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1. INTRODUCTION 

The use of smartphones has increased significantly along with technological advancements over the 

past few decades. These devices not only facilitate communication but also provide various services such as 

internet access, social media, entertainment applications, and much more. Despite their significant benefits, 

excessive smartphone use can lead to various health problems, including physical, mental, communication, 

and cognitive development issues [1]. One of the main problems that arises is smartphone addiction, which 

is increasingly found in various age groups, including children and teenagers. 

Smartphone addiction is a serious issue that requires special attention. It involves a constant attachment 

and dependence on smartphones to perform various activities, which leads to the emergence of behavioral 

problems resulting from this addiction. These behavioral problems include withdrawal from social 

interactions, impulsivity, aggression, and difficulty performing daily activities [2]. The behavior resulting 

from smartphone addiction is more about being unable to control oneself to engage in daily activities or 

control the desire to constantly use a smartphone, leading to negative behaviors [3]. Smartphone addiction 

also affects the relationship between life satisfaction, sleep quality, and academic achievement, with excessive 

use negatively impacting these factors [4], [5]. It has been shown to adversely affect academic performance, 

mental health, and physical well-being [6]. Specifically, smartphone addiction is associated with decreased 

sleep quality, which can negatively impact academic performance [7].  

Among university students, smartphone addiction correlates with lower academic performance, 

physical health issues, and mental health problems [8]. Smartphone addiction is associated with negative 

effects on emotional, cognitive, and educational dimensions in university students [9]. It is also linked to 

emotional and mental disorders in adolescents [10], as well as higher levels of stress, depression, and anxiety 

[11]. The prevalence of smartphone addiction among adolescents is significant, with strong associations to 

depression [12], negatively affecting mental health and social interactions [13]. Additionally, it is positively 

correlated with loneliness in adolescents [14] and associated with sleep disturbances, depression, and anxiety 

[15]. Not only adults and adolescents but also young children can experience smartphone addiction. 

Smartphone addiction in early childhood can have negative impacts on mental health, including increased 

anxiety, reduced attention, and disrupted sleep [16]. The negative impacts of smartphone addiction include 

problems in mental, physical, communication, and cognitive development in children [1]. Given the 

seriousness of smartphone addiction, understanding its dynamics is crucial for developing effective 

prevention strategies. 

Research related to smartphone addiction is increasing. These studies use various methods to model 

smartphone addiction. Among them is the research conducted by Zou et al., which shows a potential 

correlation between smartphone addiction and hypertension among junior high school students in China [17]. 

Another study conducted by Xin et al. explores the influence of parental bonding on smartphone addiction 

among Chinese medical students. Using binary logistic regression, their study reveals that overprotective 

maternal care is positively associated with smartphone addiction, while paternal care shows a negative 

relationship [18]. Additionally, Lei et al. investigate the interaction between smartphone addiction, 

psychological distress, and neuroticism among medical students. Their cross-sectional study identifies 

common smartphone addiction, showing a moderate positive correlation between smartphone addiction and 

psychological distress, as well as a weak positive correlation with neuroticism. Linear regression analysis 

supports these findings, highlighting the relationship between smartphone addiction, psychological well-

being, and neuroticism [19]. Furthermore, the study conducted by Lin et al. uses the Technology Acceptance 

Model to investigate the impact of smartphone addiction on behavioral intention among undergraduate 

students. This research employs Structural Equation Modeling to analyze the relationships between variables 

[20]. Cheng et al. use a methodological approach rooted in the theory of planned behavior (TPB) and social 

cognitive theory (SCT) to investigate smartphone addiction among senior high school students. Path analysis, 

specifically Model 14 of the SPSS PROCESS-macro, is used to conduct moderation mediation analysis and 

test hypotheses [21]. 

While these studies provide valuable insights into the psychological, social, and behavioral factors of 

smartphone addiction, they remain limited to empirical analyses based on surveys and regression models. 

Such approaches are useful for identifying correlations and predictors, but do not adequately explain the 

dynamics of addiction transmission within a population over time. Mathematical modeling through a 

deterministic compartmental framework offers a systematic way to analyze how addiction emerges, persists, 

or diminishes under different conditions. Nevertheless, research that specifically applies this approach to 
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smartphone addiction is still very limited. This study addresses the gap by developing a deterministic 

compartmental model that analyzes equilibrium points and the basic reproduction number, conducts 

sensitivity analysis of key parameters, and discusses their practical implications. The novelty of this work lies 

in providing a theoretical foundation for understanding the spread of smartphone addiction at the population 

level, which can serve as a basis for future empirical validation and policy interventions. 

Therefore, this study develops a deterministic model to describe the spread of smartphone addiction 

within a population. The deterministic model was chosen because it provides a systematic framework for 

analyzing transmission dynamics, including the identification of equilibrium points, the calculation of the 

basic reproduction number, and the examination of stability conditions that are essential for understanding 

long-term behavioral patterns. In addition, the model is used to perform numerical simulations that illustrate 

how addiction can spread in society while predicting population changes over time. With its simple structure 

and ability to capture temporal dynamics, the deterministic model offers a comprehensive perspective on the 

mechanisms of smartphone addiction. Through this mathematical approach, deeper insights into the dynamics 

of smartphone addiction are expected to be obtained, while also providing a basis for designing more effective 

prevention strategies. The focus of the deterministic model on overall population dynamics makes it 

particularly suitable as an initial step in establishing a theoretical foundation. This highlights the importance 

of adopting a deterministic framework as the basis for future empirical research and the development of more 

complex models. 

2. RESEARCH METHODS 

This research is based on a quantitative research approach using compartmental modeling. This section 

outlines the theoretical foundations of the study, including the use of differential equations and systems of 

differential equations to model the dynamics of smartphone addiction. It also incorporates equilibrium points 

and the Jacobian matrix to analyze the stability of the system, as well as sensitivity analysis to identify the 

key parameters that most significantly influence the model outcomes. These theoretical components provide 

a robust mathematical framework for evaluating and predicting the transition patterns of smartphone usage 

within the population. 

2.1 Differential Equation and System of Differential Equations 

Determining differential equations and systems of differential equations in compartmental models 

aims to describe the dynamics of changes in the number of individuals in each compartment over time 

quantitatively. This allows for modeling and analyzing phenomena by understanding how interactions 

between compartments affect transitions and the overall behavior of the system.  

Differential Equation is a branch of mathematics that is closely related to daily life problems. The 

differential equation is an equation involving derivatives of one or more dependent variables with respect to 

one or more independent variables [22]. There are two types of differential equations: ordinary differential 

equations and partial differential equations. This study only discusses ordinary differential equations.  

An ordinary differential equation is a differential equation involving ordinary derivatives of one 

independent variable. The order of a differential equation is determined by the highest derivative in the given 

differential equation. An ordinary differential equation of order 𝑛 with the independent variable 𝑡 and the 

dependent variable 𝑦 is said to be linear if it is in the form:  

𝑝0(𝑡)
𝑑𝑛𝑦

𝑑𝑡𝑛
+ 𝑝1(𝑡)

𝑑𝑛−1𝑦

𝑑𝑡𝑛−1
+ ⋯+ 𝑝𝑛−1(𝑡)

𝑑𝑦

𝑑𝑡
+ 𝑝𝑛(𝑡)𝑦 = 𝑓(𝑡). (1) 

If 𝑓(𝑡) = 0, it is called a homogeneous linear ordinary differential equation. Conversely, if 𝑓(𝑡) ≠ 0, 

it is called a non-homogeneous linear ordinary differential equation. Nonlinear ordinary differential equations 

are ordinary differential equations like equation Eq. (1), but their dependent variables are raised to a power, 

multiplied by their derivatives, or multiplied by each other [23]. 

According to Boyce and DiPrima [23], another classification of differential equations involves the 

presence of one function and two or more unknown functions. If there is only one function to be determined, 

a single equation is sufficient. However, if there are two or more unknown functions, a system of equations 

is required. The general form of a first-order system of ordinary differential equations is as follows: 
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𝑥1
′ = 𝑝11(𝑡)𝑥1 + ⋯+ 𝑝1𝑛(𝑡)𝑥𝑛 + 𝑓1(𝑡), 

⋮ 

𝑥𝑛
′ = 𝑝𝑛1(𝑡)𝑥1 + ⋯+ 𝑝𝑛𝑛(𝑡)𝑥𝑛 + 𝑓𝑛(𝑡). (2) 

If 𝑓(𝑡) = 0 in Eq. (2), then the resulting system is called a homogeneous system of linear differential 

equations. However, if 𝑓(𝑡) ≠ 0, then it is called a nonhomogeneous system of linear differential equations. 

A system of differential equations is called linear if the differential equations that constitute its 

components are linear differential equations. Conversely, if there is a nonlinear component within the system, 

it is referred to as a nonlinear system of differential equations. 

2.2 Equilibrium Points and Jacobian Matrix  

Determining equilibrium points and the Jacobian matrix in compartmental models is crucial for 

understanding the system’s stability and dynamics. Equilibrium points indicate conditions where the system 

remains unchanged over time, allowing for the analysis of stability. The Jacobian matrix provides insights 

into how small perturbations around these equilibrium points affect the system, helping to assess whether the 

system will return to equilibrium or shift to a new state. This analysis is essential for studying local behavior, 

evaluating the system’s response to disturbances, and understanding the impact of parameter changes on 

stability. Eq. (2) with 𝑔(𝑡) = 0 can be written in: 

𝑑𝑥

𝑑𝑡
= 𝐴𝑥, (3) 

with 𝐴 = (

𝑝11 ⋯ 𝑝1𝑛

⋮ ⋱ ⋮
𝑝𝑛1 … 𝑝𝑛𝑛

) and 𝑥 = (

𝑥1

⋮
𝑥𝑛

) . The equilibrium point of the system in Eq. (3) is 𝑥̃ and is unique 

(the only critical point) if det (𝐴) ≠ 0. A point 𝑥̃ is said to be an equilibrium point if it satisfies 𝐴𝑥̃ = 0 [24]. 

Eq. (3) is also known as an autonomous system. 

The local stability of Eq. (3) can be determined by the eigenvalues obtained from matrix 𝐴. There are 

three types of stability from the form (𝐴 − 𝜆𝐼) = 0 [25]:  

1. The equilibrium point 𝑥̃ is asymptotically stable if and only if the real part of 𝜆𝑖 < 0 for each 

 𝑖 = 1,2,… , 𝑘 with 𝑘 ≤ 𝑛. 

2. The equilibrium point 𝑥̃ is stable if and only if the real part of 𝜆𝑖 < 0 for each 𝑖 = 1,2, … , 𝑘 with 

𝑘 ≤ 𝑛, and if there is an eigenvalue 𝜆𝑖 located on the imaginary axis, then the algebraic 

multiplicity must equal the geometric multiplicity for that eigenvalue. 

3. The equilibrium point 𝑥̃ is said to be unstable if and only if there is a real part of 𝜆𝑖 > 0 for 

 𝑖 = 1,2,… , 𝑘 with 𝑘 ≤ 𝑛. 

The stability of a nonlinear differential equation system can be determined by first linearizing the 

given system. Suppose 𝑥′ = 𝑓(𝑥) with 𝑓(𝑥) = (𝑓1(𝑥), … , 𝑓𝑛(𝑥)) and 𝑓(𝑥) is differentiable. The matrix 

𝑱𝒇(𝒙̃) is called the Jacobian matrix of 𝑓 at point 𝑥̃.  

𝑱𝒇(𝒙̃) =

(

 
 

𝝏𝒇𝟏(𝒙̃)

𝝏𝒙𝟏
…

𝝏𝒇𝟏(𝒙̃)

𝝏𝒙𝒏

⋮ ⋱ ⋮
𝝏𝒇𝒏(𝒙̃)

𝝏𝒙𝟏
…

𝝏𝒇𝒏(𝒙̃)

𝝏𝒙𝒏 )

 
 

 (𝟒) 

The system 𝒙′ = 𝑱𝒇(𝒙̃)(𝒙 − 𝒙̃) is the linearization of the nonlinear system 𝒙′ = 𝒇(𝒙) around the point 

𝒙̃ [24]. According to the theorem explained in Wiggins [25], if given the Jacobian matrix, namely 𝑱𝒇(𝒙̃) of a 

nonlinear differential equation system 𝒙′ = 𝒇(𝒙) with eigenvalues 𝝀 as the result of the characteristic 

polynomial |𝑱𝒇(𝒙̃) − 𝝀𝑰| = 𝟎, then two conditions are obtained: (i) Locally asymptotically stable if all the 

real parts of the eigenvalues (𝝀) of the Jacobian matrix resulting from the linearization (matrix 𝑱𝒇(𝒙̃) are 

negative. (ii) Unstable if there is at least one eigenvalue (𝝀) of the Jacobian matrix 𝑱𝒇(𝒙̃) whose real part is 

positive. 
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2.3 Sensitivity Analysis 

The values of parameters in a mathematical model are often not precisely determined due to limitations 

in available data, such as incomplete data. Therefore, to identify the most influential parameters in a resulting 

mathematical model, sensitivity analysis can be utilized.  

Definition 1. Let 𝑉 be a variable and 𝑝 be a parameter. The normalized sensitivity index of the variable 𝑉 

with respect to the parameter 𝑝 is defined as [26] : 

𝐶𝑝
𝑉 =

𝜕𝑉

𝜕𝑝
×

𝑝

𝑉
, 

where 𝑽 represents the variable analyzed with respect to the parameter 𝒑. 

3. RESULTS AND DISCUSSION 

This section presents the research findings, including the analysis of the deterministic model, 

equilibrium points, model stability, and parameter sensitivity affecting the dynamics of smartphone addiction. 

3.1 Deterministic Model 

Before constructing a mathematical model to understand the dynamics of smartphone addiction, there 

are some definitions and assumptions to help the reader understand the model. We divide the human 

population into four subpopulations: citizens (C), individuals using smartphones (S), those addicted to 

smartphones (A), and those who have recovered from smartphone addiction (R), where 𝑁(𝑡) = 𝐶(𝑡) +
𝑆(𝑡) + 𝐴(𝑡) + 𝑅(𝑡). The total number of population (N) is assumed to be constant. According to the 

assumptions and definitions, the deterministic model of smartphone addiction, called CSAR, is shown in Fig. 

1. 

 
Figure 1. CSAR Model 

Fig. 1 describes the transitions of individuals from C to S to A to R. Each arrow pointing towards the 

inside of the compartment represents a positive term in the differential equation, while the arrow pointing 

away from the compartment introduces a negative term. All parameters, 𝜋, 𝛼, 𝜇, 𝛽 and 𝑏, are assumed to be 

non-negative constants with the following interpretations: 𝜋 represents the number of individuals entering the 

citizens class, 𝛼 represents the rate between humans and humans using smartphones, 𝜇 represents the natural 

death rate, 𝛽 represents the transmission rate between humans and addicted individuals, and 𝑏 represents the 

recovery rate from smartphone addiction. In this case, a compartmental model provides a functional means 

of gaining a proper understanding of the dynamics [27]. The system of differential equations for the 

compartmental model in Fig. 1 is given by: 

𝑑𝑆

𝑑𝑡
= −𝜇𝑆 −

𝛽𝑆𝐴

𝑁
+ 𝛼𝐶, 

𝑑𝐴

𝑑𝑡
= −𝜇𝐴 − 𝑏𝐴 +

𝛽𝑆𝐴

𝑁
, 

𝑑𝐶

𝑑𝑡
= 𝜋 − 𝜇𝐶 − 𝛼𝐶, (5) 

𝑑𝑅

𝑑𝑡
= −𝜇𝑅 + 𝑏𝐴. 

The domain of the solution from Eq. (5) is Ω = {(𝐶, 𝑆, 𝐴, 𝑅)𝜖𝑅4|0 < 𝐶 + 𝑆 + 𝐴 + 𝑅 ≤ 𝑁} with initial 

conditions 𝐶(0) > 0, 𝑆(0) ≥ 0, 𝐴(0) ≥ 0, and 𝑅(0) ≥ 0. Note that all parameters; 𝜋, 𝜇, 𝛼, 𝛽, and 𝑏 are non-

negatives. See that, 
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𝑑𝑁

𝑑𝑡
=

𝑑𝐶

𝑑𝑡
+

𝑑𝑆

𝑑𝑡
+

𝑑𝐴

𝑑𝑡
+

𝑑𝑅

𝑑𝑡
= 𝜋 − 𝜇(𝐶 + 𝑆 + 𝐴 + 𝑅) = 𝜋 − 𝜇𝑁. 

Since the total population is constant over time, so lim
𝑡→∞

𝑁(𝑡) =
𝜋

𝜇
. 

3.2 Equilibrium Point and Stability 

The qualitative features of model Eq. (5) can be explained through two distinct equilibrium points, 

each representing the dynamic conditions of the population in the context of smartphone addiction. The first 

equilibrium point, 𝐸0, represents the state before the occurrence of the “smartphone addiction outbreak,” 

where the source population (citizens) remains largely unaffected by addiction. Meanwhile, the second 

equilibrium point, 𝐸1, illustrates the state after the “smartphone addiction outbreak,” where a significant 

portion of individuals has transitioned into the addiction compartment (𝐴), thereby influencing the overall 

population dynamics. 

3.2.1 Establishment of the Source Population before “Smartphone Addiction Outbreaks” (𝑬𝟎) 

In this article, the term “smartphone addiction outbreaks” is interpreted in the same way as a disease 

epidemic, where the number of individuals in the addicted sub-population 𝐴(𝑡) reaches a threshold, leading 

to an outbreak. Thus, the meaning of the Establishment of the source population before “smartphone addiction 

outbreaks” is the determination or initial identification of the population before a smartphone addiction 

outbreak occurs. This population serves as the foundation for studying how addiction develops from a state 

of zero addiction (𝐴 = 0) to reach the threshold that triggers the outbreak. The equilibrium point 

 𝐸0 = (𝐶(𝑡), 𝑆(𝑡), 𝐴(𝑡), 𝑅(𝑡)) is represented by: 

𝐸0 = [𝐶 =
𝜋

𝛼 + 𝜇
, 𝑆 =

𝜋𝛼

𝜇(𝛼 + 𝜇)
, 𝐴 = 0, 𝑅 = 0] . (6) 

As shown above, positivity of 𝐸0 is always guaranteed without any terms. 

To investigate the local stability criteria of 𝐸0, first, we introduce the Jacobian matrix of the system in 

Eq. (5) in 𝐸0, namely 𝐽0, which is given by 

𝐽0 =

[
 
 
 
 
 
 
−𝜇 − 𝛼 0 0 0

𝛼 −𝜇 −
𝛼𝛽

𝛼 + 𝜇
0

0 0
𝛼𝛽 − (𝛼 + 𝜇)(𝑏 + 𝜇)

𝛼 + 𝜇
0

0 0 𝑏 −𝜇]
 
 
 
 
 
 

. (7) 

The characteristic polynomial of 𝐽0 to determine their eigenvalues is given by 

𝑃0(𝜆, 𝜔) =
(𝜆 + 𝜇)2(𝜆 + 𝛼 + 𝜇)(𝛼𝑏 − 𝛼𝛽 + 𝛼𝜆 + 𝛼𝜇 + 𝑏𝜇 + 𝜆𝜇 + 𝜇2)

𝛼 + 𝜇
, 

with 𝜆 is the eigenvalue and 𝜔 are all parameters in Eq. (5). Thus, Eq. (7) has three different eigenvalues,  

𝜆1 = −𝜇, 𝜆2 = −𝛼 − 𝜇,  𝜆3 = −
𝜇2 + (𝛼 + 𝑏)𝜇 + 𝛼(𝑏 − 𝛽)

𝛼 + 𝜇
. 

A system of differential equations will always be locally asymptotically stable if all its eigenvalues 

are negative [25]. It can be seen that 𝐸₀  has three distinct eigenvalues, where 𝜆1 and 𝜆2 are always negative, 

while 𝜆3 will be negative if 
𝛼𝛽

(𝛼+𝜇)(𝑏+𝜇)
< 1. Therefore, 𝐸₀ will be stable if this condition is met. 

The stability of this system depends on the condition indicated by the third eigenvalue. If the system 

is stable, meaning it satisfies 
𝛼𝛽

(𝛼+𝜇)(𝑏+𝜇)
< 1, the population will remain in this state without the spread of 

addiction; if unstable, the population at this equilibrium point will be disrupted, causing the system to move 

towards the spread of smartphone addiction. 
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3.2.2 Establishment of the source population after “smartphone addiction outbreaks” (𝑬𝟏) 

The last equilibrium point, where all sub-populations are positive, represents a condition in the system 

where each compartment in the model has a non-zero number of individuals. This type of equilibrium is 

crucial for understanding the long-term behavior of the system, as it indicates the presence of a persistent and 

ongoing addiction within the population. The equilibrium points of this condition, 𝐸1 =
(𝐶(𝑡), 𝑆(𝑡), 𝐴(𝑡), 𝑅(𝑡)) is represented by:  

𝐸1 = (𝐶∗, 𝑆∗, 𝐴∗, 𝑅∗), (8) 

with 

𝐶∗ =
𝜋

𝛼 + 𝜇
, 

𝑆∗ =
(𝑏 + 𝜇)𝜋

𝛽𝜇
, 

𝐴∗ = −
(𝛼𝑏 − 𝛼𝛽 + 𝛼𝜇 + 𝑏𝜇 + 𝜇2)𝜋

(𝑏 + 𝜇)(𝛼 + 𝜇)𝛽
, 

𝑅∗ = −
(𝛼𝑏 − 𝛼𝛽 + 𝛼𝜇 + 𝑏𝜇 + 𝜇2)𝑏𝜋

(𝛼 + 𝜇)(𝑏 + 𝜇)𝜇𝛽
. 

To investigate the local stability criteria of 𝐸1, we introduce the Jacobian matrix of the system in Eq. (5) in 

𝐸1 which is given by: 

𝐽1 =

[
 
 
 
 
 
 

−𝛼 − 𝜇 0 0 0

𝛼(𝛼 + 2𝜇)

𝛼 + 𝜇
− 𝑍1 −

𝑍2𝛽

(𝑏 + 𝜇)
+ 𝑍2 − 𝑍1 −

𝛼𝑏 + 𝑏𝜇 + 𝜇2

𝛼 + 𝜇
− 𝑍1 𝑍2 − 𝑍1

−𝑍2 + 𝑍1

𝑍2𝛽

(𝑏 + 𝜇)
−

(2𝛼 + 𝜇)𝜇

𝛼 + 𝜇
+ 𝑍1 −𝑍2 + 𝑍1 −𝑍2 + 𝑍1

0 0 𝑏 −𝜇 ]
 
 
 
 
 
 

, (9) 

with 𝑍1 =
𝜇(𝑏+𝜇)

𝛽
, and 𝑍2 =

𝛼𝜇

𝛼+𝜇
. 

The characteristic polynomial of 𝐽1 to determine their eigenvalues is given by 

𝑃1(𝜆, 𝜔) = −
(𝜆 + 𝜇)(𝜆 + 𝛼 + 𝜇)(−(𝑏 + 𝜇)(𝛼 + 𝜇)𝜆2 − 𝛼𝛽𝜆𝜇 + 𝜇(𝑏 + 𝜇)(𝛼𝑏 − 𝛼𝛽 + 𝛼𝜇 + 𝑏𝜇 + 𝜇2))

(𝛼 + 𝜇)(𝑏 + 𝜇)
, 

with 𝜆 is the eigenvalue and 𝜔 are all the parameters in equation Eq. (5). All the eigenvalues should be 

negative to guarantee the local stability of 𝐸1. Hence, the existence of an endemic equilibrium is satisfied if 
𝛼𝛽

𝜇(𝛼+𝑏+𝜇)+𝛼𝑏
> 1. Thus, if this condition is met, an endemic state will occur, indicating that smartphone 

addiction will persist and not disappear from the population. 

Based on both cases, the source population before and after “smartphone addiction outbreaks”, the 

stability criteria are dependent on the value of 𝑅0 =
𝛼𝛽

(𝛼+𝜇)(𝑏+𝜇)
. The non-addicted, representing the state 

before “smartphone addiction outbreaks”, will be stable when 𝑅0 < 1 and representing the state after 

“smartphone addiction outbreaks”, will be stable if 𝑅0 > 1. Therefore, the next section will discuss numerical 

simulations to illustrate the dynamics of each strategy and situation, using variations in initial conditions and 

parameters with 𝑅0 < 1 and 𝑅0 > 1. 

The next section will discuss the sensitivity analysis to identify the parameters that influence the 

stability of both cases in this study, specifically the variable 𝑅0. 

3.3 Sensitivity Analysis  

In this model, sensitivity analysis is conducted using a partial derivative approach on key parameters 

to calculate the sensitivity index. The sensitivity index measures the proportional change in the model’s 

solution in response to changes in a specific parameter. In this section, a sensitivity analysis will be conducted 

to identify the parameters that influence the stability of both cases in this study, namely the variable 𝑅0. In 
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this analysis, the parameters examined are 𝛼, 𝛽, and 𝑏. The sensitivity analysis is carried out using Definition 

[26]. The sensitivity index for the parameter 𝛼 is obtained from: 

𝐶𝛼
𝑅0 =

𝜕𝑅0

𝜕𝛼
×

𝛼

𝑅0
, 

𝐶𝛼
𝑅0 =

𝛽 − 𝛼𝛽

(𝑏 + 𝜇)(𝛼 + 𝜇2)
×

𝛼

𝛼𝛽
(𝛼 + 𝜇)(𝑏 + 𝜇)

=
𝜇

𝛼 + 𝜇
. 

The same process is also applied to the other parameters, yielding the following results:  

𝐶𝛽
𝑅0 = 1, 𝐶𝑏

𝑅0 = −
𝑏

𝑏+𝜇
.  

 
The results of the sensitivity analysis indicate the extent to which each parameter influences the basic 

reproduction number 𝑅0, which serves as a key indicator of the potential spread and persistence of smartphone 

addiction in the model. The sensitivity index for the parameter 𝛼 is 𝐶𝛼
𝑅0 =

𝜇

𝛼+𝜇
, suggesting that an increase in 

𝛼 has a positive but less than proportional effect on 𝑅0. In other words, a 1% increase in 𝛼 will result in an 

increase in 𝑅0 of less than 1%, depending on the relative values of 𝛼 and 𝜇. This implies that while 𝛼, 

representing the transition rate into the addicted state, influences the dynamics of addiction; its impact is 

moderated by the recovery or transition-out rate 𝜇. In contrast, the parameter 𝛽 has a sensitivity index of 

𝐶𝛽
𝑅0 = 1, indicating a directly proportional relationship: a 1% increase in 𝛽 leads to a 1% increase in 𝑅0. This 

highlights 𝛽 as the most influential parameter in determining the magnitude of 𝑅0, as it governs the rate of 

contact or transmission of addictive behavior. Meanwhile, the parameter 𝑏 has a negative sensitivity index, 

𝐶𝑏
𝑅0 = −

𝑏

𝑏+𝜇
, indicating that an increase in 𝑏 will decrease 𝑅0. The larger the value of 𝑏, the more substantial 

the reduction in 𝑅0. This underscores the role of 𝑏, which reflects the recovery or cessation rate from addictive 

smartphone use, as a controlling factor in mitigating the spread within the model. 

To illustrate the dynamics of each strategy and situation, a simulation was carried out using various 

parameter values and initial conditions. The first scenario assumes identical initial values but varies the 

transmission rate between smartphone users and addicted individuals (𝛽), encompassing cases where 𝑅0 < 1 

and 𝑅0 > 1. The second scenario involves varying initial values while keeping the beta value constant, 

covering conditions where 𝑅0 < 1 and 𝑅0 > 1. This simulation aims to analyze the impact of parameter 

variation and initial conditions on the spread of smartphone addiction, providing deeper insights into the 

effectiveness of different control approaches. The parameter values used in this study were chosen 

hypothetically for simulation purposes, as there is currently no empirical data available in the literature 

regarding the transmission dynamics of smartphone addiction. These values are not derived from real-world 

observations but are instead selected to illustrate the mathematical behavior of the proposed model. Future 

research is expected to validate and refine these parameters using empirical data once such studies become 

available. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 2. Human Dynamics of Smartphone Addiction with Identical Initial Value but Different Addiction Rate 

(𝜷) for 𝑹𝟎 < 𝟏. The Initial Condition Is Given by 𝑪(𝟎) = 𝟒𝟎𝟎, 𝑺(𝟎) = 𝟑𝟓𝟎,𝑨(𝟎) = 𝟐𝟐𝟎, 𝑹(𝟎) = 𝟑𝟎, Shown 

Respectively in Subfigures: (A) 𝑪(𝒕), (B) 𝑺(𝒕),  (C) 𝑨(𝒕), and (D) 𝑹(𝒕) 

Fig. 2 illustrates the dynamics of the population of citizens, including non-active smartphone users 

𝐶(𝑡), active smartphone users 𝑆(𝑡), addicted individuals 𝐴(𝑡), and recovered individuals 𝑅(𝑡), under the 

condition 𝑅0 < 1, indicating that addiction does not spread widely. Variations in the transmission rate (𝛽) 

show that, with the same initial value, a lower 𝛽 keeps the population of addicted individuals 𝐴(𝑡) consistently 

low. Conversely, a higher 𝛽 results in a temporary spike in 𝐴(𝑡), but the number of addicted individuals 

eventually decreases over time. This indicates that controlling the transmission rate, for example by reducing 

interactions between “healthy” smartphone users and addicted individuals, can prevent spikes in cases and 

accelerate recovery. Therefore, under 𝑅0 < 1, controlling transmission is highly effective in managing the 

spread of addiction. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 3. Human Dynamics of Smartphone Addiction with Identical Initial Value but Different Addiction Rate 

(𝜷) for 𝑹𝟎 > 𝟏. The Initial Condition Is Given by 𝑪(𝟎) = 𝟒𝟎𝟎, 𝑺(𝟎) = 𝟑𝟓𝟎,𝑨(𝟎) = 𝟐𝟐𝟎, 𝑹(𝟎) = 𝟑𝟎, Shown 

Respectively in Subfigures: (a) 𝑪(𝒕), (b) 𝑺(𝒕),  (c) 𝑨(𝒕), and (d) 𝑹(𝒕) 

Fig. 3 illustrates the population dynamics under the condition 𝑅0 > 1, where, with the same initial 

value, smartphone addiction has the potential to spread widely within the population. Variations in the 

transmission rate (𝛽) show that the higher the transmission rate, the faster and more significantly the 

population of addicted individuals 𝐴(𝑡) reaches its peak. This emphasizes the importance of reducing 𝛽 to 

prevent addiction from becoming endemic within the population. 

Fig. 2 and Fig. 3 also show that an increase in 𝛽 can cause the spike to occur more quickly, meaning 

the peak addiction phase happens earlier and individuals in the recovery category 𝑅(𝑡) also increase faster 

after the peak is reached. This suggests that while a higher 𝛽 increases the risk of addiction spreading, the 

dynamic mechanism in the model indicates that the recovery phase also begins sooner. This could be due to 

increased pressure or awareness that encourages addicted individuals to enter the recovery stage immediately 

after the peak of addiction has passed. However, it is important to note that a higher peak of addiction can 

have serious consequences for the population before the recovery phase occurs, so controlling 𝛽 is crucial to 

prevent excessive impacts. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 4. Human Dynamics with Identical Parameter Values but Different Initial Values, All Resulting in 𝑹𝟎 <
𝟏. Initial Values Are Given as (𝟔𝟑𝟎, 𝟑𝟐𝟎, 𝟓𝟎, 𝟎), (𝟒𝟓𝟎, 𝟑𝟔𝟎, 𝟏𝟏𝟎, 𝟖𝟎), (𝟓𝟎, 𝟐𝟓𝟎, 𝟓𝟎𝟎, 𝟐𝟎𝟎) for Initial 1, Initial 2, 

and Initial 3, Respectively. Show in Subfigures : (a) 𝑪(𝒕), (b) 𝑺(𝒕),  (c) 𝑨(𝒕), and (d) 𝑹(𝒕) 

In Fig. 4, when 𝑅0 < 1, variations in initial conditions show that even if the population of addicted 

individuals 𝐴(𝑡) initially high, their number will gradually decrease until it reaches a very low level. 

Differences in initial conditions also affect the time required to achieve stability. Higher initial conditions 

result in a larger addiction peak, but the final trend indicates that the population of addicted individuals can 

still be controlled in the long term. This demonstrates that 𝑅0 < 1 is very effective in preventing the spread 

of addiction, regardless of the high initial conditions. Early intervention remains crucial to accelerate the 

population stabilization process, especially in situations with poor initial conditions. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

  Figure 5. Human Dynamics with Identical Parameter Values but Different Initial Values, All Resulting in 

𝑹𝟎 > 𝟏. Initial Values Are Given as (𝟔𝟑𝟎, 𝟑𝟐𝟎, 𝟓𝟎, 𝟎), (𝟒𝟓𝟎, 𝟑𝟔𝟎, 𝟏𝟏𝟎, 𝟖𝟎), (𝟓𝟎, 𝟐𝟓𝟎, 𝟓𝟎𝟎, 𝟐𝟎𝟎) for Initial 1, 

Initial 2, and Initial 3, Respectively. Show in Subfigures : (a) 𝑪(𝒕), (b) 𝑺(𝒕),  (c) 𝑨(𝒕), and (d) 𝑹(𝒕) 
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Fig. 5 shows that in the condition where 𝑅0 > 1, variations in the initial conditions have a significant 

impact on the spread of addiction. When the initial population of addicts (𝐴(𝑡)) is high, the number of 

addicted individuals reaches a larger peak and takes longer to decrease. Furthermore, recovery 𝑅(𝑡) is also 

slower in populations with high initial conditions. This indicates that in situations where 𝑅0 > 1, poor initial 

conditions can exacerbate the long-term impact of addiction. Therefore, more aggressive interventions are 

necessary to reduce 𝑅0 and mitigate the negative impact of high initial conditions, such as educational 

campaigns, access restrictions, or therapy-based interventions. 

Based on the four figures, it can be concluded that the dynamics of smartphone addiction spread are 

heavily influenced by the value of 𝑅0, the parameter value such as transmission rate (𝛽), and the initial 

conditions of the population. When 𝑅0 < 1, the spread of addiction can be controlled even with poor initial 

conditions, causing the number of addicted individuals 𝐴(𝑡) to gradually decrease until the population 

stabilizes. In contrast, when 𝑅0 > 1, addiction spreads rapidly and can affect a large portion of the population, 

especially if the 𝛽 value is high, or if the initial conditions indicate a large number of addicted individuals. 

The value of 𝛽 plays a significant role in determining the speed of spread and the peak number of addicted 

individuals, where the higher the 𝛽 value, the greater its impact on the population. Additionally, poor initial 

conditions at 𝑅0 > 1 worsen the spread of addiction and prolong the time until stability is achieved. 

Moreover, unfavorable initial conditions when 𝑅0 > 1 not only accelerate the spread but also prolong the 

time required for the system to stabilize. These findings indicate that effective interventions should focus on 

reducing 𝛽, for example through education, awareness campaigns, or restrictions on excessive smartphone 

use, as well as on improving initial conditions by providing early preventive measures. By doing so, the value 

of 𝑅0 can be maintained below unity, ensuring that the spread of smartphone addiction remains under control 

and its long-term impact on the population can be minimized. Therefore, early interventions such as limiting 

interactions between smartphone users and those addicted are crucial to reduce 𝛽 and improve initial 

conditions. With these measures, the spread of addiction can be effectively controlled, minimizing the 

negative impact on the population. 

These results reinforce that the long-term behavior of the system is determined by whether the 

population moves toward an addiction-free equilibrium when 𝑅0 < 1 or toward an endemic equilibrium when 

𝑅0 > 1. In practical terms, this means that maintaining 𝑅0 below unity should be the central objective of 

intervention strategies. Reducing the transmission rate (𝛽) through education, awareness campaigns, or 

restrictions on excessive smartphone use, together with improving initial conditions through preventive 

measures, can significantly decrease the peak number of addicted individuals and accelerate recovery. Such 

efforts not only limit the spread of addiction but also reduce the social and health consequences that arise 

before the recovery phase is reached [28]-[30]. Strengthening these preventive strategies, therefore, provides 

a clear pathway for policymakers and stakeholders to control smartphone addiction at the population level 

and ensure long-term stability. 

4. CONCLUSION 

This study developed a deterministic compartmental model to analyze the dynamics of smartphone 

addiction within a population, incorporating key parameters such as the transmission rate (𝛼), addiction rate 

(𝛽), and recovered rate (𝑏). The results indicate that the basic reproduction number 𝑅0 serves as a crucial 

indicator in determining whether addiction remains under control or spreads widely. When 𝑅0 < 1, the 

number of addicted individuals tends to decrease until the system reaches stability. However, when 𝑅0 > 1, 

there is a significant increase in the addicted population, especially when 𝛽 is high or the initial population 

conditions are unfavorable. Sensitivity analysis shows that 𝛽 has the greatest influence on increasing 𝑅0, 

while 𝑏 contributes to reducing it, highlighting the importance of early intervention. One effective strategy is 

to reduce the interactions between addicted and vulnerable individuals to lower the likelihood of vulnerable 

individuals imitating addictive smartphone use patterns. This can be achieved through education, the 

promotion of positive role models, access restrictions to limit excessive use, and awareness campaigns 

highlighting the risks of addiction. These findings offer a theoretical contribution to understanding 

smartphone addiction as a population-level phenomenon and provide a foundation for more effective 

prevention and recovery policies. Future research is recommended to validate this model using empirical data 

and to develop stochastic approaches that better capture individual behavioral variability. 
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