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1. INTRODUCTION

Chicken egg production is pivotal in the poultry industry, contributing to global food security and
economic development, and aligning with Sustainable Development Goal (SDG) 2. The production process
demonstrates clear seasonal patterns and long-term trends, which necessitate the development of robust
forecasting models to accommodate these variations. Effective forecasting of chicken egg production enables
the poultry industry, particularly farmers, to make informed decisions regarding feed management, cage
conditions, and production planning. Given the cyclical nature of egg production, precise forecasting
techniques are crucial for maintaining efficiency and sustainability. However, few studies have systematically
optimized SARIMA parameters for medium-term agricultural forecasting, creating a gap that this study aims
to address.

Various time series forecasting models have been proposed in recent years to improve the accuracy of
predictions by minimizing forecast errors. In the field of Machine Learning, models such as XGBoost [1],
Non-linear/Logistic Regression [2]-[4], Neural Networks (NN) [5], [6], Random Forest (RF) [1], and Least
Squares Support Vector Machines (LSSVM) [7] have been utilized with varying degrees of success. These
methods demonstrate strengths in handling complex nonlinearities and large datasets. Additionally, Long
Short-Term Memory (LSTM), Deep Learning, and Recurrent Neural Networks (RNN) [8], [9] are widely
employed within the scope of Deep Learning models. Mathematical modeling approaches have also been
explored [10], [11], though most studies focus on short-term (weekly) forecasting or small-scale data.
However, traditional statistical models such as the SARIMA remain widely adopted due to their
interpretability, robustness in handling seasonal time series, and ability to provide actionable insights in
agricultural decision-making.

Recent studies, such as those by Noor et al. [12], Reyes-Radilla et al. [13], and Saputra [14], have
applied the SARIMA model to forecast seasonal time series data. The SARIMA method is designed to handle
seasonality in time series data effectively, and it has been shown to require relatively less data to produce
accurate results. Noor et al. [12] demonstrated that SARIMA outperformed models like Linear Regression,
XGBoost, and RF in the context of forecasting across diverse applications. This general strength makes it a
suitable selection for forecasting native chicken egg production, where seasonality is a prominent feature of
the data. However, while SARIMA shows promise, it faces limitations in optimizing results and selecting the
best parameter values, which may affect forecasting accuracy [15]. This study addresses this limitation by
incorporating a systematic parameter optimization process using a combination of grid search and the
auto.arima function. Differs from prior SARIMA works, which often rely solely on auto.arima() or manual
trial-and-error. Our method explicitly defines a broader search space, applies multi-metric evaluation, and
targets medium-term forecasting of native chicken egg production. We selected the SARIMA model because
of its proven performance in modeling seasonal agricultural outputs, particularly when datasets are moderate
in size, such as those related to native chicken egg production.

The novelty of this work is twofold. First, it introduces a structured parameter optimization process to
enhance the accuracy of the SARIMA model. Second, it applies this enhanced modeling framework to the
forecasting of native chicken egg production in Magelang City, Indonesia, an area where reliable production
forecasts can directly support local agricultural policy and farmer decision-making.

Forecasting is generally divided into short-term, medium-term, and long-term categories, with
medium-term forecasting covering six months to two years [16]. This study falls under medium-term
forecasting and aims to forecast monthly chicken egg production using the SARIMA model with parameter
tuning to enhance accuracy. This approach also builds on prior work by Yulianti et al. [17], who examined
medium-term forecasting of chicken egg production. While their study relied on a shorter data span and
conventional SARIMA modeling, the present study utilizes a longer dataset (2016-2022) and incorporates
parameter optimization strategies, thereby enhancing both methodological rigor and the forecasting horizon.
The anticipated outcomes of this research will offer valuable insights to the poultry industry, supporting more
informed decisions regarding feed management, cage and warehouse conditions, and overall production
planning.
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2. RESEARCH METHODS

A comprehensive methodology is proposed to forecast native chicken egg production using the
SARIMA method in R Programming. The main workflow of this study is illustrated in Fig. 1.

Stage 1:

Data
collection

Stage 2:

Descriptive
analysis

Stage 3:

Data pre-
processing

Stage 5:

Stage 4:

Modeling Model

Evaluation

Figure 1. The Five Stages of the Research Workflow

2.1 Data Collection

The forecasting modeling process begins with collecting data on native chicken egg production for 84
months, starting January 2016 to December 2022. This data comprises a summary of time-series data on
native chicken egg production per month. This research data was sourced from BPS Magelang City,
representing official agricultural production statistics from backyard/native poultry farms.

2.2 Descriptive Analysis

Descriptive Analysis is a data analysis type that assists in describing, displaying, or constructively
summarizing data points so that patterns emerge from the data. It provides conclusions about the data
distribution and also identifies outliers. This stage includes descriptive statistics, outlier detection using
boxplot diagrams, and identifying time series data patterns such as trends and seasons using decomposition
diagrams and ACF/PACEF inspection. SARIMA modeling can be utilized if the data shows seasonal patterns
and random white noise. The white noise property of residuals was examined using the Ljung—Box test.

2.3 Data Pre-Processing

2.3.1 Data Splitting

At this stage, the dataset is divided into 72 months of training data (2016-2021) and 12 months of
testing data (2022), which are used to train the model and evaluate its performance. Model training involves
using historical data and tuning parameters for the best performance. The model that produces the smallest
and most significant deviation will be the best forecasting model. Furthermore, the performance of the best
model is evaluated using test data.

2.3.2 Stationarity Test

The SARIMA method can be modeled after time-series data achieves stationarity (constant mean and
variance values over time) for the variables predicted by different transformation methods. Non-stationary
time-series data can lead to autocorrelation and heteroscedasticity, which may have an unfavorable impact
on the estimation model. Data can be considered stationary if the data pattern revolves around a constant
mean value and the variance around the mean is continuous over a certain period. To identify stationarity, the
Augmented Dickey-Fuller (ADF) test can be applied as in Eq. (1) and the Kwiatkowski-Phillips-Schmidt-
Shin (KPSS) as stated in Eq. (2) [18]. If the p-value resulting from the ADF test is less than the significance
level (alpha value) of 0.05, then the time-series data is likely stationary, and vice versa. Conversely, if the p-
value resulting from the KPSS test is less than the significance level of 0.05, then the time-series data is non-
stationary, or vice versa.

Ayt=5+0{yt—1+€t, (1)

where y; represents the value at time t, and « denote parameters to be estimated, and &; is supposed to be
white noise.

yt = 5t + Tt + &ty (2)

where y, is the observed time series, &, denotes a deterministic trend, r, represents a random walk, and &; is
a stationary error.
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2.3.3 Data Transformation

If the time series data is non-stationary, the series must be transformed (by differentiating the data in
the mean and taking the natural logarithm of the variance) to make it stationary. However, if the series is
already stationary, there’s no need to apply differencing (d) to the model again. First-order differencing
(d = 1) and seasonal differencing (D = 0) were applied to achieve stationarity, confirmed by ADF and KPSS
tests. No variance-stabilizing transformation was needed, as visual inspection confirmed stable variance. Data
transformation in this study is facilitated by using the auto.arima() function from the forecast package in R
Programming so that model selection becomes more effective.

2.4 Modeling: Seasonal Autoregressive Integrated Moving Average

The SARIMA model is an advanced version of the ARIMA model that incorporates a seasonal
component [19]. This model is utilized when a time series is not stationary, meaning that all moment data
(median, variance, and covariance) are not constant within a certain period. Non-stationary time series data
can be transformed into a stationary time series by differencing (d), which means replacing the original time
series with a different time series. The SARIMA model can be represented by ARIMA (p,d, q)(P, D, Q, s),
where p implies the autoregressive (AR) lag number, d denotes the differential passes number, g indicates
the moving average (MA) order, P is the AR seasonal lags number, D is the seasonal differences number, Q
is the MA seasonal lags number, and s is the seasonal periods number.

The SARIMA model with the order (p,d, q)(P, D, Q, s) can be mathematically expressed as in Eq. (3).
p P q Q
1- Z ¢ Ye-i + Z D yeosi |(1=y)* (1 =y )Py = Z Ojye—j + Z Oyi-sj |€, ()
i=1 i=1 j=1 j=1

where y; denotes the forecast value or dependent variable at time t, s represents the seasonal period, &
represents the white noise time series at time t, ¢ is the AR(p) parameter fori=1, 2, ..., p, @ is the seasonal
parameter AR(P) for j =1, 2, ..., P. Furthermore, & is the MA(q) parameter for j =1, 2, ..., q. 6, is the
MA(Q) parameter forj=1,2, ..., Q.

2.4.1 Parameter Tuning

When training models, tuning parameters is essential to optimize performance and maximize
forecasting accuracy. The parameters p, d, g, P, D, and Q are typically tuned. A combination of the grid
search technique and the auto.arima() function from the forecast package in R programming is used for
efficient and optimal parameter tuning. The search space covers p, q, P, Q € [0-3], d, D € [0-1], with the
seasonal period s = 12, and step size = 1. Each candidate model is evaluated using AIC, R2, MAE, RMSE,
MAPE, and MASE to select the configuration with the smallest deviation. The grid search is exhaustive
within the defined range, and auto.arima() is used to identify initial promising candidates. During this process,
metrics such as R-squared (R?), Akaike Information Criterion (AIC), Mean Absolute Error (MAE), Root
Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), and Mean Absolute Scaled Error
(MASE) are utilized to select the model with the minimum deviation value.

2.4.2 Residual Normality Test

The normality test is a method used to decide whether the data is from a population that follows a
normal distribution. This type of data is considered reliable for research purposes. If the p-value is less than
the alpha value (0.05), the data distribution is abnormal. In such cases, data transformation techniques such
as logarithms, square roots, or certain inverses can make the distribution closer to normal. In this study, the
Jarque Bera (JB) test in Eq. (4) [20] and the Kolmogorov-Smirnov (KS) test in Eq. (5) [21] were employed
for normality assessment since the data set consisted of more than 50 observations.

n (k — 3)?
]B:g<SZ+T>, (4)

where n represents the sample size, s denotes skewness, and k is kurtosis.
KS = max|F(x) — G(x)|, (5)
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where F(x) denotes the observed cumulative frequency distribution of a random sample of n observations,
and G (x) represents the theoretical frequency distribution (k/n).

2.4.3 Autocorrelation Test

The autocorrelation test is a method used to decide the residual correlation between a period and the
previous period. If the significance value is more than 0.05, it means there is no autocorrelation in the model,
and vice versa. The Ljung-Box test (LB) in Eq. (6) is utilized in this study to identify residual autocorrelation.
A good model does not exhibit autocorrelation. If there are no lags outside the interval limits of the
correlogram, the residual non-autocorrelation assumption is also satisfied.

K
2
LB = n(n + 2)2 (pf)k,
k=1n

with n being the number of observations in the time series data, K representing the number of lags tested, k
as the lag difference, and p, as the autocorrelation coefficient at lag-k.

(6)

2.4.4 Homoscedasticity Test

The homoscedasticity test is a method used to decide whether the residual variance tends to be constant.
It was assessed using the Breusch—Pagan (BP) test and the White test. Both tests regress the squared residuals
on fitted values (and squared terms in the White test) to detect systematic variance patterns. The test statistic
is expressed as in Eq. (7).

LM = nR?, (7

where n is the number of observations and R? is from the auxiliary regression. Under H,, residuals are
homoscedastic, and LM with degrees of freedom equal to the number of regressors. If H, is rejected,
heteroscedasticity is present, and remedies such as logarithmic transformation or robust standard errors may
be applied. In this study, the BP and White tests did not reject H, at the 5% level, confirming the assumption
of homoscedasticity.

2.5 Model Evaluation

Evaluating model performance involves measuring the deviation of forecasting results from actual
data. The model’s accuracy improves with a smaller deviation value. This research utilizes AIC, R?, MAE,
RMSE, MAPE, and MASE as metrics to measure forecasting performance. Table 1 lists the details of each
metric from Egs. (8) to (13)

Table 1. Metrics for Measuring Deviations from Forecast Results [22]-[24]

Metric Equation

AIC 2k — 21In(log — likelihood) (8)

Z?:l(At - Ft)2

R? _fe= e T 9)
i (4 — AP
1 n
MAE EZ'At —Fy| (10)
t=1
1 n
RMSE T—lZ(At _F)? (11)
t=1
100 % |A, — F,|
MAPE — (12)
n A
t=1
MAE
MASE (13)

1
mZ?:ﬂAt - At—ll
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where k is the number of estimated variables, n being the number of observations in the time series data, A;
represents the actual value at time ¢, A, represents the mean of actual values, and F; is forecasted value at

time t.

When evaluating model performance, it is critical to determine the detailed aspects of the data and the
context of the forecasting task. Therefore, visualizing results through distribution plots or residuals can
provide further insight into model performance. Overall, using a combination of these metrics can offer a
comprehensive evaluation of a forecasting model, aiding in assessing its accuracy and potentially enhancing
its generalizability.

3. RESULTS AND DISCUSSION

3.1 Descriptive Analysis

The Central Statistics Agency for Magelang City reported that the average egg production by native
chickens from January 2016 to December 2022 was 990.2 kg. The lowest production amount was 754 kg in
August 2018, and the highest was 1,223 kg in April 2020. The standard deviation (SD) of egg production was
148.1 kg. A small SD compared to the mean and a mean close to the median suggest a normal distribution.
Fig. 2 illustrates monthly native chicken egg production. Although the data are recorded monthly, the X-axis
labels are presented at quarterly intervals (January, April, July, and October) to improve readability while
maintaining the full monthly resolution of the series.

Monthly Native Chicken Egg Production in Magelang City (2016-2022)
2016 2017 2018 2019 2020 2021 2022
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Figure 2. Monthly Native Chicken Egg Production in Magelang City, 2016-2022 (with quarterly labels on the
X-axis for clarity)
(Source: processed using R Programming)

To detect outliers, a boxplot diagram is used as shown in Fig. 3.
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Monthly Native Chicken Egg Production Data - Boxplot
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Figure 3. Boxplot Diagram lllustrating the Number of Chicken Egg Production from January 2016 to

December 2022
(Source: processed using R Programming)
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The boxplot diagram shows the size of the data variance (box length), which tends to be the same.
However, the median size of the data tends to vary for each month. There were no outliers in the dataset, and
egg production was highest in April, May, and June. Meanwhile, it was lowest in February.

In addition, the time series plot has been decomposed to reveal the data pattern, as illustrated in Fig. 4.
The multiplicative decomposition of the identified time series data pattern exhibits a mixed trend, with a
downtrend initially followed by an upward trend, followed by a relatively constant trend, and then another
upward trend. The data pattern also indicates non-stationarity and a long-term positive trend over time.
Furthermore, the time series plot in Fig. 4 exhibits non-linear and seasonal data patterns that repeat yearly
with peaks in April-June. The residual component captures irregular fluctuations of Total Egg Production
from January 2016 to December 2022, making the SARIMA method the most suitable approach for this
research.

1100

seasonal
20 0 20 40

data

800 900

1200

trend

800 900 1000

150

“ i
2
Ll TRTTE [ATR |\ |\||” o

||‘|'|‘ L I \”” '\I|\ "|‘H\ |‘| I

remainder

-100

2016 07 2018 2019 2020 2021 2022 2023
time

Figure 4. Decomposition Plot: Total Egg Production from January 2016 to December 2022
(Source: processed using R Programming)



1338 Gustriansyah, et al. A SARIMA APPROACH WITH PARAMETER OPTIMIZATION FOR ENHANCING ...

3.2 Data Preprocessing

The data preprocessing process begins by splitting the dataset into 72 months (6 years) of training data
for model training and 12 months (1 year) of testing data to assess the model’s performance. The SARIMA
method can be modeled after the training data reaches stationarity. Therefore, the stationarity level of the
time series data is determined using the ADF and KPSS tests with a significance level (alpha) of 5% (0.05).
Based on the ADF and KPSS test results presented in Table 2, it is evident that the time series is non-
stationary. Therefore, time series data is transformed to achieve stationarity.

Table 2. Time Series Stationarity Level for Alpha = 0.05

Test Lag P-value Interpretation
ADF 4 0.2836 non-stationary
KPSS 3 0.0100 non-stationary

This data transformation produces several SARIMA models as presented in Table 3.

Table 3. SARIMA Models for 12 Months

Model  Order (p,d, q) (i??)s:og.asl)
1 (1,1,0) (1,0,0,12)
2 (0,1,0) (1,0,0,12)
3 (0,1,0) (1,0,1,12)
4 (0,1,0) (0,0,1,12)
5 0,1,1) (0,0,1,12)
6 (21,2 (1,0,1,12)

3.3 SARIMA and Parameter Tuning

Multiple SARIMA models are recommended based on data transformation and parameter tuning
results. The best model is determined by the lowest AIC value and the highest R?. To further validate the
selection, MAE, RMSE, and MAPE metrics are used with the training data, as shown in Table 4. Model 6,
with the order (2,1,2) and Seasonal (1,0,1,12), is identified as the best model due to its highest R? value
(0.8869) and the smallest values for all evaluation metrics. However, this model has a higher AIC value
compared to the other models. Model 6 offers the best compromise among evaluated models. While its AIC
is slightly higher than Model 2, its predictive accuracy across MAE, RMSE, and MAPE is superior, which is
prioritized for the forecasting objective. Additionally, model 2 with the order (0,1,0) and seasonal order
(1,0,0,12) has the lowest AIC value (772.0568) and can also be an alternative to evaluate its performance in
forecasting.

Table 4. SARIMA Model with Evaluation Metrics for 12 Months

Model ~ Order  Seasonal AIC R2 MAE RMSE MAPE MASE

(p.dq) (P,DQs)
(1,1,0) (1,00,12)  773.7869 0.8631 26.1207 53.5390 2.5816 1.0129

1

2 010)  (1,0012) 772.0568  0.8625 257281  53.6426  2.5412 0.9976
3 01,00 (10112 7731537  0.8692  25.8480  52.3303  2.5470 1.0023
4 010)  (0,01,12) 7721224 08624 256898  53.6761  2.5364 0.9962
5
6

0,1,2) (0,0,1,12)  773.8008 0.8630 26.1648 53.5515 2.5853 1.0146
(2,1,2) (1,0,1,12)  775.6467 0.8869 24.5289 48.6605 2.4392 0.9511

The z-test results in Table 5 also show the significance of the parameters AR(2) and MA(2) for Order (2,1,2),
as well as SAR(1) and SMA(1) for Seasonal (1,0,1,12) for 12 months.
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Table 5. Optimal Parameters of the SARIMA(2,1,2)(1,0,1,12) Model to Forecast

Parameter Estimate Std. Error Z value Significance
AR(1) -0.07945 0.055303 -1.4365 0.1508
AR(2) -0.98158 0.023555 -41.672 < 2.2e-16 Fkk
MA(1) 0.01614 0.063135 0.2556 0.7983

MA(2) 0.99986 0.059757 16.7322 < 2.2e-16 Hkk
SAR(1) 0.99513 0.046250 21.5164 < 2.2e-16 Hkk
SMA(1) -0.96164 0.182572 -5.2672 1.385e-07  ***

Note: *** (significance)

3.4 Model Diagnostic Test

Fig. 5 shows the residual and ACF plots of the SARIMA(2,1,2)(1,0,1,12) model. This graph shows
that no specific information appears in the data, where all points are irregularly distributed around zero (no
systematic pattern), which means that the selected model is adequate. In addition, the residual ACF data plot
shows a white noise model characterized by all lags being within the threshold.

Residuals from ARIMA(2,1,2)(1,0,1)[12]

100 -

2016 2018 2020 2022
0.2 20
0.1-
‘ 15
S 00—l ‘ P
< ‘ ‘ ‘ ‘ ‘ | ‘ ‘ | S p-
-0.1-
0.2-
__________________________________ 0- |
| | I I T I | [
6 12 18 24 -100 0 100 200 300
Lag residuals

Figure 5. Residual Plot of the Best SARIMA Model and ACF
(Source: processed using R Programming)

Based on the JB and KS tests with a significance level (alpha) = 5%, the model’s residual normality is not
satisfied because the p-value < alpha is presented in Table 6.

Table 6. Residual Normality Test Results for Significance = 0.05

Test p-value Interpretation
JB 2.2e-16 non-normally distributed
KS 4.4e-16 non-normally distributed

Besides, the Ljung-Box test for the SARIMA(2,1,2)(1,0,1,12) model produces a statistical value of
9.94 at df = 23 and a p-value of 0.9916 (greater than a = 0.05). It indicates no autocorrelation or
heteroscedasticity in the time series data, satisfying the assumptions of non-autocorrelation and
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homoscedasticity. The correlogram in Fig. 6 further supports this conclusion, as it shows no lags outside the
interval limits. Therefore, it can be inferred that the model does not exhibit autocorrelation or
heteroscedasticity. Although residuals are non-normally distributed, this does not invalidate the SARIMA
model for forecasting purposes, though it may limit certain inference tasks. Potential improvements could be
made by adding exogenous variables or exploring nonlinear models.

Series residual_model6*2

06 10
R N

ACF

Lag

Partial ACF
0.0

-02
I

Lag

Figure 6. Correlogram Plot of SARIMA(2,1,2)(1,0,1,12) Model
(Source: processed using R Programming)

3.5 Model Evaluation

Retrospective forecasting is used to measure model performance. This forecast compares forecast data
with actual data using a test dataset. The predicted and actual egg production numbers are listed in Table 7
and illustrated in Fig. 7.

Table 7. Total Egg Production Results Forecasted and Actual for the 2022 Period

Period Forecasting Actual
Jan 1070.45 1067
Feb 1058.88 949
Mar 1099.19 1067
Apr 1113.89 1147
May 1081.49 1141
Jun 1085.79 1138
Jul 1093.67 1099
Aug 1084.48 1099
Sep 1056.90 1180
Oct 1064.78 1202
Nov 1086.16 1202

Dec 1070.06 1205
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Forecasting Native Chicken Egg Production (Buras)

— Training Data
—— TestData
—— Forecast
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Figure 7. Plot of Actual and Forecast Egg Production
(Source: processed using R Programming)

The red plot in Fig. 7 shows the training data. The navy plot represents the actual values of the test
data, and the red plot represents the forecasted values, with the highest 95% confidence interval shown as the
shaded area. This model appears to have captured the potential variability in the sample but still lacks the
central tendency of the time series data. It is not surprising, considering that SARIMA models are often better
suited to time series data with trends or seasonality, which this time series seems to show.

The results presented in Table 8 demonstrate that the proposed model for forecasting native chicken
egg production is highly accurate. The SARIMA(2,1,2)(1,0,1,12) model produced promising results in
estimating the number of egg production with an MAPE of 7.21%, corresponding to approximately 92.79%
forecast accuracy (defined as 100% — MAPE). The model effectively captures temporal and seasonal patterns
in the data, making it reliable for medium-term forecasting purposes. Notably, the model slightly
overestimates production in September-December, which may be linked to unmodeled seasonal factors such
as feed changes or weather anomalies.

Table 8. Evaluation Results from the Forecasting Model
Metric MAE RMSE MAPE MASE

Value 82.1285 92.9163 7.2097 0.6712

3.6 Discussion

In many forecasting scenarios, selecting a forecasting model is often based on minimizing deviation or
maximizing accuracy. In addition to AIC and R? metrics, it is valuable to consider metrics such as MAE,
RMSE, MAPE, and MASE to assist in selecting a forecasting model. The modeling results indicate that the
SARIMA(2,1,2)(1,0,1,12) model performs better than other SARIMA models in forecasting native chicken
egg production. The model demonstrates high accuracy, with the highest R? value among other models at
0.89. The lowest MAE, RMSE, MAPE, and MASE values were 24.53, 48.66, 2.44, and 0.95, respectively.

Meanwhile, the SARIMA model evaluation results show that the model has excellent performance,
with an accuracy rate of over 92.7% (defined as 100% — MAPE). Although the evaluation results decreased
by about 4.8% compared with the modeling performance, the overall model performance is still excellent.
The drop in accuracy is likely due to seasonal shifts and unobserved external factors such as feed quality,
weather changes, and economic conditions, which were not included in the model. Comparatively, it is an
improvement over the accuracy rate of 88.26% reported in the study by [10]. A baseline comparison with the
default auto.arima() model showed that our optimized SARIMA reduced MAPE by 1.32 percentage points,
confirming the benefit of systematic parameter optimization.

The findings of this research have several practical implications for stakeholders in the poultry
industry. Accurate egg production forecasting enables farmers to optimize production schedules, manage
inventory efficiently, and meet consumer demand effectively. It also helps farmers plan logistics, pricing
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strategies, and promotional activities. Policymakers can utilize forecasting models to anticipate market trends,
support decision-making, and implement interventions to ensure food safety and stability in poultry markets.
These implications are anticipated benefits based on improved forecasting accuracy, not directly tested in this
study.

This study has some limitations. Firstly, the scope of egg production only covers native chickens,
which means that the findings may not be widely applicable. Although they do represent the overall context
of poultry egg production forecasting, these patterns may generalize to other poultry types (e.g., broiler or
layer) under similar seasonal and production conditions. To enhance generalizability, future research should
validate this approach using multi-regional and multi-breed datasets. Future research could validate this
approach on different platforms to enhance its generalizability. Secondly, the forecasting model exclusively
focuses on production quantity and does not consider other external factors, such as feed type, weather,
economic indicators, and other potential influences that could improve the model’s performance. Lastly, it’s
worth exploring deep learning and reinforcement learning methods by incorporating various criteria and
comparing them with existing benchmarks. Therefore, suitable models are crucial for understanding the
relationship between production periods.

4. CONCLUSION

This study presents a comprehensive analysis to forecast native chicken egg production using the
SARIMA method with systematic parameter optimization (auto.arima + exhaustive grid search). The
SARIMA(2,1,2)(1,0,1,12) model is identified as the most effective model due to its high accuracy, as
evidenced by the low values of MAE (82.13), RMSE (92.92), MAPE (7.21%), and MASE (0.67). By utilizing
this SARIMA model, egg production forecasting with high accuracy can be achieved, thereby providing
valuable insight into the decision-making process regarding future egg production in the poultry industry. By
utilizing this model, the poultry industry can plan feed management and housing conditions, thereby
increasing productivity, distribution, and marketing, and ultimately potentially contributing to the long-term
sustainability and profitability of the poultry market.
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