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Article Info ABSTRACT 

Article History: 
This study aims to accurately forecast monthly native chicken egg production using the 

Seasonal Autoregressive Integrated Moving Average (SARIMA) model with parameter 

optimization. The optimization process was conducted through a combination of 

auto.arima() initialization and an exhaustive grid search across the parameter space, 

evaluated using multiple performance metrics. The dataset comprised monthly production 

data from Magelang City, Indonesia, spanning the period from 2016 to 2022. The best-

performing model, SARIMA (2,1,2)(1,0,1,12), achieved an R² of 0.89, MAE of 82.13, 

RMSE of 92.92,  MAPE of 7.21%, and MASE of 0.67 on the testing set, indicating 

satisfactory forecasting performance. Compared with the non-optimized SARIMA 

baseline, the optimized model showed improved predictive accuracy. However, the 

residuals did not follow a normal distribution, suggesting potential limitations in model 

assumptions. Moreover, the study is limited by its focus on a single geographic location 

and native chicken production data, which may restrict its generalizability. Despite these 

limitations, the findings demonstrate that parameter optimization in SARIMA enhances 

forecast accuracy and can support better planning for food security initiatives. 
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1. INTRODUCTION 

Chicken egg production is pivotal in the poultry industry, contributing to global food security and 

economic development, and aligning with Sustainable Development Goal (SDG) 2. The production process 

demonstrates clear seasonal patterns and long-term trends, which necessitate the development of robust 

forecasting models to accommodate these variations. Effective forecasting of chicken egg production enables 

the poultry industry, particularly farmers, to make informed decisions regarding feed management, cage 

conditions, and production planning. Given the cyclical nature of egg production, precise forecasting 

techniques are crucial for maintaining efficiency and sustainability. However, few studies have systematically 

optimized SARIMA parameters for medium-term agricultural forecasting, creating a gap that this study aims 

to address. 

Various time series forecasting models have been proposed in recent years to improve the accuracy of 

predictions by minimizing forecast errors. In the field of Machine Learning, models such as XGBoost [1], 

Non-linear/Logistic Regression [2]-[4], Neural Networks (NN) [5], [6], Random Forest (RF) [1], and Least 

Squares Support Vector Machines (LSSVM) [7] have been utilized with varying degrees of success. These 

methods demonstrate strengths in handling complex nonlinearities and large datasets. Additionally, Long 

Short-Term Memory (LSTM), Deep Learning, and Recurrent Neural Networks (RNN) [8], [9] are widely 

employed within the scope of Deep Learning models. Mathematical modeling approaches have also been 

explored [10], [11], though most studies focus on short-term (weekly) forecasting or small-scale data. 

However, traditional statistical models such as the SARIMA remain widely adopted due to their 

interpretability, robustness in handling seasonal time series, and ability to provide actionable insights in 

agricultural decision-making. 

Recent studies, such as those by Noor et al. [12], Reyes-Radilla et al. [13], and Saputra [14], have 

applied the SARIMA model to forecast seasonal time series data. The SARIMA method is designed to handle 

seasonality in time series data effectively, and it has been shown to require relatively less data to produce 

accurate results. Noor et al. [12] demonstrated that SARIMA outperformed models like Linear Regression, 

XGBoost, and RF in the context of forecasting across diverse applications.  This general strength makes it a 

suitable selection for forecasting native chicken egg production, where seasonality is a prominent feature of 

the data. However, while SARIMA shows promise, it faces limitations in optimizing results and selecting the 

best parameter values, which may affect forecasting accuracy [15]. This study addresses this limitation by 

incorporating a systematic parameter optimization process using a combination of grid search and the 

auto.arima function. Differs from prior SARIMA works, which often rely solely on auto.arima() or manual 

trial-and-error. Our method explicitly defines a broader search space, applies multi-metric evaluation, and 

targets medium-term forecasting of native chicken egg production.  We selected the SARIMA model because 

of its proven performance in modeling seasonal agricultural outputs, particularly when datasets are moderate 

in size,  such as those related to native chicken egg production. 

The novelty of this work is twofold. First, it introduces a structured parameter optimization process to 

enhance the accuracy of the SARIMA model. Second, it applies this enhanced modeling framework to the 

forecasting of native chicken egg production in Magelang City, Indonesia, an area where reliable production 

forecasts can directly support local agricultural policy and farmer decision-making. 

Forecasting is generally divided into short-term, medium-term, and long-term categories, with 

medium-term forecasting covering six months to two years [16]. This study falls under medium-term 

forecasting and aims to forecast monthly chicken egg production using the SARIMA model with parameter 

tuning to enhance accuracy. This approach also builds on prior work by Yulianti et al. [17], who examined 

medium-term forecasting of chicken egg production. While their study relied on a shorter data span and 

conventional SARIMA modeling, the present study utilizes a longer dataset (2016–2022) and incorporates 

parameter optimization strategies, thereby enhancing both methodological rigor and the forecasting horizon. 

The anticipated outcomes of this research will offer valuable insights to the poultry industry, supporting more 

informed decisions regarding feed management, cage and warehouse conditions, and overall production 

planning. 
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2. RESEARCH METHODS 

A comprehensive methodology is proposed to forecast native chicken egg production using the 

SARIMA method in R Programming. The main workflow of this study is illustrated in Fig. 1. 

Stage 1:

Data 

collection

Stage 2: 

Descriptive 

analysis

Stage 5:

Model 

Evaluation

Stage 4: 

Modeling

Stage 3: 

Data pre- 

processing

 
Figure 1. The Five Stages of the Research Workflow 

2.1 Data Collection 

The forecasting modeling process begins with collecting data on native chicken egg production for 84 

months, starting January 2016 to December 2022. This data comprises a summary of time-series data on 

native chicken egg production per month. This research data was sourced from BPS Magelang City, 

representing official agricultural production statistics from backyard/native poultry farms.  

2.2 Descriptive Analysis 

Descriptive Analysis is a data analysis type that assists in describing, displaying, or constructively 

summarizing data points so that patterns emerge from the data. It provides conclusions about the data 

distribution and also identifies outliers. This stage includes descriptive statistics, outlier detection using 

boxplot diagrams, and identifying time series data patterns such as trends and seasons using decomposition 

diagrams and ACF/PACF inspection. SARIMA modeling can be utilized if the data shows seasonal patterns 

and random white noise. The white noise property of residuals was examined using the Ljung–Box test. 

2.3 Data Pre-Processing 

2.3.1 Data Splitting 

At this stage, the dataset is divided into 72 months of training data (2016–2021) and 12 months of 

testing data (2022), which are used to train the model and evaluate its performance. Model training involves 

using historical data and tuning parameters for the best performance. The model that produces the smallest 

and most significant deviation will be the best forecasting model. Furthermore, the performance of the best 

model is evaluated using test data. 

2.3.2 Stationarity Test 

The SARIMA method can be modeled after time-series data achieves stationarity (constant mean and 

variance values over time) for the variables predicted by different transformation methods. Non-stationary 

time-series data can lead to autocorrelation and heteroscedasticity, which may have an unfavorable impact 

on the estimation model. Data can be considered stationary if the data pattern revolves around a constant 

mean value and the variance around the mean is continuous over a certain period. To identify stationarity, the 

Augmented Dickey-Fuller (ADF) test can be applied as in Eq. (1) and the Kwiatkowski-Phillips-Schmidt-

Shin (KPSS) as stated in Eq. (2) [18]. If the 𝑝-value resulting from the ADF test is less than the significance 

level (alpha value) of 0.05, then the time-series data is likely stationary, and vice versa. Conversely, if the 𝑝-

value resulting from the KPSS test is less than the significance level of 0.05, then the time-series data is non-

stationary, or vice versa. 

𝑦𝑡 =  + 𝑦𝑡 − 1 + 𝑡 , (1) 

where 𝑦𝑡   represents the value at time 𝑡,  and  denote parameters to be estimated, and 𝑡 is supposed to be 

white noise. 

𝑦𝑡 = 𝑡 +  𝑟𝑡 + 𝑡 , (2) 

where 𝑦𝑡 is the observed time series, 𝑡 denotes a deterministic trend, 𝑟𝑡 represents a random walk, and 𝜀𝑡 is 

a stationary error. 
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2.3.3 Data Transformation 

If the time series data is non-stationary, the series must be transformed (by differentiating the data in 

the mean and taking the natural logarithm of the variance) to make it stationary. However, if the series is 

already stationary, there’s no need to apply differencing (𝑑) to the model again. First-order differencing  

(𝑑 = 1) and seasonal differencing (𝐷 = 0) were applied to achieve stationarity, confirmed by ADF and KPSS 

tests. No variance-stabilizing transformation was needed, as visual inspection confirmed stable variance. Data 

transformation in this study is facilitated by using the auto.arima() function from the forecast package in R 

Programming so that model selection becomes more effective. 

2.4 Modeling: Seasonal Autoregressive Integrated Moving Average 

The SARIMA model is an advanced version of the ARIMA model that incorporates a seasonal 

component [19]. This model is utilized when a time series is not stationary, meaning that all moment data 

(median, variance, and covariance) are not constant within a certain period. Non-stationary time series data 

can be transformed into a stationary time series by differencing (𝑑), which means replacing the original time 

series with a different time series. The SARIMA model can be represented by ARIMA (𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄, 𝑠), 

where 𝑝 implies the autoregressive (AR) lag number, 𝑑 denotes the differential passes number, q indicates 

the moving average (MA) order, 𝑃 is the AR seasonal lags number, 𝐷 is the seasonal differences number, 𝑄 

is the MA seasonal lags number, and 𝑠 is the seasonal periods number. 

The SARIMA model with the order (𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄, 𝑠) can be mathematically expressed as in Eq. (3). 

(1 − ∑
𝑖

𝑝

𝑖=1

𝑦𝑡−𝑖 + ∑𝑖

𝑃

𝑖=1

𝑦𝑡−𝑠𝑖) (1 − 𝑦𝑡)𝑑(1 − 𝑦𝑡−𝑠)𝐷𝑦𝑡 = (∑ 𝜃𝑗𝑦𝑡−𝑗 + ∑𝑗𝑦𝑡−𝑠𝑗

𝑄

𝑗=1

𝑞

𝑗=1

) 𝜖𝑡, (3) 

where yt denotes the forecast value or dependent variable at time t, s represents the seasonal period, t 

represents the white noise time series at time t, i is the AR(p) parameter for i = 1, 2, …, p, i is the seasonal 

parameter AR(P) for j = 1, 2, …, P. Furthermore, j is the MA(q) parameter for j = 1, 2, …, q. j is the 

MA(Q) parameter for j = 1, 2, …, Q. 

2.4.1 Parameter Tuning 

When training models, tuning parameters is essential to optimize performance and maximize 

forecasting accuracy. The parameters p, d, q, P, D, and Q are typically tuned. A combination of the grid 

search technique and the auto.arima() function from the forecast package in R programming is used for 

efficient and optimal parameter tuning. The search space covers 𝑝, 𝑞, 𝑃, 𝑄 ∈ [0– 3], 𝑑, 𝐷 ∈ [0– 1], with the 

seasonal period 𝑠 = 12, and step size = 1. Each candidate model is evaluated using AIC, R², MAE, RMSE, 

MAPE, and MASE to select the configuration with the smallest deviation. The grid search is exhaustive 

within the defined range, and auto.arima() is used to identify initial promising candidates. During this process, 

metrics such as R-squared (R2), Akaike Information Criterion (AIC), Mean Absolute Error (MAE), Root 

Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), and Mean Absolute Scaled Error 

(MASE) are utilized to select the model with the minimum deviation value. 

2.4.2 Residual Normality Test 

The normality test is a method used to decide whether the data is from a population that follows a 

normal distribution. This type of data is considered reliable for research purposes. If the 𝑝-value is less than 

the alpha value (0.05), the data distribution is abnormal. In such cases, data transformation techniques such 

as logarithms, square roots, or certain inverses can make the distribution closer to normal. In this study, the 

Jarque Bera (JB) test in Eq. (4) [20] and the Kolmogorov-Smirnov (KS) test in Eq. (5) [21] were employed 

for normality assessment since the data set consisted of more than 50 observations. 

𝐽𝐵 =
𝑛

6
(𝑠2 +

(𝑘 − 3)2

4
) , (4) 

where 𝑛 represents the sample size, 𝑠 denotes skewness, and 𝑘 is kurtosis. 

𝐾𝑆 = max|𝐹(𝑥) −  𝐺(𝑥)| , (5) 
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where 𝐹(𝑥) denotes the observed cumulative frequency distribution of a random sample of 𝑛 observations, 

and 𝐺(𝑥) represents the theoretical frequency distribution (𝑘/𝑛). 

2.4.3 Autocorrelation Test 

The autocorrelation test is a method used to decide the residual correlation between a period and the 

previous period. If the significance value is more than 0.05, it means there is no autocorrelation in the model, 

and vice versa. The Ljung-Box test (LB) in Eq. (6) is utilized in this study to identify residual autocorrelation. 

A good model does not exhibit autocorrelation. If there are no lags outside the interval limits of the 

correlogram, the residual non-autocorrelation assumption is also satisfied. 

𝐿𝐵 = 𝑛(𝑛 + 2) ∑
(𝜌𝑘)2

𝑛 − 𝑘

𝐾

𝑘=1

, (6) 

with 𝑛 being the number of observations in the time series data, 𝐾 representing the number of lags tested, 𝑘 

as the lag difference, and 
𝑘

 as the autocorrelation coefficient at lag-𝑘. 

2.4.4 Homoscedasticity Test 

The homoscedasticity test is a method used to decide whether the residual variance tends to be constant. 

It was assessed using the Breusch–Pagan (BP) test and the White test. Both tests regress the squared residuals 

on fitted values (and squared terms in the White test) to detect systematic variance patterns. The test statistic 

is expressed as in Eq. (7). 

𝐿𝑀 = 𝑛𝑅2, (7) 

where 𝑛 is the number of observations and 𝑅2 is from the auxiliary regression. Under 𝐻0, residuals are 

homoscedastic, and 𝐿𝑀 with degrees of freedom equal to the number of regressors. If 𝐻0 is rejected, 

heteroscedasticity is present, and remedies such as logarithmic transformation or robust standard errors may 

be applied. In this study, the BP and White tests did not reject 𝐻0 at the 5% level, confirming the assumption 

of homoscedasticity. 

2.5 Model Evaluation 

Evaluating model performance involves measuring the deviation of forecasting results from actual 

data. The model’s accuracy improves with a smaller deviation value. This research utilizes AIC, 𝑅2, MAE, 

RMSE, MAPE, and MASE as metrics to measure forecasting performance. Table 1 lists the details of each 

metric from Eqs. (8) to (13) 

Table 1. Metrics for Measuring Deviations from Forecast Results [22]-[24] 

Metric Equation 

AIC 2𝑘 − 2 ln(𝑙𝑜𝑔 − 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) (8) 

R2 1 −
∑ (𝐴𝑡 − 𝐹𝑡)2𝑛

𝑡=1

∑ (𝐴𝑡 − 𝐴̅𝑡)2𝑛
𝑡=1

(9) 

MAE 
1

𝑛
∑|𝐴𝑡 − 𝐹𝑡|

𝑛

𝑡=1

(10) 

RMSE √
1

𝑛
∑(𝐴𝑡 − 𝐹𝑡)2

𝑛

𝑡=1

 (11) 

MAPE 
100

𝑛
∑

|𝐴𝑡 − 𝐹𝑡|

𝐴𝑡

𝑛

𝑡=1

 (12) 

MASE 

𝑀𝐴𝐸

1
𝑛 − 1

∑ |𝐴𝑡 − 𝐴𝑡−1|𝑛
𝑡=2

 (13) 
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where 𝑘 is the number of estimated variables, 𝑛 being the number of observations in the time series data, 𝐴𝑡 

represents the actual value at time 𝑡, Ā𝑡 represents the mean of actual values, and 𝐹𝑡 is forecasted value at 

time 𝑡. 

When evaluating model performance, it is critical to determine the detailed aspects of the data and the 

context of the forecasting task. Therefore, visualizing results through distribution plots or residuals can 

provide further insight into model performance. Overall, using a combination of these metrics can offer a 

comprehensive evaluation of a forecasting model, aiding in assessing its accuracy and potentially enhancing 

its generalizability. 

3. RESULTS AND DISCUSSION 

3.1 Descriptive Analysis 

The Central Statistics Agency for Magelang City reported that the average egg production by native 

chickens from January 2016 to December 2022 was 990.2 kg. The lowest production amount was 754 kg in 

August 2018, and the highest was 1,223 kg in April 2020. The standard deviation (SD) of egg production was 

148.1 kg. A small SD compared to the mean and a mean close to the median suggest a normal distribution. 

Fig. 2 illustrates monthly native chicken egg production. Although the data are recorded monthly, the X-axis 

labels are presented at quarterly intervals (January, April, July, and October) to improve readability while 

maintaining the full monthly resolution of the series. 

 
Figure 2. Monthly Native Chicken Egg Production in Magelang City, 2016–2022 (with quarterly labels on the 

X-axis for clarity) 
(Source: processed using R Programming) 

To detect outliers, a boxplot diagram is used as shown in Fig. 3. 
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Figure 3. Boxplot Diagram Illustrating the Number of Chicken Egg Production from January 2016 to 

December 2022 

(Source: processed using R Programming) 

The boxplot diagram shows the size of the data variance (box length), which tends to be the same. 

However, the median size of the data tends to vary for each month. There were no outliers in the dataset, and 

egg production was highest in April, May, and June. Meanwhile, it was lowest in February. 

In addition, the time series plot has been decomposed to reveal the data pattern, as illustrated in Fig. 4. 

The multiplicative decomposition of the identified time series data pattern exhibits a mixed trend, with a 

downtrend initially followed by an upward trend, followed by a relatively constant trend, and then another 

upward trend. The data pattern also indicates non-stationarity and a long-term positive trend over time. 

Furthermore, the time series plot in Fig. 4 exhibits non-linear and seasonal data patterns that repeat yearly 

with peaks in April-June. The residual component captures irregular fluctuations of Total Egg Production 

from January 2016 to December 2022, making the SARIMA method the most suitable approach for this 

research. 

 
Figure 4. Decomposition Plot: Total Egg Production from January 2016 to December 2022 

(Source: processed using R Programming) 
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3.2 Data Preprocessing 

The data preprocessing process begins by splitting the dataset into 72 months (6 years) of training data 

for model training and 12 months (1 year) of testing data to assess the model’s performance. The SARIMA 

method can be modeled after the training data reaches stationarity. Therefore, the stationarity level of the 

time series data is determined using the ADF and KPSS tests with a significance level (alpha) of 5% (0.05). 

Based on the ADF and KPSS test results presented in Table 2, it is evident that the time series is non-

stationary. Therefore, time series data is transformed to achieve stationarity. 

Table 2. Time Series Stationarity Level for Alpha = 0.05 

Test Lag P-value Interpretation 

ADF 4 0.2836 non-stationary 

KPSS 3 0.0100 non-stationary 

This data transformation produces several SARIMA models as presented in Table 3. 

Table 3. SARIMA Models for 12 Months 

Model Order (𝒑, 𝒅, 𝒒) 
Seasonal 

(𝑷, 𝑫, 𝑸, 𝒔) 

1 (1,1,0) (1,0,0,12) 

2 (0,1,0) (1,0,0,12) 

3 (0,1,0) (1,0,1,12) 

4 (0,1,0) (0,0,1,12) 

5 (0,1,1) (0,0,1,12) 

6 (2,1,2) (1,0,1,12) 

3.3 SARIMA and Parameter Tuning 

Multiple SARIMA models are recommended based on data transformation and parameter tuning 

results. The best model is determined by the lowest AIC value and the highest 𝑹𝟐. To further validate the 

selection, MAE, RMSE, and MAPE metrics are used with the training data, as shown in Table 4. Model 6, 

with the order (2,1,2) and Seasonal (1,0,1,12), is identified as the best model due to its highest 𝑹𝟐 value 

(0.8869) and the smallest values for all evaluation metrics. However, this model has a higher AIC value 

compared to the other models. Model 6 offers the best compromise among evaluated models. While its AIC 

is slightly higher than Model 2, its predictive accuracy across MAE, RMSE, and MAPE is superior, which is 

prioritized for the forecasting objective. Additionally, model 2 with the order (0,1,0) and seasonal order 

(1,0,0,12) has the lowest AIC value (772.0568) and can also be an alternative to evaluate its performance in 

forecasting. 

Table 4. SARIMA Model with Evaluation Metrics for 12 Months 

Model 
Order 

(𝒑, 𝒅, 𝒒) 

Seasonal 

(𝑷, 𝑫, 𝑸, 𝒔) 
AIC R2 MAE RMSE MAPE MASE 

1 (1,1,0) (1,0,0,12) 773.7869 0.8631 26.1207 53.5390 2.5816 1.0129 

2 (0,1,0) (1,0,0,12) 772.0568 0.8625 25.7281 53.6426 2.5412 0.9976 

3 (0,1,0) (1,0,1,12) 773.1537 0.8692 25.8480 52.3303 2.5470 1.0023 

4 (0,1,0) (0,0,1,12) 772.1224 0.8624 25.6898 53.6761 2.5364 0.9962 

5 (0,1,1) (0,0,1,12) 773.8008 0.8630 26.1648 53.5515 2.5853 1.0146 

6 (2,1,2) (1,0,1,12) 775.6467 0.8869 24.5289 48.6605 2.4392 0.9511 

 

The z-test results in Table 5 also show the significance of the parameters AR(2) and MA(2) for Order (2,1,2), 

as well as SAR(1) and SMA(1) for Seasonal (1,0,1,12) for 12 months. 

 

 



BAREKENG: J. Math. & App., vol. 20(2), pp. 1331- 1344, Jun, 2026.     1339 

 

 

Table 5. Optimal Parameters of the SARIMA(𝟐, 𝟏, 𝟐)(𝟏, 𝟎, 𝟏, 𝟏𝟐) Model to Forecast 

Parameter Estimate Std. Error Z value Significance  

AR(1) -0.07945 0.055303 -1.4365 0.1508  

AR(2) -0.98158 0.023555 -41.672 < 2.2e-16 *** 

MA(1) 0.01614 0.063135 0.2556 0.7983  

MA(2) 0.99986 0.059757 16.7322 < 2.2e-16 *** 

SAR(1) 0.99513 0.046250 21.5164 < 2.2e-16 *** 

SMA(1) -0.96164 0.182572 -5.2672 1.385e-07 *** 

Note: *** (significance) 

3.4 Model Diagnostic Test 

Fig. 5 shows the residual and ACF plots of the SARIMA(2,1,2)(1,0,1,12) model. This graph shows 

that no specific information appears in the data, where all points are irregularly distributed around zero (no 

systematic pattern), which means that the selected model is adequate. In addition, the residual ACF data plot 

shows a white noise model characterized by all lags being within the threshold. 

 
Figure 5. Residual Plot of the Best SARIMA Model and ACF 

(Source: processed using R Programming) 

Based on the JB and KS tests with a significance level (alpha) = 5%, the model’s residual normality is not 

satisfied because the 𝑝-value < alpha is presented in Table 6. 

Table 6. Residual Normality Test Results for Significance = 0.05 
Test 𝒑-value Interpretation 

JB 2.2e-16 non-normally distributed 

KS 4.4e-16 non-normally distributed 

Besides, the Ljung-Box test for the SARIMA(2,1,2)(1,0,1,12) model produces a statistical value of 

9.94 at 𝑑𝑓 = 23 and a 𝑝-value of 0.9916 (greater than 𝛼 = 0.05). It indicates no autocorrelation or 

heteroscedasticity in the time series data, satisfying the assumptions of non-autocorrelation and 
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homoscedasticity. The correlogram in Fig. 6 further supports this conclusion, as it shows no lags outside the 

interval limits. Therefore, it can be inferred that the model does not exhibit autocorrelation or 

heteroscedasticity. Although residuals are non-normally distributed, this does not invalidate the SARIMA 

model for forecasting purposes, though it may limit certain inference tasks. Potential improvements could be 

made by adding exogenous variables or exploring nonlinear models. 

 
Figure 6. Correlogram Plot of SARIMA(𝟐, 𝟏, 𝟐)(𝟏, 𝟎, 𝟏, 𝟏𝟐) Model 

(Source: processed using R Programming) 

3.5 Model Evaluation 

Retrospective forecasting is used to measure model performance. This forecast compares forecast data 

with actual data using a test dataset. The predicted and actual egg production numbers are listed in Table 7 

and illustrated in Fig. 7. 

Table 7. Total Egg Production Results Forecasted and Actual for the 2022 Period 

Period Forecasting Actual 

Jan 1070.45 1067 

Feb 1058.88 949 

Mar 1099.19 1067 

Apr 1113.89 1147 

May 1081.49 1141 

Jun 1085.79 1138 

Jul 1093.67 1099 

Aug 1084.48 1099 

Sep 1056.90 1180 

Oct 1064.78 1202 

Nov 1086.16 1202 

Dec 1070.06 1205 
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Figure 7. Plot of Actual and Forecast Egg Production 

(Source: processed using R Programming) 

The red plot in Fig. 7 shows the training data. The navy plot represents the actual values of the test 

data, and the red plot represents the forecasted values, with the highest 95% confidence interval shown as the 

shaded area. This model appears to have captured the potential variability in the sample but still lacks the 

central tendency of the time series data. It is not surprising, considering that SARIMA models are often better 

suited to time series data with trends or seasonality, which this time series seems to show. 

The results presented in Table 8 demonstrate that the proposed model for forecasting native chicken 

egg production is highly accurate. The SARIMA(2,1,2)(1,0,1,12) model produced promising results in 

estimating the number of egg production with an MAPE of 7.21%, corresponding to approximately 92.79% 

forecast accuracy (defined as 100% – MAPE). The model effectively captures temporal and seasonal patterns 

in the data, making it reliable for medium-term forecasting purposes. Notably, the model slightly 

overestimates production in September-December, which may be linked to unmodeled seasonal factors such 

as feed changes or weather anomalies. 

Table 8. Evaluation Results from the Forecasting Model 

Metric MAE RMSE MAPE MASE 

Value 82.1285 92.9163 7.2097 0.6712 

 

3.6 Discussion 

In many forecasting scenarios, selecting a forecasting model is often based on minimizing deviation or 

maximizing accuracy. In addition to AIC and 𝑅2 metrics, it is valuable to consider metrics such as MAE, 

RMSE, MAPE, and MASE to assist in selecting a forecasting model. The modeling results indicate that the 

SARIMA(2,1,2)(1,0,1,12) model performs better than other SARIMA models in forecasting native chicken 

egg production. The model demonstrates high accuracy, with the highest 𝑅2 value among other models at 

0.89. The lowest MAE, RMSE, MAPE, and MASE values were 24.53, 48.66, 2.44, and 0.95, respectively. 

Meanwhile, the SARIMA model evaluation results show that the model has excellent performance, 

with an accuracy rate of over 92.7% (defined as 100% – MAPE). Although the evaluation results decreased 

by about 4.8% compared with the modeling performance, the overall model performance is still excellent. 

The drop in accuracy is likely due to seasonal shifts and unobserved external factors such as feed quality, 

weather changes, and economic conditions, which were not included in the model. Comparatively, it is an 

improvement over the accuracy rate of 88.26% reported in the study by [10]. A baseline comparison with the 

default auto.arima() model showed that our optimized SARIMA reduced MAPE by 1.32 percentage points, 

confirming the benefit of systematic parameter optimization. 

The findings of this research have several practical implications for stakeholders in the poultry 

industry. Accurate egg production forecasting enables farmers to optimize production schedules, manage 

inventory efficiently, and meet consumer demand effectively. It also helps farmers plan logistics, pricing 
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strategies, and promotional activities. Policymakers can utilize forecasting models to anticipate market trends, 

support decision-making, and implement interventions to ensure food safety and stability in poultry markets. 

These implications are anticipated benefits based on improved forecasting accuracy, not directly tested in this 

study. 

This study has some limitations. Firstly, the scope of egg production only covers native chickens, 

which means that the findings may not be widely applicable. Although they do represent the overall context 

of poultry egg production forecasting, these patterns may generalize to other poultry types (e.g., broiler or 

layer) under similar seasonal and production conditions. To enhance generalizability, future research should 

validate this approach using multi-regional and multi-breed datasets. Future research could validate this 

approach on different platforms to enhance its generalizability. Secondly, the forecasting model exclusively 

focuses on production quantity and does not consider other external factors, such as feed type, weather, 

economic indicators, and other potential influences that could improve the model’s performance. Lastly, it’s 

worth exploring deep learning and reinforcement learning methods by incorporating various criteria and 

comparing them with existing benchmarks. Therefore, suitable models are crucial for understanding the 

relationship between production periods. 

4. CONCLUSION 

This study presents a comprehensive analysis to forecast native chicken egg production using the 

SARIMA method with systematic parameter optimization (auto.arima + exhaustive grid search). The 

SARIMA(2,1,2)(1,0,1,12) model is identified as the most effective model due to its high accuracy, as 

evidenced by the low values of MAE (82.13), RMSE (92.92), MAPE (7.21%), and MASE (0.67). By utilizing 

this SARIMA model, egg production forecasting with high accuracy can be achieved, thereby providing 

valuable insight into the decision-making process regarding future egg production in the poultry industry. By 

utilizing this model, the poultry industry can plan feed management and housing conditions, thereby 

increasing productivity, distribution, and marketing, and ultimately potentially contributing to the long-term 

sustainability and profitability of the poultry market. 
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