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1. INTRODUCTION

Air is an important element for living things and is a reference parameter for cleanliness and quality of life
in a city. The air that humans need is air containing oxygen (O2). The availability of clean air is very important
and is needed as an indicator of air quality measurement in a city. Clean and quality air can have a positive
impact on people’s lives in the city. With the increasing number and level of people’s mobility, especially in
big cities, it also affects the quality and condition of the air inside. Three main problems in metropolitan cities
that are unfinished issues are population density, many motorized vehicles, and unplanned industrial
development [1]. Surabaya, the capital city of East Java, is known as the second most populous metropolitan
city in Indonesia after Greater Jakarta [2]. Air quality is a major concern, particularly in urban areas where
traffic is very intense [3]. All human activities that produce exhaust emissions and other types of pollutants have
the potential to decline the quality of the air (environmental degradation) if not balanced with a properly
supported environment.

The impact of this condition is certainly not limited only to numbers or statistics, but also has a direct impact
on the health of the population. Air pollution is one of the most significant environmental challenges of our time
[4]. Primary air pollutants are represented by oxides of nitrogen, carbon monoxide (CO), sulfur dioxide (SO,),
volatile organic compounds (VOCs), and carbonaceous and non-carbonaceous primary particles [5]. Indonesia
has recorded the highest number of premature deaths (over 50,000) associated with air pollution among
countries in Southeast Asia [6]. For the other example, as impact of air pollution on transportation includes
traffic congestion and air flight disruption [7].

Air pollution models have played a pivotal role in furthering scientific understanding and supporting policy
[8]. Several policy changes could help reduce the deleterious components of the exposome and minimize their
effect on respiratory health [9]. The application of air pollution control in the regions refers to the Regulation
of the State Minister of the Environment is in accordance with Number 12 of 2010 [10], and also refers to the
Regional Regulation of Surabaya City Government Number 3 of 2008 about regulations and management of
air pollution, states how emissions from moving sources, non-moving sources, and other sources of interference.
Various efforts have been made by the Surabaya City Government to reduce the figure of the air pollution rate.
Some of them are the realization of a cooperation agreement with Kitakyushu city in Japan [11], and installing
measuring devices that have a high concentration of activities. All these efforts are made to move towards a
smart city. A smart city is a city that implements technology to handle multiple fields in an integrated and
sustainable way [12].

Various advances in technology have assisted human life. From the invention of modern tools, which can
be used to filter air, as used in China. An air filter with nanofiber membrane technology works by eliminating
particulate matter, harmful gases, and other air pollutants from the air that is inhaled by residents [13]. Also,
information technology in the form of Artificial Intelligence (Al) really helps the Surabaya city government in
making decisions.

Machine Learning (ML), as a subset of Artificial Intelligence (Al), has grown rapidly in recent years in the
context of data analysis and computing, which typically enables applications to function in an intelligent way
[14]. Machine learning is also known as a powerful alternative method to analyze time series data, especially
when the data is nonlinear [15]. In recent years, ML has grown significantly in terms of application in various
domains [16]. This study used two algorithms, that is, Extreme Gradient Boosted (XG Boost) and Random
Forest. XG Boost is an algorithm or engineering implementation which is developed from the Gradient Boosted
Decision Tree (GBDT) [17]. XG Boost was first proposed by Chen in 2014 [18].

Random Forest (RF) was one of the ML models of the ensemble [19]. It is an innovation based on bagged
decision trees, which allows split-variable randomization [20]. This method is combined from many trees
forming a forest that is used to analyze and make decisions [21]. Modeling using Random Forest Regression is
considered to provide better performance when compared to that using only one decision tree. Random Forest
is also quite compatible with handling missing values and is able to produce results with a minimum of error.
In accordance with the objective of this research, both methods will be compared for accuracy in predicting air
pollution levels in Surabaya.

From the previous research, in 2021, T Madan et al. conducted research about the prediction of air quality
in Avd. Francia Station [22]. The result is the Mean Squared Error (MSE) value of CO concentration is 0.53,
the MSE value of NO concentration is 29.517, and the MSE value of NO,is 14.85. Still in 2021, Lu J et al. have
conducted research about the prediction of air quality of several cities in China using PM. s parameter [23]. The
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result is that Random Forest showed suitable performance in both time and space (R?= 0.88, RMSE = 11.94
ug/m?3, BIAS = 0.30 ug/m?), which can meet the requirements of air pollution monitoring in urban areas.

JMa et al. in 2020, conducted research on air pollution prediction in Shanghai, China, using the XG Boost
method [24]. The research that has been done successfully and produces renewal that combines the XG Boost
method with Weather Research Forecasting-coupled with Chemistry (WRF-Chem) model. The result is that
XG Boost successfully achieves a higher accuracy of PM_s concentration than the WRF-Chem model. Also in
2020, X Ma et al. conducted research about prediction on outdoor air temperature and humidity using the XG
Boost method. The result shows the satisfactory ability of XG Boost [25]. For application purposes, the XG
Boost method will be integrated into a microcontroller to reduce the cost of implementing energy management.
In 2019, TV Vu et al. conducted research about air quality in Beijing using the Random Forest method [26].
Random Forest successfully produced a deviation value between observed and predicted values of PM,5sin the
range of 0.4% - 7.9% with an average of 1.5%.

2. RESEARCH METHODS
2.1 Dataset

The dataset used in this research was obtained from the Surabaya City air condition data from 01/01/2020
to 31/12/2020. The data used in this study came from daily measurements recorded by a measuring device
installed at an air pollution spot. The dataset contains the names of several pollutants. After the dataset was
obtained, then analyzed statistically to get insight into the real condition. Before in-depth analysis, the data was
cleaned of missing values, outliers, and other noise. This is all to simplify comprehension and improve the
quality of the data to be tested, and to ease the decision of the machine learning model used. An overview of
the research data can be seen in Table 1, and the flow of research methodology in Fig. 1 below.

Table 1. Dataset

Particulate Sulfur Carbon Nitrogen Other
Date Matter Dioxide Monoxide Ozone Dioxigde Pollutant RESULT
01/01/2020 30 20 10 32 9 32 GOOD
02/01/2020 27 22 12 29 8 29 GOOD
03/01/2020 39 22 14 32 10 39 GOOD
04/01/2020 34 22 14 38 10 38 GOOD
05/01/2020 35 22 12 31 9 35 GOOD
06/01/2020 46 23 16 32 9 46 GOOD
07/01/2020 37 23 26 33 11 37 GOOD
08/01/2020 41 26 20 30 11 41 GOOD
09/01/2020 52 23 29 24 12 52 AVERAGE
10/01/2020 24 24 18 25 8 25 GOOD

31/12/2020 18 13 6 24 3 24 GOOD
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Figure 1. Research Methodology
2.2 Exploratory Data Analysis

This research presents a case study on the prediction of air pollution rates based on Ozone (O3)
concentration in the city of Surabaya. The dataset processed consists of 1830 rows and 9 columns. Data is taken
in the time span between 01/01/2020 to 31/01/2020. All data types in the dataset are numeric. The data is

processed to find anomalies such as missing values, user input errors, etc. Below in Fig. 2 is the condition of
the data from its original source.
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Figure 2. Plot of O3 Indicator Value

From the dataset, a statistical analysis can be drawn in the form of a measurement of central tendency, such
as Table 2 below.

Table 2. Measure of Central Tendency

Particulate  Sulfur Carbon Ozon  Nitrogen  Other
Matter Dioxide Monoxide Dioxide Pollutant
mean 48.63 22.84 195 52.93 19.08 57.19
min 3.00 1.00 3.00 1.00 0.00 1.00
max 111.00 112.00 99.00 191.00 213.00 191.00
std 17.42 15.7 17.66 29.94 27.18 30.78
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Figure 3. Plot Average Value of O3 from 01/01/2020 — 31/12/2020

From the plot in Fig. 3, it can be known that the average value of the parameter O3 concentration is the
highest in September 2020 and the lowest in March 2020. After March 2020, a significant increase occurs in
April 2020 and moves dynamically until it touches the highest value in September 2020, and drops back
significantly in October and continues until December 2020.

After that, the data is refined by normalizing the values. The function of this normalization is to equalize

the range of values between 0-1. Below in Eq. (1) is the function to normalize data, namely the Min Max Scaler.
1 Xi— min(x)

max(x) — min(x)

(1)

with x? is a normalized result, min(x) is the minimum value of the attribute and max (x) is the maximum
value of the attribute.

2.3 Feature Selection

In many prediction cases with numerical data, the way to determine the features used as independent
and dependent variables is to use analysis techniques based on the Pearson product-moment correlation.
Below in Eg. (2) is the mathematical function of the Pearson product-moment, and the result of the correlation
analysis is shown in Fig. 4 below.

~ N XY — (X)(Y)
 JNIXZ-3XZNYYZ-YyY?

(2)

Tyxy
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Correlation of Features Based on Pearson Rule
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Figure 4. Correlation Plot

From the correlation plot in Fig. 4 above, it is shown that variable ‘Other Pollutant’ has a correlation
value of 0.94, and variable ‘PM10’ has a correlation value of 0.45. These two variables have a positive
correlation, but the variable ‘Other Pollutant’ has a higher correlation value and is close to 1. Whereas, variable
‘Particulate Matter (PM10)’ also has a positive correlation value, but includes a low positive category. In
selecting independent variables, it is important to pay attention to positive and strong correlation values with
the aim of maximizing predictive value [27]. Both of them were selected to be independent variables that have
an effect on Ozone (O3) as the dependent variable.

2.4 XG Boost Prediction Model

XG Boost first shaped multiple models called Classification and Regression Trees (CART). These
models are applied to predict the data set, and then integrate these trees as a new model. The model will
continue to be iteratively improved, and a new tree model generated in each iteration will fit the residual of
the previous tree [28]. Below is a function of the model XG Boost in Eq. (3).

T
$i= 00 = Y fx) ®3)
t=1

From Eq. (3), it can be explained that x; is the feature of the sample, and f;(x;) uses the t-th tree to
predict the i-th sample. Adding the results together, the final predicted value y; and true label is y;. Then, for
Eq. (4) below is an objective function.

n K
Obj = ;(yi,m + kZ_ln(fk) )

where the first term Y™ . (y;,9;) is the loss function and YX_, Q (f;) is the regular item to control the
complexity and prevent overfitting.

2.5 Random Forest Prediction Model

Random Forest is a learning algorithm that is based on an ensemble of trees [29]. The Random Forest
consists of a set of decision trees which taken randomly from a subset of the training set. Random Forest needs
more processing time, but has better accuracy than other ML algorithms [30]. The formula of the Random Forest
tree isin Eq. (5) as follows:

N = {(x1, y1), (x2,¥2), (xn, ) 3- (5)
This combines with data flows into a Random Forest K-like formulation in Eqg. (6).
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K= {(ki(®), (:(0), (ks }, (6)
where j is the number in the universe of trees. The utility is calculated using the following formula in Eq. (7).
U= {d;.d;,.d;_}, (7
where m is the number in the universe of variables.
X
K(x) = k (d_i>' ®)

2.6 Evaluation Model

At this stage, the model that has been trained and tested is calculated for accuracy based on the resulting
error value. Accuracy is used as a parameter to compare the measurement result by the model and the actual
value obtained before [31]. This study uses the Root Mean Square Error (RMSE) as a method to calculate the
error value resulting from the model. One of the main advantages of using RMSE is to assign a higher weightage
(as it contains a square) to larger errors [32]. The function of the Root Mean Square Error (RMSE) is in Eq. (9)
as follows:

)

3. RESULTS AND DISCUSSION

The following are parameters of XG Boost and Random Forest used to build a prediction model and a data
splitting table.

Table 3. Data Splitting

Splitting Percentage  Number of Data Number of Data
Training Testing

70% : 30% 1281 549

75% : 25% 1372 458

80% : 20% 1464 366

85% : 15% 1555 275

90% : 10% 1647 183

Table 4. XG Boost Model Parameter
n estimator max depth learning rate
100 10 0.03

Table 5. Random Forest Model Parameter
n estimator max depth n jobs
100 10 1

From Table 4 and Table 5, it can be seen that both methods are used. The main difference between the
XGBoost method and Random Forest lies in the learning rate parameter, which helps reduce the loss function
and leads to more optimal prediction results. In addition to the parameter optimization treatment applied to
the XG Boost and Random Forest methods, it also refers to the percentage level of data splitting. This will
be explained in detail in the next section.

3.1 Simulation Result
In this research was conducted implementation of two algorithms from machine learning, namely XG

Boost and Random Forest to forecast air pollution using the Python programming language and comparison
was made based on the method and the difference in the composition of training data and testing data as shown
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in below, where Fig. 5 is the simulation result of the XG Boost and Random Forest algorithms with 70%
training data and 30% testing data.

Comparison Actual & Prediction O3 Indicator Value Period 01/01/2020 - 31/12/2020 ( Tr 70% Ts 30% )
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Figure 5. First Simulation Plot of XG Boost and Random Forest (70% Training Data and 30% Testing Data)

The result of the first simulation, presented in Fig. 5, was conducted by using 70% training data and 30%
testing data, and both methods achieved prediction results close to the actual value shown by the cyan line. The
prediction results of the XG Boost method produced an RMSE value of 0.0510, shown by the red line. Also,
the Random Forest method managed to produce prediction results close to the actual value shown by the black
line. The prediction results of the Random Forest method produced an RMSE value of 0.0469. In this first
simulation, the Random Forest method produced a better RMSE value than the XG Boost method with a slight

difference of 0.0041.
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Figure 6. Second Simulation Plot of XG Boost and Random Forest (75% Training Data and 25% Testing Data)

The result of the second simulation, shown in Fig. 6, was conducted by using 75% training data and 25%
testing data, and both methods achieved prediction results close to the actual value shown by the cyan line. The
prediction results of the XG Boost method produced an RMSE value of 0.0515, shown by the red line. Also,
the Random Forest method managed to produce prediction results close to the actual value shown by the black
line. The prediction results of the Random Forest method produced an RMSE value of 0.0468. In this second
simulation, there was a slight increase in error value in the XG Boost method, while the RF method experienced

a slight decrease in error value.
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Comparison Actual & Prediction O3 Indicator Value Period 01/01/2020 - 31/12/2020 ( Tr 80% Ts 20% )
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Figure 7. Third Simulation Plot of XG Boost and Random Forest (80% Training Data and 20% Testing Data)

The result of the third simulation, illustrated in Fig. 7, was conducted by using 80% training data and
20% testing data, and both methods achieved prediction results close to the actual value shown by the cyan line.
The prediction results of the XG Boost method produced an RMSE value of 0.0528, shown by the red line.
Also, the Random Forest method managed to produce prediction results close to the actual value shown by the
black line. The prediction results of the Random Forest method produced an RMSE value of 0.0481.

Comparison Actual & Prediction O3 Indicator Value Period 01/01/2020 - 31/12/2020 ( Tr 85% Ts 15% )
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Figure 8. Fourth Simulation Plot of XG Boost and Random Forest (85% Training Data and 15% Testing Data)
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As shown in Fig. 8, the fourth simulation was conducted by using 85% training data and 15% testing data,
and both methods achieved prediction results close to the actual value shown by the cyan line. The prediction
results of the XG Boost method produced an RMSE value of 0.0514, shown by the red line. Also, the Random
Forest method managed to produce prediction results close to the actual value shown by the black line. The
prediction results of the Random Forest method produced an RMSE value of 0.0471.
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Comparison Actual & Prediction O3 Indicator Value Period 01/01/2020 - 31/12/2020 ( Tr 90% Ts 10% )
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Figure 9. Fifth Simulation Plot of XG Boost and Random Forest (90% Training Data and 10% Testing Data)

The result of the fifth simulation, shown in Fig. 9, was conducted by using 90% training data and 10%
testing data, and both methods achieved prediction results close to the actual value shown by the cyan line. The
prediction results of the XG Boost method produced an RMSE value of 0.0556, shown by the red line. Also,
the Random Forest method managed to produce prediction results close to the actual value shown by the black
line. The prediction results of the Random Forest method produced an RMSE value of 0.0490.

From the first simulation until the fifth simulation, the XG Boost method produced an RMSE value in
the range of approximately 0.5% and the Random Forest method produced an RMSE value of approximately
0.4%, not until reaching 0.5% or more consistently. The following is a recapitulation table of the simulation
results of the XG Boost method and the Random Forest method, respectively, shown below.

Table 6. RMSE Comparison Value of XG Boost and Random Forest

Composition of RMSE Value of RMSE Value of
Training Data and XGBoost Random Forest
Testing Data
70% : 30% 0.0510 0.0469
75% : 25% 0.0515 0.0468
80% : 20% 0.0528 0.0481
85% : 15% 0.0514 0.0471
90% : 10% 0.0556 0.0490

The simulation results generated by the XG Boost method and the Random Forest method of the first
simulation through the fifth simulation are presented in Table 6. On the results of the simulations with the 70%
training data and 30% testing data, the XG Boost successfully produced the lowest RMSE values of all
simulations. The XG Boost method produced the best RMSE value of 0.0510. From each simulation, it is shown
that the XG Boost method consistently produces RMSE values in the range 0.0510 to 0.0556. It means that the
overall simulation processed by the XG Boost method is approaching the actual value.

On Random Forest method, with 75% data training and 25% data testing, successfully produced the
lowest RMSE value of all simulations. The Random Forest method produced the best RMSE value of 0.0468.
From each simulation, it could be seen that the Random Forest method consistently produces an RMSE value
in the range 0.0468 to 0.0490. Both of them consistently produce simulation results that approach the actual
value. This shows that in this research, the Random Forest method shows better performance than the XG Boost
method, although at each stage of the simulation, it can be seen that both methods produce good values below
1% and are possible to be applied by the city government or related stakeholders as decision decision-supporting
application.

4. CONCLUSION

Based on the results of the simulations conducted, it can be concluded that the results of the first to
third simulations using the XG Boost method managed to get the best prediction error value (RMSE) of
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0.0510 in the first simulation, with a split of 70% training data and 30% testing data. While the Random
Forest method managed to get the best prediction error value (RMSE) of 0.0469, also in the first simulation.
By this study, also known that parameters from each method have significant results when performing
prediction. Tuning of parameters has been an important part to notice, besides other factors. These results
prove that the XG Boost and Random Forest methods provide good and consistent prediction results, so both
methods have fulfilled the objective of this study and can be recommended for further study by using another
optimizing default parameter or using an evolutionary algorithm like Genetic Algorithm or Particle Swarm
Optimization to improve parameters for better results. In addition, the implication of this study enhances the
academic sphere by delineating the efficacy outcomes of XG Boost and the Random Forest method, and
another further purpose is to assist the local government in providing information on proper air conditioning
to the public.
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