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1. INTRODUCTION

Optimization plays a crucial role in a wide range of scientific and engineering domains, including
structural design, control systems, machine learning, and scheduling problems [1]. These problems typically
require finding the best configuration of decision variables that either minimizes or maximizes an objective
function, often under a set of constraints. However, in many real-world applications, the objective functions
involved are often found to be nonlinear, non-differentiable, high-dimensional, multimodal, or non-convex,
which have proven difficult to solve using analytical or classical mathematical methods such as gradient
descent [2], [3]. To overcome these challenges, researchers have turned to more flexible and adaptive
optimization strategies, such as metaheuristic algorithms [4], [5].

Metaheuristic algorithms have gained widespread attention due to their ability to search complex,
nonlinear, and multimodal landscapes without relying on gradient information or strict mathematical
assumptions such as convexity or differentiability. Inspired by natural processes such as biological evolution,
swarm intelligence, and physical phenomena, metaheuristic algorithms offer a balance between exploration
and exploitation that enables them to find near-optimal solutions even in challenging search spaces. Several
well-known examples include Genetic Algorithms (GA) [6], Particle Swarm Optimization (PSO) [7],
Teaching-Learning Based Optimization (TLBO) [8], and Gravitational Search Algorithm (GSA) [9], each
drawing inspiration from different natural phenomena to tackle diverse optimization problems. The success
of these approaches has led to a growing domain of research dedicated to developing novel and more
specialized metaheuristics in order to solve increasingly complex and high-dimensional problem domains.

Among the new generation of bio-inspired optimization algorithms, one of the recent developments is
the Giant Trevally Optimizer (GTO), a swarm-based metaheuristic algorithm inspired by the intelligent
hunting behavior of Caranx ignobilis, a predatory fish known for its strategic attacks on seabirds [10]. GTO
simulates this behavior through three main phases: extensive search, area selection, and prey attack. In the
extensive search phase, the algorithm exhaustively investigates various regions of the search space. And then,
during the area selection phase, the search agents concentrate on the neighborhood of higher-quality solutions
inside the featured space. Finally, in the prey attack phase, agents exploit the selected regions to refine
solutions and converge toward the global optimum. By modeling these strategies mathematically, GTO offers
an effective balance between exploration and exploitation, enabling it to effectively solve complex
optimization problems.

One of the main concerns regarding the procedure of seeking optimality is the randomness involved in
the search space [11]. In many metaheuristic algorithms, including GTO, the initial random distribution of
search agents plays a critical role in determining the quality of the search process. A poorly initialized
population may fail to cover the search space adequately, leading to premature convergence and suboptimal
solutions. Motivated by this observation, this study proposes an enhancement to GTO’s initialization phase
by incorporating a quasi-random low-discrepancy sequence, aiming to generate an initial population that is
more uniformly distributed across the search space. The modified GTO is expected to improve its exploration
capability, accelerate convergence, and achieve higher solution accuracy.

The novelty and contribution of this research lie in the design of an improved version of the GTO,
named the Sobol-initialized Giant Trevally Optimizer (SGTO), which is capable of providing a more uniform
and effective exploration of the search space, reducing the likelihood of poor initial agent distribution and
improving overall optimization performance which results in better convergence to optimal solutions and
faster optimization. The proposed SGTO enhances the original GTO by incorporating a quasi-random low-
discrepancy sequence during the initialization phase to generate search agents that are evenly distributed
across the search space. The mathematical formulation of the modified initialization is provided, and the
original flowchart of GTO is rewritten with indentation for clarity. Forty objective functions of unimodal,
multimodal, separable, and non-separable types have been utilized to evaluate the effectiveness of the
proposed SGTO in optimization. Furthermore, SGTO is applied to five complex engineering design problems
as well as adapted to solve a system of differential equations arising in epidemiological modeling. Finally,
the performance of SGTO is compared against the original GTO, demonstrating faster convergence and
higher solution accuracy across the tested problems.

The paper is organized as follows: Section 2 presents research methods, along with the details of the
proposed algorithm, proposed flow chart, and the pseudo code; Section 3 explains the numerical results and
discussion. Finally, concluding remarks are provided in section 4.
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2. RESEARCH METHODS

To investigate the impact of the proposed modification, this section presents the research methodology
adopted in the study. First, the structure and working mechanism of the original GTO are briefly reviewed to
establish a baseline understanding. Then, the proposed improvement focusing on the initialization phase is
described in detail, including the mathematical incorporation of quasi-random principles. Finally, the
experimental setup, benchmark problems, and evaluation procedures used to assess and compare the
performance of the modified algorithm are outlined.

2.1 Giant Trevally Optimizer (GTO)

The Giant Trevally Optimizer (GTO) is a bio-inspired metaheuristic algorithm designed to solve global
optimization problems by mimicking the predatory behavior of giant trevally (Caranx ignobilis), which are
found in the Indian and Pacific Oceans. These fish select prey-dense areas and start to stalk their prey, then
leap out of the water to catch the prey mid-air. Their hunting behaviors serve as the biological foundation for
modeling the three main phases of GTO: extensive search, choosing an area, and chasing and attacking prey.

The optimization process begins with a random initialization of the population, where each agent (giant
trevallies) represents a candidate solution to the optimization problem. Each agent’s position is initialized
using Eq. (1):

X;;(0) = Minimum; + (Maximumj — Minimumj) X R, (D

where Minimum;, Maximum; represent the lower and upper bound values on the defined problem for the
jt" dimension, and R is a random number in the interval [0,1] that is generated by a uniform distribution.

The extensive search phase is the first step in GTO’s iterative process, wWhere search agents perform a
broad exploration of the search space. This phase simulates the foraging behavior of giant trevallies as they
travel long distances in search of prey, which can be done by using the Levy flight that is often exhibited by
marine predators [12], [13]. Thus, allowing agents to explore distant areas and avoid becoming trapped in
local optima. Mathematically, the position update during this phase can be expressed as Eq. (2):

X(t+1) = Xpes: (t) X R + Levy(d) X (Minimum + (Maximum — Minimum) X R), 2

where X (t + 1) denotes the next position of the agents, Xp.s:(t) is the best obtained solution during the last
search iteration, and Levy(d) is a random step vector drawn from the Levy distribution in d-dimensional
space.
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Figure 1. Visual Distortion in GTO Following the Principle of Light Refraction

In the choosing area phase, each agent selects promising regions within the search space based on the
current knowledge of the population. This phase simulates the behavior of giant trevallies in identifying and
selecting the best area in terms of the amount of prey where they can hunt for prey. Thus, directing agents
toward areas that contain better solutions, enhancing the balance between diversification and intensification.
This behavior is mathematically simulated in Eq. (3).
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1 N
X(t+1) =Xbest(t)><c/lxR—Xi(t)><R+ﬁ X;(0), 3
j=1
where A is a special parameter to control the rate of changing position, X;(t) is the location of the i** giant
trevally, and N is the number of giant trevallies. The value of A = 0.4 was chosen based on empirical studies
and systematic tuning to balance exploration and exploitation effectively during the search process.

Finally, the attacking phase simulates the Giant Trevally’s attack by leaping out of the water to catch
the prey mid-air. The mathematical model involves visual distortion due to light refractions, launching speed,
and the jumping slope function. Fig. 1 demonstrates how the giant trevally perceives its prey due to light
refraction at the interface between water and air. The bird’s actual position is shown above the water, while
the bird’s position perceived by the giant trevally from below is displaced due to the bending of light rays.
This perceptual distortion alters the trajectory of the jump. The giant trevally does not aim directly at the
position of the prey, but rather at the distorted position as perceived through the refraction angle. The
inclusion of this behavior in the GTO algorithm mimics how the solution agent adjusts its movement direction
not only based on the best-known solution but also under a distortion term that introduces nonlinearity and
adaptive search variability. This mechanism contributes to diversifying the search path, improving the
algorithm’s ability to escape local optima, and mimicking nature’s imperfect yet effective decision-making
processes. The following Eq. (4) represents a compact form of the original GTO update mechanisms, obtained
by merging multiple expressions for brevity without altering their computational structure.

X(t+1) = X;(£) x sin(8;) X Fop;(X; () + %Sin(ez) X |Xpese () — X; (O] + H, 4)
1

where Fobj(Xi(t)) is the fitness value of X;(t), n; = 1.00029, and n, = 1.33 represents the absolute
refractive index of air and water, 6, is the angle of refraction given by a random number in the interval
[0°,360°], and H represents the jumping slope function that gradually decreases over time to control the
algorithm’s transition from the exploration phase to the exploitation phase, which is given in Eq. (5).

7—[=Rx(2—tx;>, (5)

where T is the maximum number of iterations allowed during the optimization process.

Overall, GTO dynamically transitions between exploration and exploitation, enabling robust search
capabilities over complex landscapes. Further detailed mathematical modeling of each phase and parameter
setting guidelines can be found in the original paper.

2.2 Proposed Modification

In the first step of GTO, an initial population of agents is generated randomly. One of the difficulties
with using random numbers is their tendency to generate unevenly spaced points in the search space. While
such numbers may follow a uniform probability distribution U[0, 1] in a stochastic sense, they often fail to
achieve equidistribution, a more desirable form of uniformity in the context of optimization. This lack of
uniformity can lead to poorly spread initial populations, especially in high-dimensional search spaces,
resulting in clustering and inadequate coverage. Therefore, it is beneficial to generate a population of points
in the search region such that the deviation from uniformity is minimum. This deviation is called discrepancy,
which is measured as follows.
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Figure 2. Scatter Plot of the first 100 Points of (a) Sobol Sequence of Points, and (b) Pseudo-Random of Points
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Let Q < [0, 1]™ be an arbitrary axially parallel n-dimensional rectangle in the unit cube [0, 1]" c R™.
and let x;, x,, ..., x5 € [0, 1]™ be a set of N points. The idea of discrepancy is that for an evenly distributed
point set, the proportion of points lying inside the rectangle @ should correspond to the volume of Q. Let #
denote the number of points and vol denote the volume of n-dimensional rectangle, then we expect that

#of x; €Q N vol(Q)

#of all points  vol([0,1]")’ ®)
for as many rectangles as possible. Then, the discrepancy of the point set is defined by
# i €
Dy = sup W —vol(Q)|. @)
Q

A lower value of Dy indicates a more uniform distribution of points, that is Dy — 0 as N — oo, Next,
a sequence of points x4, x5, ..., xy, ... € R™ is called low-discrepancy sequence if there is a constant C,, such
that for all N,

¢, (InN)"
NS )]

Sequences with low discrepancy are also referred to as quasi-random numbers. Among the various
constructions of such sequences, the Sobol sequence is one of the most widely used due to its ability to
produce uniformly distributed points, especially in high-dimensional spaces [14]-[16].

Initialize the number of giant trevallies N and the maximum number of iterations T
Initialize objective function F,,;(x), dimension D, and its respective bounds
Generate Sobol sequence of points {S; € [0,1]° | i =1,2,...,N}
Initialize the populations of giant trevallies by using (9)
for each giant trevallyi = 1to N
Calculate objective function F,,;(X) of the current giant trevally
end for
Sort the value of F,,;(X;) and the population X;
Determine the global best solution as Fj;
Determine the best location as X, .;
while t < T (maximum number of iterations)
for each giant trevallyi = 1to N
Calculate new best position for extensive search using (2)
if Fopj (Xi(©) < Fopj (Xpest)
Replace Xpq: With X;(t)
if Fopj (Xi () < Fpest
Replace Fyes With Fyp; (X (1))
end if
end if
Calculate X;(t) for choosing area using (3)
if Fopj (Xi(©)) < Fopj(Xpest)
Replace X, with X;(t)
if Fobj(Xi(t)) < Fbest
Replace Fyesr With Fop;(X; (1))
end if
end if
Switch from exploration to exploitation using (5)
Calculate X;(t) for attacking phase using (4)
if Fobj(Xi(t)) < Fobj(Xbest)
Replace Xp,g: With X;(t)
if Fobj(Xi(t)) < Fbest
Replace Fyes With Fyp; (X (1))
end if
end if
t=t+1
end while

Figure 3. Detailed Pseudo-Code of SGTO
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Sobol sequences are a type of low-discrepancy quasi-random sequences characterized by their ability
to produce points that are evenly and uniformly distributed within a multi-dimensional space. Unlike purely
random sequences that may exhibit clustering or gaps, Sobol sequences minimize discrepancy, ensuring that
points fill the search space more systematically. This property makes them especially valuable in high-
dimensional optimization and integration tasks. By employing Sobol sequences during the initialization phase
of GTO, the algorithm benefits from enhanced exploration of the search space due to better spatial coverage
of initial agents. This systematic coverage improves both the speed of convergence and the likelihood of
escaping local optima, thereby increasing the overall efficiency and robustness of the optimization process.

In the proposed modification, the Sobol sequence is employed during the initialization phase of GTO.
Specifically, instead of generating each search agent’s position using uniformly distributed random numbers,
a sequence of quasi-random vectors is generated using the Sobol sequence. These vectors, defined within the
unit hypercube [0,1]™ are then linearly scaled to match the predefined lower and upper bounds of the
problem’s search space. This modification aims to enhance the algorithm’s early-stage exploration by
improving the spatial coverage of the search agents. To distinguish this variant, the algorithm is hereafter
referred to as the Sobol-initialized Giant Trevally Optimizer (SGTO). In SGTO, the initial position of each
search agent in the population is generated as follows.

LetS; € [0, 1]/ denote the it point generated by the Sobol sequence, where j is the number of decision
variables (dimensions) and i = 1, 2,..., N, with N being the population size. Similar to Eq. (1), each Sobol
point is scaled to the problem’s search space by the following transformation:

X; ;(0) = Minimum; + (Maximum; — Minimum;) X S; ;, 9)

where X; ; represents the initial position of the it" agent in the j¢" dimension. Fig. 2 illustrates the distribution
of 100 two-dimensional points generated by using the Sobol sequence and 100 points generated by using a
pseudo-random number generator. Visual inspection reveals that the Sobol sequence provides more even
coverage of the space, while the pseudo-random points exhibit clustering and leave noticeable gaps.

Aside from the modified initialization, the core behavior and mathematical model of the original GTO
algorithm remain unchanged, allowing a focused assessment of the impact of modified initialization on
convergence and accuracy. Additionally, the pseudo-code of the proposed SGTO is presented in Fig. 3.

2.3 Experimental Setup

To evaluate the effectiveness of the proposed SGTO algorithm, a set of numerical experiments was
carried out across three problem domains: benchmark optimization functions, classical engineering design
problems, and an epidemiological model case study. These experiments aim to assess SGTO’s performance
in terms of convergence behavior, solution quality, and consistency across multiple independent runs. In all
test cases, SGTO was compared exclusively against the original GTO with identical control parameters to
ensure a fair and controlled comparison. The case study serves as a demonstration of SGTO’s practical
applicability to dynamic real-world scenarios. Details of the problems, parameter settings, and performance
metrics are provided in the following subsections.

2.3.1 Benchmark Function

The first group of tests comprises 40 benchmark functions with four characteristics: unimodal,
multimodal, separable, and non-separable. For each function, both SGTO and GTO were executed for 300
independent runs to capture variability in performance. The population size was set to 30 giant trevallies, and
the maximum number of iterations was fixed at 1000 iterations.

For each test case, four primary performance indicators were recorded: the best objective function
value achieved, the average (mean) of objective function values across 300 runs, the standard deviation of
the objective function values obtained across 300 runs, and the worst objective function value obtained. The
mean and standard deviations are formulated in Egs. (10) and (11).

1 Run
Mean = ﬁz Fpest » (10)

i=1

1
Std = \/@ (Fpest — Mean)?, (11)
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where Fp.¢; is the global solution and Run is the number of independent runs. It is obvious that the smaller
the values of the four criteria, the algorithm are capable to produce more stable and reliable solutions.
Additionally, convergence behavior was analyzed by plotting the evolution of the best-found solution over
iterations for selected problems. Execution time for each test case was also monitored to evaluate
computational efficiency.

Each function is defined within a bounded search domain, and optimization aims to minimize the
objective function value. The detailed mathematical formulations, dimensions, bounds, and optimal values
for each benchmark function are presented in the original paper and fully described in [17] and [18].

2.3.2 Engineering Design Problem

To evaluate the practical applicability of SGTO, five well-known engineering design problems were
implemented in the second group of tests. These problems are frequently used in the optimization literature
due to their nonlinear, constrained nature and real-world relevance. The objective in each case is to find the
optimal design parameters that minimize a specific cost function while satisfying a set of structural,
mechanical, or manufacturing constraints.

For each problem, both algorithms were executed for 300 independent runs, the population size was
set to 30 giant trevallies, and the maximum number of iterations was fixed at 3000 iterations. The mean and
standard deviations of the best obtained solutions are then calculated by using Egs. (10) and (11). Each
function is defined within a bounded search domain, and optimization aims to minimize the objective function
value. The detailed problems and illustrations are fully described in [19]-[24].

2.3.3 Epidemiological Model Case Study

To further evaluate the practical applicability of the proposed SGTO algorithm, a COVID-19 model
case study was implemented in the third test. Specifically, the dataset and the SEAR (Susceptible, Exposed,
Acute, Recovery) model presented in [25] are utilized without modification. The SEAR model, as depicted
in Fig. 4, captures the compartmental dynamics of COVID-19 transmission, dividing the population into
Susceptible (S), Exposed (E), Acute (A), and Recovered (R) compartments.

pBSA @
ALY (L LT
S E LA_J R
us UE HA uR

Figure 4. Transmission Diagram of the SEAR Mathematical Model for COVID-19 Spread in Indonesia

The interactions among these compartments are governed by the system of differential equations
shown in Eqgs. (12), (13), (14), (15), which describe the time evolution of each population group based on
disease transmission rates, recovery rates, and natural death rates.

ds pBSA
a ATy s (12)
dE  pBSA
0/ E 1
It N (u+ e)E, (13)
dA
T eE —(a+y + WA, (14)
R A—uR (15)
dt _y ‘Ll )

where S is the number of healthy individuals who are vulnerable to the disease, E is the number of individual
who have been exposed to the virus but are not yet infectious, A4 is the number of individuals who are actively
infected and infectious, R is the number of individuals who have recovered and are assumed to have
permanent immunity, N is the total population size at a given time, p is the migration factor, A is the
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recruitment rate of new susceptible, £ is the transmission rate of the virus, € is rate of progression from
exposure to acute, « is disease-induced mortality rate, y is the recovery rate, and u is the natural death rate.

In this study, the migration parameter p is set to 1, consistent with the assumption in the referenced
paper that the migration rate remains at a normal level. The natural death rate p is set to 0.0000384037 based
on the average life expectancy in Indonesia, to account for background mortality in all compartments. This
choice ensures methodological consistency, allowing for a direct comparison of algorithm performance using
the same model structure and data.

Based on the models above, the objective of this problem is to minimize the error percentage
determined by the value of five model parameters: 8, ¢, a, ¥, and A. The objective function of this problem is

formulated in Eq. (16) as follows.
=2y (o (16)
f&) = Anlaj—q w; ’

where n is the data size, w;, x;, y;, z; is the number of cases in it*-day obtained from the model solutions for
each variable, and w;, x}, v}, z} is the number of cases in i*"-day based on the real data for each variable,
namely S;, E;, A;, R;, and S, E[, Aj, R; respectively.

Minimize:

* *
Yi = Yi Z; — Zj

yi

X; — X{

*
Z

+ ‘

E3
X

The purpose of this case study is to illustrate how real-world problems can be treated as optimization
tasks, thus allowing the application of advanced optimization techniques. Particularly, the test is employed
to check the validity of SGTO and GTO to be applied to a real-world problem involving a dataset. To ensure
consistency and comparability, this paper will use the same COVID-19 dataset used in the literature. This
approach not only aligns comparative analysis with the existing literature but also maintains methodological
rigor by utilizing identical data and model structures.

3. RESULTS AND DISCUSSION

This section presents the comparative performance of SGTO and GTO based on their optimization
results across three problem domains: benchmark functions, engineering design problems, and an
epidemiological model. The primary objective is to examine the influence of incorporating a Sobol sequence
in the initialization phase on the convergence behavior, solution quality, and computational efficiency across
different problem types.

3.1 Results on Benchmark Functions

First, the descriptive statistical analysis presents the best (minimum), worst (maximum), mean, and
standard deviation of optimization results for each benchmark function. As shown in Table 1, SGTO
consistently outperformed GTO in terms of best and mean objective function values across all 40 benchmark
functions, indicating the efficacy of quasi-random initialization in achieving superior global search coverage.
This improvement is particularly evident in complex multimodal functions, suggesting that quasi-random
initialization enhances the algorithm's early-stage exploration capability.

Table 1. Comparison of Optimization Results Obtained for 40 Benchmark Functions

Function Initialization Indicator
Best Mean Std. Worst

F1 Uniform 0 0 0 0
Sobol 0 0 0 0

F2 Uniform 0 0 0 0
Sobol 0 0 0 0

F3 Uniform 0 0 0 0
Sobol 0 0 0 0

F4 Uniform 3.38525e-07 2.92321e-05 2.59196e-05 0.000144772
Sobol 1.25941e-07 2.78514e-05 2.26393e-05 0.000111131

F5 Uniform 2.798e-08 7.11114e-05 0.000163472 0.001400477
Sobol 5.8661e-09 6.77195e-05 0.000163353 0.001496631
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Function Initialization Indicator
Best Mean Std. Worst
F6 Uniform -0.999999999  -0.999994359 8.07969¢-06 -0.999942243
Sobol -1 -0.999994844 7.40329¢-06 -0.999937562
F7 Uniform 0 0 0 0
Sobol 0 0 0 0
F8 Uniform 5.26122e-11 3.34209¢e-06 8.71266e-06 9.89232e-05
Sobol 1.74029e-12 3.27968e-06 8.02896e-06 7.9745e-05
F9 Uniform -49,99679961 -49.974143 0.017657015  -49.91002395
Sobol -49,99918951  -49.97510998  0.017065942  -49.90639252
F10 Uniform -209.7419641  -208.4276972  0.818360554  -205.0789349
Sobol -209.8337961  -208.5022905  0.812124732  -205.3469735
F11 Uniform 0 0 0 0
Sobol 0 0 0 0
F12 Uniform 0 0 0 0
Sobol 0 0 0 0
F13 Uniform 0 3.2232e-266 0 2.0915e-264
Sobol 0 0 0 0
F14 Uniform 0 0 0 0
Sobol 0 0 0 0
F15 Uniform 2.88863e-10 3.95297e-05 6.81962e-05 0.000539295
Sobol 6.54265e-11 3.86996e-05 8.96985e-05 0.00078598
F16 Uniform 0.361200905 0.519630123 0.046317335 0.561227875
Sobol 0.335928346 0.518470912 0.045585594 0.561218823
F17 Uniform 0.998003838 4.043044755 3.163046766 10.76318076
Sobol 0.998003838 3.601954815 1.611273813 4.950491316
F18 Uniform 0.397887496 0.397923624 6.61164e-05 0.398687607
Sobol 0.39788746 0.397912308 2.43179e-05 0.39804469
F19 Uniform 0 0 0 0
Sobol 0 0 0 0
F20 Uniform 0 0 0 0
Sobol 0 0 0 0
F21 Uniform -12300.45544  -6938.720956 1587.407462  -4230.529436
Sobol -12543.04909  -9687.180084 1462.894813  -8282.324765
F22 Uniform -1.801303277  -1.779556247  0.110360158  -1.213885896
Sobol -1.801303407 -1.787402461  0.088641985  -1.213928373
F23 Uniform 0 0 0 0
Sobol 0 0 0 0
F24 Uniform -1.031628452 -1.03162643 2.43465e-06 -1.031610792
Sobol -1.031628453  -1.031626501 2.19649¢-06 -1.031613702
F25 Uniform 0.18 0.18 2.22045e-16 0.18
Sobol 0.18 0.18 2.22045e-16 0.18
F26 Uniform 0 0 0 0
Sobol 0 0 0 0
F27 Uniform -186.7308888  -186.7051266  0.051282519  -186.3108865
Sobol -186.7309062  -186.7095935  0.029478442  -186.5577986
F28 Uniform 3.000002172 4.170346413 7.707063001 84.02092422
Sobol 3.000000107 3.991951289 5.074167186 30.000341
F29 Uniform 0.000307638 0.000318621 1.32023e-05 0.000462732
Sobol 0.000307569 0.000318333 1.03873e-05 0.000375863
F30 Uniform -10.15295453  -10.13252176  0.017005832  -10.04382616
Sobol -10.15318733  -10.13287387  0.015353458  -10.05663323
F31 Uniform -10.40237253 -10.3798188 0.018875398  -10.30688898
Sobol -10.40271789  -10.38176051  0.020988182  -10.19237174
F32 Uniform -10.53589419  -10.51277832  0.018866881  -10.41872719
Sobol -10.53619789  -10.51418148  0.016738175  -10.44138049
F33 Uniform 0.006411844 20.0135309 39.66525575 39.66525575
Sobol 0.005819206 13.34216806 17.52652296 172.0519372
F34 Uniform 0 0 0 0
Sobol 0 0 0 0
F35 Uniform -3.8627775 -3.859679781  0.006847554  -3.804867162
Sobol -3.862781547  -3.862620891  0.000238942  -3.860818898

1237
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. L Indicator
Function Initialization Best Mean Std. Worst

F36 Uniform -3.321943883  -3.279385233  0.065068461 -3.10532123
Sobol -3.321965501  -3.318085905  0.019773765  -3.156633643

F37 Uniform 0 0 0 0
Sobol 0 0 0 0

F38 Uniform 4.44089e-16 4.44089%¢-16 0 4.44089e-16
Sobol 4.44089¢-16 4.44089¢-16 0 4.44089¢-16

F39 Uniform 0.011107381 0.027136237 0.008466955 0.058664404
Sobol 5.71962e-05 0.026634453 0.008825925 0.054782729

F40 Uniform -2.423112689  -1.153174657  0.301352462  -1.080726151
Sobol -2.423118765  -1.573883678  0.743770693  -0.907991324

* Std: Standard deviation.

Nonetheless, in 5 out of 40 test cases, SGTO exhibited slightly higher standard deviations compared
to GTO. Additionally, despite its superior optimization performance, SGTO showed marginally higher
computational demands in certain execution-time metrics. Specifically, SGTO demonstrated slightly longer
execution times than GTO in all three measured execution-time metrics in 6 out of 40 test cases. However,
these time differences were minimal, often amounting to mere fractions of a second, as depicted in Table 2.
Taken together, these findings highlight a performance trade-off, where SGTO consistently provides better
solution quality while incurring only minor increases in variability and computational costs. Despite these
small compromises, the improved results suggest that the benefits of SGTO generally outweigh the
computational overhead.

Table 2. Execution Time Results for 6 Benchmark Functions Where SGTO Exhibits Longer Runtime

Function Best Mean Standard Deviation

GTO SGTO GTO SGTO GTO SGTO
F14 0.90625 2.234375 1.066927083  2.90671875 0.22176295  0.473256746
F16 0.875 1.09375 0.969114583  1.256145833 0.179727886  0.199159175
F17 6.609375 6.734375 7.782291667 9.375520833 0.754003349  0.920652291
F18 0.375 0.40625 0.473333333  0.514010417  0.14912447  0.172908344
F25 0.359375 0.390625 0.454791667 0.469010417  0.12709375  0.144368339
F31 0.625 0.640625 0.84203125  0.850208333 0.191348035 0.219605371

The modest increase in SGTO’s execution time can be traced primarily to the added computational
overhead of quasi-random initialization and its downstream effects on each optimization run. SGTO replaces
purely random sampling with Sobol sequences to seed its initial population. Generating these sequences
requires extra arithmetic, such as matrix operations, bit-wise scrambling, and gray-code conversions,
compared to simple pseudorandom draws [26], [27].

Convergence curve

Parameter space

Convergence curve

Parameter space

GTO
SGTO

GTO
SGTO

S
&
=
W

F4( Xy 2%y )

N - (-] -]
Best fitness function
Best fitness function

3
2
IS

20 40 60 80 100
Iteration#

20 40 60 80 100
Iteration#

@) (b)
Figure 5. Function Plot and Convergence Curve for Selected Benchmark Functions:

(a) F4, (b) F5, (c) F6, (d) F8, (e) F9, (f) F16, (g) F17, (h) F18, (i) F21, (j) F22, (k) F24, (I) F28, (m) F30, (n) F35,

(0) F39, and (p) F40




BAREKENG: J. Math. & App., vol. 20(2), pp. 1229- 1250, Jun, 2026.

1239

Convergence curve

Parameter space Convergence curve Parameter space
-0.9994
10°
¢ -0.9995 c
S S
= =
5 g
3 -0.9996 2 102
0 173
g g
] -0.9997 I
= =
@ -0.9908 3 107
o @
“j00  -0.9999
10°
20 40 60 80 100 X, -10 10 x 2
Iteration# !

0 40 80 80 100
Iteration#

Convergence curve

Parameter space Convergence curve 1
GTO
SGTO 09
| ; 0.8
£ 25 E
— i i
& =2 507
E] 2
= 2000 . <30 2
= o 206
2 & a5 £
y % %
] | @ -40 -] 05
g ""‘7, / / 45 L
1 0.4
20 40 60 80 100 50 100 150 200
Iteration# Iteration#
Convergence curve Parameter space Convergence curve
5 0.6
4
c c 0.55
2 2
2 2
4 g 05
« [}
£ £
2 z
3 L 045
1 0.4
20 40 60 80 20 40 80 80 100
Iteration# Iteration#
Parameter space Convergence curve Parameter space Convergence curve
-1.55
c c
—~ S 4000 S 18
< & g
= 2 2
< 2 @ -1.65
X S -6000 g
S £ £
w = =
% 5 17
& -8000 2
-10000 l] RE
-12000 1.8
Xy -500 -500 X 200 400 600 800 1000 X, 00 x 20 40 60 80 100
L Iteration# 1 Iteration#
0]
Parameter space Convergence curve 8 Convergence curve
-1.025 GTO GTO
SGTO 5.5 SGTO
-1.026
E § 5
© -1.027 ©
[ =4 (-4
2 245
% -1.028 ]
[ [+
“E 1.029 g 4
% 3
Q ]
D 103 D35

20 40 60 80 100
Iteration#

(k)

20 40 60 80 100
Iteration#

Figure 5. (Continued.) Function Plot and Convergence Curve for Selected Benchmark Functions:
(a) F4, (b) F5, (c) F6, (d) F8, (e) F9, (f) F16, (g) F17, (h) F18, (i) F21, (j) F22, (k) F24, (1) F28,

(m) F30, (n) F35, (0) F39, and (p) F40



1240 Shidig, et al. ENHANCED GIANT TREVALLY OPTIMIZER FOR ENGINEERING DESIGN AND ...

Parameter space Convergence curve Parameter space Convergence curve

GTO
SGTO

GTO
SGTO

c -0.01 <
S D02 &
£ 02 - : >3 g
= j 2 - 2 .3.75
X 03 ' 8 7 = Boe @
5 o -D.08 ]
g o4 2 © 00 %
‘ 2 8 011 3 § 38
55K = | © . T @
: S i A -9 . i - —~" 5
0 ™\ 0 3.85
SN 0 -10 e 0
X, 5 5 % 20 40 60 80 100 X, 2 2 % 20 40 80 80 100
L Iteration# ! Iterationd#
(m) (n)
Parameter space Convergence curve Parameter space Convergence curve

GTO
SGTO

GTO
SGTO

F39( XX, )
Best fitness function
F40( Xy X, )
Best fitness function
. N 5

20 40 60 80 100
Iteration#

20 40 60 80 100
Iteration#

(0) ()

Figure 5. (Continued.) Function Plot and Convergence Curve for Selected Benchmark Functions:
(@) F4, (b) F5, (c) F6, (d) F8, (e) F9, (f) F16, (g) F17, (h) F18, (i) F21, (j) F22, (k) F24, (1) F28,
(m) F30, (n) F35, (0) F39, and (p) F40

Fig. 5 illustrates the convergence behavior of both SGTO and GTO across several benchmark
functions, highlighting the optimization trajectories and the rate at which optimal solutions are approached.
Notably, SGTO’s convergence curve often begins with a lower value (approaching the optimal solution) or
descends faster, which is attributable to the more equidistributed initialization of search agents facilitated by
Sobol sequences. This improved initial spatial coverage enables SGTO to rapidly identify promising regions
of the search space, thus accelerating the search process and reaching optimal or near-optimal solutions faster
than GTO. As iterations progress, both algorithms exhibit steady convergence; however, SGTO’s accelerated
early-stage exploration and exploitation contribute to more efficient fitness improvement and a more robust
convergence profile. These observations affirm the benefit of Sobol initialization in enhancing GTO’s
convergence behavior without altering its core search mechanisms.

3.2 Results on Engineering Design Problems

As a matter of fact, metaheuristic algorithms are not designed to solve constrained optimization
problems directly [28]. Therefore, we used the straightforward death penalty technique to transform the
original problems to their unconstrained form. This technique involves a complete removal of any infeasible
solution from the population. The primary limitation of the straightforward death penalty technique is that it
can significantly reduce the algorithm’s ability to find the global optimal solution, particularly when the
feasible region is small or difficult to reach. This is because the technique enforces strict exclusion of
infeasible solutions, which can overly restrict the search space, preventing the algorithm from exploring
potentially promising regions that are close to the constraint boundaries [29].

3.2.1 Cantilever Beam

This problem involves the weight optimization of a cantilever beam with a square cross-section. The
beam is supported at the leftmost block, and there is a given vertical force at the free end, as shown in Fig. 6.
The design variables are x4, x5, x3, x4, X5, representing the widths of the square cross-section of each five
beam segments. Each segments have a fixed and uniform thickness. The objective is to determine the optimal
width of each beam segments that minimize the total weight of the beam, subject to stress constraints. The
bound constraints are set as 0.01 < x4, x5, X3, x4, X5 < 100. The mathematical formulation is given as
follows.
Minimize:
f(X) =0.0624(x; + x5 + x3 + x4 + x5). 17)
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Subject to:
S+ S+ —1<0. (18)
5

x33  x,3

61
gXx) = ot

x53
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]

Figure 6. Cantilever Beam Design

Table 3 presents the five best solutions obtained by SGTO and GTO for this problem. It can be
observed that SGTO offers better solutions compared to GTO. Furthermore, Table 4 compares the statistical
results of SGTO and GTO, showing that SGTO consistently yields more reliable results based on the best,
mean, standard deviation, and even the worst possible weight of the cantilever beam.

Table 3. Comparison of the Best Results of the Cantilever Beam Design

f(x) X1 X2 X3 X4 X5
1.340164074  6.017553256  5.340219595  4.508685432  3.504463145  2.106066942
1.340218176  5.939619531  5.368692254  4.505261136  3.486172194  2.178110264
GTO 1.340310371  6.020577963  5.214085021  4.521381761  3.553881483 2.16940664
1.340324582  6.007727763  5.295937455  4.422739076 3.55515644 2.197999868
1.340382554  6.068366176  5.268713318  4.513413896  3.432460414 2.19753585
1.340083573  6.054008663  5.292576344  4.477170684  3.493057772  2.158884816
1.340090057 6.27784226 5288057144  4.486191097 3.48077355 2.192996181
SGTO 1.340200147  6.070563763  5.237281837  4.524809644  3.507188152  2.137723065
1.340323951  6.020890548  5.387370025  4.430588565  3.465515659  2.175185696
1.340400678  5.995763649  5.347262759  4.556968567  3.456662285  2.124122836
Table 4. Comparison of Statistical Results of the Cantilever Beam Design
Best Mean Std. Worst
GTO 1.340164074 1.34198915 0.001047075  1.346851792
SGTO 1.340083573  1.341886592  0.001039628  1.345402422

3.2.2 Three-Bar Truss

This problem seeks to minimize the weight of a statically loaded three-bar truss under stress, buckling,
and deflection constraints. The design variables are the cross-sectional areas x; and x,. The objective is to
minimize the total weight of the truss, which is directly proportional to the sum of the products of each bar’s
length and its corresponding cross-sectional area, as illustrated in Fig. 7. The bound constraints are setas 0 <
x1,%, < 1. The length of the bar is set as [ = 100 cm, the applied vertical load is P = 2 kN /cm?, and the
allowable axial stress is ¢ = 2 kN /cm?. The optimization model can be expressed as follows.

Minimize:
F(X) = 2V2x; +x, X 1. (19)
Subject to:
\/fx +x
g1(X)=—"—"2-pP-0<0, (20)
V2x,2 4 2x1%,
X2
X)=——P—-0<0, 21
92(%) V2x,2 + 2x4x, (21
X2
g3(X) = P—-—0<0. (22)

\/EXZ + X1
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Figure 7. Three-Bar Truss Design

Table 5 presents the five best solutions obtained by SGTO and GTO for this problem, where SGTO
consistently produced better solutions compared to GTO. Table 6 further compares the statistical results for
both algorithms, showing that SGTO delivers more reliable results across all performance indicators. Notably,
SGTO achieved a lower total weight for the truss design.

Table 5. Comparison of the Best Results of the Three-Bar Truss Design

f(x) X1 X2

263.8915812 0.788668938 0.408191288
263.8915973 0.788449927 0.408786857

GTO 263.8917638 0.788134957 0.409679163
263.8917881 0.788681762 0.408165228
263.8918346 0.788940584 0.407433272
263.8915222 0.788448514 0.408804094
263.8915399 0.788711975 0.408048165

SGTO 263.8915637 0.788345792 0.409090389
263.8915748 0.788971889 0.407319253
263.8916043 0.789011549 0.407205429

Table 6. Comparison of Statistical Results of the Three-Bar Truss Design

Best Mean Std. Worst
GTO 263.8915812 263.9541945 0.095367583 264.516143
SGTO 263.8915222 263.9076591 0.013671271 263.9381255

3.2.3 Gear Train Design

The gear train design problem is an unconstrained optimization. As shown in Fig. 8, the design
variables are x4, x,, X3, x4, representing the number of teeth on every four gears, which must be integers
(discrete). The objective is to minimize the squared error between a desired gear ratio and the actual gear
ratio in a four-gear train. The bound constraints are set as 12 < x;, x5, X3, x4 < 60. The mathematical
formulation is as follows.

Minimize:

o) = (- 22 (23)

6.931  X1X,4

X1

Figure 8. Gear Train Design

Table 7 shows the five best solutions obtained by SGTO and GTO for the gear train design problem,
where SGTO demonstrates superior performance in finding optimal solutions. In Table 8, the statistical
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comparison between the two algorithms reveals that SGTO consistently provides more reliable results across
all evaluation metrics. The solutions offered by SGTO are remarkably different from GTO, allowing it to
achieve further reduction in the error of gear ratio.

Table 7. Comparison of the Best Results of the Gear Train Design

f(x) X1 X2 X3 X4

1.72316e-16 31.13911389 12.00723064 12.3368186 32.97127337
4.53724e-16 33.15643026 12.01598039 12.01756859 30.18585922

GTO 6.89852¢-16 30.59516067 12.02656554 12 32.69384127
7.72546¢-16 36.97451388 12.00117943 12 26.99594392
9.15741e-16 36.01354871 12 12 27.7135641
2.27287e-17 33.11543814 12 19.37586573  48.66399625
6.09345e-17 39.67469654 12 13.71374923 28.74879932

SGTO 1.93234e-16 24.07521196 12 12.00152053  41.46133255
4.88555e-16 40.90261779 12 16.54622811 33.64534467
5.20659¢-16 31.23611307 12 12 31.95224195

Table 8. Comparison of Statistical Results of the Gear Train Design

Best Mean Std. Worst
GTO 1.72316e-16 2.15526e-11 6.79982¢e-11 9.37141e-10
SGTO 2.27287e-17 9.52217e-12 2.74286e-11 3.37508e-10

However, while the results obtained are promising, they do not fully align with the nature of this
problem, as the design variables in gear train design must be discrete rather than continuous. For instance, it
would not make sense for the number of teeth of a gear to be fractional. To address this, each design variable
is rounded to the nearest integer after every iteration, ensuring that the designs are feasible. Table 9 presents
the results from these adjusted problems, showcasing the performance of SGTO and GTO when the design
variables comply with the nature of the problem. This adjustment provides a more realistic comparison, taking
into account the inherent constraints of the problem. Notably, SGTO continues to lead in terms of solution
quality, which is also supported by statistical results shown in Table 10.

Table 9. Comparison of the Best Results of the Gear Train Design (Adjusted)

f(x) X1 X2 X3 X4

9.92158e-10 47 13 12 23
9.92158e-10 23 12 13 47

GTO 9.92158e-10 47 12 13 23
9.92158e-10 47 12 26 46
9.92158e-10 47 12 13 23
2.30782e-11 53 13 20 34
2.30782e-11 34 13 20 53

SGTO 9.93988e-11 57 13 31 49
1.54505e-10 43 13 21 44
9.92158e-10 47 13 12 23

Table 10. Comparison of Statistical Results of the Gear Train Design (Adjusted)

Best Mean Std. Worst
GTO 9.92158e-10 3.67909e-08 1.23241e-07 7.77863e-07
SGTO 2.30782e-11 1.48469¢e-08 4.52698e-08 7.77863e-07

3.2.4 Pressure Vessel Design

The purpose of this problem is to minimize the manufacturing costs of a cylindrical pressure vessel
capped by hemispherical heads on both ends. The design variables are the thickness of the shell x,, thickness
of the head x,, the inner radius x5, and the length of the cylindrical section of the vessel x,, depicted in Fig.
9. The objective is to minimize the total costs, which include welding, material, and forming, while also
satisfying constraints related to the required internal volume, structural stress limits, and practical design
bounds on the vessel dimensions. The bound constraints are setas 1 X 0.0625 < x;,x, < 99 x 0.0625 and
10 < x3,x, < 200. The optimization model of the problem is given as follows.
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Minimize:
f(X) = 0.06224x,x3x4 + 1.7781x,x3% + 3.1661x;%x4 + 19.84x,%x5. (24)

Subject to:
g1(X) = —x; + 0.0193x; < 0, (25)
g2(X) = —x, + 0.00954x; < 0, (26)

4

g3(X) = —mx3%x, — §nx33 + 1296000 < 0, 27)
ga(X) = x4 — 240 < 0. (28)

L(=x,)

Figure 9. Pressure Vessel Design

Table 11 displays the five best solutions obtained by SGTO and GTO for the pressure vessel design
problem. Similarly, SGTO exceeds GTO in terms of finding optimal solutions. Observe that the length of the
cylindrical section (x,) are remarkably different in each of the solutions SGTO provided, thus allowing
SGTO to reach a lower objective value. The statistical results of both algorithms are shown in Table 12,
which confirms that SGTO consistently produced a more reliable result in achieving a reduction of the
pressure vessel manufacturing costs.

Table 11. Comparison of the Best Results of the Pressure Vessel Design

f(x) X1 X2 X3 X4
5913.017322  0.781356548  0.385077476  40.54152241  198.2777099
5980.2784 0.79316822 0.393010242  41.09569262  192.4257825
GTO 6001.28558 0.783797749  0.422008016 40.9449089 191.7374971
6006.915316 ~ 0.786290719  0.421551683  40.89372303  193.1272677
6017.331945  0.840533891  0.411123734  43.58954469  159.5219976
5898.752718  0.787042751  0.390855263  41.04821232  190.1232608
5928.354891  0.780282512  0.382311872  40.71082551  195.5657763
SGTO 5932.05526 0.780912511  0.393473847  40.79963814  194.4433666
5941.481586  0.789391661  0.397240478  40.93157913  192.5303594
5950.806141  0.797182002  0.387449719  41.17052399  188.7615467
Table 12. Comparison of Statistical Results of the Pressure Vessel Design
Best Mean Std. Worst
GTO 5913.017322  6806.528085  353.5090536  7441.603852
SGTO 5898.752718  6258.942484  119.1210598  6442.458823

3.2.5 Piston Lever Design

This problem focuses on minimizing the volume of a piston lever mechanism, which is critical for

reducing material costs and improving system efficiency. The design variables are the piston height x, base
width x,, piston diameter x5, and stroke length x,, which is shown in Fig. 10. The objective is to minimize
the volume enclosed by the piston, while also satisfying constraints related to the force balance, moment
resistance, geometric design feasibility, and mechanical integrity. The bound constraints are set as 0.05 <
X1,%2,%3 < 500 and 0.05 < x, < 120. The lever operating angle is 6 = 45°, the applied load is Q =
10000 lbs, the total lever length is L = 240 in, the maximum allowable bending moment is M,,,, =
1.8 X 10° Ibs in, and the oil pressure is P = 1500 psi. The complete optimization model is given as follows.
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1
fX) = an32(L2 — Lq).
Subject to:
91(X) = QLcos6 —R X F <0,
92(x) = Q(L — x4) — My <0,
93(x) =1.2(L, — L)) — L; <0,
X3
9a() = — -1, <0,
where,
_|=x4 (x4 sin 0 + x1) + %1 (x; — x4 cOs 0)|
Vg — 1) + x,2
_ mPx3?
=—
L, = \/(x4, —x2)% + x,2,

Ly = /(x4 sin 6 + x;)% + (x, — x, cos )2,

R

)
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(29)

(30)
(31)
(32)

(33)

(34)

(35)
(36)
(37)

The best obtained results for piston lever design are shown in Table 13. According to the findings, both
SGTO and GTO agreed on setting the value of piston height (x;), but mostly differs in the value of stroke
length (x,). This leads to SGTO being able to reach the lowest possible volume enclosed by the piston.
Looking at the statistical results in Table 14, the variability of both algorithms is significant, which is expected
due to the implementation of the straightforward death penalty technique. It is worth mentioning here that it
is also possible that the number of initial populations is inadequate, considering the given number of design
variables. However, this problem can be avoided by setting up a larger initial population.

Figure 10. Piston Lever Design

Table 13. Comparison of the Best Results of the Piston Lever Design

f(x) X1 X2 X3 X4
8.921285544  0.05 2.088772581  4.157604232  115.8149417
9.437447522  0.05  2.201104582  4.169782409 116.037304
GTO 9.490468868  0.05 2.12913255 4.24740004 110.8052399
9.578598853 0.05 2.139014616 4.257475882  110.5049002
9.624589647 0.05 2.162282806 4.246069156 112.3216578
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fx) X1 X2 X3 Xy
8.727356528 0.05 2.094263341 4.107733368 118.6226458
9.170561899 0.05  2.184519507 4.1260692 118.3761426

SGTO 9.258473179 0.05 2.217913681 4.11603762 120
9.289918569 0.05 2.171350396  4.164422308 116.505379
9.355160917 0.05 2.127282663 4.219436668 112.9556048

Table 14. Comparison of Statistical Results of the Piston Lever Design

Best Mean Std. Worst
GTO 8.921285544 152.6466053 242.0550117 1337.639627
SGTO 8.727356528 181.9788569 265.8432291 1162.233957

Considering the execution time, SGTO exhibits slightly higher computational demands in certain
cases. While SGTO outperforms GTO in solution quality, the execution time for some of the problems is less
efficient, indicating a trade-off between solution quality and computational cost. However, unlike in the first
test group on benchmark functions, where SGTO was completely defeated on all terms for six functions listed
in Table 2, SGTO was only inferior in either the mean or standard deviation of the computation time. In Table
15 below, the execution time for each of the five engineering design problems is presented, highlighting
where SGTO’s performance is compromised by longer computation times compared to GTO.

Table 15. Execution Time Results for Engineering Design Problems

Problem Best Mean Standard Deviation
GTO SGTO GTO SGTO GTO SGTO

A 0.828125 0.671875 1.507916667  0.75078125  0.421405011 0.119971276

B 3.953125 1.234375 494203125  4.037239583 0.783599472  2.736155212

C1 1.15625 1 1.75421875 1.23640625 0.351648288  0.348900567

C2 1.328125 1.046875 1.847864583  1.265572917 0.483685831  0.275654696

D 4.296875 1.4375 6.035104167  5.55984375  1.900235505 1.924024105

E 4.21875 4.21875 5.142083333 6.177239583 0.720718867 0.880936722

* C1: Gear Train Design, C2: Gear Train Design (Adjusted).

3.3 Results on Epidemiological Model

In this section, we present the application of the proposed SGTO algorithm along with the GTO
algorithm to estimate five parameters of the SEAR model in the context of COVID-19 transmission dynamics,
as shown in Fig. 4 and Eqgs. (12), (13), (14), (15). To approach this estimation task, we convert the system of
differential equations into an optimization framework. The objective is to minimize the error in predicting
the population dynamics over time, which is calculated by using Eq. (16). The model parameters are treated
as design variables, adjusted iteratively to minimize the error, ensuring that the model best fits the observed
data and accurately reflects the epidemic’s progression.

For comparison and validation purposes, we directly adopt the parameter values obtained by the
Genetic Algorithm (GA) as reported in the reference. This result serves as a benchmark for evaluating the
performance of GTO and SGTO. By comparing the results obtained from GTO and SGTO with those from
GA, we ensure that the parameters estimated by GTO and SGTO are consistent with previous findings,
confirming the relevance and accuracy of these new optimization approaches.

Table 16. Comparison of the Best Result of the COVID-19 Model
Genetic Algorithm Giant Trevally Optimizer

Parameter  Mutation Probability (0.125) Uniform Sobol
B 0.99102 0.46706746 0.34861697
£ 0.0083116 0.0023645444 0.0024009698
a 0.18169 0.0056193593 9.8876343e-05
y 0.012122 0.0098240005 0.0099419019
A 552.2431 8004.7041 9117.2999
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Genetic Algorithm Giant Trevally Optimizer
Parameter  Mutation Probability (0.125) Uniform Sobol
0 0.1317 0.062077 0.057693

Based on the results in Table 16, it can be observed that both GTO and SGTO effectively minimized
the objective function. According to the findings, both GTO and SGTO discover remarkably different
parameter values than those estimated by GA, which allows GTO and SGTO to achieve a significantly lower
error. It is worth mentioning that the use of Eq. (16) as the objective function provided a clear and quantifiable
measure of the model’s predictive accuracy.
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Figure 11. Comparison of Estimated and Actual Active Cases by GA, GTO, and SGTO for the COVID-19
Model

Furthermore, by taking the obtained parameter values to simulate the number of active cases, it is
evident from Fig. 11 that the results generated by SGTO are closely aligned with the real data. In contrast,
the result obtained by GTO is consistent with those from the GA, though they exhibit a closer fit to the real
data compared to the GA estimates. This observation suggests a significant improvement in model
performance following the optimization of parameters, highlighting the practicality of SGTO and GTO as
valuable tools for calibrating epidemiological models and simulating disease transmission dynamics.

4. CONCLUSION

This paper proposes the Sobol-initialized Giant Trevally Optimizer (SGTO), which leverages low-
discrepancy Sobol sequences during initialization to improve global exploration and mitigate premature
convergence, addressing a key limitation of conventional metaheuristics. Experimental results consistently
show that SGTO outperforms the original GTO in solution quality across diverse benchmarks and engineering
problems, with only minor increases in computational time for certain test cases. Since GTO itself was
previously validated against standard metaheuristics, the improved performance of SGTO suggests clear
advantages in high-dimensional and complex search spaces. Furthermore, the successful application of SGTO
in calibrating epidemiological models, such as those used for COVID-19 transmission dynamics, highlights
its practical relevance and versatility in addressing real-world optimization challenges. While direct
comparisons with other algorithms remain a task for future research, SGTO demonstrates strong real-world
applicability and robustness.

Nevertheless, several research gaps remain open for future research. While this study has demonstrated
the effectiveness of implementing the Sobol sequence in the initialization phase, further exploration into
hybrid strategies that incorporate physics-inspired mechanisms or adaptive search behaviors could yield even
more powerful algorithms. Additionally, extending the application of SGTO to combinatorial optimization
problems, such as quadratic embedding and domination in graph theory, presents a compelling direction for
future work. Finally, investigating alternative low-discrepancy sequences or randomized initialization



1248 Shidig, et al. ENHANCED GIANT TREVALLY OPTIMIZER FOR ENGINEERING DESIGN AND ...

methods may further enhance the balance between exploration and exploitation, potentially leading to even
more robust and efficient optimization algorithms.
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