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1. INTRODUCTION

Clustering is widely used in various fields, including image processing, environmental monitoring, and
medical data analysis. Traditional clustering methods, such as K-Means, focus on numerical data, which
limits their effectiveness when handling complex data types, such as distributions, intervals, or sets of values
[1], [2]. Symbolic Data Analysis (SDA) extends classical data analysis by allowing more complex data types
to be analyzed [3], [4].

Symbolic data represent variability and uncertainty, often present in real-world applications. This
makes SDA particularly useful in fields where data are noisy or incomplete, such as environmental
monitoring and healthcare [3]. For example, symbolic objects encapsulating multiple values or distributions
can represent pollution levels at different locations, capturing the variability in measurements over time [4].
In clustering, symbolic data have been shown to improve the accuracy and interpretability of the results by
incorporating these complex data structures [5]. Unlike traditional methods that treat data points as fixed
numerical values, SDA allows a more flexible representation, enabling the integration of numerical and
categorical variables [3]. As a result, symbolic clustering methods have been applied in various domains,
including medical image analysis, where the complexity of data is particularly pronounced [6].

Combining image processing and machine learning has led to many healthcare, security, and
autonomous systems innovations. Advanced algorithms that accurately classify and group images are
essential for building intelligent systems. However, working with image data is still challenging due to its
complexity and high dimensionality [6], [7], [8]. As technology progresses, new techniques for extracting
essential features from images are becoming more critical to make the data easier to understand. Methods
like edge detection and spatial feature analysis have proven effective in revealing images’ content [8], [9].
These methods improve image classification accuracy and help improve machine-learning models. Clustering
algorithms, like K-Means, are also crucial in grouping images. Choosing the initial centroids is a key step, as
it greatly affects the clustering result by guiding the algorithm towards more meaningful groups [1], [10]. In
this research, we introduce symbolic data analysis methods. These methods use symbolic mathematical
notations to handle complex data effectively [3]. Symbolic data analysis offers an intense way to manage
variations within the data, providing deeper insights into the characteristics of the data.

The convergence of image processing and machine learning has led to significant innovations in
healthcare, security, and autonomous systems, where accurate classification and clustering of images are
critical. However, image data remain challenging due to their complexity and high dimensionality, which
require advanced feature extraction techniques such as edge detection and spatial analysis. To address these
challenges, this paper introduces a novel clustering approach that integrates symbolic data representation with
the K-Means algorithm. By combining color intensity and spatial features within a symbolic framework, our
method enhances the ability to manage variability and uncertainty in image data. Furthermore, a modified
distance metric tailored for symbolic objects improves cluster separation and interpretability. This study,
therefore, aims to provide a more robust and flexible solution for image clustering compared to traditional
methods. The remainder of this paper is organized as follows: Section 2 reviews related works and highlights
the research gap; Section 3 presents the proposed methodology, including feature extraction, symbolic
representation, and clustering; Section 4 discusses the experimental setup and results; and Section 5 concludes
the paper and suggests future research directions.

2. RESEARCH METHODS

2.1 Classical Clustering Algorithms and Their Limitations

Clustering algorithms such as K-Means, DBSCAN, and hierarchical clustering remain popular due to
their simplicity and efficiency. However, they largely assume data in fixed numerical form, limiting their
effectiveness when facing variability, uncertainty, or complex data structures. For example, enhancements
like better initialization [11] or custom distance functions [2] help but still rely on strict numerical
representations.

Symbolic Data Analysis (SDA) addresses these limitations by enabling data representation as intervals,
distributions, or sets [3]. While promising, symbolic clustering has rarely been applied to image data, mostly
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focusing on fields like environmental monitoring or aggregated statistics. This leaves a research gap in
leveraging symbolic representation coupled with image feature extraction.

Recent advances in image clustering further demonstrate evolving approaches that explore multi-modal
inputs and supervision from captions to external knowledge. Below is a comparison of significant works:

Table 1. Summary of Prior Studies

Limitations / Gap

Author & Year Dataset / Domain M'eth(')d & Strengths in the Context of
Highlights
Our Study
: Standard K- . -

Hartigan & Wong Numerical data Means Slmple, lelte_d to purely
(1979) : efficient numeric data

algorithm [1]

Better

Improved convergence in  No symbolic data

Celebi (2011) Color images centroid g y

Franti & Sieranoja
(2019)

Billard & Diday
(2007)

Peng & Li (2023)

Li et al. (2023) -
TAC

Stephan et al. (2024)

Raya et al. (2024)

Hu et al. (2024) —
ICBPL

Wu (2024) — RD-
FKC

Our Work (2025)

Synthetic, real-
world

Various

General image
datasets

ImageNet etc.

Diverse image
datasets

Multimodal
clustering

CIFAR-10, STL-

10, others

Various image

datasets

CIFAR-10,
Flower datasets

initialization [2]

Enhanced
initialization K-
Means [11]
Symbolic Data
Analysis
foundational [3]

Deep clustering
with mutual
information
across views
[12]
Text-Aided
Clustering
(TAC): uses
WordNet
semantics as
external
guidance [13]
Text-Guided
Image
Clustering: uses
generated
captions &
VQA prompts
[14]

Deep learning
for multi-modal
data clustering
[15]
Self-supervised
clustering with
pretrained
models and
latent
distribution
optimization
[16]

Robust Deep
Fuzzy K-Means
Clustering [17]

Symbolic K-
Means with
modified
distance metric

color
quantization
Higher
accuracy, more
robust

Supports
intervals,
distributions

Reduces intra-
class
variability via
augmented
views

Leverages
external
semantic info
for better
clustering

Multimodal
embeddings
improve
interpretability
and clustering
results

Integrates
multimodal
embeddings

Strong
performance
using latent
features

Embedding
robustness and
fuzzy logic for
clustering
Handles
variability,
uncertainty,
interpretable

usage; numeric only

Still assumes
numerical
representations
Not tailored to
image data or
symbolic image
features

Focused on deep
learning, not
symbolic
representation

Language-based
external knowledge,
not symbolic feature
structure

Captions-based, not
using symbolic
feature
representation

Leaned toward deep
learning, not
symbolic data
representation

Not symbolic; more
focused on deep
feature distribution
dynamics

Deep learning; not
symbolic

New in image
domain symbolic
clustering; bridges a

gap
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2.2 Foundations of Symbolic Data Clustering

Symbolic Data Analysis (SDA) extends classical data analysis techniques by representing complex
data structures, such as intervals, distributions, or sets, instead of single numerical values [3]. This approach
allows SDA to manage uncertainty, variability, and multivalued attributes, which are common in real-world
applications. Several studies have proposed methodologies for clustering symbolic data, including the
extension of traditional algorithms like K-Means and DBSCAN [2], [4].

In SDA, the centroid of a symbolic object, such as an interval or distribution, differs from the classical
centroid used in traditional clustering. For an interval-valued object, the centroid is defined as the middle of
the interval:

l+u
C =

7 W

where [ and u are the lower and upper bounds of the interval, respectively [3]. This centroid calculation
allows symbolic clustering algorithms to capture the variability within the data.

Recent advances have focused on improving the efficiency and scalability of SDA-based clustering
methods. These include modifications to the distance metrics used for symbolic objects, such as the
Hausdorff distance, which measures the dissimilarity between two sets or intervals [3]. The Hausdorff
distance between two intervals [I;,u4] and [l,, u,] is given by:

dp ([l w] [l up]) = max(lly = Ll luy = uzD). (2)

This metric is critical in comparing symbolic objects, considering the entire range of possible values, not
just individual points.

2.3 Overview of the Framework
The proposed framework consists of several stages:

1. Image Pre-processing: Resize images and extract RGB color intensities.

2. Feature Extraction: Compute symbolic representation of color intensity (R, G, B) and spatial
features (edges, positions, lengths).

Symbolic Data Conversion: Transform features into symbolic objects (intervals/distributions).
Initial Centroid Selection: Initialize centroids using predefined categories.

Clustering with Modified Minkowski Distance: Perform K-Means adapted for symbolic data.
Evaluation: Measure clustering performance using Accuracy, Adjusted Rand Index, and
runtime.

o s

Pre-processing
(resize, RGB extraction)

Feature Extraction
(color + spatial features)

Symbolic Representation
(intervals, distributions)

[Initial Centroid Selection]

Symbolic K-Means
with Modified Distance

Clustering Results

[(Acmra]i;%fi%intime)
Figure 1. Flowchart of the Proposed Methodology Integrating Symbolic Data Representation with the K-Means
Algorithm
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2.4 Pre-processing Images

In this research, we collected random digital images of flowers from different online sources. Each
color image was created by combining red, green, and blue images, each with 8-bit depth, giving 24 bits.
The color data is stored in three matrices: one for red, one for green, and one for blue, known as the RGB
(Red, Green, Blue) matrix. Let O represent the images o4, 05, ..., 0,,. First, we resized all images to the same
size, for example, p x q pixels (such as 50 x 50). Then, we wrote the image in a matrix with p rows and
g columns as follows:

Ji1 Jiz v Jap
Joxq = ]2-1 ]2;2 ]231) (3)
jpl ij qu

Here, ] represents the red, green, and blue channels, each with dimensions p X q.

702 186 185 (1S3 ASI 109, 192 210

200 201 [§881 165 188 454 158: 194 255
218 200 213 (1601 186 165 HARSN 199 224

Figure 2. Hlustration of the RGB Color Channels Feature Extraction in the image clustering

As shown in Fig. 2, the RGB color channels are utilized in the feature extraction process to represent image
pixels symbolically. This representation aids in clustering by capturing color intensities.

2.5 Definition of Symbolic Data

Symbolic data analysis (SDA) extends traditional data analysis that handles more complex data types,
such as intervals, multiple values, and distributions. These data types allow for representing variability and
uncertainty, often found in real-world situations [3].

Symbolic data are generalized data units capable of encapsulating multiple values, ranges, or
distributions for a single variable. This extension allows for representing uncertainty and variability inherent
in real-world applications [3]. For example, a symbolic object can represent pollution levels as an interval,
capturing the variability over time. Fig. 3 illustrates a symbolic object representation.

20,000

18,000

16,000

Traffic Volume

14,000

12,000

Mon Tue Wed Thu Fri Sat Sun
Days

Figure 3. Diagram of a Symbolic Object Representing Pollution Levels.

10,000

A symbolic object is a structured data unit that characterizes a collection of individuals or entities
using a combination of intervals, sets, or distributions across one or more variables. Symbolic objects
facilitate encapsulating relationships, hierarchies, and other complex data structures [3]. To illustrate the
practical application of symbolic data analysis, consider the case study of environmental monitoring:

Consider the monitoring of pollution levels across a city. The data collected from various stations
might include pollutant concentrations such as NO2, SO2, PM2.5, and CO. These pollutants are measured
at irregular intervals and can be affected by factors such as weather conditions, station malfunction, or local
environmental changes [18]. Symbolic clustering can represent these data points as intervals, capturing the
variability of pollutant levels over time and across different stations.
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For example, the concentration of NO2 at a particular station may range from 40 to 80 ug/m3,
representing an interval [40, 80] in SDA. This allows the clustering algorithm to account for the uncertainty
and variability in the data, resulting in more accurate identification of pollution hotspots [19]. Moreover,
symbolic data can better model the spatial-temporal distribution of pollutants, which is crucial for
environmental policymakers when deciding on mitigation strategies [20]. This approach can thus improve
the understanding of how pollution evolves in space, leading to more informed decisions in urban planning
and public health.

2.6 Comparison to Other Clustering Methods

Symbolic data-based clustering offers several advantages over traditional clustering methods,
particularly in handling variability and complex data types. Below, we compare symbolic clustering and other
well-known methods such as K-Means, DBSCAN, and hierarchical clustering.

2.6.1 K-Means Clustering

K-Means clustering is widely used in many fields due to its simplicity and efficiency [1]. However,
K-Means operates on fixed numerical values, which limits its flexibility when dealing with complex or
variable data. Variable data refers to data that can take on different values. In the context of data analysis,
“variable data” can be categorized into:

1. Multivariable data: This refers to datasets that contain more than one variable or feature, each
representing a different aspect of the observed phenomenon. For instance, in a medical dataset,
variables could include patient age, weight, height, and blood pressure. Each variable contributes
to the overall analysis, and their interactions may reveal deeper insights.

2. Multidimensional data: This refers to data spread across multiple dimensions, often visualized as
points in a high-dimensional space. For example, image data can be represented in multiple
dimensions, where each dimension corresponds to different features such as color channels (Red,
Green, Blue), spatial location, and texture. Clustering multidimensional data often requires
advanced techniques that can capture the complexity of the data across various dimensions.

These types of data require specialized analysis methods, as traditional approaches may struggle to
capture the full complexity of the interactions between variables or dimensions. In contrast, symbolic data
analysis (SDA) allows data representation as intervals or distributions, providing a more nuanced approach
in environments with high variability, such as medical or environmental data [3]. For example, in symbolic
K-Means, data points are represented as intervals, making it more adaptable to noise and uncertainty
compared to traditional K-Means [4].

2.6.2 DBSCAN

DBSCAN is effective in handling noise and discovering clusters of arbitrary shape [21]. However,
DBSCAN is limited in its ability to process symbolic data, which can include intervals or distributions.
Symbolic K-Means, on the other hand, can represent and cluster more complex data types by capturing the
variability and uncertainty inherent in real-world datasets. This makes symbolic clustering more versatile in
applications where the data exhibit heterogeneity [5].

2.6.3 Hierarchical Clustering

Hierarchical clustering is particularly useful when the number of clusters is unknown, as it does not
require a predefined number of clusters [22]. However, like K-Means, it typically operates on fixed numerical
data. Symbolic clustering extends this by handling complex data structures, such as multi-valued or interval
data, providing a more flexible framework for clustering in uncertain environments [3]. While hierarchical
clustering excels at visualizing relationships between clusters, symbolic data analysis improves
interpretability by allowing for richer data representations [5].

2.7 Mathematical Model for Symbolic Data

Symbolic data allows for the representation of more complex data structures than traditional statistical
data. This section introduces a simplified mathematical model to describe symbolic data, focusing on interval
data, one of the most common symbolic data types.
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Interval data for a variable includes the lower and upper limits, indicating the range in which the values
of this variable for a specific entity are situated. Formally, for a variable X, an interval is expressed as
[Xmin » Xmax ], Where X,,,.,, and X, represent the minimum and maximum values of X, respectively [3].
This approach can be extended to represent more complex symbolic data types, such as multi- valued
variables and distributions. For instance, a multi-valued variable could be represented as a set of discrete
values or categories, and a distribution could be described by its parameters, such as mean and variance for
normal distributions. The representation and manipulation of symbolic data require specific mathematical
and computational models. For interval data, operations such as the computation of the interval mean or the
interval distance can be defined to facilitate analysis. For example, the mean of an interval [X,in » Xmax] 1S
given by M . Symbolic data analysis provides a rich framework for dealing with heterogeneous and
complex data, enabling more nuanced and comprehensive analyses in various fields, from environmental
science to marketing research [16].

Cartesian Join is a method to merge features from two distinct categories of images; the Cartesian join
operation, as defined in [3], is utilized. The Cartesian join A @ B between two sets A and B is their
componentwise union, defined as:

A®B = (A @ By,....A, @ By), (4)

where A; @ B; = ‘A; U B;’. When A and B are multi-valued objects with 4; = {ajl,...,ajsj} and
Bj = {bjl""‘bt'}’ then
J

A] @B] = {ajl,...,ajsj,bjl,...,bt].} (5)
is the set of values in A;, B;, or both. When A and B are interval-valued objects with
A;j = [af,bf']and B; = [a},b}], then
A; @ B; = [min(af,af), max(bf,b})]. (6)

This operation is particularly useful when the features of the images are interval-valued, allowing us to
construct a symbolic object that combines the features of two image categories in a more informative way
than simple aggregation.

2.8 Feature Extraction

Feature extraction in image processing entails obtaining essential image attributes, including color
intensity and edge properties. These features are vital for numerous applications such as image classification
and pattern recognition.

2.8.1 Average Intensity Colour Image

The average intensity color image values for each image in a dataset offer insights into the dominant
color tones. For the k-th image in a collection of n images, the average values for the Red (R), Green (G),
and Blue (B) channels are calculated as follows:
Po 4o
A ! Z Z R @)
VR, = ii0
R po X qo == jo
Po 4o
A ! N 8)
Vg, = iio»
G Do X qo L4 ljo
Po 4o

1
A8, = o Z Z Bijo. ©)

i=1j=1

where p, and g, denote the dimensions of the o-th image, and R;j,, G;;,, and B;j, represent the intensity
colour image values at the pixel located at (i, j) [23].
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2.8.2 Min Max Intensity Colour Image

Beyond average intensity color image values, the minimum and maximum values for each color
channel provide additional insight into the color range and contrast within each image:

Ming, = nilijnRi]-O ,Maxg = n}e];xRijo, (10)
Ming = n;,lijnGijo yMaxg, = rrl;:jngijo, (11)
Ming, = rrilijnBi]-O ,Maxg, = Hil?;!XBijo- (12)

These calculations help understand the dynamic range and variability of colors present in the image dataset.

2.8.3 Definition of an Edge

Edges are significant changes in intensity in an image and are crucial for understanding the structure
and features within an image. The Canny edge detection algorithm is commonly used for identifying edges
due to its effectiveness in minimizing error rates and noise. The Canny Edge detection algorithm was chosen
due to its ability to minimize error rates and its robustness against noise. It offers an optimal balance between
detecting edges and preserving important structural information, crucial for accurate clustering in image
analysis [3].

E = {(x,y)|Canny(I4rqy)(x,¥) > threshold}. (13)
Here, E represents the set of edge points detected in a grayscale image Igq,, With (x,y) denoting the
coordinates of an edge point [3].

2.8.4 Average Position

The spatial distribution of edges within an image is captured by calculating the average position of detected
edges, which indicates the structural alignment and composition of the image’s features.

L
1 . .
AV Gposition = Zz Position(o). (14)
o0=1

This equation averages the positions of L detected edges within an image, providing a single vector that
represents the central tendency of edge locations within the image.
2.8.5 Min Max

For each image I, after applying the Canny edge detector, the minimum and maximum positions of
the detected edges in both x and y directions are calculated by:

140 — i o _—
Ming = (X,rfl)l‘:pon ,Max? = (XT)aE)%Ox, (15)
Min$ = min y ,Max) = max Yy, 16
Y T yDes,” Y T yoer,” (16)

where E,, is the set of edge points detected in the o-th image using the Canny edge detector, with each edge
point represented as a coordinate pair (x,y).

2.8.6 Length

Given an image, the Canny edge detection algorithm identifies its edges. For any detected edge, its
positions along the X and Y axes are denoted by xpositions and ypositions, respectively. The length of these
edges along the X and Y axes can be defined as:

o . )
Lengthg = max(xpositions) - mln(xpositions) ’ 17)

0 . 0
Lengthg)/ =nlax(y'positions) _mln(ypositions) ’ (18)

where:
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1. Xpositions ANd Ypositions are the sets of X and Y coordinates of the edge points detected by the
Canny algorithm.

2.  max(-) and min(-) represent the maximum and minimum functions, respectively.

The Lengthy and Length, represent the span of the detected edges along the X and Y axes, providing a
measure of the object’s size within the image.

2.8.7 Convert Images to Symbolic Data

Converting images to symbolic data involves representing the image attributes using symbolic objects.
This enables the encapsulation of multiple values, ranges, or distributions for a single variable, providing a
more comprehensive representation of the image data. The following steps outline the conversion process:

Step 1: Extract Features. Firstly, the relevant features from the image, such as the average color intensities
for the Red (R), Green (G), and Blue (B) channels, and spatial features including the positions and lengths
of detected edges, are extracted. Let V, represent the feature vector for image o:
Avgp ,Avgg ,Avgp , Lengthg , Lengths, Avgy , Avgy,
Vo = Min} ,Min2 ,Ming, Maxp ,Max? ,Maxg , . (19)
Ming , Maxy , Mingy, Maxy
Step 2: Define Intervals for Each Feature. For each feature in the vector V,, define the lower and upper

bounds, creating an interval that represents the range of values for that feature. For instance, for the average
red channel intensity Avgy, the interval can be defined as:

Intervalgy = [Ming, Maxg]. (20)

Step 3: Create Symbolic Object. Using the intervals defined for each feature, construct a symbolic object
that encapsulates all the intervals. The symbolic object for image o is denoted as V, and is defined as:

[Ming, Maxg], [Ming, Max;], [Ming, Maxg],
Vo = {[Length™", [LengthT%~], [Lengthgli", [Lengthy ¥, 4 (21)
[Avgm, AvgeX], [Avgi™, AvgaX]
Step 4: Use Symbolic Data in Clustering. The symbolic objects V, are then utilized in the clustering
algorithm. The distance measure for clustering symbolic data must account for the interval nature of the

features. The generalized distance between two symbolic objects V, and V;, can be defined using a modified
Minkowski distance:

Min,; + Max,; Min,; + Max ;|
2 2 '

14
dg = VoY= D w; (22)
=

where w; is the weight for the j-th feature, Min, ; and Max, ; are the interval bounds for the j-th feature of
a symbolic object V,, and similarly for V,. Following these steps, images are effectively converted to
symbolic data, enabling more sophisticated analysis and clustering those accounts for the inherent variability
and complexity of image features.

2.9 Initial Centroid

In the K-Means clustering algorithm, the initial centroids C;) which I = 1,2,...,s , which merges
the feature sets from distinct image categories, such as roses and sunflowers, for each image 0, the initial
centroid is applied to the extracted features to form a composite feature set:

Crose = Vrose(0), Csunflower = sunflower(o)' ..ClL = V(o) (23)
where Vy.ose(0) aNd Viun riower (o) are the feature vectors for the rose and sunflower categories, respectively.

Each composite feature vector includes:
(RDS)o

1. Composite average intensity color image values Avg,, oty -
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(RDBS)o (RDS),
intensity’ Maxintensity '

3. Composite average, minimum, and maximum spatial positions of edges AvgF®e  MinR®e,

MaxF®e  and so on for y coordinates.
h;R@S)O

2. Composite minimum and maximum intensity color image values Min

(R®S)o
hFODe,

4. Composite length of edges Lengt , Lengt

Accordingly, the initial centroid for a category € comprising both roses and sunflowers is computed as the
mean of the combined feature vectors:

1 n
C, = E; V(o). (24)

This consolidated centroid C. provides a robust foundation for the clustering process, capturing the essence
of both roses and sunflowers in the feature space.

2.10 Distance Measures in Clustering

In clustering, the choice of distance measure is crucial for determining the similarity between data
points. K-Means typically uses the Euclidean distance, a particular case of the generalized Minkowski
distance, when the order ¢ = 2.

The Generalized Minkowski distance of order g = 1 between two sets A and B is defined as:
1

q

p
dg(4,B) = | ) wiloj(4 B | | 25)
=1

J

where w; is an appropriate weight for the distance component ¢;(4,B) onY;, forj = 1,...,p.

2.11 Differences from Existing Methods

While traditional clustering methods like K-Means rely on precise numerical data and Euclidean
distances, our approach extends these methods to symbolic data by modifying the centroid and distance
calculations. For instance, instead of using the standard Euclidean distance, we implement a modified
Minkowski distance for symbolic objects, defined as:

1
P

n
d@y) = Y-l |, (26)
j=1

where x and y are symbolic objects, and p controls the degree of generalization [2]. When p = 2, this
becomes the symbolic version of the Euclidean distance.

Our method diverges from traditional clustering by considering the inherent uncertainty in symbolic
data. This uncertainty is often reflected in the data’s multivalued or interval nature, making it crucial to adapt
the distance measures and centroid calculations. These adaptations allow our approach to outperform
traditional methods, as evidenced by the higher accuracy rates achieved in our CIFAR-10 experiments
(discussed in Section 3).

2.12 Experiment Setup and Testing
The proposed method was tested on three datasets:
1. Flowers dataset: 317 images of roses and sunflowers collected online.

2. CIFAR-10: 60,000 color images across 10 categories.

The experiments were implemented in Python, using NumPy [24], OpenCV [25], and scikit-learn [26]
for image processing and clustering. Symbolic data functions were implemented manually to handle interval-
valued objects.
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1. Evaluation setup:
Each dataset was clustered into its known categories (2 for Flowers and 10 clusters for CIFAR-
10).

2. Performance metrics included:
a. Clustering Accuracy (%): ratio of correctly clustered images.

b. Adjusted Rand Index (ARI): measures clustering similarity against ground truth.
c. Computation Time (seconds): runtime efficiency.

The results (detailed in Section 4) demonstrate that the proposed symbolic K-Means consistently
outperforms traditional clustering approaches in accuracy and interpretability.

3. RESULTS AND DISCUSSION

This section presents the outcomes of the clustering analysis, focusing on the distribution of intensity colour
image and spatial features across the identified clusters.

3.1 Clustering Outcomes

To evaluate the effectiveness of the proposed clustering method, we first applied it to the flower dataset
consisting of rose and sunflower images. The confusion matrix in Table 2 summarizes the clustering results
for these two categories.

Table 2: Confusion Matrix of Rose and Sunflower
Predicted Rose Predicted Sunflower
Actual Rose 31 1
Actual Sunflower 3 20

As seen in Table 2, the model accurately distinguishes between rose and sunflower images, with an
overall accuracy of 96% for roses and 87% for sunflowers. The misclassifications suggest slight confusion
between visually similar classes, such as sunflower images classified as roses.

Integrating symbolic data analysis techniques provided a deeper understanding of the clustering results.
Symbolic objects and descriptors allowed for sophisticated mathematical modeling and interpretation,
revealing patterns and relationships not immediately evident in the raw data. This approach facilitated a more
nuanced analysis, particularly in handling the qualitative aspects of the image data.

3.2 Centroid Analysis

In our study, we have utilized an extensive set of images of sunflowers and roses, which have been
meticulously annotated and categorized. This rich dataset serves as a foundational element for our image
classification tasks. The sunflower images, consisting of 146 labeled photographs, display a wide range of
angles, lighting conditions, and backgrounds, capturing the vibrant aesthetics of these helianthuses. Similarly,
the rose dataset comprises 171 annotated images that showcase the nuanced pigmentation and form of rose
species.

The image datasets for this study were curated from a niche repository geared toward the classification
of floral imagery. The respective datasets for sunflowers and roses can be found online: Sunflower dataset
and Rose dataset. The diversity and quality of these datasets are instrumental in developing robust machine-
learning models capable of distinguishing between the intricate features of sunflower and rose images.


https://images.cv/dataset/sunflower-image-classification-dataset
https://images.cv/dataset/rose-image-classification-dataset
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Download 146 Sunflower labeled image dataset

Figure 4. Sample Image, the Sunflower Dataset

Download 171 Rose labeled image dataset

This dataset contain 171 images of annotated Rose images

Figure 5. Sample Image, the Rose Dataset

The dataset used in this study includes images of sunflowers and roses. As shown in Fig. 4, the
sunflower dataset consists of high-resolution images capturing various angles and lighting conditions.
Similarly, Fig. 5 presents a sample image from the rose dataset, exhibiting diversity in terms of color and
structure.

The following Table 3 presents the initial and final centroids for two categories of objects: roses and
sunflowers. The centroids are characterized by their average Red (R), Green (G), and Blue (B) color
intensities and their average spatial positions (X,Y).

Table 3. Centroid Values for Rose and Sunflower Categories with Improved Readability

Category Avg R Avg G Avg B Ler;(gth
Initial Rose 118.7 91.4 70 449.3
Initial Sunflower 137.3 729.9 76.9 31.3
Final Rose 94.1 77.3 53.8 31
Final Sunflower 160.2 142.4 103 31.7
Category LengthY  Avg X AvgY Min R
Initial Rose 483.6 4.3 3.1 0.1
Initial Sunflower 32.8 13.2 13.4 0.7
Final Rose 33.6 4.4 4 0.6
Final Sunflower 32.8 21.8 15.2 0.7
Category Min G Min B Max R Max G
Initial Rose 252.7 232.1 224.5 903.8
Initial Sunflower 25.1 238.8 211.6 61.5
Final Rose 250.5 214.7 196.1 60.1
Final Sunflower 252.3 2415 235.8 60.5
Category Max B Min X Max X Min Y
Initial Rose 1009.1 1.1 904.9 0.8
Initial Sunflower 61.6 0.6 62.1 1.2
Final Rose 61 1.1 61.2 1.8

Final Sunflower 61.6 1.3 61.8 11
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Category Max Y

Initial Rose 1009.9
Initial Sunflower 62.8

Final Rose 62.8
Final Sunflower 62.7

The results in Table 3 provide centroid values for the Rose and Sunflower categories, comparing their
initial and final states after the clustering process. Below is a detailed interpretation of the observed
discrepancies and deviations.

The initial centroid values for the rose category in the red, green, and blue channels (Avg R = 118.7,
Avg G =91.4, Avg B = 70.0) suggest a broader range of color variations. After clustering, the final centroid
values (Avg R = 94.1, Avg G = 77.3, Avg B = 53.8) indicate that the algorithm refined the rose cluster to
include images with lower color intensity and more consistent shades. For sunflowers, there is an opposite
trend where the final centroid values increase (Avg R = 160.2, Avg G = 142.4, Avg B = 103.0), suggesting
that the algorithm focused on more vibrant sunflower images, likely separating images with lower intensity
from the core sunflower cluster. The spatial dimensions of the rose cluster show a significant reduction from
the initial state (Length X = 449.3, Length Y = 483.6) to the final state (Length X = 31.0, Length Y = 33.6).
This significant decrease suggests that the initial cluster included a wide variety of rose images in size and
orientation, but the final cluster consists of more uniform images.

On the other hand, the sunflower cluster remains relatively stable in terms of its spatial dimensions
(Length X =31.3 and Length Y = 32.8 initially, and Length X = 31.7 and Length Y = 32.8 finally), indicating
that the sunflower images were more homogeneous from the beginning, and the algorithm made only minor
adjustments. The maximum values for the red, green, and blue channels (Max R, Max G, Max B) also show
significant reductions in the rose cluster. Initially, Max R = 224.5, Max G = 903.8, and Max B = 1009.1,
which drop to Max R = 196.1, Max G = 60.1, and Max B = 61.0 in the final cluster. This reduction suggests
that the algorithm removed extreme outliers or images with unusually high color intensity from the final
cluster. The sunflower cluster, however, shows very little change in these metrics, implying that the initial
and final clusters were already homogeneous in terms of color intensity.

The spatial dimensions, particularly the maximum and minimum coordinates (Max X, Max Y, Min X,
Min Y), reflect a similar pattern. For the rose category, the initial values (Max X =904.9, Max Y = 1009.9)
indicate a wide variety of image sizes, while the final values (Max X = 61.2, Max Y = 62.8) suggest that the
algorithm refined the cluster to include only smaller, more consistent images. In contrast, the sunflower
cluster remains essentially unchanged, with minor deviations in Max X and Max Y, reinforcing the idea that
the sunflower cluster was already more consistent in size. The visual representation of these centroids, as
depicted in the bar graphs, can provide further insight into the clustering behavior and the distinct
characteristics of each category.

Rose Features Sunflower Features

o
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Figure 6. Centroid Comparisons between Inltlal Stages for Roses and Sunflowers.

The visual representation of these centroids, as depicted in the bar graphs in Fig. 6, provides further
insight into the clustering behavior and highlights the distinct characteristics of each category. The differences
in average color intensity values and spatial positions between the initial and final stages for roses and
sunflowers are clearly visible, illustrating how the clustering algorithm refines each category.

From Table 3, it is evident that the final centroids for roses have higher intensity colour image values
and lower spatial values, suggesting denser and more vivid coloration at the core of the cluster. Conversely,
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sunflowers show lower intensity colour image values in the final centroids, which could indicate a more
diverse range of colors and a slight shift in the spatial domain. These variations between the initial and final
centroids highlight the adaptive nature of K-Means clustering in response to the data’s distribution.
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Figure 7. CIFAR 10 class images.

The CIFAR-10 dataset, which contains images from various classes, is visually represented in Fig. 7.
This dataset serves as a standard benchmark for evaluating image classification and clustering algorithms,
providing a diverse set of images across multiple categories. The CIFAR-10 dataset is renowned for its
extensive use in benchmarking image classification algorithms [6]. This dataset, introduced by Krizhevsky
et al., comprises 60,000 32x32 color images distributed across 10 distinct classes [13]. In our study, we
employed the CIFAR-10 images to verify the accuracy of our clustering methodology. The table below
presents the initial and final centroid values for various categories within the CIFAR-10 dataset. CIFAR-10
consists of ten categories: truck, airplane, automobile, bird, cat, deer, dog, frog, horse, and ship. The centroid
values are represented by the red (R), green (G), and blue (B) color components as well as spatial coordinates
(Xand Y).

The Table 4, Table 5, and Table 6 showcase the initial and final centroids for each category, providing
insights into the average values for each category before and after the clustering process. The “Avg” columns
display the average values of the color components and spatial coordinates, while the “Min” and “Max”
columns indicate the minimum and maximum values of these components within the dataset. The observed
changes between the initial and final centroids reflect how the average values for each category have shifted
throughout the clustering process.

Table 4. Initial and Final Centroids of CIFAR-10

Category Avg R Avg G Avg B Min R Max R Min G Max G
Initial Centroids
Truck 127.2 123.8 121.9 10.2 245.1 30.9 245.3
Airplane 134.0 142.9 150.2 24.2 235.9 29.3 232.4
Automobile 120.2 115.9 114.0 8.1 242.0 30.9 244.3
Bird 124.8 125.3 108.1 16.7 216.9 29.2 228.3
Cat 126.4 116.4 106.0 12.8 228.1 30.2 235.9
Deer 120.3 118.6 96.4 17.9 202.6 30.6 226.5
Dog 127.5 118.5 106.2 13.2 229.5 30.2 238.5
Frog 119.9 111.8 88.0 10.2 201.8 30.5 228.9
Horse 128.0 122.4 106.3 14.0 234.9 30.8 239.9
Ship 125.0 134.0 141.4 21.9 237.6 30.7 237.1
Final Centroids
Truck 120.6 118.1 111.4 9.6 247.3 30.8 248.2

Airplane 188.6 189.8 189.6 28.6 250.9 28.9 249.4
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Category Avg R Avg G Avg B Min R Max R Min G Max G
Final Centroids
Automobile 90.1 85.6 77.1 5.1 239.2 30.5 244.2
Bird 121.8 143.5 165.1 43.4 225.2 27.9 202.1
Cat 112.4 109.6 98.6 8.8 210.6 30.6 221.5
Deer 112.3 1135 97.3 20.5 164.3 28.5 180.9
Dog 141.8 129.9 98.0 22.5 192.1 30.3 231.2
Frog 85.4 75.9 55.2 5.8 160.1 30.1 204.7
Horse 146.9 144.7 140 41.5 244.5 30.5 246.6
Ship 149.1 149.0 148.2 9.9 247.8 30.7 247.6
Table 5. Initial and Final Centroids of CIFAR-10
Category Min B Max B Avg X AvgY Min X Max X
Initial Centroids
Truck 29.0 244.0 10.8 10.6 0.1 31
Airplane 24.5 233.0 20.9 23.1 0.9 30.2
Automobile 28.7 241.8 8.5 8.2 0.1 30.9
Bird 29.0 223.5 24.5 23.4 0.9 30.1
Cat 30.0 2315 18.6 16.0 0.4 30.6
Deer 30.0 217.5 26.0 24.4 0.2 30.8
Dog 30.1 233.4 18.3 16.1 0.4 30.6
Frog 30.1 220.4 19.6 16.9 0.3 30.8
Horse 29.9 237.3 19.3 17.2 0.1 30.9
Ship 25.8 236.6 17.8 20.4 0.2 30.8
Final Centroids
Truck 29.7 247.4 11.1 10.8 0.1 30.9
Airplane 25.3 250.1 33.3 30.2 11 30
Automobile 29.7 242.1 6.4 6.6 0.2 30.7
Bird 225 210 29.1 37.9 15 29.5
Cat 29.3 215.2 11.1 11 0.2 30.8
Deer 26.9 174.7 27.9 27.3 1.2 29.7
Dog 29.3 216.2 42.2 35.5 0.4 30.6
Frog 29.4 184.9 10.9 10.3 0.4 30.5
Horse 28.5 245.3 46.1 44.9 0.3 30.8
Ship 28.1 247.2 10.8 9.9 0.2 30.8
Table 6. Initial and Final Centroids of CIFAR-10
Category MinY Max Y Ler;(gth Ler:(gth
Initial Centroids
Truck 11 30.1 155 16.0
Airplane 3.8 28.3 15.5 16.6
Automobile 1.2 29.8 15.5 15.4
Bird 1.6 30.6 15.5 16.5
Cat 0.5 30.6 15.5 15.8
Deer 0.6 30.6 15.5 15.8
Dog 0.5 30.6 155 15.7
Frog 0.6 30.8 15.5 16.0
Horse 0.6 30.5 155 15.7
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Length Length

Category MinY Max Y X Y
Ship 35 29.3 15,5 17.1
Final Centroids

Truck 0.8 30.4 15,5 15.7
Airplane 3.6 28.9 15.5 17.0
Automobile 0.8 30.5 15.4 15.7
Bird 5.1 27.6 15.5 16.8
Cat 1.1 30.3 15.6 16.0
Deer 2.6 294 15.4 16.4
Dog 1.0 30.4 15,5 16.0
Frog 0.9 30.4 15.4 15.8
Horse 1.7 30.2 15.6 16.2
Ship 1.9 30.0 15.5 16.5

The results of the initial and final centroid calculations for the CIFAR-10 dataset are presented in Table
4, Table 5, and Table 6. These tables provide detailed insights into how the centroids for each class (e.qg.,
truck, airplane, automobile, etc.) shift during the clustering process. Key metrics such as average color
intensities (Avg R, Avg G, Avg B), minimum and maximum values (Min R, Max G), and spatial dimensions
(Length X, Length Y) highlight the changes between the initial and final cluster centroids. Subsequently, we
applied K-Means clustering along with comprehensive feature analysis to these images. The table below
details the clustering results, demonstrating the performance of our approach for each class.

Table 7. Results Clustering CIFAR-10

Cluster Class Error(n) Images (N) Accuracy (%0)
0 truck 102 970 89.5
1 airplane 180 1000 82.0
2 automobile 94 1000 90.6
3 bird 75 720 89.6
4 cat 93 848 89.0
5 deer 74 720 89.7
6 dog 65 731 91.1
7 frog 60 669 91.0
8 horse 78 720 89.2
9 ship 108 970 88.9

Subsequently, the performance of K-Means clustering on these classes is summarized in Table 7, where
the accuracy of clustering for each class is detailed. The truck and frog classes demonstrate higher accuracy
(89.5% and 91.0%, respectively), while the airplane class shows a slightly lower accuracy of 82.0%. These
results reflect the effectiveness of the clustering algorithm in distinguishing between different classes of
images in the CIFAR-10 dataset.

3.3 Comparison with Related Approaches

This study utilized clustering techniques combining symbolic data analysis with traditional clustering
methodologies to address the image data involving both intensity and spatial features. The clustering process
was applied to a diverse dataset of images, including real-world images. The use of symbolic data analysis
allowed for a nuanced differentiation between similar image categories, achieving an overall accuracy rate of
94%.

To validate the novelty of our proposed symbolic data-based clustering method, we conducted a
comparative analysis with traditional clustering approaches, including K-Means, DBSCAN, and hierarchical
clustering, using the CIFAR-10 dataset. Table 8 summarizes each method’s clustering accuracy and
performance metrics.
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Table 8. Comparison of Clustering Approaches on CIFAR-10 D ataset

Method AC((:(% )a cy Time (s) Clusters  Adjusted Rand Index
K-Means 82.5 12.3 10.0 0.7
DBSCAN 78.1 34.8 Varies 0.6
Hierarchical 81.3 28.4 10.0 0.6
Symbolic data-based 94.0 15.6 10.0 0.7

The proposed method outperforms traditional approaches regarding clustering accuracy and interpretability,
capturing symbolic data’s inherent complexity.

3.4 Discussion

The results demonstrate that symbolic data clustering performs better in handling complex image
datasets like CIFAR-10. The proposed method’s ability to represent variability within symbolic objects
provides better clustering accuracy than traditional approaches like K- Means and DBSCAN. Symbolic data
clustering excels because it captures both variability and uncertainty inherent in the data, often overlooked
by traditional methods. Unlike K-Means, which relies solely on numerical representations and Euclidean
distances, the symbolic method incorporates interval and distribution-based features, allowing it to process
high-dimensional data more effectively. This flexibility suits it particularly for datasets like CIFAR-10, which
contain diverse object categories with overlapping visual characteristics. One key advantage of the symbolic
approach lies in its tailored distance metric, which is optimized to handle symbolic objects. This metric
enhances cluster separation by considering the variability within feature intervals, which is critical for
datasets with overlapping clusters or noisy data points. For instance, the superior accuracy of 94.0% on
CIFAR-10 highlights its robustness in distinguishing complex patterns thattraditional methods might
misclassify.

Additionally, the symbolic data-based clustering method maintains consistent performance regardless
of the dataset’s complexity. For CIFAR-10, the method effectively handles the inherent diversity of object
categories, such as animals, vehicles, and landscapes, which often share similar color distributions or spatial
features. In contrast, traditional methods like DBSCAN struggle with determining an optimal number of
clusters in such varied datasets, leading to reduced accuracy. Hierarchical clustering, while performing better
than DBSCAN in some cases, suffers from high computational overhead and difficulty in scaling to large
datasets like CIFAR-10. While separating color channels helps extract richer features for datasets with
significant color variability (e.g., CIFAR-10 or flower datasets), this flexibility highlights the adaptability of
the approach across diverse datasets. However, additional techniques, such as intensity normalization or the
inclusion of illumination-invariant features, could further enhance the method's robustness. These aspects
will be explored in future work.

4. CONCLUSION

This paper presents a novel approach for clustering image data using symbolic data integrated with the
K-Means algorithm. Our method outperformed traditional approaches regarding accuracy and flexibility,
particularly in handling complex datasets like CIFAR-10. Despite these promising results, our study has
several limitations. First, the computational complexity of symbolic data analysis may limit its scalability to
very large datasets. Second, our approach has not been tested on highly heterogeneous datasets, which would
be an important area for future research. Future work could focus on optimizing the algorithm’s
computational efficiency and exploring its application to more diverse datasets, including real-world medical
and environmental data. Furthermore, integrating symbolic data with other clustering algorithms, such as
density-based or spectral clustering, could yield interesting insights.
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