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1. INTRODUCTION

In the last five years, there have been advancements in the field of cancer treatment, specifically in
addressing the variations within tumors and cancer cells. We know that chemotherapy still causes side effects
on healthy tissue for combating cancer [1]. Research is still being done on how to optimize the dose used to
minimize healthy tissue around the cancer area. One of the latest studies using optimal control is based on
Pontryagin’s maximum principle, where free end-time is formulated and solved numerically with the Runge-
Kutta method [2]. Similarly, immunotherapy techniques are also one of the superior techniques for
overcoming cancer and are used together with anti-cancer drugs [3], [4]. Stem-cell therapy also helps to
recreate tissue damaged by cancer or by other therapeutic processes carried out that damage tissue
[5]. This approach is also popular as an alternative to being free from cancer [6]. Similarly, an anti-angiogenic
process can be carried out where this process inhibits the growth of blood vessels that grow in cancer whose
blood supply is from healthy tissue [7].

Among the emerging techniques, Boron Neutron Capture Therapy (BNCT) stands out due to its ability
to target tumor cells while sparing cells. This makes it one of the therapies available. BNCT involves
administering a compound containing boron to the patient and exposing them to low-energy neutrons [8].
These captured neutrons release high-energy particles that specifically damage tumor cells, which makes
BNCT ideal for treating cancers located in critical areas where conventional radiation therapy may harm
healthy tissues nearby. It is worth mentioning that glioblastoma, melanoma, and head and neck cancers are
some of the types of malignancies being studied for BNCT [4], [6].

The primary benefit of BNCT is its precise targeting, which is made possible by the tumor cells’
preferential uptake of the boron molecule. This strategy seeks to lessen adverse effects while improving
therapeutic results. It’s crucial to note that BNCT has its drawbacks and is still viewed as an experimental
therapy. The lack of nuclear reactors in hospitals limits access to neutron sources, and the present boron-10
isotope’s efficacy is constrained. As a result, more study is required to improve BNCT’s effectiveness through
mathematical modeling, enabling the use of novel treatment procedures.

The literature lacks precise mathematical models for therapeutic approaches incorporating BNCT, even
though numerous mathematical models have been put forth for other cancer therapies. The mathematical
model presented in this article combines the BNCT principles with current therapeutic modalities, including
chemotherapy|9], [10]. The mathematical model takes into account the immunotherapy’s periodicity, which
calls for repeated treatments. Additionally, two alternative strategies are examined in this study: using BNCT
in conjunction with immunotherapy to maintain the patient’s immunity during treatment, and using BNCT in
conjunction with stem cell therapy to maintain the rate of stem cell proliferation around cancer cells that have
been treated with BNCT medications [3]. These methods are anticipated to increase the overall effectiveness
of therapeutic methods, and the mathematical model put out here is an essential instrument in their evaluation
and implementation.

2. RESEARCH METHODS

In this paper, we will present our study by considering that the developed model is based on the
treatment used to combat cancer. A mathematical model is necessary to have efficiency in a therapeutic
strategy. We refer to two approaches, i.e., combining immunotherapy and BNCT and doing BNCT with stem
cell therapy [3]. The first approach proposes to stabilize the patient’s immunity during the BNCT treatment.
The second approach is maintaining the growth rate of stem cells around cancer cells, which are BNCT drugs.
Due to its function, immunotherapy should have a periodic treatment, leading to a mathematical model with
periodicity.

Fig. 1 illustrates the process of BNCT, providing readers with a simplified understanding of how the
technique is employed to treat a patient [8]. The patient is irradiated with a low-energy neutron beam that
triggers fission of the boron-10 (*°B) isotope on tumor cells, releasing high-energy « particles, and
Lithium(Li) particles that destroy cancer cells. This method is known as boron neutron capture therapy
(BNCT), in which boron-10 is taken up by tumor cells and reacts when exposed to low-energy neutrons,
producing high-energy particles that selectively damage cancer cells. Another procedure to combat cancer is
using stem cell therapy. To develop an optimized therapeutic strategy, mathematical modeling is applied to
investigate the heterogeneous population of cancer cells, their interactions with the microenvironment,



BAREKENG: J. Math. & App., vol. 20(2), pp. 1283- 1300, Jun, 2026. 1285

immune system cells, reactions to therapy, and the emergence of resistance, along with the intricate processes
involved in stem cells. This process is depicted in Fig. 2.

1  administered 2 Tumor irradiated 3 Boron captures neutrons and emits alpha
targeted boron drug with safe neutrons and Li particles destroying cancer cell

Cancer cell Normal cell

’Li particle

Neutrons
Thermal neutron

) Boron ('°B)
? {j —>  Nucleus
o particle —"\A _____ .= \

Figure 1. A Low-Energy Neutron Beam that Triggers Fission of the 1°B Isotope in Tumor Cells is
Irradiating and Causing a Release of High-Energy a-Particle and Lithium (Li) Particles that Destroy
Cancer Cells [11]
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Figure 2. Some Treat Cancer Cells
(Source: [11])

However, further research and mathematical modeling are needed to optimize its efficiency and
combine it with other therapies to maximize its therapeutic potential which are shown in this article.
Therefore, the main novelty of this article is that by referring to the existing mathematical models of the
treatment of cancer therapy using chemotherapy with its immunotherapy and stem cell therapy, those models
are updated here by implementing BNCT’s drug, such as boronophenylalanine (BPA) as a boron delivery
agent [12].

2.1 Mathematical Model for Cancer Treatment using Immunotherapy-BNCT

When proposing BNCT to a patient, the immune system in the body must be maintained since the
immune system responds to cancer by mediating cytotoxic T lymphocytes (CTL) cells and natural killer (NK)
cells [13]. Though BNCT is considerably the safest treatment for many various tumors and cancer cells,
immunotherapy is powerful enough to improve the effectiveness of BNCT. Additionally, BNCT is using
drugs such as boronophenylalanine (BPA) as a boron delivery agent [12]. The two treatments are studied
through a mathematical model here. Based on this, in the end, we explore the therapeutic effects of the drug
BNCT, as well as mixed immunotherapy with combination BNCT. The model refers to the combination of
immunotherapy and BNCT, which is distinguished later on by the used parameters [9]. For writing the model,
variables and parameters are introduced here, i.e.,

x : the concentration of BNCT with anticancer activity in the cancer site;
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: the number of cancer cells;

: the blood drug concentration;

. the therapeutic period,

. the infusion dose of BNCT with anticancer activity every time;

: an increment of the blood drug concentration due to delivering the drug at time t = nt and
x(t"), y(t*) and z(t™) denote the right limits of x(t), y(t), and z(t) at time t, respectively.

Additionally, several parameters are also used in the model, namely:

SR ™ O W oy

: the constant rate of BNCT concentration (growth rate);
: Cancer cell growth rate;

: Carrying capacity;

: the natural rate of death of immune cells;

: the fraction of immune cells that die due to BNCT;

: the fraction of cancer cells that die due to immune cells;
: the fraction of cancer cells that die due to BNCT;

: the rate of decay of BNCT drugs in the blood.

Blood drug concentration is the level of therapeutic drugs that are distributed in the patient’s
bloodstream after administration. This amount is important for modeling the effects of drugs on cancer cells
and the immune system because it determines how much drug is available to work at the target site.

The model is made by referring to a predator-prey model [14], [15], and here, a step-by-step modeling process

is shown.
1.

The growth of the concentration of BNCT can be constant, and it should also be reduced.
Therefore, it is suggested to have:

—=a—dx.
dt 1

However, due to its interaction with cancer cells, its concentration is also smaller, which is written
as c;xy. Additionally, its concentration is also reduced due to the blood drug concentration.
Therefore, the complete model for a growth rate of x is proposed as follows:

dx

Fri a—dix—cxy—a;(1—e ®)x, t+nrt. (D

The rate at which the number of cancer cells increases initially may reach its maximum. This
means that it grows as % = ry(1 — by). Similarly, in the case of x, its interaction with x leads to

slower growth. By the presence of the blood drug concentration, it is simultaneously decreasing
exponentially. Finally, the model for the rate of y yields

d

d_}t/ =ry(1 —by)—cxy —a,(1 —e %)y, t#nrt 2)
The blood drug concentration is independent of the other variables. The equation of z(t) blood
concentration is compiled based on the assumption of pharmacokinetics order 1. This means that
the blood is eliminated from the blood flow that is proportional to the concentration at that time.
Mathematically, it means written

d
d—i =—d,z , t#nt. 3)

where d, > 0 is the natural decay (elimination) rate of the drug. The solution is an exponential
decay, which is the standard form for many chemotherapeutic and BNCT-related agents. Since
the treatment is given periodically at times t = nt, we include a jJump condition that models the
discrete infusion: z(t%) = z(t) + p,, t = nt, where p, denotes the increment of the drug
concentration in the blood after each administration and 7 is the therapeutic period. Equivalently,
this can be expressed in compact form using a Dirac delta representation, i.e,:

x(tt) = x(t) + pq, t = nr, 4)
y(t) =y(), t=ng (5)
z(tT) = z(t) + uy, t = nrt. (6)
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To represent the rapid and periodic administration of BNCT therapy, this model uses an impulsive
differential equations approach: the continuous dynamics between administration times are governed by the
ODE system, while at the time of therapy (¢t = nt) discrete changes occur. To ensure reproducibility of the
simulations, we explicitly describe how Eqgs. (1)-(3) are combined and integrated. The combination of
radiation therapy and immune screening inhibitors has also been studied in the context of the optimization of
the administration schedule, which can be a reference to extend the analysis of our simulation results [16].

Eqs. (4)-(6) establish the jJump condition, i.e., the increase in the concentration of BNCT in the tumor
(x) by p4, the increase in the concentration of drugs in the blood z by p, and the number of y cancer cells
that remain continuous because of their biological effects appear gradually. This approach is physiologically
realistic, simpler for numerical analysis, and allows dose parameters (j4,Ht,) to be determined from clinical
data or the literature.

The solutions of the resulting models from Egs. (1)-(6) have been shown analytically, with some
limitations for chemotherapy and immunotherapy simultaneously [17]. This article prefers solving the system
using the Runge Kutta method as one of the powerful numerical tools in the Python language.

2.2 Stem Cells Therapy -BNCT Model

Stem cell therapy is the other well-known therapy for combating cancers with chemotherapy [18], [19].
Stem cells contribute about 220 different cells to the whole body. The BNCT treatment kills the infected
cells, where stem cells are expected to grow the normal cells inside and support the effector cells to improve
the immune system. The mathematical model is necessary to research the effectiveness of stem cell therapy
and BNCT simultaneously. Therefore, new variables and parameters are introduced here to propose the
model. These are: C(t): cancer cells; S(t): stem cells; E(t): effector cells.

Additionally, during the BNCT treatment, the BNCT’s drug, such as boronophenylalanine (BPA) [12]
is employed plays an important role here, and its concentration is denoted as B(t). B(t): concentration of
BNCT drugs (e.g., BPA); K: rate of cell division; p, : symmetric self-renewal probability; p, : probability of
symmetric differentiation (commitment differentiation); d,: the rate of death of the stem cell during division;
n: the decay rate of the concentration of stem cells; o: the rate of production of effector cells; dE: the rate of
death of effector cells; rC: the rate of growth of cancer cells; b: the capacity to support cancer cells; ¢: the
fraction of cancer cells killed by BNCT; A: the interaction rate of effector—cancer cells; &5: the decay rate of
BNCT drugs; A: amplification factor; V(t): external influx of BNCT drug, time-dependent. Finally, the
modeling process is described here as follows:

1. Stem cells are expected to grow exponentially, but are bound by their integration with the BNCT

drug. The model yields to

ds

E = )/15 - kSBS' (7)
where y; is the parameter indicating the decay rate of the concentration of stem cells S, and it may
consist of the probability for symmetric self-renewal of a stem cell to become stem cells (denoted
by as) and the probability for the asymmetric one (denoted by a,) and stem cells S divide at a
rate k and die out at a rate §s. We refer to the literature that y; = k(as — apds) [18]. The
parameter kg is the fractional stem cell killed by the presence of the BNCT’s drug, such as
boronophenylalanine.

2. Furthermore, the rate of affected cells can be constant (denoted by «) should be slower due to its
interaction with stem cells, indicated by parameter u, cancer cells and the presence of BNCT’s
drug. The proposed model is as follows, i.e.,

dE _ p1ES _

where p;: the maximum proliferation rate of effector cells; p,: the decay rate of the effector cells
killed cancer cells and BNCT’s treatment.

. . . dc . . .
3. Cancer cells alone will grow rapidly, or one writes as e rC. However, there is competition in
cancer cells, and hence, the maximum may be achieved, leading to a logistic model, i.e.,
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ac _ (1-bC)C 9
dt =T .

These cancer cells are combated by BNCT’s drug and affected cells, leading to a slower dynamic
of cancer cells. This statement provides the dynamics of cancer cells into

dc
YT r(1—bC)C — (p3E + kcB)C. (10)

The component ps EC shows the interaction of the effector cells with cancer cells.

4. Finally, the dynamic of BNCT’s drug must decrease and converge to the time-dependent external
influx of BNCT’s drug. One yields:

dB
P —y,B + V(t), where B(0) = 0,if V(0) = 0. (11)

Similar to the case of % the rate of change of B is given by y, = kA(2ap + a4) where A is an
amplification factor [18].

2.3 Methods for Solutions

There are several methods to solve a system of ordinary differential equations. This method is created
according to the type of system of differential equations. The system of differential equations for the
mathematical model of Rubella was using the fractal-fractional exponential decay kernel [20] or the moved
Vieta—Lucas polynomial type (SVLPT) [21]. As for the dynamic system of Lassa hemorrhagic fever (LHF),
the fractional calculus method and solving with the Laplace transform were applied [22]. In the glioblastoma
multiforme (GBM) model, the Caputo-Fabrizio fractional derivation procedure is used [23]. Similarly,
numerical methods were also implemented in systems of fractional differential equations (SFDES) with
Chebyshev approximations and Griinwald—Letnikov’s approach [24]. The Reduced Differential Transform
Method (RDTM) was implemented for fractional-order biological systems [25]. The nonlinear Emden-
Fowler systems have been generated with numerical methods in Newtonian astrophysics [26]. Adams-
Bashforth-Moulton (GABMP) to achieve NFFMA’s goals that reflect global economic growth [27]. The
nonlinear Anopheles mosquito was modeled, and the homotopy disruption strategy (HPM) was employed to
examine the logically surmised answer for the nonlinear control issue [28]. While the system of differential
equations that we study here is simulated with a standard numerical method, namely the Runge-Kutta method,
this method is one of the numerical methods with the finite difference method for solving systems of ordinary
differential equations. We use Python code to do the numerical solutions and simulations.

3. RESULTS AND DISCUSSION

In this section, we will show some simulations, using the Runge-Kutta method, which is available in
the Python library via Collaboratory. Therefore, the method is not specifically discussed since the method it
is a standard numerical method; one may refer to the related literature for the details [29]. The simulation
results are obtained from the solutions of Egs. (1)-(3) in the case of a mathematical model for cancer treatment
using Immunotherapy- BNCT in Eqgs. (7)-(11) to the case of stem cell therapy -BNCT Model.

3.1 Result and Discussion of Immunotherapy — BNCT Model

We will write here the parameters to present the simulations, some of which are adopted from the literature
using existing parameters [9].

Table 1. Parameter Description and Values in the Model of Immunotherapy-BNCT Model

Parameter Description Value (Unit/day)
x(0) The initial concentration of BNCT with 0.8
anticancer activity at the cancer site
y(0) The initial concentration of cancer cells 0.5
z(0) The initial blood drug concentration 2
a The constant rate of the BNCT concentration 0.01

dy Nature’s death rate of the immune cells 0.15
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Parameter Description Value (Unit/day)

(o) Immune cell death rate due to interaction with 0.15
cancer cells

a, Fractional immune cells are killed by BNCT 0.2

a, Fractional cancer cells are killed by immune 0.11
cells

r Cancer cells growth rate 2

b Cancer cells’ carrying capacity 0.07

Cy Fractional cancer cells are killed by BNCT 0.07

d, Rate of BCCT drug decay 0.1

Uy The dosage of immunotherapy 3

Uy An increment in the blood drug concentration 1
caused by BNCT

T Therapeutic period 10

The result shows that the number of cancer cells periodically increases for the given blood drug
concentration and the concentration of BNCT cells with anticancer activity. This is not properly correct.
Therefore, the simulation is tried for different values of parameters. Two results of the simulation of the
model Eqs. (1)-(6) are depicted in Fig. 3 and Fig. 4. Fig. 3 shows that y(t) changes with the highest value of
time, where the value increases, and periodicity occurs in the same period as the other variables. The variables
x(t) and z(t) advance down periodically, which eventually converges towards about 0, while y(t) increases
with its periodicity. This situation changes when there is a change in the value of b, where b = 0.07 in Fig.
3and b = 0.5 in Fig. 4.

14 -

— [t}
with
at)

12 4

10 4

0 5 10 15 20 25 30 5 40

Figure 3. The Used Parameters for the Immunotherapy-BNCT model:
a=0.01;p=1.8;d; =0.15; ¢;0.15;a;, =0.2; a, =0.11; r=2; b= 0.07; ¢, = 0.07;
a,=0.11;d, =0.1; 4, =3; u, =1;7 =10;x(0) =0.8;y(0) =0.5;z(0) =2

35 x(T)
¥ith
30 4 — =)
25 -
20 -
15
10
_I._._ -
o - T T
0 5 10 15 20 25 30 35 40

t

Figure 4. Simulation Results from the Immunotherapy-BNCT Module Model with Several
Parameters in Figure 3, except b = 0.5
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The simulation in Fig. 3 shows that the given parameters make the number of cancer cells (y(t))
increase. Fig. 4 shows that the number of cancer cells goes to 0, as expected. Similarly, if we look at Fig. 5
and Fig. 6, the desired phenomenon has been shown. Fig. 5 and Fig. 6 show that the concentration of the drug
in the blood (z(t)), which originally increased periodically and slowed down, decreased even more slowly
than the concentration of many cancer cells, so this is acceptable.

=[t)

25 - Wit

— =it)
20
15
10
5 -
D -

0] 5 10 15 20 25 30 s 40

t

Figure 5. Simulation Results from the Immunotherapy-BNCT Module Model with Several
Parameters in Figure 3, except b = 1

0 5 10 15 20 25 a0 35 40

t

Figure 6. Simulation Results from the Immunotherapy-BNCT Module Model with Several
Parameters in Figure 3, except b = 0.25

In Fig. 5 to Fig. 6, we see that the cancer cells tend to zero while the concentration of BNCT is still
periodically existing. We conclude that the effect of the magnitude of the value of b is very significant in the
success of the model in describing the results of Immunotherapy-BNCT.

3.2 Result and Discussion of Stem Cells Therapy- BNCT model

In this section, we will simulate the stem cell therapy-BNCT model based on the models in Egs. (7)-
(10). At the beginning of the simulation, we use the parameters present in the literature [18]. Here, we list the
adjustment in Table 2. Simulation of 4 variables following models in Egs. (7), (8), (9), and (10) are
represented in Fig. 7.
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a=0.17;u=0.03;f1 =1, a5 =0.17;0, = 0.17; 65=0.1; a4, =0.1; k=1,A=1;
p1=0.1245;r =0.18;b =10e —9;p, = 1; p3 =0.9;y;, = —0.085;y, = 6.4,V = 0.1
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The dynamic of the interaction is observed through the increasing effector cells and tending to a
constant concentration, denoted by E. Effector cells serve as a link between therapy (BNCT) and the body’s
immune response, as well as being a key indicator to assess the success of treatment in our model. We have
added this explanation to the method section so that readers can more easily understand the contribution of
effector cells in system dynamics. It is observed that the cancer cells decay in the presence of BNCT’s drug,
where finally BNCT’s drug is also decaying very quickly compared to others, to a constant positive value.
Various observations are conducted with different parameter values. It is important to note that the effector
cells are not initially defined and have an initial value of E(0) = 0. Though the cancer cells are decaying and
tending to zero as we expected, we observe in Fig. 7 that the effector cells should also reduce.

Table 2. Parameter Description and Values for the Stem Cells-BNCT Model

Parameter Description Value (Unit/day)
So Stem cells initial concentration 1
E, Effector cells initial concentration 0.0
Co The density of free cancer 1
B, BNCT initial concentration 0.5
k The rate when the stem cells S are divided 1
as Probability of symmetric self-renewal with 0.17
probability to become two stem cells.
ap Probability of symmetric commitment 0.17
differentiation with probability
O The rate of die out the stem cells when the stem 0.1
cells are divided at rate k.
Y1 The decay rate of concentration of stem cells k(as — apds)
or -0.085[16]
a The rate of produced the effector cells 0.17
u The natural death of cancer cells 0.03
b Carrying capacity of cancer celss 10e-9
D1 Maximum proliferation rate of effector 0.1245
fi Additive stem cells factor due to interaction with 1
effector cells
T Cancer growth rate 0.18
D2 Decay rate of the effector cells killed cancer cells 1
and BNCT concentration
D3 Decay rate of interaction of effector cells and 1
cancer cells
ke Fractional cancer cells killed by BNCT 0.9
A Amplification factor A to describe the interaction 1-10
between the effector cells, cancer cells, and the
stem cells
Yo Decay rate of BNCT drug kAQap + ay)
or 6.4 [16]
V(1) The time dependent external influx of BNCT drug 0.1
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Value y, = kAQ2ap + a4) = 6.4 Units/day obtained based on literature [19]. Each stem cell divides
at the rate k. With a probability of ap, a symmetrical division occurs that produces two stem cells, while with
a certain probability, there is an asymmetric division that produces a single stem cell. Thus, the expected
number of stem cells resulting from each division can be calculated. This result is then multiplied by the rate

of division k and the multiplier factor A which represents the influence of BNCT, so that the net growth rate
is obtained.
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Figure 8. The Parameter Value is the Same as in Figure 7, with a Different Starting Value of B(0) =1

We get an increasing concentration of BNCT over time, as depicted in Fig. 8, then a constant that
simultaneously decreases cancer cells and goes towards 0. This gives the expected result in the BNCT
treatment that the reaction of BNCT use causes cancer cells to go extinct even faster, where the declining
effector cells do not go extinct to zero but are constant positive. In this condition, we see that there is a stable
situation for each of the dynamic variables involved in a system of differential equations, where stem cells S
and BNCT (symbolized B) are at the same concentration. The initial value is very influential on the results
given. Using the same parameter where effector cells concentrate O while the others are the same, we can
better see the rate of change for the 4 variables shown in Fig. 9. The influence of BNCT can also be shown
in this parameter, i.e., y, = kAQ2ap + a,). Therefore, parameter A is varied, as the amplification factor. By
making the value A = 10, we can show in Fig. 10 that BNCT drops are increasing most rapidly, so that it is
constant, and cancer cells also decrease to zero as expected. While the concentration of effector cells increases
and stem cells decrease, which is also towards zero, like cancer cells.
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Figure 9. The Used Parameters for Stem Cells Therapy- BNCT model:
a=0.17pu=0.03;f1 =1, a5 =0.17;ap =0.17; 6s=0.1; 0, =0.1; k=1,A = 1;
P1=0.1245;r =0.18;b = 10e — 9;p, = 1,y = k(ag — apds); v, = kAQap + ay);

V=0.1;50)=1,E(0)=0;C(0)=1;B(0) = 0.5
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Figure 10. Simulation of the Stem Cells Therapy—-BNCT Model with the Same Parameters as Figure 9, but
Antigen Capacity A=10. The Initial Conditions Remain the Same

From Fig. 7 to Fig. 10, we have seen how BNCT affects therapy with stem cells. In general, the
concentration of BNCT given decreases rapidly, which also affects the decline in concentration of cancer
cells to extinction, which is followed by a decrease in stem cells. While effector cells increase to a constant
level, this is seen significantly when the influence of BNCT is large enough. It should be noted that during
computation, we have not done dimensional analysis, where all computations are done using parameters from
the literature with some adjustments because of different approaches, namely the BNCT treatment in
immunotherapy and in stem cell therapy. With the results obtained, it was concluded that BNCT treatment in
both therapies has succeeded in supporting the killing of cancer cells. Of course, we can develop further

approaches where these two therapies can complement each other so that the mathematical model obtained
can be further developed.

3.3 Derivation of Equilibrium Solutions

In studying ordinary differential equation models, it is important to think about the stability of
equilibrium solutions. These equilibrium solutions occur when the system equals zero. Moving forward, let’s
label x*, y*, and z* as equilibrium solutions for the immunotherapy-BNCT model and S*, E*, C*, and B* as

equilibrium solutions for the stem cells-BNCT model. Therefore, we are searching for solutions that will
either remain balanced or stay constant over time.

3.2.1 Equilibrium for Immunotherapy- BNCT Model

Finding the right balance between the immune system’s response and the therapeutic effects of BNCT
is crucial for maximizing the treatment’s effectiveness and reducing potential side effects or
immunosuppression. In this context, the concept of equilibrium comes into play. A zero value must be
assigned to each right segment to achieve the necessary equilibrium solutions, i.e.,

dx

i a—dix—cxy—a;(1—e?)x =0, (12)

dy _
2¢ = YA = by)=cpxy —ax(1—e™)y =0, (13)

dz
yri —d,z =0. (14)
We gain z* = 0 as the equilibrium of z from Eq. (14). By inserting z* = 0 into Eqgs. (12)-(13) we get

a—dix—cxy=0ora—x(dy —cy) =0, (15)
ry(1 — by)—cyxy = 0. (16)

Eq. (16) can be rewritten as:

y(r(1 = by)—c,x) = 0.
It leads to y* = 0 or (1 — by)—c,x = 0,with y # 0. Substituting y* = 0 and z* = 0 in Eq. (12), we get
a—dyx =0. As aresult, a = dyx, or x* = di. Thus, the first equilibrium is (di,0,0).The equilibrium
1

1
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practically is meaningless since two variables are zero solutions. Therefore, we need to find a non-zero
equilibrium solution. In Eq. (14), it is clear that the solution of the equilibrium z is always z* = 0. One yields
r(1 — by) = c,x from Eq. (16).

Eq. (15) becomes
a

_— a7
dy —c1y

a=x(d; —cy) orx =

a

1
1—C1Y

Inserting x = 2 one yields

ay
=0,
2 (d1—c1y)

ry(1 — by)—c
or
ry(dy —ay)A —by)  aye;  _
(d1 — c1y) (d1 — c1y)
One yields (d; — ¢;y)(1 — by) =<2 = 0.

r

(18)

This equation is simply quadratic equation in y. We rewrite as

acy
—=0.
r

bc,y? — (dib + )y +dy —

Therefore using quadratic formula we gain

(dyb + ¢;) + \/(dlb + €1)2 = 4bey (dy — 52

* = . 1
y 2be; (19)

Thus, the second equilibrium solution is: z* = 0; x* = d ‘z " ;Y E % and y* is given by Eq. (19).

1~ 61 1
Additionally, there are six free parameters whose values can be selected in the simulation process, in choosing
the value of parameters in y*. Later on the equilibrium solutions must be checked for the related stabilities.
The stabilities are observed by constructing the Jacobian matrix from a system of Egs. (1)-(3), i.e.,

0f Ofi Of

dx dy 0z

|t o o
ey =15c 3y oz
L dx Jdy 0z

Write Egs. (12)-(14) as

d T
d_)t( =F= (fl(x'y'Z)'fZ(X,y'Z);f3(x;y.Z)) )
with
dx
E = fl(x)ylz) =a-— dlx — Xy — al(l - e_Z)x,
dy
E = fZ(x)ylZ) = 7')’(1 - b}/)—szy— az(l - e_Z)y,

dz
E = f3(x:y;Z) = _dZZ'

The Jacobian matrix can be derived, i.e.,
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oh of o
dx 0y 0z
af, 0 0
\2 % o
dx Jdy 0z
where
i} 0 0
6—];1 =dy—cy—a;(1— e‘Z);a—j;1 = —0yX; 6_];1 = —a;xe %
af: f; _ Of _
O_xZ = _Czyia—yz =7(1—=2by)—cx—az(1—e Z);a—zz = —azye™’;
0fs 0fs 0fs
ax -V 0, T
By inserting z* = 0, one yields
0 0 d
i=d1—cly; i—clx; Oh _ —ay X;
ox dy 0z
f2 _ f, 0f2 _
Frie —czy,@ =r(l- Zby)—czx,a—z = —a,y;
0fs 0fs 0fs
ox _O'ay =05, = %
Write into the matrix, i.e.:
di —cy —C1X - X
VE,—o=| —c;y 7r(1—-2by)—cyx —ayy |
0 0 —d,
The first equilibrium solution (di 0,0) leads to
1
p ac; a
1 d; ay d;
VF = a 21
(z700) 0 r—c; T 0 21
0 0 —d,

Finally, by substituting all parameters in VF, we get a constant matrix to obtain its eigenvalues.
Similarly, the second equilibrium solution can be substituted in Eq. (21) to achieve the stability of the second
equilibrium solution. In the first case, for instance, we have the parameters in Fig. 3, i.e,a = 0.01;d, =
0.15;d, = 0.1; ¢; = 0.15; ¢y = 0.2; a, = 0.11; r = 2;b = 0.07;c, = 0.07;a, = 0.11. By inserting
these values in FF we obtain negative, positive, and zero eigenvalues, i.e., A1; = —1.1168,
A, =16.1168,1, = 0.0. These values indicate unstable solution equilibriums [28]. We also observed that
the VF is independent of the b-value, which was concluded in Fig. 3 - Fig. 5, that the b-value determines the
profile of the solution. However, the stability of the first equilibrium solution is independent of b. One needs
to do more studies in this case. In the context of an immunotherapy-BNCT (Boron Neutron Capture Therapy)
model, an “equilibrium solution” refers to a stable state or condition that the system reaches over time. This
concept is used in mathematical modeling to analyze the long-term behavior of the biological system under
the influence of both immunotherapy and BNCT. A condition in which the immune system and cancer cells
achieve a dynamic balance could be represented by the equilibrium solution. This balance may involve the
ongoing interplay between the immune system’s capacity to identify and eradicate cancer cells and the cells’
possible development of resistance or evasion strategies. The equilibrium solution may point to the ideal
situation in which BNCT and immunotherapy work together to effectively and sustainably suppress cancer
cells. This equilibrium might represent a situation in which the immune system, strengthened by
immunotherapy, combines with the targeted actions of BNCT to eradicate or manage malignant cells. The
equilibrium in the model represents a dynamic equilibrium in which adaptive changes in the cancer cell
population, the effects of BNCT, and the immune system’s reactions interact continuously. The regulatory
procedures and feedback mechanisms that stabilize the system may be part of this dynamic equilibrium. The
equilibrium solution points to circumstances when the combination therapy strategy keeps cancer cells from
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growing out of control for a long time, keeping them in a stable state that is better for the host. It is essential
to comprehend the equilibrium solutions in an immunotherapy-BNCT model to forecast the treatment
strategy’s long-term efficacy. It helps scientists and medical professionals identify possible resistance
mechanisms, optimize treatment settings, and create plans that improve the synergy between BNCT and
immunotherapy for improved long-term outcomes in cancer patients.

3.2.2 Equilibrium Solution for Stem Cells-BNCT Model

An equilibrium solution could stand in for a situation in which the interactions between cancer cells,
stem cells, and the therapeutic intervention (BNCT) have stabilized in the setting of a Stem Cells-BNCT
model. This stability indicates a balance between the production and removal of cells in the system,
accounting for things like stem cell proliferation, therapeutic response, and the dynamics of malignant cell
populations. We know that the equilibrium solution will be obtained if the following equations are satisfied
simultaneously, i.e.,

¥1S — kgBS = 0; where we choosey; =1, (22)
nES
a—uE + —p2(C+B)E =0, (23)
S+ /1) P2
r(1 = bC)C — (p3E + kcB)C =0, (24)
—y,B+V(t) =0. (25)

From Eq. (22), we get S(1 — ksB) = 0, since S will not be zero, we take (1 — kgB) = 0. We get

B* = 1/ks. However, Eq. (25) gives us B* = @ Substituting itinto Eq. (22), one yields S(1 — kg V(t)) =0
leadingto 1 — kS 'O _gor1= kS V) Hence V(t) = =.If B* = 1/kg, then substituting it into Eq. (25),
—v21/ks +V(t) = 0 and we get V(t) =y, /ks. Substltute this result into Eq. (23), where f; = 1, we have
i ES
—uUE - 1/ks)E =
a—p +(S+1) p2(C + 1/ks) 0,
or
srotr(c)
- - Cc E =0. 26

Let us see Eq. (25) by inserting B* = ki we get <r(1 —bC) — (p3E + k¢ %)) C = 0. Itis obvious that C
S S
is practically meaningful, if C* # 0. As a result, we solve
1 1 *
r(1=bC) = (psE +kck—s) =0 orr—(psE + kck—s) = rbC*.

Thus,

=1 1( E* +k 1) 27
b b P3 Cks

where E* has not been determined. Note that the C* is a linear function of E*. Since % > 0, then the linear
function has a negative gradient, which indicates monotone nonincreasing. Inserting Eq. (27) into Eq. (26),

one yields
P, (1 1( E*+k 1) 1) E* =0,
CT\HF T s ) P2\ T pr\Pe Cks) T kg =

or

S, (1 1( E*+k 1)+1) E* = 28
Ko+ P27 h Cks) " ks - (28)
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Eq. (28) still contains unknowns E*and S* which leads to the solution of equilibria, and these cannot
be obtained explicitly. The process above suggests that one needs numerical methods, such as solving the
nonlinear system of Eqs. (22)-(25) to get the roots as the equilibrium solutions [30], [31]. Swarm optimization
can be a useful method to get optimal solutions [32]. Later on, these solutions are inserted into the Jacobian
matrix as the first derivatives of the right-hand side of the model in Eq. (7)-(11) to obtain the equilibrium
solutions.

The model implies that cancer cells and stem cells can coexist steadily in the presence of BNCT under
specific circumstances. This equilibrium represents a situation in which the therapy effectively suppresses
cancer cells without going below a certain point in the population of stem cells. The equilibrium solution
reflects the ideal condition in which a therapeutic intervention, BNCT, successfully and sustainably
suppresses malignant cells while permitting the preservation or proliferation of healthy cells, including stem
cells. The equilibrium solution suggests a dynamic balance between the factors in the system that encourage
and obstruct cell division and expansion.

4. CONCLUSION

The research presented here addresses the mathematical models for describing approaches
incorporating Boron Neutron Capture Therapy (BNCT). The initial models were referred to from the
literature, where the dynamics of using immunotherapy and stem cell therapy for combating cancers were
modeled by two different models of system differential equations. The authors developed the
immunotherapy-BNCT model as a dynamic model of the concentration of BNCT with anticancer activity in
the cancer site, the number of cancer cells, and the blood drug concentration as nonlinear ordinary differential
equations. The second system of differential equations model was the stem cells BNCT model, evaluating
the drug’s impact on the dynamics of cancer cells, stem cells, and effector cells. We compute the equilibrium
solutions manually for each model by using parameters taken from the literature, which are adjusted for the
need to update models due to the use of BNCT in the two models. When discussing that the number of cancer
cells can be suppressed to zero through BNCT therapy, we refer directly to Fig. 7 and Fig. 8. When explaining
that stem cells and effector cells tend to reach a stable state, we add references to Fig. 9 and Fig. 10. We
observed that the stability of equilibrium solutions is unstable which are analyzed from the different signs of
the eigenvalues into Jacobian matrices derived from inserting the equilibrium solutions to the Jacobian
matrices. Additionally, the components of equilibrium solutions are zero, which is meaningless practically.
With these results, this research needs to be improved so that equilibrium solutions can be obtained that are
meaningful.
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