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Article Info ABSTRACT 

Article History: 
Clustering is a crucial technique in image analysis, yet traditional methods such as K-

Means often struggle when dealing with complex, high-dimensional, or uncertain data. 

This limitation reduces their effectiveness in accurately grouping images, particularly 

when variability and overlapping features exist across categories. To address this 

problem, this paper introduces a novel approach that integrates symbolic data with the 

K-Means algorithm to cluster image data more effectively. By symbolically representing 

both color intensity and spatial features, we enhance the algorithm’s ability to handle 

variability and uncertainty. We test our method on the CIFAR-10 dataset, where it 

achieves a clustering accuracy of 94.0% with an Adjusted Rand Index of 0.7, 

outperforming traditional methods such as K-Means (82.5%), DBSCAN (78.1%), and 

Hierarchical clustering (81.3%). Our results demonstrate that symbolic data analysis 

offers a more flexible and accurate solution for image clustering, with potential 

applications in fields such as medical image processing and environmental monitoring. 

Limitations and directions for future research are also discussed. 
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1. INTRODUCTION 

Clustering is widely used in various fields, including image processing, environmental monitoring, and 

medical data analysis. Traditional clustering methods, such as K-Means, focus on numerical data, which 

limits their effectiveness when handling complex data types, such as distributions, intervals, or sets of values 

[1], [2]. Symbolic Data Analysis (SDA) extends classical data analysis by allowing more complex data types 

to be analyzed [3], [4]. 

Symbolic data represent variability and uncertainty, often present in real-world applications. This 

makes SDA particularly useful in fields where data are noisy or incomplete, such as environmental 

monitoring and healthcare [3]. For example, symbolic objects encapsulating multiple values or distributions 

can represent pollution levels at different locations, capturing the variability in measurements over time [4]. 

In clustering, symbolic data have been shown to improve the accuracy and interpretability of the results by 

incorporating these complex data structures [5]. Unlike traditional methods that treat data points as fixed 

numerical values, SDA allows a more flexible representation, enabling the integration of numerical and 

categorical variables [3]. As a result, symbolic clustering methods have been applied in various domains, 

including medical image analysis, where the complexity of data is particularly pronounced [6]. 

Combining image processing and machine learning has led to many healthcare, security, and 

autonomous systems innovations. Advanced algorithms that accurately classify and group images are 

essential for building intelligent systems. However, working with image data is still challenging due to its 

complexity and high dimensionality [6], [7], [8]. As technology progresses, new techniques for extracting 

essential features from images are becoming more critical to make the data easier to understand. Methods 

like edge detection and spatial feature analysis have proven effective in revealing images’ content [8], [9]. 

These methods improve image classification accuracy and help improve machine-learning models. Clustering 

algorithms, like K-Means, are also crucial in grouping images. Choosing the initial centroids is a key step, as 

it greatly affects the clustering result by guiding the algorithm towards more meaningful groups [1], [10]. In 

this research, we introduce symbolic data analysis methods. These methods use symbolic mathematical 

notations to handle complex data effectively [3]. Symbolic data analysis offers an intense way to manage 

variations within the data, providing deeper insights into the characteristics of the data.  

The convergence of image processing and machine learning has led to significant innovations in 

healthcare, security, and autonomous systems, where accurate classification and clustering of images are 

critical. However, image data remain challenging due to their complexity and high dimensionality, which 

require advanced feature extraction techniques such as edge detection and spatial analysis. To address these 

challenges, this paper introduces a novel clustering approach that integrates symbolic data representation with 

the K-Means algorithm. By combining color intensity and spatial features within a symbolic framework, our 

method enhances the ability to manage variability and uncertainty in image data. Furthermore, a modified 

distance metric tailored for symbolic objects improves cluster separation and interpretability. This study, 

therefore, aims to provide a more robust and flexible solution for image clustering compared to traditional 

methods. The remainder of this paper is organized as follows: Section 2 reviews related works and highlights 

the research gap; Section 3 presents the proposed methodology, including feature extraction, symbolic 

representation, and clustering; Section 4 discusses the experimental setup and results; and Section 5 concludes 

the paper and suggests future research directions. 

2. RESEARCH METHODS 

2.1 Classical Clustering Algorithms and Their Limitations 

Clustering algorithms such as K-Means, DBSCAN, and hierarchical clustering remain popular due to 

their simplicity and efficiency. However, they largely assume data in fixed numerical form, limiting their 

effectiveness when facing variability, uncertainty, or complex data structures. For example, enhancements 

like better initialization [11] or custom distance functions [2] help but still rely on strict numerical 

representations. 

Symbolic Data Analysis (SDA) addresses these limitations by enabling data representation as intervals, 

distributions, or sets [3]. While promising, symbolic clustering has rarely been applied to image data, mostly 
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focusing on fields like environmental monitoring or aggregated statistics. This leaves a research gap in 

leveraging symbolic representation coupled with image feature extraction. 

Recent advances in image clustering further demonstrate evolving approaches that explore multi-modal 

inputs and supervision from captions to external knowledge. Below is a comparison of significant works: 

Table 1. Summary of Prior Studies 

Author & Year Dataset / Domain 
Method & 

Highlights 
Strengths 

Limitations / Gap 

in the Context of 

Our Study 

Hartigan & Wong 

(1979)  
Numerical data 

Standard K-

Means 

algorithm [1] 

Simple, 

efficient 

Limited to purely 

numeric data 

Celebi (2011)  Color images 

Improved 

centroid 

initialization [2] 

Better 

convergence in 

color 

quantization 

No symbolic data 

usage; numeric only 

Fränti & Sieranoja 

(2019)  

Synthetic, real-

world 

Enhanced 

initialization K-

Means [11] 

Higher 

accuracy, more 

robust 

Still assumes 

numerical 

representations 

Billard & Diday 

(2007)  
Various 

Symbolic Data 

Analysis 

foundational [3] 

Supports 

intervals, 

distributions 

Not tailored to 

image data or 

symbolic image 

features 

Peng & Li (2023)  
General image 

datasets 

Deep clustering 

with mutual 

information 

across views 

[12] 

Reduces intra-

class 

variability via 

augmented 

views 

Focused on deep 

learning, not 

symbolic 

representation 

Li et al. (2023) – 

TAC  
ImageNet etc. 

Text-Aided 

Clustering 

(TAC): uses 

WordNet 

semantics as 

external 

guidance [13] 

Leverages 

external 

semantic info 

for better 

clustering 

Language-based 

external knowledge, 

not symbolic feature 

structure 

Stephan et al. (2024)  
Diverse image 

datasets 

Text-Guided 

Image 

Clustering: uses 

generated 

captions & 

VQA prompts  

[14] 

Multimodal 

embeddings 

improve 

interpretability 

and clustering 

results 

Captions-based, not 

using symbolic 

feature 

representation 

Raya et al. (2024)  
Multimodal 

clustering 

Deep learning 

for multi-modal 

data clustering 

[15] 

Integrates 

multimodal 

embeddings 

Leaned toward deep 

learning, not 

symbolic data 

representation 

Hu et al. (2024) – 

ICBPL  

CIFAR-10, STL-

10, others 

Self-supervised 

clustering with 

pretrained 

models and 

latent 

distribution 

optimization 

[16] 

Strong 

performance 

using latent 

features 

Not symbolic; more 

focused on deep 

feature distribution 

dynamics 

Wu (2024) – RD-

FKC  

Various image 

datasets 

Robust Deep 

Fuzzy K-Means 

Clustering [17] 

Embedding 

robustness and 

fuzzy logic for 

clustering 

Deep learning; not 

symbolic 

Our Work (2025) 
CIFAR-10, 

Flower datasets 

Symbolic K-

Means with 

modified 

distance metric 

Handles 

variability, 

uncertainty, 

interpretable 

New in image 

domain symbolic 

clustering; bridges a 

gap 
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2.2 Foundations of Symbolic Data Clustering 

Symbolic Data Analysis (SDA) extends classical data analysis techniques by representing complex 

data structures, such as intervals, distributions, or sets, instead of single numerical values [3]. This approach 

allows SDA to manage uncertainty, variability, and multivalued attributes, which are common in real-world 

applications. Several studies have proposed methodologies for clustering symbolic data, including the 

extension of traditional algorithms like K-Means and DBSCAN [2], [4]. 

In SDA, the centroid of a symbolic object, such as an interval or distribution, differs from the classical 

centroid used in traditional clustering. For an interval-valued object, the centroid is defined as the middle of 

the interval: 

𝐶 =
𝑙 + 𝑢

2
,  (1) 

where 𝑙 and 𝑢 are the lower and upper bounds of the interval, respectively [3]. This centroid calculation 

allows symbolic clustering algorithms to capture the variability within the data. 

Recent advances have focused on improving the efficiency and scalability of SDA-based clustering 

methods. These include modifications to the distance metrics used for symbolic objects, such as the 

Hausdorff distance, which measures the dissimilarity between two sets or intervals [3]. The Hausdorff 

distance between two intervals [𝑙1, 𝑢1] and [𝑙2, 𝑢2] is given by: 

𝑑𝐻 ([𝑙1, 𝑢1], [𝑙2, 𝑢2]) =  𝑚𝑎𝑥(|𝑙1  −  𝑙2|, |𝑢1  − 𝑢2|). (2) 

This metric is critical in comparing symbolic objects, considering the entire range of possible values, not 

just individual points. 

2.3 Overview of the Framework 

The proposed framework consists of several stages: 

1. Image Pre-processing: Resize images and extract RGB color intensities. 

2. Feature Extraction: Compute symbolic representation of color intensity (R, G, B) and spatial 

features (edges, positions, lengths). 

3. Symbolic Data Conversion: Transform features into symbolic objects (intervals/distributions). 

4. Initial Centroid Selection: Initialize centroids using predefined categories. 

5. Clustering with Modified Minkowski Distance: Perform K-Means adapted for symbolic data. 

6. Evaluation: Measure clustering performance using Accuracy, Adjusted Rand Index, and 

runtime. 

 
Figure 1. Flowchart of the Proposed Methodology Integrating Symbolic Data Representation with the K-Means 

Algorithm 
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2.4 Pre-processing Images 

In this research, we collected random digital images of flowers from different online sources. Each 

color image was created by combining red, green, and blue images, each with 8-bit depth, giving 24 bits. 

The color data is stored in three matrices: one for red, one for green, and one for blue, known as the RGB 

(Red, Green, Blue) matrix. Let 𝑂 represent the images 𝑜1, 𝑜2, . . . , 𝑜𝑛. First, we resized all images to the same 

size, for example, 𝑝 ×  𝑞 pixels (such as 50 ×  50). Then, we wrote the image in a matrix with p rows and 

q columns as follows: 

𝐽𝑝×𝑞  =

[
 
 
 
𝑗11 𝑗12 ⋯ 𝑗1𝑝

𝑗21 𝑗22 ⋯ 𝑗2𝑝

⋮ ⋮ ⋱ ⋮
𝑗𝑝1 𝑗𝑝2 ⋯ 𝑗𝑝𝑞]

 
 
 
 (3) 

Here, 𝐽 represents the red, green, and blue channels, each with dimensions 𝑝 ×  𝑞. 

 
Figure 2. Illustration of the RGB Color Channels Feature Extraction in the image clustering 

As shown in Fig. 2, the RGB color channels are utilized in the feature extraction process to represent image 

pixels symbolically. This representation aids in clustering by capturing color intensities. 

2.5 Definition of Symbolic Data 

Symbolic data analysis (SDA) extends traditional data analysis that handles more complex data types, 

such as intervals, multiple values, and distributions. These data types allow for representing variability and 

uncertainty, often found in real-world situations [3]. 

Symbolic data are generalized data units capable of encapsulating multiple values, ranges, or 

distributions for a single variable. This extension allows for representing uncertainty and variability inherent 

in real-world applications [3]. For example, a symbolic object can represent pollution levels as an interval, 

capturing the variability over time. Fig. 3 illustrates a symbolic object representation. 

 

 
Figure 3. Diagram of a Symbolic Object Representing Pollution Levels. 

A symbolic object is a structured data unit that characterizes a collection of individuals or entities 

using a combination of intervals, sets, or distributions across one or more variables. Symbolic objects 

facilitate encapsulating relationships, hierarchies, and other complex data structures [3]. To illustrate the 

practical application of symbolic data analysis, consider the case study of environmental monitoring: 

Consider the monitoring of pollution levels across a city. The data collected from various stations 

might include pollutant concentrations such as NO2, SO2, PM2.5, and CO. These pollutants are measured 

at irregular intervals and can be affected by factors such as weather conditions, station malfunction, or local 

environmental changes [18]. Symbolic clustering can represent these data points as intervals, capturing the 

variability of pollutant levels over time and across different stations. 
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For example, the concentration of NO2 at a particular station may range from 40 to 80 µg/m3, 

representing an interval [40, 80] in SDA. This allows the clustering algorithm to account for the uncertainty 

and variability in the data, resulting in more accurate identification of pollution hotspots [19]. Moreover, 

symbolic data can better model the spatial-temporal distribution of pollutants, which is crucial for 

environmental policymakers when deciding on mitigation strategies [20]. This approach can thus improve 

the understanding of how pollution evolves in space, leading to more informed decisions in urban planning 

and public health. 

2.6 Comparison to Other Clustering Methods 

Symbolic data-based clustering offers several advantages over traditional clustering methods, 

particularly in handling variability and complex data types. Below, we compare symbolic clustering and other 

well-known methods such as K-Means, DBSCAN, and hierarchical clustering. 

2.6.1 K-Means Clustering 

K-Means clustering is widely used in many fields due to its simplicity and efficiency [1]. However, 

K-Means operates on fixed numerical values, which limits its flexibility when dealing with complex or 

variable data. Variable data refers to data that can take on different values. In the context of data analysis, 

“variable data” can be categorized into: 

1. Multivariable data: This refers to datasets that contain more than one variable or feature, each 

representing a different aspect of the observed phenomenon. For instance, in a medical dataset, 

variables could include patient age, weight, height, and blood pressure. Each variable contributes 

to the overall analysis, and their interactions may reveal deeper insights. 

2. Multidimensional data: This refers to data spread across multiple dimensions, often visualized as 

points in a high-dimensional space. For example, image data can be represented in multiple 

dimensions, where each dimension corresponds to different features such as color channels (Red, 

Green, Blue), spatial location, and texture. Clustering multidimensional data often requires 

advanced techniques that can capture the complexity of the data across various dimensions. 

These types of data require specialized analysis methods, as traditional approaches may struggle to 

capture the full complexity of the interactions between variables or dimensions. In contrast, symbolic data 

analysis (SDA) allows data representation as intervals or distributions, providing a more nuanced approach 

in environments with high variability, such as medical or environmental data [3]. For example, in symbolic 

K-Means, data points are represented as intervals, making it more adaptable to noise and uncertainty 

compared to traditional K-Means [4]. 

2.6.2 DBSCAN 

DBSCAN is effective in handling noise and discovering clusters of arbitrary shape [21]. However, 

DBSCAN is limited in its ability to process symbolic data, which can include intervals or distributions. 

Symbolic K-Means, on the other hand, can represent and cluster more complex data types by capturing the 

variability and uncertainty inherent in real-world datasets. This makes symbolic clustering more versatile in 

applications where the data exhibit heterogeneity [5]. 

2.6.3 Hierarchical Clustering 

Hierarchical clustering is particularly useful when the number of clusters is unknown, as it does not 

require a predefined number of clusters [22]. However, like K-Means, it typically operates on fixed numerical 

data. Symbolic clustering extends this by handling complex data structures, such as multi-valued or interval 

data, providing a more flexible framework for clustering in uncertain environments [3]. While hierarchical 

clustering excels at visualizing relationships between clusters, symbolic data analysis improves 

interpretability by allowing for richer data representations [5]. 

2.7 Mathematical Model for Symbolic Data 

Symbolic data allows for the representation of more complex data structures than traditional statistical 

data. This section introduces a simplified mathematical model to describe symbolic data, focusing on interval 

data, one of the most common symbolic data types. 



BAREKENG: J. Math. & App., vol. 20(2), pp. 1263- 1282, Jun, 2026.     1269 

 

Interval data for a variable includes the lower and upper limits, indicating the range in which the values 

of this variable for a specific entity are situated. Formally, for a variable 𝑋, an interval is expressed as 

[𝑋𝑚𝑖𝑛 , 𝑋𝑚𝑎𝑥], where 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 represent the minimum and maximum values of 𝑋, respectively [3]. 

This approach can be extended to represent more complex symbolic data types, such as multi- valued 

variables and distributions. For instance, a multi-valued variable could be represented as a set of discrete 

values or categories, and a distribution could be described by its parameters, such as mean and variance for 

normal distributions. The representation and manipulation of symbolic data require specific mathematical 

and computational models. For interval data, operations such as the computation of the interval mean or the 

interval distance can be defined to facilitate analysis. For example, the mean of an interval [𝑋𝑚𝑖𝑛 , 𝑋𝑚𝑎𝑥] is 

given by 
𝑋𝑚𝑖𝑛+𝑋𝑚𝑎𝑥

2
 . Symbolic data analysis provides a rich framework for dealing with heterogeneous and 

complex data, enabling more nuanced and comprehensive analyses in various fields, from environmental 

science to marketing research [16]. 

Cartesian Join is a method to merge features from two distinct categories of images; the Cartesian join 

operation, as defined in [3], is utilized. The Cartesian join 𝐴 ⊕  𝐵 between two sets A and B is their 

componentwise union, defined as: 

𝐴 ⊕  𝐵 =  (𝐴1  ⊕ 𝐵1, . . . , 𝐴𝑝  ⊕ 𝐵𝑝) , (4) 

 where 𝐴𝑗  ⊕ 𝐵𝑗  =  ‘𝐴𝑗  ∪  𝐵𝑗’. When 𝐴 and 𝐵 are multi-valued objects with 𝐴𝑗  =  {𝑎𝑗1, . . . , 𝑎𝑗𝑠𝑗
 } and  

𝐵𝑗  =  {𝑏𝑗1, . . . , 𝑏𝑡𝑗
 }, then  

𝐴𝑗  ⊕ 𝐵𝑗  =  {𝑎𝑗1, . . . , 𝑎𝑗𝑠𝑗
 , 𝑏𝑗1, . . . , 𝑏𝑡𝑗

 } (5) 

is the set of values in 𝐴𝑗 , 𝐵𝑗, or both. When 𝐴 and 𝐵 are interval-valued objects with  

𝐴𝑗  =  [𝑎𝑗
𝐴, 𝑏𝑗

𝐴] and 𝐵𝑗  =  [𝑎𝑗
𝐵, 𝑏𝑗

𝐵], then 

𝐴𝑗  ⊕ 𝐵𝑗  =  [𝑚𝑖𝑛(𝑎𝑗
𝐴, 𝑎𝑗

𝐵),𝑚𝑎𝑥(𝑏𝑗
𝐴, 𝑏𝑗

𝐵)]. (6) 

This operation is particularly useful when the features of the images are interval-valued, allowing us to 

construct a symbolic object that combines the features of two image categories in a more informative way 

than simple aggregation. 

2.8 Feature Extraction 

Feature extraction in image processing entails obtaining essential image attributes, including color 

intensity and edge properties. These features are vital for numerous applications such as image classification 

and pattern recognition. 

2.8.1 Average Intensity Colour Image 

The average intensity color image values for each image in a dataset offer insights into the dominant 

color tones. For the k-th image in a collection of 𝑛 images, the average values for the Red (R), Green (G), 

and Blue (B) channels are calculated as follows: 

𝐴𝑣𝑔𝑅𝑜
=

1

𝑝𝑜 × 𝑞𝑜
∑∑𝑅𝑖𝑗𝑜 

𝑞𝑜

𝑗=1

𝑝𝑜

𝑖=1

, (7) 

𝐴𝑣𝑔𝐺𝑜
=

1

𝑝𝑜 × 𝑞𝑜
∑∑𝐺𝑖𝑗𝑜

𝑞𝑜

𝑗=1

𝑝𝑜

𝑖=1

, (8) 

𝐴𝑣𝑔𝐵𝑜
=

1

𝑝𝑜 × 𝑞𝑜
∑∑𝐵𝑖𝑗𝑜

𝑞𝑜

𝑗=1

𝑝𝑜

𝑖=1

, (9) 

where 𝑝𝑜 and 𝑞𝑜 denote the dimensions of the 𝑜-th image, and 𝑅𝑖𝑗𝑜, 𝐺𝑖𝑗𝑜, and 𝐵𝑖𝑗𝑜 represent the intensity 

colour image values at the pixel located at (𝑖, 𝑗) [23]. 
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2.8.2 Min Max Intensity Colour Image 

Beyond average intensity color image values, the minimum and maximum values for each color 

channel provide additional insight into the color range and contrast within each image: 

𝑀𝑖𝑛𝑅𝑜
= min

𝑖,𝑗
𝑅𝑖𝑗𝑜  , 𝑀𝑎𝑥𝑅𝑜

= max
𝑖,𝑗

𝑅𝑖𝑗𝑜 , (10) 

𝑀𝑖𝑛𝐺𝑜
= min

𝑖,𝑗
𝐺𝑖𝑗𝑜  , 𝑀𝑎𝑥𝐺𝑜

 =  max
𝑖,𝑗

𝐺𝑖𝑗𝑜 , (11) 

𝑀𝑖𝑛𝐵𝑜
= min

𝑖,𝑗
𝐵𝑖𝑗𝑜  , 𝑀𝑎𝑥𝐵𝑜

 =  max
𝑖,𝑗

𝐵𝑖𝑗𝑜 . (12) 

These calculations help understand the dynamic range and variability of colors present in the image dataset. 

2.8.3 Definition of an Edge 

Edges are significant changes in intensity in an image and are crucial for understanding the structure 

and features within an image. The Canny edge detection algorithm is commonly used for identifying edges 

due to its effectiveness in minimizing error rates and noise. The Canny Edge detection algorithm was chosen 

due to its ability to minimize error rates and its robustness against noise. It offers an optimal balance between 

detecting edges and preserving important structural information, crucial for accurate clustering in image 

analysis [3]. 

𝐸 =  {(𝑥, 𝑦)|𝐶𝑎𝑛𝑛𝑦(𝐼𝑔𝑟𝑎𝑦)(𝑥, 𝑦) >  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑}. (13) 

Here, E represents the set of edge points detected in a grayscale image 𝐼𝑔𝑟𝑎𝑦, with (𝑥, 𝑦) denoting the 

coordinates of an edge point [3]. 

2.8.4 Average Position 

The spatial distribution of edges within an image is captured by calculating the average position of detected 

edges, which indicates the structural alignment and composition of the image’s features. 

𝐴𝑣𝑔𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =
1

𝐿
∑ 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑜)

𝐿

𝑜=1

. (14) 

This equation averages the positions of 𝐿 detected edges within an image, providing a single vector that 

represents the central tendency of edge locations within the image. 

2.8.5 Min Max 

For each image 𝐼𝑘, after applying the Canny edge detector, the minimum and maximum positions of 

the detected edges in both 𝑥 and 𝑦 directions are calculated by: 

𝑀𝑖𝑛𝑥
𝑜  = min

(x,−)∈Eo

𝑥 ,𝑀𝑎𝑥𝑥
𝑜  = max

(x,−)∈Eo

𝑥 , (15) 

𝑀𝑖𝑛𝑦
𝑜  = min

(y,−)∈Eo

𝑦 ,𝑀𝑎𝑥𝑦
𝑜  = max

(y,−)∈Eo

𝑦 , (16) 

where 𝐸𝑜 is the set of edge points detected in the 𝑜-th image using the Canny edge detector, with each edge 

point represented as a coordinate pair (𝑥, 𝑦). 

2.8.6 Length 

Given an image, the Canny edge detection algorithm identifies its edges. For any detected edge, its 

positions along the 𝑋 and 𝑌 axes are denoted by xpositions and ypositions, respectively. The length of these 

edges along the 𝑋 and 𝑌 axes can be defined as: 

𝐿𝑒𝑛𝑔𝑡ℎ𝑥
𝑜 = max(𝑥𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠)

𝑜
 − min(𝑥𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠)

𝑜
, (17) 

𝐿𝑒𝑛𝑔𝑡ℎ𝑦
𝑜  = max(𝑦𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠)

𝑜
 − min(𝑦𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠)

𝑜
, (18) 

where: 
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1. 𝑥𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 and 𝑦𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 are the sets of 𝑋 and 𝑌 coordinates of the edge points detected by the 

Canny algorithm. 

2. 𝑚𝑎𝑥(·) and 𝑚𝑖𝑛(·) represent the maximum and minimum functions, respectively. 

The 𝐿𝑒𝑛𝑔𝑡ℎ𝑋 and 𝐿𝑒𝑛𝑔𝑡ℎ𝑌 represent the span of the detected edges along the 𝑋 and 𝑌 axes, providing a 

measure of the object’s size within the image. 

2.8.7 Convert Images to Symbolic Data 

Converting images to symbolic data involves representing the image attributes using symbolic objects. 

This enables the encapsulation of multiple values, ranges, or distributions for a single variable, providing a 

more comprehensive representation of the image data. The following steps outline the conversion process: 

Step 1: Extract Features. Firstly, the relevant features from the image, such as the average color intensities 

for the Red (R), Green (G), and Blue (B) channels, and spatial features including the positions and lengths 

of detected edges, are extracted. Let 𝑉𝑜 represent the feature vector for image 𝑜: 

𝑉𝑜 =  [

𝐴𝑣𝑔𝑅
𝑜 , 𝐴𝑣𝑔𝐺

𝑜  , 𝐴𝑣𝑔𝐵
𝑜  , 𝐿𝑒𝑛𝑔𝑡ℎ𝑥

𝑜 , 𝐿𝑒𝑛𝑔𝑡ℎ𝑦
𝑜 , 𝐴𝑣𝑔𝑥

𝑜 , 𝐴𝑣𝑔𝑦
𝑜 ,

𝑀𝑖𝑛𝑅
𝑜  , 𝑀𝑖𝑛𝐺

𝑜  ,𝑀𝑖𝑛𝐵
𝑜 , 𝑀𝑎𝑥𝑅

𝑜 , 𝑀𝑎𝑥𝐺
𝑜 , 𝑀𝑎𝑥𝐵

𝑜 ,

𝑀𝑖𝑛𝑥
𝑜 , 𝑀𝑎𝑥𝑥

𝑜 , 𝑀𝑖𝑛𝑦
𝑜 ,𝑀𝑎𝑥𝑦

𝑜  
] . (19) 

Step 2: Define Intervals for Each Feature. For each feature in the vector 𝑉𝑜, define the lower and upper 

bounds, creating an interval that represents the range of values for that feature. For instance, for the average 

red channel intensity 𝐴𝑣𝑔𝑅, the interval can be defined as: 

𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑅  =  [𝑀𝑖𝑛𝑅 ,𝑀𝑎𝑥𝑅]. (20) 

Step 3: Create Symbolic Object. Using the intervals defined for each feature, construct a symbolic object 

that encapsulates all the intervals. The symbolic object for image 𝑜 is denoted as 𝑉𝑜 and is defined as: 

𝑉𝑜 =   {

[𝑀𝑖𝑛𝑅 ,𝑀𝑎𝑥𝑅], [𝑀𝑖𝑛𝐺 ,𝑀𝑎𝑥𝐺], [𝑀𝑖𝑛𝐵,𝑀𝑎𝑥𝐵],

[𝐿𝑒𝑛𝑔𝑡ℎ𝑥
𝑚𝑖𝑛, [𝐿𝑒𝑛𝑔𝑡ℎ𝑥

𝑚𝑎𝑥], [𝐿𝑒𝑛𝑔𝑡ℎ𝑦
𝑚𝑖𝑛, [𝐿𝑒𝑛𝑔𝑡ℎ𝑦

𝑚𝑎𝑥 ,

[𝐴𝑣𝑔𝑥
𝑚𝑖𝑛, 𝐴𝑣𝑔𝑥

𝑚𝑎𝑥], [𝐴𝑣𝑔𝑦
𝑚𝑖𝑛, 𝐴𝑣𝑔𝑦

𝑚𝑎𝑥]

} . (21) 

Step 4: Use Symbolic Data in Clustering. The symbolic objects 𝑉𝑜 are then utilized in the clustering 

algorithm. The distance measure for clustering symbolic data must account for the interval nature of the 

features. The generalized distance between two symbolic objects 𝑉𝑜 and 𝑉𝑝 can be defined using a modified 

Minkowski distance: 

𝑑𝑞 = (𝑉𝑜, 𝑉𝑝 = ∑𝑤𝑗.

𝑝

𝑗=1

|
𝑀𝑖𝑛𝑜,𝑗 + 𝑀𝑎𝑥𝑜,𝑗 

2
−

𝑀𝑖𝑛𝑝,𝑗 + 𝑀𝑎𝑥𝑝,𝑗

2
|
𝑞

)

1
𝑞

, (22) 

where 𝑤𝑗 is the weight for the 𝑗-th feature, 𝑀𝑖𝑛𝑜,𝑗 and 𝑀𝑎𝑥𝑜,𝑗 are the interval bounds for the 𝑗-th feature of 

a symbolic object 𝑉𝑜, and similarly for 𝑉𝑝. Following these steps, images are effectively converted to 

symbolic data, enabling more sophisticated analysis and clustering those accounts for the inherent variability 

and complexity of image features. 

2.9 Initial Centroid 

In the K-Means clustering algorithm, the initial centroids 𝐶𝑙) which 𝑙 =  1, 2, . . . , 𝑠 , which merges 

the feature sets from distinct image categories, such as roses and sunflowers, for each image 𝑂, the initial 

centroid is applied to the extracted features to form a composite feature set: 

𝐶𝑟𝑜𝑠𝑒  =  𝑉𝑟𝑜𝑠𝑒(𝑜) , 𝐶𝑠𝑢𝑛𝑓𝑙𝑜𝑤𝑒𝑟  =  𝑉𝑠𝑢𝑛𝑓𝑙𝑜𝑤𝑒𝑟(𝑜),… 𝐶𝑙 =  𝑉𝑙(𝑜) (23) 

where 𝑉𝑟𝑜𝑠𝑒(𝑜) and 𝑉𝑠𝑢𝑛𝑓𝑙𝑜𝑤𝑒𝑟(𝑜) are the feature vectors for the rose and sunflower categories, respectively. 

Each composite feature vector includes: 

1. Composite average intensity color image values 𝐴𝑣𝑔𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦
(𝑅⊕𝑆)𝑜 . 
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2. Composite minimum and maximum intensity color image values 𝑀𝑖𝑛𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦
(𝑅⊕𝑆)𝑜 , 𝑀𝑎𝑥𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

(𝑅⊕𝑆)𝑜  . 

3. Composite average, minimum, and maximum spatial positions of edges 𝐴𝑣𝑔𝑥
(𝑅⊕𝑆)𝑜 , 𝑀𝑖𝑛𝑥

(𝑅⊕𝑆)𝑜 , 

𝑀𝑎𝑥𝑥
(𝑅⊕𝑆)𝑜 , and so on for 𝑦 coordinates. 

4. Composite length of edges 𝐿𝑒𝑛𝑔𝑡ℎ𝑥
(𝑅⊕𝑆)𝑜 , 𝐿𝑒𝑛𝑔𝑡ℎ𝑦

(𝑅⊕𝑆)𝑜. 

Accordingly, the initial centroid for a category 𝐶 comprising both roses and sunflowers is computed as the 

mean of the combined feature vectors: 

𝐶𝑐 =
1

𝑛
∑ 𝑉(𝑜)

𝑛

𝑜=1

. (24) 

This consolidated centroid 𝐶𝑐   provides a robust foundation for the clustering process, capturing the essence 

of both roses and sunflowers in the feature space. 

2.10 Distance Measures in Clustering 

In clustering, the choice of distance measure is crucial for determining the similarity between data 

points. K-Means typically uses the Euclidean distance, a particular case of the generalized Minkowski 

distance, when the order 𝑞 =  2. 

The Generalized Minkowski distance of order 𝑞 ≥  1 between two sets A and B is defined as: 

𝑑𝑞(𝐴, 𝐵) =  (∑𝑤𝑗
∗|𝜙𝑗(𝐴, 𝐵)|𝑞

𝑝

𝑗=1

)

1
𝑞

, (25) 

 where 𝑤𝑗 is an appropriate weight for the distance component 𝜙𝑗(𝐴, 𝐵) on 𝑌𝑗, for 𝑗 =  1, . . . , 𝑝.  

2.11 Differences from Existing Methods 

While traditional clustering methods like K-Means rely on precise numerical data and Euclidean 

distances, our approach extends these methods to symbolic data by modifying the centroid and distance 

calculations. For instance, instead of using the standard Euclidean distance, we implement a modified 

Minkowski distance for symbolic objects, defined as:  

𝑑(𝑥, 𝑦) = (∑|𝑥𝑖 − 𝑦𝑖|
𝑝 

𝑛

𝑗=1

)

1
𝑝

, (26) 

where 𝑥 and 𝑦 are symbolic objects, and p controls the degree of generalization [2]. When 𝑝 =  2, this 

becomes the symbolic version of the Euclidean distance. 

Our method diverges from traditional clustering by considering the inherent uncertainty in symbolic 

data. This uncertainty is often reflected in the data’s multivalued or interval nature, making it crucial to adapt 

the distance measures and centroid calculations. These adaptations allow our approach to outperform 

traditional methods, as evidenced by the higher accuracy rates achieved in our CIFAR-10 experiments 

(discussed in Section 3). 

2.12 Experiment Setup and Testing 

The proposed method was tested on three datasets: 

1. Flowers dataset: 317 images of roses and sunflowers collected online. 

2. CIFAR-10: 60,000 color images across 10 categories. 

The experiments were implemented in Python, using NumPy [24], OpenCV [25], and scikit-learn [26] 

for image processing and clustering. Symbolic data functions were implemented manually to handle interval-

valued objects. 
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1. Evaluation setup: 

Each dataset was clustered into its known categories (2 for Flowers and 10 clusters for CIFAR-

10). 

2. Performance metrics included: 

a. Clustering Accuracy (%): ratio of correctly clustered images. 

b. Adjusted Rand Index (ARI): measures clustering similarity against ground truth. 

c. Computation Time (seconds): runtime efficiency. 

The results (detailed in Section 4) demonstrate that the proposed symbolic K-Means consistently 

outperforms traditional clustering approaches in accuracy and interpretability. 

3. RESULTS AND DISCUSSION 

This section presents the outcomes of the clustering analysis, focusing on the distribution of intensity colour 

image and spatial features across the identified clusters. 

3.1 Clustering Outcomes 

To evaluate the effectiveness of the proposed clustering method, we first applied it to the flower dataset 

consisting of rose and sunflower images. The confusion matrix in Table 2 summarizes the clustering results 

for these two categories. 

Table 2: Confusion Matrix of Rose and Sunflower 

 Predicted Rose Predicted Sunflower 

Actual Rose 31 1 

Actual Sunflower 3 20 

As seen in Table 2, the model accurately distinguishes between rose and sunflower images, with an 

overall accuracy of 96% for roses and 87% for sunflowers. The misclassifications suggest slight confusion 

between visually similar classes, such as sunflower images classified as roses. 

Integrating symbolic data analysis techniques provided a deeper understanding of the clustering results. 

Symbolic objects and descriptors allowed for sophisticated mathematical modeling and interpretation, 

revealing patterns and relationships not immediately evident in the raw data. This approach facilitated a more 

nuanced analysis, particularly in handling the qualitative aspects of the image data. 

3.2 Centroid Analysis 

In our study, we have utilized an extensive set of images of sunflowers and roses, which have been 

meticulously annotated and categorized. This rich dataset serves as a foundational element for our image 

classification tasks. The sunflower images, consisting of 146 labeled photographs, display a wide range of 

angles, lighting conditions, and backgrounds, capturing the vibrant aesthetics of these helianthuses. Similarly, 

the rose dataset comprises 171 annotated images that showcase the nuanced pigmentation and form of rose 

species. 

The image datasets for this study were curated from a niche repository geared toward the classification 

of floral imagery. The respective datasets for sunflowers and roses can be found online: Sunflower dataset 

and Rose dataset. The diversity and quality of these datasets are instrumental in developing robust machine- 

learning models capable of distinguishing between the intricate features of sunflower and rose images. 

https://images.cv/dataset/sunflower-image-classification-dataset
https://images.cv/dataset/rose-image-classification-dataset
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Figure 4. Sample Image, the Sunflower Dataset 

 

Figure 5. Sample Image, the Rose Dataset 

The dataset used in this study includes images of sunflowers and roses. As shown in Fig. 4, the 

sunflower dataset consists of high-resolution images capturing various angles and lighting conditions. 

Similarly, Fig. 5 presents a sample image from the rose dataset, exhibiting diversity in terms of color and 

structure.  

The following Table 3 presents the initial and final centroids for two categories of objects: roses and 

sunflowers. The centroids are characterized by their average Red (R), Green (G), and Blue (B) color 

intensities and their average spatial positions (𝑋, 𝑌). 

Table 3. Centroid Values for Rose and Sunflower Categories with Improved Readability 

Category Avg R Avg G Avg B 
Length 

X 

Initial Rose 118.7 91.4 70 449.3 

Initial Sunflower 137.3 729.9 76.9 31.3 

Final Rose 94.1 77.3 53.8 31 

Final Sunflower 160.2 142.4 103 31.7 

Category Length Y Avg X Avg Y Min R 

Initial Rose 483.6 4.3 3.1 0.1 

Initial Sunflower 32.8 13.2 13.4 0.7 

Final Rose 33.6 4.4 4 0.6 

Final Sunflower 32.8 21.8 15.2 0.7 

Category Min G Min B Max R Max G 

Initial Rose 252.7 232.1 224.5 903.8 

Initial Sunflower 25.1 238.8 211.6 61.5 

Final Rose 250.5 214.7 196.1 60.1 

Final Sunflower 252.3 241.5 235.8 60.5 

Category Max B Min X Max X Min Y 

Initial Rose 1009.1 1.1 904.9 0.8 

Initial Sunflower 61.6 0.6 62.1 1.2 

Final Rose 61 1.1 61.2 1.8 

Final Sunflower 61.6 1.3 61.8 1.1 
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Category Max Y    

Initial Rose 1009.9    

Initial Sunflower 62.8    

Final Rose 62.8    

Final Sunflower 62.7    

The results in Table 3 provide centroid values for the Rose and Sunflower categories, comparing their 

initial and final states after the clustering process. Below is a detailed interpretation of the observed 

discrepancies and deviations. 

The initial centroid values for the rose category in the red, green, and blue channels (Avg R = 118.7, 

Avg G = 91.4, Avg B = 70.0) suggest a broader range of color variations. After clustering, the final centroid 

values (Avg R = 94.1, Avg G = 77.3, Avg B = 53.8) indicate that the algorithm refined the rose cluster to 

include images with lower color intensity and more consistent shades. For sunflowers, there is an opposite 

trend where the final centroid values increase (Avg R = 160.2, Avg G = 142.4, Avg B = 103.0), suggesting 

that the algorithm focused on more vibrant sunflower images, likely separating images with lower intensity 

from the core sunflower cluster. The spatial dimensions of the rose cluster show a significant reduction from 

the initial state (Length X = 449.3, Length Y = 483.6) to the final state (Length X = 31.0, Length Y = 33.6). 

This significant decrease suggests that the initial cluster included a wide variety of rose images in size and 

orientation, but the final cluster consists of more uniform images. 

On the other hand, the sunflower cluster remains relatively stable in terms of its spatial dimensions 

(Length X = 31.3 and Length Y = 32.8 initially, and Length X = 31.7 and Length Y = 32.8 finally), indicating 

that the sunflower images were more homogeneous from the beginning, and the algorithm made only minor 

adjustments. The maximum values for the red, green, and blue channels (Max R, Max G, Max B) also show 

significant reductions in the rose cluster. Initially, Max R = 224.5, Max G = 903.8, and Max B = 1009.1, 

which drop to Max R = 196.1, Max G = 60.1, and Max B = 61.0 in the final cluster. This reduction suggests 

that the algorithm removed extreme outliers or images with unusually high color intensity from the final 

cluster. The sunflower cluster, however, shows very little change in these metrics, implying that the initial 

and final clusters were already homogeneous in terms of color intensity. 

The spatial dimensions, particularly the maximum and minimum coordinates (Max X, Max Y, Min X, 

Min Y), reflect a similar pattern. For the rose category, the initial values (Max X = 904.9, Max Y = 1009.9) 

indicate a wide variety of image sizes, while the final values (Max X = 61.2, Max Y = 62.8) suggest that the 

algorithm refined the cluster to include only smaller, more consistent images. In contrast, the sunflower 

cluster remains essentially unchanged, with minor deviations in Max X and Max Y, reinforcing the idea that 

the sunflower cluster was already more consistent in size. The visual representation of these centroids, as 

depicted in the bar graphs, can provide further insight into the clustering behavior and the distinct 

characteristics of each category. 

Figure 6. Centroid Comparisons between Initial Stages for Roses and Sunflowers. 

The visual representation of these centroids, as depicted in the bar graphs in Fig. 6, provides further 

insight into the clustering behavior and highlights the distinct characteristics of each category. The differences 

in average color intensity values and spatial positions between the initial and final stages for roses and 

sunflowers are clearly visible, illustrating how the clustering algorithm refines each category. 

From Table 3, it is evident that the final centroids for roses have higher intensity colour image values 

and lower spatial values, suggesting denser and more vivid coloration at the core of the cluster. Conversely, 
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sunflowers show lower intensity colour image values in the final centroids, which could indicate a more 

diverse range of colors and a slight shift in the spatial domain. These variations between the initial and final 

centroids highlight the adaptive nature of K-Means clustering in response to the data’s distribution. 

 
Figure 7. CIFAR 10 class images. 

The CIFAR-10 dataset, which contains images from various classes, is visually represented in Fig. 7. 

This dataset serves as a standard benchmark for evaluating image classification and clustering algorithms, 

providing a diverse set of images across multiple categories. The CIFAR-10 dataset is renowned for its 

extensive use in benchmarking image classification algorithms [6]. This dataset, introduced by Krizhevsky 

et al., comprises 60,000 32x32 color images distributed across 10 distinct classes [13]. In our study, we 

employed the CIFAR-10 images to verify the accuracy of our clustering methodology. The table below 

presents the initial and final centroid values for various categories within the CIFAR-10 dataset. CIFAR-10 

consists of ten categories: truck, airplane, automobile, bird, cat, deer, dog, frog, horse, and ship. The centroid 

values are represented by the red (R), green (G), and blue (B) color components as well as spatial coordinates 

(X and Y). 

The Table 4, Table 5, and Table 6 showcase the initial and final centroids for each category, providing 

insights into the average values for each category before and after the clustering process. The “Avg” columns 

display the average values of the color components and spatial coordinates, while the “Min” and “Max” 

columns indicate the minimum and maximum values of these components within the dataset. The observed 

changes between the initial and final centroids reflect how the average values for each category have shifted 

throughout the clustering process. 

Table 4. Initial and Final Centroids of CIFAR-10 

Category Avg R Avg G Avg B Min R Max R Min G Max G 

Initial Centroids 

Truck 127.2 123.8 121.9 10.2 245.1 30.9 245.3 

Airplane 134.0 142.9 150.2 24.2 235.9 29.3 232.4 

Automobile 120.2 115.9 114.0 8.1 242.0 30.9 244.3 

Bird 124.8 125.3 108.1 16.7 216.9 29.2 228.3 

Cat 126.4 116.4 106.0 12.8 228.1 30.2 235.9 

Deer 120.3 118.6 96.4 17.9 202.6 30.6 226.5 

Dog 127.5 118.5 106.2 13.2 229.5 30.2 238.5 

Frog 119.9 111.8 88.0 10.2 201.8 30.5 228.9 

Horse 128.0 122.4 106.3 14.0 234.9 30.8 239.9 

Ship 125.0 134.0 141.4 21.9 237.6 30.7 237.1 

Final Centroids 

Truck 120.6 118.1 111.4 9.6 247.3 30.8 248.2 

Airplane 188.6 189.8 189.6 28.6 250.9 28.9 249.4 
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Category Avg R Avg G Avg B Min R Max R Min G Max G 

Final Centroids 

Automobile 90.1 85.6 77.1 5.1 239.2 30.5 244.2 

Bird 121.8 143.5 165.1 43.4 225.2 27.9 202.1 

Cat 112.4 109.6 98.6 8.8 210.6 30.6 221.5 

Deer 112.3 113.5 97.3 20.5 164.3 28.5 180.9 

Dog 141.8 129.9 98.0 22.5 192.1 30.3 231.2 

Frog 85.4 75.9 55.2 5.8 160.1 30.1 204.7 

Horse 146.9 144.7 140 41.5 244.5 30.5 246.6 

Ship 149.1 149.0 148.2 9.9 247.8 30.7 247.6 

Table 5. Initial and Final Centroids of CIFAR-10 

Category Min B Max B Avg X Avg Y Min X Max X 

Initial Centroids 

Truck 29.0 244.0 10.8 10.6 0.1 31 

Airplane 24.5 233.0 20.9 23.1 0.9 30.2 

Automobile 28.7 241.8 8.5 8.2 0.1 30.9 

Bird 29.0 223.5 24.5 23.4 0.9 30.1 

Cat 30.0 231.5 18.6 16.0 0.4 30.6 

Deer 30.0 217.5 26.0 24.4 0.2 30.8 

Dog 30.1 233.4 18.3 16.1 0.4 30.6 

Frog 30.1 220.4 19.6 16.9 0.3 30.8 

Horse 29.9 237.3 19.3 17.2 0.1 30.9 

Ship 25.8 236.6 17.8 20.4 0.2 30.8 

Final Centroids 

Truck 29.7 247.4 11.1 10.8 0.1 30.9 

Airplane 25.3 250.1 33.3 30.2 1.1 30 

Automobile 29.7 242.1 6.4 6.6 0.2 30.7 

Bird 22.5 210 29.1 37.9 1.5 29.5 

Cat 29.3 215.2 11.1 11 0.2 30.8 

Deer 26.9 174.7 27.9 27.3 1.2 29.7 

Dog 29.3 216.2 42.2 35.5 0.4 30.6 

Frog 29.4 184.9 10.9 10.3 0.4 30.5 

Horse 28.5 245.3 46.1 44.9 0.3 30.8 

Ship 28.1 247.2 10.8 9.9 0.2 30.8 

Table 6. Initial and Final Centroids of CIFAR-10 

Category Min Y Max Y 
Length 

X 

Length 

Y 

Initial Centroids 

Truck 1.1 30.1 15.5 16.0 

Airplane 3.8 28.3 15.5 16.6 

Automobile 1.2 29.8 15.5 15.4 

Bird 1.6 30.6 15.5 16.5 

Cat 0.5 30.6 15.5 15.8 

Deer 0.6 30.6 15.5 15.8 

Dog 0.5 30.6 15.5 15.7 

Frog 0.6 30.8 15.5 16.0 

Horse 0.6 30.5 15.5 15.7 
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Category Min Y Max Y 
Length 

X 

Length 

Y 

Ship 3.5 29.3 15.5 17.1 

Final Centroids 

Truck 0.8 30.4 15.5 15.7 

Airplane 3.6 28.9 15.5 17.0 

Automobile 0.8 30.5 15.4 15.7 

Bird 5.1 27.6 15.5 16.8 

Cat 1.1 30.3 15.6 16.0 

Deer 2.6 29.4 15.4 16.4 

Dog 1.0 30.4 15.5 16.0 

Frog 0.9 30.4 15.4 15.8 

Horse 1.7 30.2 15.6 16.2 

Ship 1.9 30.0 15.5 16.5 

The results of the initial and final centroid calculations for the CIFAR-10 dataset are presented in Table 

4, Table 5, and Table 6. These tables provide detailed insights into how the centroids for each class (e.g., 

truck, airplane, automobile, etc.) shift during the clustering process. Key metrics such as average color 

intensities (Avg R, Avg G, Avg B), minimum and maximum values (Min R, Max G), and spatial dimensions 

(Length X, Length Y) highlight the changes between the initial and final cluster centroids. Subsequently, we 

applied K-Means clustering along with comprehensive feature analysis to these images. The table below 

details the clustering results, demonstrating the performance of our approach for each class.  

Table 7. Results Clustering CIFAR-10 

Cluster Class Error(n) Images (N) Accuracy (%) 

0 truck 102 970 89.5 

1 airplane 180 1000 82.0 

2 automobile 94 1000 90.6 

3 bird 75 720 89.6 

4 cat 93 848 89.0 

5 deer 74 720 89.7 

6 dog 65 731 91.1 

7 frog 60 669 91.0 

8 horse 78 720 89.2 

9 ship 108 970 88.9 

Subsequently, the performance of K-Means clustering on these classes is summarized in Table 7, where 

the accuracy of clustering for each class is detailed. The truck and frog classes demonstrate higher accuracy 

(89.5% and 91.0%, respectively), while the airplane class shows a slightly lower accuracy of 82.0%. These 

results reflect the effectiveness of the clustering algorithm in distinguishing between different classes of 

images in the CIFAR-10 dataset. 

3.3 Comparison with Related Approaches 

This study utilized clustering techniques combining symbolic data analysis with traditional clustering 

methodologies to address the image data involving both intensity and spatial features. The clustering process 

was applied to a diverse dataset of images, including real-world images. The use of symbolic data analysis 

allowed for a nuanced differentiation between similar image categories, achieving an overall accuracy rate of 

94%. 

To validate the novelty of our proposed symbolic data-based clustering method, we conducted a 

comparative analysis with traditional clustering approaches, including K-Means, DBSCAN, and hierarchical 

clustering, using the CIFAR-10 dataset. Table 8 summarizes each method’s clustering accuracy and 

performance metrics. 
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Table 8. Comparison of C lustering Approaches on CIFAR-10 Dataset 

Method 
Accuracy 

(%) 
Time (s) Clusters Adjusted Rand Index 

K-Means 82.5 12.3 10.0 0.7 

DBSCAN 78.1 34.8 Varies 0.6 

Hierarchical 81.3 28.4 10.0 0.6 

Symbolic data-based 94.0 15.6 10.0 0.7 

The proposed method outperforms traditional approaches regarding clustering accuracy and interpretability, 

capturing symbolic data’s inherent complexity. 

3.4 Discussion 

The results demonstrate that symbolic data clustering performs better in handling complex image 

datasets like CIFAR-10. The proposed method’s ability to represent variability within symbolic objects 

provides better clustering accuracy than traditional approaches like K- Means and DBSCAN. Symbolic data 

clustering excels because it captures both variability and uncertainty inherent in the data, often overlooked 

by traditional methods. Unlike K-Means, which relies solely on numerical representations and Euclidean 

distances, the symbolic method incorporates interval and distribution-based features, allowing it to process 

high-dimensional data more effectively. This flexibility suits it particularly for datasets like CIFAR-10, which 

contain diverse object categories with overlapping visual characteristics. One key advantage of the symbolic 

approach lies in its tailored distance metric, which is optimized to handle symbolic objects. This metric 

enhances cluster separation by considering the variability within feature intervals, which is critical for 

datasets with overlapping clusters or noisy data points. For instance, the superior accuracy of 94.0% on 

CIFAR-10 highlights its robustness in distinguishing complex patterns thattraditional methods might 

misclassify. 

Additionally, the symbolic data-based clustering method maintains consistent performance regardless 

of the dataset’s complexity. For CIFAR-10, the method effectively handles the inherent diversity of object 

categories, such as animals, vehicles, and landscapes, which often share similar color distributions or spatial 

features. In contrast, traditional methods like DBSCAN struggle with determining an optimal number of 

clusters in such varied datasets, leading to reduced accuracy. Hierarchical clustering, while performing better 

than DBSCAN in some cases, suffers from high computational overhead and difficulty in scaling to large 

datasets like CIFAR-10. While separating color channels helps extract richer features for datasets with 

significant color variability (e.g., CIFAR-10 or flower datasets), this flexibility highlights the adaptability of 

the approach across diverse datasets. However, additional techniques, such as intensity normalization or the 

inclusion of illumination-invariant features, could further enhance the method's robustness. These aspects 

will be explored in future work. 

4. CONCLUSION 

This paper presents a novel approach for clustering image data using symbolic data integrated with the 

K-Means algorithm. Our method outperformed traditional approaches regarding accuracy and flexibility, 

particularly in handling complex datasets like CIFAR-10. Despite these promising results, our study has 

several limitations. First, the computational complexity of symbolic data analysis may limit its scalability to 

very large datasets. Second, our approach has not been tested on highly heterogeneous datasets, which would 

be an important area for future research. Future work could focus on optimizing the algorithm’s 

computational efficiency and exploring its application to more diverse datasets, including real-world medical 

and environmental data. Furthermore, integrating symbolic data with other clustering algorithms, such as 

density-based or spectral clustering, could yield interesting insights. 
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