. Eberhart and J. Kennedy, “A NEW OPTIMIZER USING PARTICLE SWARM THEORY,” Aug. 2002. doi: 

https://doi.org/10.1109/MHS.1995.494215 

[8] R. V. Rao, V. J. Savsani, and D. P. Vakharia, “TEACHING-LEARNING-BASED OPTIMIZATION: A NOVEL METHOD 

FOR CONSTRAINED MECHANICAL DESIGN OPTIMIZATION PROBLEMS,” CAD Computer Aided Design, vol. 43, 

no. 3, pp. 303–315, Mar. 2011. doi: https://doi.org/10.1016/j.cad.2010.12.015. 

[9] E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, “GSA: A GRAVITATIONAL SEARCH ALGORITHM,” Inf Sci (N Y), 

vol. 179, no. 13, pp. 2232–2248, Jun. 2009. doi: https://doi.org/10.1016/j.ins.2009.03.004. 

[10] H. T. Sadeeq and A. M. Abdulazeez, “GIANT TREVALLY OPTIMIZER (GTO): A NOVEL METAHEURISTIC 

ALGORITHM FOR GLOBAL OPTIMIZATION AND CHALLENGING ENGINEERING PROBLEMS,” IEEE Access, 

vol. 10, pp. 121615–121640, 2022. doi: https://doi.org/10.1109/ACCESS.2022.3223388. 

[11] K. A. Sidarto and A. Kania, “FINDING ALL SOLUTIONS OF SYSTEMS OF NONLINEAR EQUATIONS USING 

SPIRAL DYNAMICS INSPIRED OPTIMIZATION WITH CLUSTERING,” Sept. 2015. doi: 

https://doi.org/10.20965/jaciii.2015.p0697 

[12] D. W. Sims, E. J. Southall, N. E. Humphries, G. C. Hays, C. J. A. Bradshaw, J. W. Pitchford, A. James, M. Z. Ahmed, A. S. 

Brierley, M. A. Hindell, D. Morritt, M. K. Musyl, D. Righton, E. L. C. Shepard, V. J. Wearmouth, R. P. Wilson, M. J. Witt 

https://doi.org/10.1016/j.cie.2025.110856
https://doi.org/10.1214/22-AOS2248
https://doi.org/10.1016/j.fcij.2018.06.001
https://doi.org/10.1109/MHS.1995.494215
https://doi.org/10.1016/j.cad.2010.12.015
https://doi.org/10.1016/j.ins.2009.03.004
https://doi.org/10.1109/ACCESS.2022.3223388
https://doi.org/10.20965/jaciii.2015.p0697


BAREKENG: J. Math. & App., vol. 20(2), pp. 1229- 1250, Jun, 2026.     1249 

 

 

and J. D. Metcalfe., “SCALING LAWS OF MARINE PREDATOR SEARCH BEHAVIOUR,” Nature, vol. 451, no. 7182, 

pp. 1098–1102, Feb. 2008. doi: https://doi.org/10.1038/nature06518. 

[13] N. E. Humphries, N. Queiroz, J. R. M. Dyer, N. G. Pade, M. K. Musyl, K. M. Schaefer, D. W. Fuller, J. M. Brunnschweiler, 

T. K. Doyle, J. D. R. Houghton, G. C. Hays, C. S. Jones, L. R. Noble, V. J. Wearmouth, E. J. Southall and D. W. Sims., 

“ENVIRONMENTAL CONTEXT EXPLAINS LEVY AND BROWNIAN MOVEMENT PATTERNS OF MARINE 

PREDATORS,” Nature, vol. 465, no. 7301, pp. 1066–1069, Jun. 2010. doi: https://doi.org/10.1038/nature09116. 

[14] R.U. Seydel, TOOLS FOR COMPUTATIONAL FINANCE. Springer Berlin Heidelberg, 2009. doi: 

https://doi.org/10.1007/978-3-540-92929-1. 

[15] S. Joe and F. Y. Kuo, “CONSTRUCTING SOBOL’ SEQUENCES WITH BETTER TWO-DIMENSIONAL 

PROJECTIONS,” SIAM Journal on Scientific Computing, vol. 30, no. 5, pp. 2635–2654, 2007. doi: 

https://doi.org/10.1137/070709359. 

[16] Sobol', I. M., "UNIFORMLY DISTRIBUTED SEQUENCES WITH AN ADDITIONAL UNIFORM PROPERTY," USSR 

Computational Mathematics and Mathematical Physics, vol. 16, no. 5, pp. 236-242, 1976. doi: https://doi.org/10.1016/0041-

5553(76)90154-3. 

[17] M. Jamil and X. S. Yang, “A LITERATURE SURVEY OF BENCHMARK FUNCTIONS FOR GLOBAL OPTIMISATION 

PROBLEMS,” International Journal of Mathematical Modelling and Numerical Optimisation, vol. 4, no. 2, pp. 150–194, 

2013. doi: https://doi.org/10.1504/IJMMNO.2013.055204. 

[18] E. P. Adorio, “MVF-MULTIVARIATE TEST FUNCTIONS LIBRARY IN C FOR UNCONSTRAINED GLOBAL 

OPTIMIZATION.” [Online]. Available: http://www.mat.univie.ac.at/ 

[19] W. Zhao, L. Wang, and S. Mirjalili, “ARTIFICIAL HUMMINGBIRD ALGORITHM: A NEW BIO-INSPIRED 

OPTIMIZER WITH ITS ENGINEERING APPLICATIONS,” Comput Methods Appl Mech Eng, vol. 388, Jan. 2022. doi: 

https://doi.org/10.1016/j.cma.2021.114194. 

[20] A. H. Gandomi, X. S. Yang, and A. H. Alavi, “ERRATUM: CUCKOO SEARCH ALGORITHM: A METAHEURISTIC 

APPROACH TO SOLVE STRUCTURAL OPTIMIZATION PROBLEMS,” Apr. 2013. doi: 

https://doi.org/10.1007/s00366-012-0308-4. 

[21] X.-S. Yang, C. Huyck, M. Karamanoglu, and N. Khan, “TRUE GLOBAL OPTIMALITY OF THE PRESSURE VESSEL 

DESIGN PROBLEM: A BENCHMARK FOR BIO-INSPIRED OPTIMISATION ALGORITHMS,” Mar. 2014. doi: 

https://doi.org/10.4018/jdsst.2013040103. 

[22] H. Bayzidi, S. Talatahari, M. Saraee, and C. P. Lamarche, “SOCIAL NETWORK SEARCH FOR SOLVING 

ENGINEERING OPTIMIZATION PROBLEMS,” Comput Intell Neurosci, vol. 2021, Sept. 2021. doi: 

https://doi.org/10.1155/2021/8548639. 

[23] R. Zheng, A. G. Hussien, H. M. Jia, L. Abualigah, S. Wang, and D. Wu, “AN IMPROVED WILD HORSE OPTIMIZER 

FOR SOLVING OPTIMIZATION PROBLEMS,” Mathematics, vol. 10, no. 8, Apr. 2022. doi: 

https://doi.org/10.3390/math10081311. 

[24] B. S. Yildiz, P. Mehta, N. Panagant, S. Mirjalili, and A. R. Yildiz, “A NOVEL CHAOTIC RUNGE KUTTA 

OPTIMIZATION ALGORITHM FOR SOLVING CONSTRAINED ENGINEERING PROBLEMS,” J Comput Des Eng, 

vol. 9, no. 6, pp. 2452–2465, Dec. 2022. doi: https://doi.org/10.1093/jcde/qwac113. 

[25] E. A. D. Kurniawan, F. Fatmawati, and A. Dianpermatasari, “MODEL MATEMATIKA SEAR DENGAN 

MEMPERHATIKAN FAKTOR MIGRASI TERINFEKSI UNTUK KASUS COVID-19 DI INDONESIA,” Limits: Journal 

of Mathematics and Its Applications, vol. 18, no. 2, p. 142, Nov. 2021. doi: https://doi.org/10.12962/limits.v18i2.7774. 

[26] P. Bratley and B. L. Fox, “Algorithm 659: IMPLEMENTING SOBOL’S QUASIRANDOM SEQUENCE GENERATOR,” 

ACM Transactions on Mathematical Software, vol. 14, no.1, pp. 88-100, 1988. doi: https://doi.org/10.1145/42288.42289 

[27] Antonov, I. A., and Saleev, V. M., "AN ECONOMIC METHOD OF COMPUTING LPΤ-SEQUENCES," USSR 

Computational Mathematics and Mathematical Physics, vol. 19, no. 1, pp. 252-256, 1979. doi: https://doi.org/10.1016/0041-

5553(79)90085-5 

[28] C. A. C. Coello, “THEORETICAL AND NUMERICAL CONSTRAINT-HANDLING TECHNIQUES USED WITH 

EVOLUTIONARY ALGORITHMS: A SURVEY OF THE STATE OF THE ART,” Comput. Methods Appl. Mech. Eng. 

191(11-12), 1245-1287, Jan. 2002. doi: https://doi.org/10.1016/S0045-7825(01)00323-1 

[29] C. A. C. Coello, "A SURVEY OF CONSTRAINT HANDLING TECHNIQUES USED WITH EVOLUTIONARY 

ALGORITHMS," Laboratorio Nacional de Informática Avanzada, Veracruz, Mexico, 1999. 

 

  

https://doi.org/10.1038/nature06518
https://doi.org/10.1038/nature09116
https://doi.org/10.1007/978-3-540-92929-1
https://doi.org/10.1137/070709359
https://doi.org/10.1016/0041-5553(76)90154-3
https://doi.org/10.1016/0041-5553(76)90154-3
https://doi.org/10.1504/IJMMNO.2013.055204
https://doi.org/10.1016/j.cma.2021.114194
https://doi.org/10.1007/s00366-012-0308-4
https://doi.org/10.4018/jdsst.2013040103
https://doi.org/10.1155/2021/8548639
https://doi.org/10.3390/math10081311
https://doi.org/10.1093/jcde/qwac113
https://doi.org/10.12962/limits.v18i2.7774
https://doi.org/10.1145/42288.42289
https://doi.org/10.1016/0041-5553(79)90085-5
https://doi.org/10.1016/0041-5553(79)90085-5
https://doi.org/10.1016/S0045-7825(01)00323-1


1250 Shidiq, et al.     ENHANCED GIANT TREVALLY OPTIMIZER FOR ENGINEERING DESIGN AND …  

 

 


	ENHANCED GIANT TREVALLY OPTIMIZER FOR ENGINEERING DESIGN AND EPIDEMIOLOGICAL MODEL
	1. INTRODUCTION
	2. RESEARCH METHODS
	2.1 Giant Trevally Optimizer (GTO)
	2.2 Proposed Modification
	2.3 Experimental Setup
	2.3.1 Benchmark Function
	2.3.2 Engineering Design Problem
	2.3.3 Epidemiological Model Case Study


	3. RESULTS AND DISCUSSION
	3.1 Results on Benchmark Functions
	3.2 Results on Engineering Design Problems
	3.2.1 Cantilever Beam
	3.2.2 Three-Bar Truss
	3.2.3 Gear Train Design
	3.2.4 Pressure Vessel Design
	3.2.5 Piston Lever Design

	3.3 Results on Epidemiological Model

	4. CONCLUSION
	Author Contributions
	Funding Statement
	Acknowledgment
	Declarations
	Declaration of Generative AI and AI-assisted Technologies
	REFERENCES

