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Article Info ABSTRACT 

Article History: 
Air pollution presents a substantial threat to human health, especially in urban areas like 

Jakarta, Indonesia, which ranked eleventh worldwide for poor air quality and urban 

pollution in mid-2025. This study is conducted with the objective of forecasting air quality 

over a designated future period by employing two advanced machine learning techniques: 

the Extreme Learning Machine (ELM) and its kernel-based variant, the Kernel Extreme 

Learning Machine (K-ELM). These methodologies are applied to predict the concentrations 

of five features of pollutants—PM10 (Particulate Matter), SO2 (Sulfur Dioxide), CO 

(Carbon Monoxide), O3 (Ozone), and NO2 (Nitrogen Dioxide)—which are critical 

indicators of environmental air quality and have significant implications for human health 

and environmental sustainability. Both methods are evaluated for their efficiency in time 

series regression, with a focus on training speed and generalization performance. The 

results demonstrate that the K-ELM model, especially when utilizing a Laplacian kernel, 

outperforms the standard ELM in predicting air quality based on the air quality index (AQI) 

dataset. Performance metrics indicate that K-ELM achieves superior accuracy, with an 

RMSE of 0.041, MSE of 0.002, MAE of 0.019, and an R-squared value of 0.898, confirming 

its effectiveness for air quality prediction in Jakarta. Furthermore, the Nemenyi post-hoc 

analysis across all metrics showed that K-ELM with the Laplacian kernel consistently 

achieved the highest rank and exhibited statistically significant improvements in multiple 

pairwise comparisons. 
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1. INTRODUCTION 

Air quality has emerged as a significant concern in modern society, driven by factors such as rapid 

urbanization, industrialization, and population growth [1], [2]. Poor air quality has significant implications 

for human health, particularly concerning respiratory [3], leading to increased morbidity and mortality. 

Studies also show that pollution is a major, yet often overlooked, risk factor for cardiovascular disease, 

accounting for over 60% of pollution-related deaths globally [4]. Additionally, it exerts adverse effects on 

environmental conditions and climate systems [5]. Accurate and timely air quality prediction is crucial for 

public health planning, environmental protection, and regulatory decision-making [6], [7]. Air quality 

prediction provides the estimation of concentration levels for multiple air pollutants, including particulate 

matter (PM2.5, PM10) [8], nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), and ozone 

(O3) [9], [10]. The concentration of these pollutants is affected by various dynamic factors, such as weather 

conditions, emissions from vehicles, industries, and changing seasons, making air quality forecasting a 

complex and challenging task [11]-[13]. 

The recent developments in data collection methods, including satellite observations, ground-based 

sensors, and IoT networks, alongside the development of machine learning techniques, have led to notable 

enhancements in the accuracy and scope of air quality prediction systems [14], [15]. According to IQAir, 

Jakarta was ranked eleventh among the world’s most polluted cities in the world in May 2025. Its AQI (Air 

Quality Index) was 114, indicating unhealthy air quality, especially for vulnerable groups [16]. The policy 

note, developed by the Low Carbon Development Indonesia (LCDI) initiative under the Ministry of National 

Development Planning (Bappenas), highlights that air pollution from the transportation sector is a major 

contributor to premature deaths and respiratory illnesses in Indonesia. It calls for urgent action through 

cleaner transportation technologies and integrated urban planning to protect public health and support 

sustainable development [17].  

Machine Learning (ML), a branch of Artificial Intelligence (AI) [18], has become an essential tool in 

the field of air quality prediction. By analyzing large datasets from environmental monitoring systems, 

meteorological records, and urban traffic patterns, ML algorithms can identify complex relationships and 

forecast pollutants such as particulate matter (PM2.5, PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), 

carbon monoxide (CO), and ozone (O3). These predictive capabilities are critical for issuing timely public 

health advisories, supporting evidence-based urban planning, and informing environmental policy decisions. 

Recent advancements in air quality prediction have significantly enhanced the ability to issue timely public 

health advisories, support urban planning, and inform environmental policy decisions. One notable 

development is AirNet, a machine learning-based model that forecasts air quality across more than 23,000 

cities using algorithms like Random Forest and SVM. It provides real-time alerts through a web interface, 

helping mitigate health risks and guide environmental strategies [19]. Another cutting-edge approach is a 

2025 study that combines Long Short-Term Memory (LSTM) networks with Transformer architectures to 

achieve high-precision urban air quality predictions. This hybrid model is particularly valuable for proactive 

health interventions and city planning [20]. 

This paper presents a comparison of Machine Learning methods for prediction, specifically focusing 

on the Extreme Learning Machine (ELM) and the Kernel Extreme Learning Machine (K-ELM). The Extreme 

Learning Machine is structured as a feed-forward artificial neural network featuring a single hidden layer, 

and it is also known as a single hidden layer feed-forward neural network (SLFN) [21]. ELM has 

demonstrated effective outcomes as a learning technique for addressing regression and classification 

problems [22]. Kernel Extreme Learning Machine (K-ELM) represents an advancement of the Extreme 

Learning Machine (ELM) methodology. Despite its high performance, ELM exhibits limitations in producing 

unstable prediction results [23]. The quantity of hidden neurons has a direct impact on the accuracy of 

outcomes. Research findings indicate that K-ELM demonstrates superior prediction accuracy compared to 

ELM [24]. K-ELM demonstrates the capability to address the variation issue arising from the random weights 

and biases established in ELM, while concurrently preserving the efficiency of the learning process [25]. 

The implementation of the ELM and KELM methods in the regression process aims to facilitate air 

quality predictions for a specified future timeframe. Recent investigations into air quality prediction 

demonstrate that Extreme Learning Machine (ELM) and its kernel variant (KELM) achieve notable 

generalization performance, offering advantages such as robust modeling [26], reliable forecasting [27], high 

computational efficiency [28], effective feature-based analysis [29], adaptive intelligent control strategies 

[30], and enhanced capabilities for environmental monitoring [31]. In this paper, we present a study aimed at 
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determining the accuracy of predicting air quality data in DKI Jakarta through the application of Extreme 

Learning Machine (ELM) and Kernel Extreme Learning Machine (K-ELM) methodologies. The evaluation 

results of Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and 

R-Squared are compared between the Extreme Learning Machine (ELM) and Kernel Extreme Learning 

Machine (K-ELM) algorithms. This research focuses on predicting air quality through the analysis of five 

particles in the air concentration, such as PM10 (Particulate Matter), SO2 (Sulfur Dioxide), CO (Carbon 

Monoxide), O3 (Ozone), and NO2 (Nitrogen Dioxide). The dataset utilized in this research is the AQI dataset 

sourced from Jakarta Open Data, available as open source from the years 2017 to 2022.  The dataset comprises 

2.191 rows of data pertaining to five regions in DKI Jakarta: DKI1 (Bundaran HI), DKI2 (Kelapa Gading), 

DKI3 (Jagakarsa), DKI4 (Lubang Buaya), and DKI5 (Kebon Jeruk). The values of the five particles serve as 

features in the machine learning regression analysis conducted in this study. This study contributes by 

highlighting the comparative performance of different kernel functions in KELM against ELM for air quality 

prediction using Jakarta’s AQI dataset, offering new insights into the most effective prediction modeling. 

2. RESEARCH METHODS 

The Extreme Learning Machine is structured as a feed-forward artificial neural network featuring a 

single hidden layer, commonly known as a single hidden layer feed-forward neural network (SLFN) [21].  In 

prior research, we developed a variant of ELM that emphasizes enhancing generalization performance 

through a control model approach [23], [32], [33]. The ELM algorithm demonstrates an outstanding learning 

speed during dataset training when compared to other algorithms, such as SVM and backpropagation neural 

networks [34].   

2.1 Extreme Learning Machine 

The Extreme Learning Machine (ELM) operates as a batch learning algorithm, meaning it processes 

the entire training dataset simultaneously in a single learning phase rather than incrementally. This approach 

offers several advantages that make ELM particularly suitable for large-scale regression and classification 

tasks. Notably, ELM is characterized by its exceptionally fast training speed, as it eliminates the need for 

iterative weight updates by randomly assigning input weights and biases and analytically determining output 

weights [35]. This simplicity in implementation reduces computational complexity and avoids issues such as 

local minima. Despite its straightforward architecture, ELM demonstrates strong generalization performance, 

especially when the number of hidden nodes is appropriately configured. Furthermore, its scalability and 

efficiency in handling large datasets make it a practical choice for real-time applications. 

The ELM process is a batch learning process that learns all datasets in one go. Fig. 1 is the architecture 

of the Extreme Learning Machine (ELM). The output of a Single Layer Feedforward Neural Network (SLFN) 

with 𝐿 hidden nodes, given an input vector 𝐱𝒋 and 𝑁 training samples, is computed as the weighted sum of 

the outputs of the hidden layer nodes. Each hidden node applies an activation function to a linear combination 

of the input vector and a bias term. The formulation can be expressed as: 

𝑓𝐿(𝐱𝑗) = ∑ 𝑔(𝐰𝑖 ∙ 𝐱𝑗  +  𝑏𝑖)𝛽𝑖,

𝐿

𝑖

   𝑗 = 1, … , 𝑁, (1) 

where 𝑓𝐿(𝐱𝑗) is the predicted output for the input vector 𝐱𝑗 from 𝑗-th training sample, 𝐿 is the number of 

hidden nodes in the network, 𝛽𝑖 is the output weight connecting the 𝑖-th hidden node to the output node, 𝑔(·) 

is the activation function (such as sigmoid, ReLU, or radial basis function), 𝐰𝑖 is the weight vector connecting 

the input layer to the 𝑖-th hidden node, 𝑏𝑖 is the bias term for the 𝑖-th hidden node, and 𝐱𝑗 is the input vector. 

Eq. (1) can be written as 𝐟(𝐱) = 𝐡(𝐱)𝛃, where 𝐡(𝐱) denotes the hidden layer feature mapping, and 𝛃 =
[𝛽1 ⋯ 𝛽𝑁]𝑇 [36]. Given the corresponding target from training samples, 𝐓 = [𝑡1 ⋯ 𝑡𝑁]𝑇, we have 

𝐇𝛃 = 𝐓, where 𝐇 = [
𝑔(𝐰1 ∙ 𝐱1  +  𝑏1) ⋯ 𝑔(𝐰𝐿 ∙ 𝐱1  +  𝑏𝐿)

⋮ ⋱ ⋮
𝑔(𝐰𝐿 ∙ 𝐱𝑁   +  𝑏𝐿) ⋯ 𝑔(𝐰𝐿 ∙ 𝐱𝑁   +  𝑏𝐿)

]. 
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2.2 Kernel-Extreme Learning Machine 

The flexibility of ELM also allows it to be adapted to various domains, including time-series 

forecasting, image recognition, and environmental modeling, particularly when extended through kernel-

based methods such as Kernel ELM. In the newly developed ELM kernel, a positive regularization coefficient 

is introduced into the learning system to make it more stable [37]. Assuming 𝐇𝐓𝐇 is non-singular, the 

coefficient 
𝐈

𝐶
 is added to the diagonal of 𝐇𝑇𝐇 in the calculation of the output weight 𝛃. The resulting solution 

is more stable, and with better generalization performance, we can have 𝛃 = 𝐇𝑇 (
𝐈

𝐶
+ 𝐇𝐇𝑇)

−1
.  

 

Figure 1. Architecture of Extreme Learning Machine (ELM) 

The function corresponding to the regularized ELM is: 

𝐟(𝐱) = 𝐡(𝐱)𝛃 = 𝐡(𝐱)𝐇𝑇 (
𝑰

𝐶
+ 𝐇𝐇𝑇)

−𝟏

𝐓, (2) 

where 𝐶 is a regularization coefficient. It can be seen in ELM that the kernel matrix for ELM can be defined 

as follows. Suppose 𝛀𝐄𝐋𝐌 = 𝐇𝐇𝐓, 𝛀𝐄𝐋𝐌𝐢,𝐣
= 𝐡(𝐱𝐢)𝐡(𝐱𝐣) = 𝐊(𝐱𝐢, 𝐱𝐣). The ELM output function can be 

written concisely as: 

𝐟(𝐱) = 𝐡(𝐱)𝐇𝑇 (
𝐈

C
+ 𝐇𝐇𝐓)

−𝟏

𝐓 = [
𝐊(𝐱, 𝐱𝟏)

⋮
𝐊(𝐱, 𝐱𝐍)

]

𝑇

(
𝐈

𝐶
+ 𝛀𝐄𝐋𝐌)

−𝟏

𝐓. (3) 

In this implementation, the hidden layer feature mapping 𝐡(𝐱) does not need to be known by the user; 

instead, the corresponding kernel 𝐊(𝐱, 𝐱𝟏) can be calculated. The following is the architecture of the Kernel 

Extreme Learning Machine (K-ELM), as illustrated in Fig. 2.  

 

Figure 2. Architecture of Extreme Learning Machine (ELM) 
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The Kernel Extreme Learning Machine (K-ELM) is utilized to predict air quality indicators based on 

environmental data, leveraging its strong generalization capabilities on datasets. The methodology involves 

constructing a kernel matrix from the input data, selecting an appropriate kernel function along with its 

parameters, and solving a regularized least squares problem to determine the output weights. This method 

improves predictive accuracy while retaining the computational efficiency characteristic of the original ELM 

model. 

2.3 Data Pre-processing 

To perform regression using machine learning methods, it is essential to first examine the dataset. The 

AQI dataset used in this study contains missing values, which are addressed using the KNN Imputer from the 

scikit-learn library. This method is chosen for its effectiveness and accuracy compared to other imputation 

techniques. After the imputation process, the dataset is normalized using Min-Max Scaling to ensure 

compatibility with machine learning algorithms. This scaling enables effective prediction using the Extreme 

Learning Machine (ELM) and Kernel Extreme Learning Machine (K-ELM) method. 

2.4 Utilizing Kernel 

The kernel function can calculate the inner product directly on the higher-dimensional space (feature 

space) without the need to understand the mapping function from the input space to the feature space. In other 

words, the kernel function is the inner product function in the feature space. Choosing the right kernel will 

improve the performance of machine learning. RBF, Laplacian, Linear, Sigmoid, and Cosine kernels are 

some popular kernel functions. In this research, we further evaluate different types of kernel functions to 

examine their impact on the learning performance of the model. The selected kernel functions are as follows. 

1. Radial Basic Function (RBF) Kernel 

𝐊(𝐱𝑖, 𝐱𝑗)
𝐫𝐛𝐟

= 𝐞𝐱𝐩 (−
‖𝐱𝑖 − 𝐱𝑗‖

𝟐

𝟐𝛔𝟐
) , (1) 

where 𝐱𝑖 and 𝐱𝑗 are input vectors (data points), ‖𝐱𝑖  −  𝐱𝑗‖
2
 is the squared Euclidean distance 

between the two vectors, and sigma is a parameter that controls the width of the Gaussian function. 

The purpose of the RBF kernel is to measure similarity between points; closer points have higher 

values. 

2. Laplacian Kernel 

𝐊(𝐱𝑖 , 𝐱𝑗)
𝐥𝐚𝐩

= 𝐞𝐱𝐩(−𝛾|𝐱𝑖 − 𝐱𝑗|) , (2) 

where 𝐱𝑖 and 𝐱𝑗 are input vectors (data points), ‖𝐱𝑖  −  𝐱𝑗‖ is the Euclidean distance between the 

two vectors, 𝛾 is a kernel parameter that affects the decay rate of the exponential function. The 

purpose of the Laplacian kernel is similar to the RBF kernel but with a sharper drop-off in 

similarity. 

3. Linear Kernel 

𝐊(𝐱𝑖, 𝐱𝑗)
𝐥𝐢𝐧

= (𝐱𝑖 ⋅ 𝐱𝑗), (3) 

where 𝐱𝑖 and 𝐱𝑗 are input vectors (data points), 𝐱𝑖 ∙ 𝐱𝑗 is the dot product of the two vectors. The 

purpose of the Linear kernel is to measure linear similarity between points. 

4. Sigmoid Kernel 

𝐊(𝐱𝑖, 𝐱𝑗)
𝐬𝐢𝐠

= 𝐭𝐚𝐧𝐡(𝛼(𝐱𝑖 ⋅ 𝐱𝑗) + 𝑐) , (4) 

where 𝐱𝑖 and 𝐱𝑗 are input vectors (data points), 𝛼 is the slope parameter that scales the dot product, 

𝑐 is the offset or bias term, tanh is the hyperbolic tangent function. The purpose of the Sigmoid 

kernel is to mimic the behavior of neural networks and can be used for nonlinear classification. 
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5. Cosine Kernel 

𝐊(𝐱𝑖, 𝐱𝑗)
𝐜𝐨𝐬

=
𝐱𝑖 ⋅ 𝐱𝑗

|𝐱𝑖||𝐱𝑗|
, (5) 

where 𝐱𝑖 and 𝐱𝑗 are input vectors (data points), 𝐱𝑖 ∙ 𝐱𝑗 is the dot product of the two vectors, ‖𝐱𝑖‖ 

and ‖𝐱𝑗‖ are the norms (magnitudes) of the vectors. The purpose of the Cosine kernel is to 

measure the cosine of the angle between two vectors, which is useful when the magnitude is less 

important than the direction. 

2.5 Training Process 

The dataset in this study is partitioned using the 𝑘-Fold Cross-Validation method [38], as illustrated in 

Fig. 3. This technique involves randomly dividing the original dataset into 𝑘 equally sized subsets or “folds.” 

In this paper, the number of folds is set to five (𝑘 =  5), meaning the model is trained and evaluated five 

times, each time using a different fold as the test set and the remaining folds as the training set. This results 

in an 80:20 ratio between training and testing data in each iteration. The training process of the K-ELM 

method begins with kernel initialization, followed by the assignment of the regularization coefficient (𝐶) and 

kernel parameter, which influence the shape and behavior of the kernel function. The kernel function is then 

computed to generate the training data’s kernel matrix, denoted as ΩKELM, as defined in Eq. (9). 

1. Kernel initialization, coefficient values (𝐶), and a kernel parameter that controls the shape of the 

kernel function. 

2. Calculation of the kernel function to form the training data omega matrix (ΩKELM). The matrix 

form can be seen in Eq. (9). 

ΩKELM = [
𝐊(𝐱𝟏, 𝐱𝟏) ⋯ 𝐊(𝐱𝟏, 𝐱𝐍)

⋮ ⋱ ⋮
𝐊(𝐱𝐍, 𝐱𝟏) ⋯ 𝐊(𝐱𝐍, 𝐱𝐍)

]

𝑵×𝑵

, (6) 

where N is the number of training data, 𝐊(𝐱𝐢, 𝐱𝐣) is the kernel function of 𝑖-th data and 𝑗-th data. 

This paper applies the RBF kernel function [39], the Laplacian kernel function [35], the Linear 

kernel function [40], Sigmoid, and Cosine kernel functions [41] formulated in Eqs. (4)-(8). 

3. Calculate the output weight (𝛃) value with Eq. (10) as follows 

𝛃 = (
𝐈

𝐶
+ ΩKELM)

−𝟏

𝐓, (7) 

where, ΩKELM is the omega matrix of the training data, (
𝐈

𝐶
+ ΩKELM)

−1
 is the inverse operation of 

the matrix, 𝐈 is the identity matrix, 𝐶 is the regularization of parameters or coefficients, and 𝐓 is 

the target training data. 

 

Figure 3. 𝒌-Fold Cross-Validation  
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2.6 Testing 

The objective of this process is to evaluate the implementation of the K-ELM technique based on the 

training conducted in the previous stage. The following outlines the steps involved in the K-ELM testing 

procedure. 

1. Retrieve the output weight value from the training process. 

2. The calculation of the kernel function is to form the testing data omega matrix (ΩKELM). The 

matrix form can be seen in Eq. (11). 

ΩKELM = [
𝐊(𝐱, 𝐱𝟏)

⋮
𝐊(𝐱, 𝐱𝐍)

]

𝑁×𝑁

𝑇

, (8) 

where, 𝐾(𝑥, 𝑥1) is the kernel function of the 𝑗-th pair of testing data and training data  

𝑗 =  1,2, . . , 𝑁. 

3. Calculate the output target value using Eq. (12). 

𝒚̂ = 𝛀𝐊𝐄𝐋𝐌 𝛃, (9) 

where, 𝒚̂ is the target output, ΩKELM is the testing data omega matrix, 𝛃 is the output weight matrix. 

2.7 Denormalization 

The denormalization process is intended to convert normalized values back to their original scale in 

the AQI dataset. This involves restoring the data using the original minimum and maximum values. The 

formula used for denormalization is presented in Eq. (13). 

𝑑 = 𝑑′(𝑚𝑎𝑥−𝑚𝑖𝑛) + 𝑚𝑖𝑛, (10) 

where, 𝑑 is the normalized value of the prediction, 𝑑′ is the denormalized value, 𝑚𝑖𝑛 is the smallest value in 

each input feature, 𝑚𝑎𝑥 is the largest value in each input feature. 

2.8 Evaluation 

Prediction performance can be evaluated using standard model assessment metrics. In this study, the 

evaluation is conducted using Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean 

Absolute Error (MAE), and the Coefficient of Determination (R²). For MSE, RMSE, and MAE, lower 

values—ideally approaching zero—indicate better model performance. In contrast, for R², values closer to 1 

signify a stronger correlation between predicted and actual values, reflecting higher predictive accuracy.  

The pipeline process for the comparative study of KELM-based air quality prediction is shown in Fig. 

4. The pipeline process begins with preprocessing, where the input data are normalized, and missing values 

are handled to ensure data quality. The dataset is then subjected to K-fold cross-validation during the splitting 

phase to improve model robustness and reduce overfitting. In the training stage, the Kernel Extreme Learning 

Machine (KELM) is applied with appropriate kernel selection and hyperparameter tuning. Finally, the 

model’s performance is assessed in the evaluation stage using common metrics such as MAE, RMSE, and 

R². 

 
Figure 4. The Pipeline on Comparative Study of KELM-Based Air Quality Prediction 

3. RESULTS AND DISCUSSION 

This study presents the evaluation results of the prediction performance matrices for the Extreme 

Learning Machine (ELM) and Kernel Extreme Learning Machine (K-ELM) methods. In the ELM-based 

prediction algorithm, key parameters include the number of hidden neurons and the choice of activation 

functions. Meanwhile, the parameters used in the prediction algorithm using the K-ELM method are kernel, 
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regularization coefficient (𝐶), and kernel parameter. These parameters affect the results of the machine 

learning model. This can be seen from the evaluation value of the matrix on the prediction results of Extreme 

Learning Machine (ELM) and Kernel Extreme Learning Machine (K-ELM). In addition to the kernel 

function, the Kernel Extreme Learning Machine (K-ELM) method also uses the kernel parameter and 

regularization coefficient (𝐶). A kernel parameter is a parameter that controls the shape of the kernel function 

used in mapping data to a higher feature space. The kernel parameter values for the Laplacian kernel used in 

the prediction process using the Kernel Extreme Learning Machine are 𝛾 = 0.0001, 𝛾 = 0.001, and 𝛾 =
0.01. Regularization coefficient (𝐶) is a parameter that can control the complexity of the model and overcome 

over-fitting. The regularization coefficient values (𝐶) used in the prediction process using Kernel Extreme 

Learning Machine are 10, 20, and 30. The hyperparameters of the KELM model, including 𝛾 and the 

regularization coefficient (𝐶), were tuned using a systematic grid search combined with cross-validation on 

the training dataset. All computations in this project were performed using Google Colaboratory with the 

Python programming language [42]. 

Fig. 5 illustrates PM10 air quality predictions from 2017 to 2023 generated using the Laplacian kernel, 

comparing actual and predicted values for both training and testing datasets. The black and magenta dots 

represent actual and predicted PM10 levels during training, respectively, while the blue and orange lines show 

actual and predicted values during testing. The close alignment between the predicted and actual values in 

both sets indicates that the model effectively learned the data. Furthermore, from Table 1, the learning process 

applied to this dataset is not well-suited for feature mapping using linear and cosine kernels, as these kernels 

are ineffective in separating the data. This inadequacy is evidenced by a negative R² value, which indicates 

poor model performance. The performance metrics for both the training and testing phases are presented in 

Table 1. Among the evaluated kernel functions, the Laplacian kernel demonstrates the best predictive 

performance, as reflected by the lowest error metrics. Fig. 5 presents the PM10 data plot for the DKI4 region, 

generated using the Laplacian kernel. 

 

Figure 5. Plot of PM10 DKI4 K-ELM 

Fig. 6 is the plot of SO2 DKI3 with the Laplacian kernel. The time series plot presents the predicted 

and actual SO₂ concentrations from 2017 to 2023. Actual and predicted values for both training and testing 

phases are shown using distinct color-coded dots. The model effectively captures the overall trend and key 

fluctuations, including peaks in mid-2020 and early 2021. The close alignment between predicted and actual 

values indicates satisfactory model performance and generalization capability for SO₂ air quality forecasting. 

Fig. 7 illustrates the time series plot of carbon monoxide (CO) concentrations in the DKI3 region from 2017 

to 2023, using the Laplacian kernel for prediction. The plot includes four data series: actual training data 

(black dots), predicted training data (magenta dots), actual test data (blue line), and predicted test data (orange 

line). The model demonstrates a strong ability to capture the temporal patterns of CO levels, with the predicted 

values closely aligning with the actual observations in both training and testing phases. This alignment 

indicates that the Laplacian kernel effectively models the underlying structure of the CO data, supporting its 

suitability for air quality forecasting in the DKI3 region. 
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Figure 6. Plot of SO2 DKI3 K-ELM 

 
Figure 7. Plot of CO DKI3 K-ELM 

Fig. 8 presents the time series plot of ozone (O₃) concentrations in the DKI1 region from 2017 to 2023, 

modeled using the Laplacian kernel. The plot includes actual and predicted values for both training and testing 

phases, with black and magenta dots representing actual and predicted training data, respectively, and blue 

and orange lines representing actual and predicted test data. The model effectively captures the temporal 

dynamics of O₃ levels, particularly the elevated concentrations observed between 2017 and early 2020. The 

close alignment between predicted and actual values across both phases indicates that the Laplacian kernel 

provides a reliable fit for forecasting O₃ concentrations in this region. Fig. 9 displays the time series plot of 

nitrogen dioxide (NO₂) concentrations in the DKI2 region from 2017 to 2023, modeled using the Laplacian 

kernel. The plot includes actual and predicted values for both training and testing phases: black and magenta 

dots represent actual and predicted training data, respectively, while blue and orange lines represent actual 

and predicted test data. The model demonstrates a strong ability to replicate the temporal patterns of NO₂ 

concentrations, with predicted values closely following the actual observations across both phases. This 

alignment indicates that the Laplacian kernel effectively captures the underlying structure of the NO₂ data, 

supporting its suitability for air quality prediction in the DKI2 region.  
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Figure 8. Plot of O3 DKI1 K-ELM 

 
Figure 9. Plot of NO2 DKI2 K-ELM 

From Table 1, the performance evaluation of the Extreme Learning Machine (ELM) and Kernel 

Extreme Learning Machine (K-ELM) methods for air quality prediction in Jakarta reveals that K-ELM 

consistently outperforms ELM across all gas types—PM₁₀, O₃, SO₂, NO₂, and CO. Among the various kernel 

functions tested, the Laplacian kernel yields the most accurate results, achieving the lowest RMSE, MSE, 

and MAE values, along with the highest R² scores in both training and testing phases. This indicates its 

superior ability to model nonlinear relationships inherent in air quality data. In contrast, linear and cosine 

kernels generally perform poorly, often resulting in negative or undefined R² values, which reflect inadequate 

model fit. For each pollutant, the Laplacian kernel within the K-ELM framework consistently provides the 

best predictive performance, with R² values reaching as high as 0.898 for SO₂ and 0.700 for NO₂ in the testing 

phase. These findings underscore the effectiveness of kernel-based learning, particularly with the Laplacian 

kernel, in enhancing the accuracy and reliability of air quality forecasting models. 

Table 1. Performance Evaluation on the Regression Task of Air Quality Prediction in Jakarta 

Method 
Evaluation of Training Data Evaluation of Testing Data Kernel 

type 

Gas 

type RMSE MSE MAE R2 RMSE MSE MAE R2 

ELM 0.07 0.005 0.054 0.565 0.076 0.006 0.055 0.142 - 

PM10 

 

 

 

  

K-ELM 

0.045 0.002 0.034 0.788 0.071 0.005 0.053 0.488 Laplacian 

0.062 0.004 0.045 0.621 0.075 0.006 0.056 0.43 RBF 

0.101 0.01 0.079 - 0.102 0.01 0.079 - Linear 

0.097 0.009 0.074 0.062 0.099 0.01 0.076 0.016 Sigmoid 

0.099 0.01 0.074 - 0.102 0.01 0.076 - Cosine 

ELM 0.084 0.007 0.064 0.678 0.077 0.006 0.057 0.161 - O3 
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Method 
Evaluation of Training Data Evaluation of Testing Data Kernel 

type 

Gas 

type RMSE MSE MAE R2 RMSE MSE MAE R2 

K-ELM 

0.047 0.002 0.031 0.861 0.079 0.006 0.051 0.602 Laplacian  

 

 

  

0.066 0.004 0.044 0.713 0.083 0.007 0.056 0.556 RBF 

0.114 0.013 0.83 0.151 0.117 0.014 0.084 0.133 Linear 

0.109 0.012 0.076 0.245 0.11 0.012 0.077 0.225 Sigmoid 

0.13 0.017 0.093 - 0.131 0.017 0.094 - Cosine 

ELM 0.049 0.002 0.033 0.874 0.083 0.007 0.057 0.506 - 

SO2 

 

 

 

  

K-ELM 

0.022 0.001 0.011 0.969 0.041 0.002 0.019 0.898 Laplacian 

0.036 0.001 0.017 0.923 0.043 0.002 0.021 0.889 RBF 

0.145 0.021 0.119 - 0.149 0.022 0.123 - Linear 

0.097 0.009 0.06 0.441 0.097 0.009 0.059 0.44 Sigmoid 

0.137 0.019 0.098 - 0.138 0.019 0.098 - Cosine 

ELM 0.034 0.001 0.024 0.898 0.093 0.009 0.068 0.521 - 

NO2 

 

 

 

  

K-ELM 

0.027 0.001 0.018 0.869 0.041 0.002 0.027 0.7 Laplacian 

0.034 0.001 0.023 0.776 0.043 0.002 0.028 0.676 RBF 

0.091 0.008 0.075 - 0.102 0.01 0.083 - Linear 

0.068 0.005 0.038 0.188 0.068 0.005 0.039 0.187 Sigmoid 

0.072 0.005 0.047 - 0.078 0.006 0.049 - Cosine 

ELM 0.058 0.002 0.042 0.777 0.039 0.002 0.03 0.19 - 

CO 

 

 

 

  

K-ELM 

0.04 0.002 0.024 0.75 0.058 0.003 0.037 0.465 Laplacian 

0.049 0.002 0.032 0.592 0.06 0.004 0.038 0.422 RBF 

0.08 0.006 0.054 - 0.081 0.007 0.055 - Linear 

0.074 0.006 0.047 0.115 0.074 0.006 0.048 0.106 Sigmoid 

0.077 0.006 0.052 - 0.08 0.006 0.053 - Cosine 

For R², the 𝜒² value is 14.04 with a 𝑝-value of 0.003, also suggesting a significant difference in model 

performance. These findings confirm that the choice of kernel function has a meaningful impact on the 

accuracy and reliability of air quality predictions, justifying the use of statistical testing to support model 

selection. We use the significance level threshold (denoted as 𝛼 = 0.05) to determine whether the observed 

differences in model performance across kernel methods are statistically significant. From the test results, all 

four evaluation metrics—RMSE (𝑝 = 0.001), MSE (𝑝 = 0.002), MAE (𝑝 = 0.001), and R² (𝑝 = 0.003)—

have 𝑝-values less than 0.05. This means that the null hypothesis (which assumes no difference in 

performance among the methods) can be rejected for each metric. 

Table 2. Friedman’s ANOVA Test on Air Quality Prediction in Jakarta 

Effects SS df MS 𝛘𝟐 𝒑 > 𝛘𝟐 Evaluation 

Variety 69.1 5 13.82 19.74 0.001 

Fr-Test RMSE Error 18.4 20 0.92 - - 

Total 87.5 29 - - - 

Variety 65.9 5 13.18 18.83 0.002 

Fr-Test MSE Error 21.6 20 1.08 - - 

Total 87.5 29 - - - 

Variety 73.1 5 14.62 20.89 0.001 

Fr-Test MAE Error 14.4 20 0.72 - - 

Total 87.5 29 - - - 

Variety 23.4 3 7.8 14.04 0.003 Fr-Test R2 
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Effects SS df MS 𝛘𝟐 𝒑 > 𝛘𝟐 Evaluation 

Error 1.6 12 0.13 - - 

Total 25 19 - - - 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 10. Performance Comparison of ELM vs. K-ELM Models for Air Quality Prediction in Jakarta (a) 

RMSE comparison, (b) MSE comparison, (c) MAE comparison, and (d) 𝐑𝟐 comparison 

From Table 3, Friedman’s mean rank analysis was utilized to compare the performance of different 

kernel methods across four evaluation metrics: RMSE, MSE, MAE, and R². Friedman’s mean rank is a non-

parametric statistical method used when the data does not meet the assumptions required for parametric tests, 

such as normal distribution or equal variances. From the results, the Laplacian kernel consistently achieved 

the lowest mean ranks across all metrics (RMSE: 1.4, MSE: 1.4, MAE: 1.2, R²: 1.0), indicating superior 

predictive accuracy and model consistency. This suggests that the Laplacian kernel is the most effective 

among the tested methods for capturing the underlying patterns in air quality data. In contrast, the Linear and 

Cosine kernels exhibited the highest mean ranks (e.g., Linear RMSE: 5.6, Cosine RMSE: 5.2), reflecting 

comparatively poor performance. The ELM method, which does not utilize kernel mapping, showed moderate 

performance with mean ranks ranging from 2.4 to 3.2. These findings imply that kernel selection significantly 

influences model performance, with the Laplacian kernel offering the most robust results for regression tasks 

in air quality forecasting. The comparative performance analysis of ELM and Kernel-ELM models across 

multiple air pollutants using RMSE, MSE, MAE, and R² metrics is shown in Fig. 10. 

Table 3. Friedman Mean Rank on Air Quality Prediction in Jakarta 

Methods Fr-Test RMSE Fr-Test MSE Fr-Test MAE Fr-Test R2 Kernel 

ELM 2.6 2.4 2.8 3.2 - 

 1.4 1.4 1.2 1 Laplacian 

 2.4 2.6 2.4 2 RBF 

K-ELM 5.6 5.4 5.8 - Linear 

 3.8 4 3.8 3.8 Sigmoid 

  5.2 5.2 5 - Cosine 
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Another tool for comparing multiple algorithms in non-parametric tests is the Nemenyi test. Nemenyi 

test is a post-hoc statistical test that indicates that there are differences among multiple groups, specifically 

to find which pairs of groups (or algorithms, models, treatments, etc.) are significantly different from each 

other. The critical difference (𝐶𝐷) in the Nemenyi test is a threshold for determining if the difference between 

two groups’ average ranks is statistically significant, calculated from the number of groups, datasets, and 

significance level. The critical difference can be calculated using this formula: 

𝐶𝐷 = 𝑞𝛼√
𝑘(𝑘 + 1)

6𝑁
, (11) 

where 𝑘 is number of algorithms, 𝑁 is number of samples. For 𝛼 = 0.05 and 𝑘 = 6, we have 𝑞𝛼 ≈ 2.850, 

and for 𝑘 = 4, we have  𝑞𝛼 ≈ 2.569. 

Table 4. Nemenyi Test on Air Quality Prediction in Jakarta 

Algorithm 
Nemenyi Test (Average Ranks) 

RMSE MSE MAE R2 

ELM 2.6 2.6 2.8 3.2 

K-ELM (Laplacian) 1.4 1.5 1.2 1 

K-ELM (RBF) 2.4 2.3 2.4 2 

K-ELM (Linear) 5.7 5.6 5.8 - 

K-ELM (Sigmoid) 3.8 4.1 3.9 3.8 

K-ELM (Cosine) 5.1 4.9 4.9 - 
 

  
(a) 

 

(b) 

 

 
 

(c) (d) 

Figure 11. Nemenyi Test Diagram on Evaluation Performance (a). RMSE (𝑪𝑫 = 𝟑. 𝟑𝟕𝟐𝟐, 𝜶 = 𝟎. 𝟎𝟓), (b). MSE 

(𝑪𝑫 = 𝟑. 𝟑𝟕𝟐𝟐, 𝜶 = 𝟎. 𝟎𝟓), (c). MAE (𝑪𝑫 = 𝟑. 𝟑𝟕𝟐𝟐, 𝜶 = 𝟎. 𝟎𝟓) and (d). R2 (𝑪𝑫 = 𝟐. 𝟎𝟗𝟕𝟔, 𝜶 = 𝟎. 𝟎𝟓) 

For the RMSE evaluation, based on the numerical results in Table 4 and Fig.11 (a), the Nemenyi post-

hoc test indicated that K-ELM with the Laplacian kernel achieved the best average rank, followed by K-ELM 

with the RBF kernel and the standard ELM method. With a Critical Difference (𝐶𝐷) of 3.3722, statistically 

significant differences were observed between K-ELM (Laplacian) and K-ELM (Cosine) (rank gap ≈ 3.5) 

and K-ELM (Linear) (rank gap ≈ 4.5), as well as between K-ELM (RBF) and K-ELM (Linear) (rank gap ≈ 

3.8). For the MSE evaluation, based on the numerical results in Table 4 and Fig. 11 (b), the Nemenyi post-

hoc test with a Critical Difference (𝐶𝐷) of 3.3722 revealed that only three pairwise differences were 

statistically significant: K‑ELM (Laplacian) outperformed K‑ELM (Cosine) (rank gap ≈ 3.5 > 𝐶𝐷) and 

K‑ELM (Linear) (rank gap  ≈ 4.5 > 𝐶𝐷), while K‑ELM (RBF) outperformed K‑ELM (Linear) (rank gap ≈ 

3.8 > 𝐶𝐷). All other rank gaps were below the 𝐶𝐷 threshold and therefore not statistically significant. For the 

MAE evaluation, based on the numerical results in Table 4 and Fig. 11 (c), the Nemenyi post-hoc test with a 

Critical Difference (𝐶𝐷) of 3.3722 revealed that only three pairwise differences were statistically significant: 

K‑ELM (Laplacian) outperformed K‑ELM (Cosine) (rank gap ≈ 3.5 > 𝐶𝐷) and K‑ELM (Linear) (rank gap ≈ 

4.5 > 𝐶𝐷), while K‑ELM (RBF) outperformed K‑ELM (Linear) (rank gap ≈ 3.8 > 𝐶𝐷). For the R2 evaluation, 

based on the numerical results in Table 4 and Fig. 11 (d), the Nemenyi post-hoc test with a Critical Difference 

(𝐶𝐷) of 2.0976 revealed that only the comparisons involving the top method were statistically significant: 

K‑ELM (Laplacian) significantly outperformed K‑ELM (Sigmoid) (rank gap ≈ 3.0 > 𝐶𝐷) and ELM (rank gap 
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≈ 2.1 > 𝐶𝐷). These rank gaps exceeded the 𝐶𝐷 threshold, confirming the statistical superiority of the 

Laplacian kernel in these pairwise comparisons. 

4. CONCLUSION 

The study evaluated Extreme Learning Machine (ELM) and Kernel-based ELM (K-ELM) models for 

predicting air quality across five key pollutants (PM10, O₃, SO₂, NO₂, and CO) using four regression metrics: 

RMSE, MSE, MAE, and R². The following summarizes the conclusions of the research conducted: 

1. Among all configurations, K-ELM with the Laplacian kernel consistently outperformed other 

models, demonstrating superior accuracy and generalization across pollutants. 

2. The standard ELM served as a reliable baseline but was generally surpassed by the kernelized 

variants, especially in capturing complex pollutant behaviors. 

3. Specifically, the K-ELM model with a Laplacian kernel provided the most accurate predictions 

for Jakarta’s air quality, outperforming both the standard ELM and other kernel configurations. 

4. This study is limited to data from 2017–2022 with only five pollutant features, and the findings 

may not fully generalize to other regions or conditions, highlighting the need for broader datasets 

in future research. Numerical results on the DKI Jakarta AQI dataset (2017–2022) showed: 

a. ELM: RMSE of 0.083, MSE of 0.007, MAE of 0.057, R² of 0.506. 

b. K-ELM (Laplacian kernel): RMSE of 0.041, MSE of 0.002, MAE of 0.019, R² of 0.898. 

5. The Laplacian kernel consistently ranked highest across all evaluation metrics in the Friedman 

test, with scores indicating its superior performance (1.4 for RMSE and MSE, 1.2 for MAE, and 

1.0 for R²). 

6. Across all evaluation metrics (RMSE, MSE, MAE, and R²), the Nemenyi post-hoc tests confirmed 

that K-ELM with the Laplacian kernel consistently achieved the best average rank and 

demonstrated statistically significant superiority in several pairwise comparisons. 

7. By comparing ELM and KELM, we provide insights into the selection of efficient and reliable 

predictive models that have the potential to strengthen early warning systems and support targeted 

interventions aimed at reducing pollution levels. Air quality prediction performance and model 

accuracy can be improved through the integration of meteorological data, the use of hybrid models 

such as LSTM–KELM, and real-time deployment in future work. 
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