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ABSTRACT

The study revisits the well-known Bouali chaotic financial model, which is characterized by
nonlinear dynamics. As a benchmark, the nonlinear feedback control method is implemented
and compared with an Adaptive Neuro-Fuzzy Inference System (ANFIS) controller. The
ANFIS model is trained using 250 data samples derived from the nonlinear feedback
controller and divided into training, validation, and testing subsets. The proposed ANFIS
controller demonstrates superior stabilization performance by effectively eliminating
chaotic behavior, ensuring stability, and achieving faster convergence than the traditional
nonlinear feedback method. Quantitative results confirm this improvement: the ANFIS
controller achieved very low Root Mean Square Error (RMSE) values, such as 8.78x107
for training and 1.37x10~4for validation in the profit control input, highlighting its learning
accuracy. Additionally, the ANFIS maintained stability even with a reduced number of
controllers, demonstrating robustness and adaptability. These findings emphasize the
potential of ANFIS controllers to provide efficient and reliable chaos control in complex
financial systems.
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1. INTRODUCTION

The financial system is inherently complex, characterized by a multitude of interacting variables that
can lead to unpredictable and chaotic behavior [1], [2]. In recent decades, the study of chaos in financial
systems has garnered significant attention due to its implications for market stability, risk management, and
economic forecasting [3]. Chaotic behavior in financial models can manifest as erratic fluctuations in stock
prices, interest rates, and other economic indicators, making it challenging to predict future trends [4]. The
application of chaos theory using ANFIS in financial systems is crucial due to the inherently nonlinear,
complex, and dynamic nature of financial markets [5]. Chaos theory helps identify hidden patterns and
sensitivities in financial data, while ANFIS effectively models these complexities by combining the learning
ability of neural networks with the interpretability of fuzzy logic [6]. This synergy allows for more accurate
prediction, robust risk assessment, and a deeper understanding of volatile behaviors such as price fluctuations,
bubbles, and crashes [7]. By leveraging chaos-based ANFIS models, financial analysts can enhance
forecasting performance and decision-making in an environment where traditional linear models often fail

[8].

Various control methods have been developed to mitigate chaos in dynamic systems, particularly in
financial contexts [9]-[12]. Xu et al. [13] proposed a time-delayed feedback controller for the new fractional-
order financial model. Hotyst and Urbanowicz [14] investigated Pyragas time-delayed feedback control for
the economic models. Hegazi et al. [15] investigate the stability conditions in a fractional-order financial
system using the fractional Routh-Hurwitz criteria via the linear feedback control method. Xin and Zhang
[16] investigated chaotic financial market confidence and designed a controller using Finite-time stabilizing.

Traditional approaches such as linear feedback control have been widely used due to their simplicity
and ease of implementation [17]-[20]. However, these methods often fall short in handling highly nonlinear
and complex systems where chaos is prevalent. Nonlinear feedback control has emerged as a more effective
alternative, offering improved performance in stabilizing chaotic behavior [21]-[23]. Despite these advances,
the search for more adaptive and efficient control mechanisms continues, as the complexity of financial
systems evolves and the need for robust control strategies becomes increasingly apparent.

One promising approach to controlling chaos in financial systems is the use of ANFIS [24]. The ANFIS
combines the learning capabilities of neural networks with the reasoning power of fuzzy logic, making it
well-suited for managing nonlinear systems with uncertainty and complexity [25], [26]. By leveraging the
strengths of both neural networks and fuzzy logic, ANFIS can adapt to changes in system dynamics and
provide more precise control over chaotic behavior [27]. The use of ANFIS in finance significantly enhances
the modeling and prediction capabilities for complex financial phenomena [28]. ANFIS can capture nonlinear
relationships and uncertainties in financial data, making it highly effective for tasks such as stock market
prediction, credit scoring, portfolio optimization, and risk management [29]. This paper explores the
application of ANFIS in stabilizing chaotic financial systems, comparing its performance with traditional
nonlinear feedback control methods through numerical simulations and analysis.

The contribution of this paper lies in the development and implementation of an ANFIS controller
specifically tailored to stabilize chaotic behavior in financial systems. This study provides a comprehensive
comparison between the proposed ANFIS controller and traditional nonlinear feedback control methods,
demonstrating the superior performance of ANFIS in terms of faster convergence, reduced control
complexity, and enhanced stability under varying initial conditions. Additionally, the paper introduces a novel
approach to reducing the number of control inputs required for stabilization, thereby offering a more cost-
effective and adaptable solution for managing chaos in complex, nonlinear financial systems. This research
advances the field by showcasing the potential of ANFIS as a robust alternative to conventional control
strategies, with significant implications for financial system stability and economic forecasting.

This paper is organized as follows: Section 1 introduces the concept of chaos in financial systems,
discussing its implications and the challenges it presents for market stability and forecasting. It also proposed
the use of ANFIS as a potential solution. Section 2 presents the methodology of numerical simulation and the
ANFIS controller. Section 3 presents the mathematical modeling of chaotic financial systems, focusing on
the Bouali model as the foundational system for this study. In addition, we have designed the ANFIS
controller, including the architecture, training process, and the specific techniques used to stabilize the chaotic
system. Finally, Section 4 concludes the paper by summarizing the key findings, outlining the contributions
of the research.
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2. RESEARCH METHODS

2.1 Mathematical Models of Financial Firms

Financial firms play a crucial role in the economic development of countries by facilitating the efficient
allocation of resources, enabling capital formation, and supporting business growth. In developed economies
such as the United States, Germany, and Japan, financial firms provide a wide range of services, including
investment banking, insurance, asset management, and lending. These services fuel innovation,
entrepreneurship, and international trade by providing access to credit and investment opportunities. The
stability and sophistication of financial firms in these countries also contribute to investor confidence and
robust financial markets, which are essential for sustained economic growth.

In emerging economies like Indonesia, India, and Brazil, financial firms are vital for accelerating
development and reducing poverty. As these countries experience rapid urbanization and industrialization,
financial institutions help mobilize domestic savings, promote small and medium-sized enterprises (SMESs),
and support infrastructure projects through structured finance. However, challenges such as limited financial
literacy, regulatory weaknesses, and market volatility often hinder their effectiveness.

Bouali’s financial firm model is a nonlinear dynamical system designed to represent the complex
behavior of financial markets using a set of differential equations. It incorporates key economic variables
such as interest rate, investment demand, and price index to simulate the dynamic interactions within a
financial firm. Through phase portraits and bifurcation analysis, Bouali’s model demonstrates how small
changes in economic inputs can lead to significant variations in system behavior, highlighting the importance
of nonlinear dynamics in understanding financial instability and guiding policy or investment decisions.

In 2002, Bouali [30] described a chaotic financial firm model, which is described first in our paper.
Bouali [30] noted that the capital of a financial firm is at the origin of the profit creation, and is composed of
reinvestments R and financed by debts F. If we denote the profit of the financial firm by P, then the rate of
change of the profit can be described by the following differential Eq. (1):

b _ R+F 1
= cR+P), &

where c is the coefficient that represents the rate of profit.

Bouali [30] also observed that the reinvestments of the financial firm are made of a fraction of profits
according to the proportion m and of the capitalization of these investments, which are reevaluated annually
at the rate n. Thus, Bouali [30] also derived the second differential Eg. (2) as

dR
— =mP + n(1 — P?)R. (2)
dt

According to Hunt’s hypothesis [30], the financial firm chooses an increase in its capital by means of
borrowing according to the debt rate b proportional to self-financing. The net capital inflow is obtained by
deducting the refunding of the borrowings according to the interest rate a to the profit amount. Thus, Bouali
[30] obtained the third differential Eg. (3) as

dF— P + bR 3
ac = ¢ ' 3

Combining the differential Egs. (1), (2), and (3), the Bouali’s financial firm model can be expressed in a
system form as follows:

P=c(R+F),
R =mP +n(1 — P?)R, (4)
F = —aP + bR.

In the model, Eq. (4), a, b, c, m, n are positive constants. We use the notation X = (P, R, F) to represent
the 3-D state of the Bouali’s financial firm model in Eq. (4).

In [30], Bouali showed that the financial firm model Eq. (4) is chaotic for the choice of parameter values
a=0.1,b=0.6,c=0.25m=0.04,n=0.02. (5)
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For the parameter values as in Eq. (5) and the initial state X (0) = (0.02,0.02,0.02), the Lyapunov exponents
for the Bouali financial system, Eq. (4), are calculated for T = 1E5 seconds as follows:

L, = 0.01956,L, = 0,L; = —0.30571. (6)

2.2 Theoretical Background ANFIS

This study proposes an ANFIS controller to stabilize the chaotic Bouali financial model, a nonlinear
dynamic system characterized by sensitive dependence on initial conditions. The mathematical formulation
of the Bouali model serves as the foundation for designing both the nonlinear feedback controller and the
ANFIS-based intelligent controller. To ensure effective stabilization, the ANFIS controller is developed as a
data-driven system trained using inputs and outputs from the nonlinear feedback control.

The nonlinear feedback control law is first derived using the Lyapunov stability theorem [31], [32].
The control inputs u, (t), u, (t) and us(t) are designed to regulate the system states by minimizing the error

e(t) = x4(t) — x(t), where x4 (t) is the desired state vector. A Lyapunov function V = %eTe is proposed

to assess stability, and its derivative V = —keT e guarantees global asymptotic convergence for positive gain
values k > 0. The feedback control signals generated from this formulation serve as training targets for the
ANFIS model, enabling it to learn how to produce similar control behavior autonomously.

The ANFIS architecture integrates the learning capability of neural networks with the human-like
reasoning style of fuzzy logic. In this implementation, the controller utilizes three input variables
corresponding to the error in P, R, and F, and three output control signals. Each input and output is mapped
using four generalized bell-shaped (gbell) membership functions. Based on the defined membership
functions, the ANFIS structure automatically generates a set of Takagi—Sugeno fuzzy rules. Since each of the
three input variables (profit error ep , reinvestment error e , and debt error ep ) is represented by four
generalized bell-shaped membership functions, the total number of fuzzy rules is 4 = 64. Each rule
represents a local linear model of the system dynamics. For instance, one rule can be expressed as: If ep is
Low and ey is Medium and e is High, then u = a,ep + a,ep + azer + b. These rules collectively capture
the nonlinear interactions in the chaotic financial system.

The dataset used for training consists of 250 samples obtained from the nonlinear feedback controller’s
behavior. These data are first divided into training, checking (validation), and testing subsets. The training
dataset serves as the input to the ANFIS model, while the checking and testing subsets are used to evaluate
its performance. After the training and validation processes, the trained ANFIS replaces the nonlinear
feedback controller in the closed-loop system. The structure of this process is depicted in Fig. 1. Although
the dataset consists of only 250 samples (83 for training, 83 for validation, and 84 for testing), this window
was selected because it represents the stabilization phase of the nonlinear feedback controller. Despite the
limited dataset, the ANFIS model achieved very low RMSE values during both training and validation (Table
2), confirming its ability to learn the essential dynamics of the system. Future work will extend the simulation
length to increase the dataset size and further validate the robustness of the proposed ANFIS controller.

To visualize the control scheme, a block diagram is constructed to depict the training and deployment
architecture of the ANFIS controller. Initially, the chaotic system generates outputs that are compared with
desired values to compute the error signal. This error is processed by a nonlinear feedback controller, and the
resulting control signals are used to train the ANFIS. Once trained, the ANFIS controller replaces the
nonlinear controller in the closed-loop system. This hybrid training structure allows ANFIS to emulate the
behavior of the nonlinear feedback controller while benefiting from improved adaptability and reduced
computational complexity. Simulation results validate the ANFIS controller’s superior performance in
eliminating chaotic dynamics and achieving system stabilization rapidly. The Theoretical framework of this
study can be seen in Fig. 1.

[Nunli.nsar Feedback Controller
Error Signal {enerateniate) Dataset (250 samples) j
g

,__————"_____f__’ eI ch Split: Training / Validation / Testin
;o i . System Response Stabilized Chaotic i G
Chaotic Financial System Training & Validation Process
—
\ Control Signal Trained ANFIS Controller

Closed-Loop Control with ANFIS

Figure 1. Framework of ANFIS Training and Validation for Chaotic Financial System Control
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Additionally, to demonstrate the system’s efficiency, a controller reduction experiment is conducted
by removing one of the control inputs, specifically us(t), from the ANFIS controller. Despite this reduction,
the system maintains its ability to stabilize all three state variables, showcasing the intelligent adaptability of
the ANFIS architecture. Compared to traditional feedback control, the reduced ANFIS setup achieves faster
convergence and better error suppression with fewer control resources. These results highlight the potential
of ANFIS to serve as a robust and cost-effective solution for managing chaos in nonlinear financial systems.

3. RESULTS AND DISCUSSION

3.1 ANFIS Controller

Unlike linear controllers that assume linearity or rely on linear approximations, nonlinear feedback
control is specifically designed to manage nonlinearities in the system dynamics. Our goal in this section is
to design an adaptive neural fuzzy system. We will use a dataset to train this adaptive neural fuzzy controller.
This data will be obtained from a non-linear feedback controller. Therefore, a general method of designing
nonlinear feedback control is presented first.

a. Nonlinear Feedback Controller

A nonlinear feedback controller is a control strategy used to regulate the behavior of nonlinear dynamic
systems by continuously adjusting the input based on the difference between the desired and actual output
[33], [34]. Unlike linear controllers, which assume system behavior can be approximated linearly, nonlinear
feedback controllers account for the system’s inherent nonlinearities, making them more effective for
complex, real-world systems such as robotics, power systems, and financial models. By incorporating
nonlinear functions into the feedback loop, these controllers can stabilize chaotic systems, reject disturbances,
and improve performance across a wider range of operating conditions. Their design often involves
techniques like Lyapunov stability theory or backstepping, ensuring that the controlled system remains stable
even in the presence of nonlinear dynamics and uncertainties. The nonlinear feedback controller applied to
the finance system is expressed as follows:

P =c(R+F)+ uypr(p)
R =mP + n(l — PZ)R + UNLF(R), (7)
F = —aP + bR + uNLF(F);

Where uyprp), UnLrr) UnLrcr) TEPresent the controllers of each line of Eq. (7). See the block diagram in
Fig. 2. The figure illustrates a control loop architecture designed to stabilize a chaotic system using a nonlinear
feedback control approach. At the core of this setup is a comparison block (represented by the summation
circle), which computes the error between the desired point (target behavior or reference signal) and the actual
output of the chaotic system. This error is processed by a nonlinear feedback controller, which generates a
control signal tailored to the system’s nonlinear characteristics. The controlled input is then applied to the
chaotic system, aiming to steer it toward the desired behavior. A nonlinear feedback block monitors the
system’s output and continuously feeds it back into the loop, enabling real-time adjustment and stabilization.

Desire Point Nonlinear
Chaotic

FeedBack s

i Control System

Nonlinear

| Feedback I

Figure 2. Chaotic System Control Block Diagram
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The first step is the calculation of the error, defined as follows:

ep = P - p

eép = R — R

eF - F - ﬁ'
Where P, R, F are desire points. The derivative of Eq. (8) becomes:

éR = R - R\

éF = F - ﬁ

By substituting Eq. (7) in Eq. (9)
ép = C(R + F) + uNLF(p) - p
éR = mP + n(l - PZ)R + uNLF(R) - ﬁ

5

éF = —aP + bR + uNLF(F) —F

Theorem 1. For Eq. (10) by nonlinear feedback controls wy; r ), Unir (ry, Unir (7) SUCh that:

unirp)y = —¢(R+F) + P+ Brep
Unrrr) = —MP —n(1—P*)R + R+ Brer
UnLr(F) = aP — bR + 13 + Brer

Then, Eq. (10) can be controlled by nonlinear feedback control.

Proof 1: Consider the candidate Lyapunov function as follows:
3

1 2
V(e) =§Z ef >0

i=1
By derivation from the above equation, and with substituting Eq. (10)

. =

V=e (C(R +F) + unprp) — P) + e;(mP +n(1 — PR + uyrp) — R)
+e3 (—aP + bR + Uy pr) — ﬁ')
Finally, by placing the nonlinear feedback controller:
V=e (Bpep - ﬁ) + e, (BReR - ﬁ) + eg (ﬁFeF - ﬁ') <0
= Bpep + Preg + Bref < 0.

(8)

9)

(10)

(11)

(12)

(13)

(14)
(15)

Therefore V < 0 if Bp = Br = Br < 0. Considering that our goal is to eliminate chaotic behavior in
the system, therefore the values of P=R =F =0 and P = R = F = 0. That the values of Bp, Bz, Br

represents the gains of the system.

b. Simulation Results for Nonlinear Feedback Control

Nonlinear feedback controllers can stabilize systems that exhibit chaotic or unstable behavior by
shaping the control law to suit the system’s nonlinear response, leading to faster convergence and more
precise tracking of desired outputs. In the numerical simulation, the 4th order Runge-Kutta method has been
used to solve the chaotic differential Eq. (7) under the nonlinear feedback controller. The initial conditions

are Py = 0.02,Ry = 0.02, F; = 0.02 and the controller gain values are S = fr = Br = —2.
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Fig. 3 illustrates the response of the chaotic system described by Eq. (7) when regulated by the
nonlinear feedback controller defined in Eq. (11), along with its corresponding phase space. The controller is
activated at Time = 10. It is evident from the figure that the system achieves stability and suppresses chaotic
behavior within a suitable timeframe. Additionally, Fig. 4 presents the output dynamics of the nonlinear
feedback control signals.

The duration of stability—defined as the period during which the system maintains zero error—is
significantly influenced by the gain of the nonlinear controller in this design method. A higher gain typically
enhances the controller’s responsiveness, enabling faster convergence to the desired point, while a lower gain
may lead to slower or less stable behavior. The tuning of this gain is therefore critical, as it directly affects
how quickly and effectively the controller can suppress chaotic oscillations and drive the system toward
stability.

As illustrated in the figure, the designed nonlinear feedback control successfully stabilizes all three
system variables, with the zero-error condition being achieved around Time = 2.5. This indicates that the
chosen gain value is sufficient to counteract the chaotic dynamics within that timeframe. Maintaining such
stability is essential in applications like financial systems, where even small deviations can lead to significant
long-term consequences. The result underscores the effectiveness of nonlinear feedback control in achieving
rapid and robust stabilization.

3.2 Adaptive Neural Fuzzy Controller Architecture

Fig. 5 illustrates a control system integrating nonlinear feedback and ANFIS to manage a Lintang
Chaotic System. The control begins with a Desire Point, which represents the system’s target state. The
difference between this desired state and the current output is fed into a Nonlinear Feedback Control module.
This module adjusts its output to drive the chaotic system towards the desired state. The Chaotic System
represents a nonlinear dynamic system known for unpredictable and complex behavior, making it a suitable
testbed for advanced control strategies.

To optimize control, the system uses ANFIS, which blends fuzzy logic with neural networks to
adaptively learn control rules. The ANFIS module includes Training and Check stages. Training adjusts
parameters based on the nonlinear feedback to minimize error, and the Check phase validates this training
before outputting to ANFIS Control, which fine-tunes the final control signal. This feedback structure,
combining traditional nonlinear control with adaptive intelligence, aims to stabilize and accurately control
the chaotic Lintang system despite its complex dynamics.

Desire Point Nonlinear Finance
Chaotic
FeedBack S
Control System
Nonlinear
| Feedback l

ANFIS
Traning

f

Set Parameters

. o

ANFIS
Control

Figure 5. Training Architecture Block Diagram

As seen in Fig. 5, nonlinear feedback and controller data have been used to train the ANFIS controller.
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Table 1. ANFIS Controller Architecture

ANFIS Parameters Number
Total number of training data 250
Number of training data 83
Number of check data 83
Number of test data 84

Number of Membership Function (Input/Output) 4
Type of Membership Function (Input/Output) gbell

Epoch (5) 70

Training error 0

Table 1 outlines the architecture and configuration of the ANFIS controller used in the control system.
It specifies that a total of 250 data points were used, divided equally into 83 for training and 83 for checking
(validation), with 84 data points reserved for testing the model’s performance. The system uses 4 generalized
bell-shaped (gbell) membership functions for both input and output variables, which help map fuzzy inputs
to precise outputs. The training process was conducted over 70 epochs, indicating the number of iterations
used to optimize the model. Notably, the training error reached 0, suggesting that the ANFIS model
successfully learned the training data without error.

As mentioned before, the duration of stability in the nonlinear feedback control method is about Time
= 2.5. Therefore, ANFIS training data is selected from Time = 65 to Time = 67.5. This time is for non-linear
feedback data and the controller.

Table 2. RMSE Training and Check Results for ANFIS Controller

U RMSE Value

UANFIS(P) Vil checking RMISE 0000137263
UANFIS(R) Vinimalchecking RMISE 1790726 0%
UANFIS(F) Vinimal checing RMISE 1 3628600

Table 2 presents the RMSE results for both training and checking phases of the ANFIS controller,
evaluated under three different control strategies or configurations labeled UANFIS(P), UANFIS(R), and
UANFIS(F). RMSE is a measure of prediction accuracy, where lower values indicate better performance.
Among the three, UANFIS(R) achieved the lowest training RMSE (3.31183e-06) and also the lowest
checking RMSE (1.79072e-05), indicating superior learning and generalization capabilities. UANFIS(F)
followed closely with low RMSE values in both phases, while UANFIS(P) had slightly higher RMSEs
compared to the other two. These results suggest that UANFIS(R) offers the most accurate and consistent
performance for controlling the system among the tested configurations.

a. Simulation Results ANFIS Controller

Now that an acceptable architecture for the adaptive neural fuzzy controller is obtained, the simulation
results should be examined. The adaptive neural fuzzy controller is replaced by the nonlinear feedback
controller Eq. (16).

P = C(R + F) + uANpls(p),
R =mP +n(1l = P*)R + Uanrisry (16)
F = _aP + bR + uANpls(F).
If the initial conditions change, the future behavior of the chaotic system will also change. Therefore,
the first analysis for the exquisite controller is to change the initial conditions. Therefore, the initial conditions
are chosen P, = 0.1,Ry = 0.2, F, = 0.05. Fig. 6 shows the behavior of the chaotic system with the ANFIS

controller. The activation time of the ANFIS controller is equal to Time = 75. Fig. 7 shows the behavior of
ANFIS controller.
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b. Reducing the number of ANFIS controllers

The three ANFIS controllers have been designed and implemented to regulate the system’s dynamic
behavior. These controllers work in parallel to manage the complex and nonlinear interactions within the
system, ensuring stability and accuracy. Each ANFIS controller is trained to adapt to the system’s changing
states, leveraging its hybrid learning approach—combining neural networks and fuzzy logic—to respond
effectively to chaotic fluctuations. However, given that the ANFIS architecture is inherently based on a
nonlinear feedback structure, it is expected to possess intelligent control capabilities. This suggests that with
optimized training and configuration, a single or reduced number of ANFIS controllers may be sufficient to
stabilize chaotic system Eq. (16). The potential to minimize the number of controllers without compromising
performance demonstrates ANFIS’s efficiency and adaptability, making it a powerful tool for controlling

complex nonlinear systems.

Therefore, consider the chaotic system as follows:
P = C(R + F) + uANpls(p),
R =mP + n(l - PZ)R + uANpls(R) ’
F = —aP + bR.

The controller on the last line has been removed to simplify the system configuration and avoid
redundancy in control logic. This modification was made without altering the structure or parameters of the
ANFIS controller, ensuring that its learning mechanism and response characteristics remain consistent with
the original design. By eliminating the redundant controller, the overall system becomes more streamlined,
allowing for clearer analysis of the ANFIS controller’s performance in isolation.

Additionally, the system operates under the same set of initial conditions as previously defined, with
Py =0.1,R, = 0.2, F, = 0.05. These values serve as the starting point for the dynamic variables in the
simulation and are crucial for maintaining consistency in comparative analyses. By keeping the initial
conditions unchanged, the effects of the controller modification can be more accurately observed without the

influence of altered system states.
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Figure 8. Comparing the Performance of ANFIS Controller and Nonlinear Feedback by Removing the Control
in the Third Row of the Chaotic Equations (15): (a) Time series for P with Uanris and P with Unt, (b) Time
series for R with Uanris and R with Uni, (¢) Time series for F with Uanris and F with Unc.

Fig. 8 presents a performance comparison between the nonlinear feedback controller and the ANFIS
controller. As illustrated, the ANFIS controller—when implemented with two control layers—demonstrates
a superior capability to ensure the stability of the chaotic system. This highlights the robustness and
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adaptability of the ANFIS approach in managing complex dynamics. The figure also reveals the system’s
response under the influence of the reduced infinite controller in conjunction with the nonlinear feedback
controller. Notably, the reduced ANFIS controller exhibits better regulation and stabilization characteristics
than the nonlinear feedback controller alone, indicating its effectiveness in controlling chaotic behaviors.
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Figure 9. Comparison of the Behavior of ANFIS and Nonlinear Feedback Controller: (a) Time Series for
Uanrisey and Unce), (b) Time Series for Uanrisr) and UnLr), (€) Time Series for Uanrisr and Unwe).

For a more detailed analysis and visual comparison of the behaviors of both controllers, refer to Fig.
9. This figure further emphasizes the improved performance of the ANFIS controller relative to the nonlinear
feedback method. To avoid redundancy and focus solely on the system’s response characteristics, the control
signals uanris (r) @nd unir 7y have been omitted from the display. This omission enables a clearer
interpretation of the system’s intrinsic dynamics and the controllers’ influence without the added complexity
of visualizing the control input functions.

4. CONCLUSION

In this paper, we have proposed and implemented an ANFIS controller to stabilize chaotic behavior in
financial systems, using the Bouali financial model as a case study. The performance of the ANFIS controller
was rigorously compared with the traditional nonlinear feedback control method. Through extensive
numerical simulations, the ANFIS controller demonstrated good performance in eliminating chaos and
ensuring system stability, achieving faster convergence and greater adaptability. One of the key findings of
this study is that the ANFIS controller can achieve effective stabilization with fewer control inputs than the
traditional approach, highlighting its potential for reducing the complexity and cost of practical
implementations. The ability of the ANFIS system to adapt to varying initial conditions and maintain stability
further underscores its robustness and flexibility in managing nonlinear dynamic systems. The results of this
study suggest that ANFIS controllers offer a promising alternative to conventional control methods,
particularly in applications where system dynamics are complex and highly nonlinear, such as in financial
systems. Future work could explore the application of this approach to other chaotic systems and investigate
the potential of integrating ANFIS with other advanced control strategies to further enhance system
performance.
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