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ABSTRACT

Air pollution presents a substantial threat to human health, especially in urban areas like
Jakarta, Indonesia, which ranked eleventh worldwide for poor air quality and urban
pollution in mid-2025. This study is conducted with the objective of forecasting air quality
over a designated future period by employing two advanced machine learning techniques:
the Extreme Learning Machine (ELM) and its kernel-based variant, the Kernel Extreme
Learning Machine (K-ELM). These methodologies are applied to predict the concentrations
of five features of pollutants—PM10 (Particulate Matter), SO2 (Sulfur Dioxide), CO
(Carbon Monoxide), O3 (Ozone), and NO2 (Nitrogen Dioxide)—which are critical
indicators of environmental air quality and have significant implications for human health
and environmental sustainability. Both methods are evaluated for their efficiency in time
series regression, with a focus on training speed and generalization performance. The
results demonstrate that the K-ELM model, especially when utilizing a Laplacian kernel,
outperforms the standard ELM in predicting air quality based on the air quality index (AQI)
dataset. Performance metrics indicate that K-ELM achieves superior accuracy, with an
RMSE of 0.041, MSE of 0.002, MAE of 0.019, and an R-squared value of 0.898, confirming
its effectiveness for air quality prediction in Jakarta. Furthermore, the Nemenyi post-hoc
analysis across all metrics showed that K-ELM with the Laplacian kernel consistently
achieved the highest rank and exhibited statistically significant improvements in multiple
pairwise comparisons.
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1. INTRODUCTION

Air quality has emerged as a significant concern in modern society, driven by factors such as rapid
urbanization, industrialization, and population growth [1], [2]. Poor air quality has significant implications
for human health, particularly concerning respiratory [3], leading to increased morbidity and mortality.
Studies also show that pollution is a major, yet often overlooked, risk factor for cardiovascular disease,
accounting for over 60% of pollution-related deaths globally [4]. Additionally, it exerts adverse effects on
environmental conditions and climate systems [5]. Accurate and timely air quality prediction is crucial for
public health planning, environmental protection, and regulatory decision-making [6], [7]. Air quality
prediction provides the estimation of concentration levels for multiple air pollutants, including particulate
matter (PM2s, PM1g) [8], nitrogen dioxide (NO.), sulfur dioxide (SO-), carbon monoxide (CO), and ozone
(O3) [9], [10]. The concentration of these pollutants is affected by various dynamic factors, such as weather
conditions, emissions from vehicles, industries, and changing seasons, making air quality forecasting a
complex and challenging task [11]-[13].

The recent developments in data collection methods, including satellite observations, ground-based
sensors, and loT networks, alongside the development of machine learning techniques, have led to notable
enhancements in the accuracy and scope of air quality prediction systems [14], [15]. According to IQAIr,
Jakarta was ranked eleventh among the world’s most polluted cities in the world in May 2025. Its AQI (Air
Quality Index) was 114, indicating unhealthy air quality, especially for vulnerable groups [16]. The policy
note, developed by the Low Carbon Development Indonesia (LCDI) initiative under the Ministry of National
Development Planning (Bappenas), highlights that air pollution from the transportation sector is a major
contributor to premature deaths and respiratory illnesses in Indonesia. It calls for urgent action through
cleaner transportation technologies and integrated urban planning to protect public health and support
sustainable development [17].

Machine Learning (ML), a branch of Artificial Intelligence (Al) [18], has become an essential tool in
the field of air quality prediction. By analyzing large datasets from environmental monitoring systems,
meteorological records, and urban traffic patterns, ML algorithms can identify complex relationships and
forecast pollutants such as particulate matter (PM2s, PM1o), nitrogen dioxide (NOz), sulfur dioxide (SO),
carbon monoxide (CO), and ozone (Os). These predictive capabilities are critical for issuing timely public
health advisories, supporting evidence-based urban planning, and informing environmental policy decisions.
Recent advancements in air quality prediction have significantly enhanced the ability to issue timely public
health advisories, support urban planning, and inform environmental policy decisions. One notable
development is AirNet, a machine learning-based model that forecasts air quality across more than 23,000
cities using algorithms like Random Forest and SVM. It provides real-time alerts through a web interface,
helping mitigate health risks and guide environmental strategies [19]. Another cutting-edge approach is a
2025 study that combines Long Short-Term Memory (LSTM) networks with Transformer architectures to
achieve high-precision urban air quality predictions. This hybrid model is particularly valuable for proactive
health interventions and city planning [20].

This paper presents a comparison of Machine Learning methods for prediction, specifically focusing
on the Extreme Learning Machine (ELM) and the Kernel Extreme Learning Machine (K-ELM). The Extreme
Learning Machine is structured as a feed-forward artificial neural network featuring a single hidden layer,
and it is also known as a single hidden layer feed-forward neural network (SLFN) [21]. ELM has
demonstrated effective outcomes as a learning technique for addressing regression and classification
problems [22]. Kernel Extreme Learning Machine (K-ELM) represents an advancement of the Extreme
Learning Machine (ELM) methodology. Despite its high performance, ELM exhibits limitations in producing
unstable prediction results [23]. The quantity of hidden neurons has a direct impact on the accuracy of
outcomes. Research findings indicate that K-ELM demonstrates superior prediction accuracy compared to
ELM [24]. K-ELM demonstrates the capability to address the variation issue arising from the random weights
and biases established in ELM, while concurrently preserving the efficiency of the learning process [25].

The implementation of the ELM and KELM methods in the regression process aims to facilitate air
quality predictions for a specified future timeframe. Recent investigations into air quality prediction
demonstrate that Extreme Learning Machine (ELM) and its kernel variant (KELM) achieve notable
generalization performance, offering advantages such as robust modeling [26], reliable forecasting [27], high
computational efficiency [28], effective feature-based analysis [29], adaptive intelligent control strategies
[30], and enhanced capabilities for environmental monitoring [31]. In this paper, we present a study aimed at
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determining the accuracy of predicting air quality data in DKI Jakarta through the application of Extreme
Learning Machine (ELM) and Kernel Extreme Learning Machine (K-ELM) methodologies. The evaluation
results of Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and
R-Squared are compared between the Extreme Learning Machine (ELM) and Kernel Extreme Learning
Machine (K-ELM) algorithms. This research focuses on predicting air quality through the analysis of five
particles in the air concentration, such as PMso (Particulate Matter), SO, (Sulfur Dioxide), CO (Carbon
Monoxide), Os (Ozone), and NO- (Nitrogen Dioxide). The dataset utilized in this research is the AQI dataset
sourced from Jakarta Open Data, available as open source from the years 2017 to 2022. The dataset comprises
2.191 rows of data pertaining to five regions in DKI Jakarta: DKI1 (Bundaran HI), DKI2 (Kelapa Gading),
DKI3 (Jagakarsa), DKI4 (Lubang Buaya), and DKI5 (Kebon Jeruk). The values of the five particles serve as
features in the machine learning regression analysis conducted in this study. This study contributes by
highlighting the comparative performance of different kernel functions in KELM against ELM for air quality
prediction using Jakarta’s AQI dataset, offering new insights into the most effective prediction modeling.

2. RESEARCH METHODS

The Extreme Learning Machine is structured as a feed-forward artificial neural network featuring a
single hidden layer, commonly known as a single hidden layer feed-forward neural network (SLFN) [21]. In
prior research, we developed a variant of ELM that emphasizes enhancing generalization performance
through a control model approach [23], [32], [33]. The ELM algorithm demonstrates an outstanding learning
speed during dataset training when compared to other algorithms, such as SVM and backpropagation neural
networks [34].

2.1 Extreme Learning Machine

The Extreme Learning Machine (ELM) operates as a batch learning algorithm, meaning it processes
the entire training dataset simultaneously in a single learning phase rather than incrementally. This approach
offers several advantages that make ELM particularly suitable for large-scale regression and classification
tasks. Notably, ELM is characterized by its exceptionally fast training speed, as it eliminates the need for
iterative weight updates by randomly assigning input weights and biases and analytically determining output
weights [35]. This simplicity in implementation reduces computational complexity and avoids issues such as
local minima. Despite its straightforward architecture, ELM demonstrates strong generalization performance,
especially when the number of hidden nodes is appropriately configured. Furthermore, its scalability and
efficiency in handling large datasets make it a practical choice for real-time applications.

The ELM process is a batch learning process that learns all datasets in one go. Fig. 1 is the architecture
of the Extreme Learning Machine (ELM). The output of a Single Layer Feedforward Neural Network (SLFN)
with L hidden nodes, given an input vector x; and N training samples, is computed as the weighted sum of
the outputs of the hidden layer nodes. Each hidden node applies an activation function to a linear combination
of the input vector and a bias term. The formulation can be expressed as:

L
fixj) = zg(wi ‘X; + bi)Bi, j=1,..,N, (1)

where fL(x]-) is the predicted output for the input vector x; from j-th training sample, L is the number of
hidden nodes in the network, g; is the output weight connecting the i-th hidden node to the output node, g(-)
is the activation function (such as sigmoid, ReL U, or radial basis function), w; is the weight vector connecting
the input layer to the i-th hidden node, b; is the bias term for the i-th hidden node, and x; is the input vector.
Eq. (1) can be written as f(x) = h(x)B, where h(x) denotes the hidden layer feature mapping, and g =
[B1 - Bn]T [36]. Given the corresponding target from training samples, T = [t; = ty]7, we have
gwy-xqy + by) -+ g(wy-xq + by)
HB =T, where H = : E :

gw,-xy + b)) - g(w, Xy + by)
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2.2 Kernel-Extreme Learning Machine

The flexibility of ELM also allows it to be adapted to various domains, including time-series
forecasting, image recognition, and environmental modeling, particularly when extended through kernel-
based methods such as Kernel ELM. In the newly developed ELM kernel, a positive regularization coefficient
is introduced into the learning system to make it more stable [37]. Assuming HTH is non-singular, the

coeﬁicient% is added to the diagonal of H”H in the calculation of the output weight B. The resulting solution

-1
is more stable, and with better generalization performance, we can have g = H” (% + HHT) .

Input Hidden Output
Layer Layer Layer

Figure 1. Architecture of Extreme Learning Machine (ELM)

The function corresponding to the regularized ELM is:
-1

f(x) = h(x)B = h(x)H” (é + HHT> T, @)

where C is a regularization coefficient. It can be seen in ELM that the kernel matrix for ELM can be defined
as follows. Suppose Qgm = HH', Q1 = h(xph(x;) = K(x;,%;). The ELM output function can be
written concisely as:

T
-1

-1
f(x) = h(x)H” (% + HHT) T=

(% + QELM) T. (3)

K(x,x1)

K(x; XN)

In this implementation, the hidden layer feature mapping h(x) does not need to be known by the user;
instead, the corresponding kernel K(x, x;) can be calculated. The following is the architecture of the Kernel
Extreme Learning Machine (K-ELM), as illustrated in Fig. 2.

asoyd buiuwa

__________________________

Figure 2. Architecture of Extreme Learning Machine (ELM)
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The Kernel Extreme Learning Machine (K-ELM) is utilized to predict air quality indicators based on
environmental data, leveraging its strong generalization capabilities on datasets. The methodology involves
constructing a kernel matrix from the input data, selecting an appropriate kernel function along with its
parameters, and solving a regularized least squares problem to determine the output weights. This method
improves predictive accuracy while retaining the computational efficiency characteristic of the original ELM
model.

2.3 Data Pre-processing

To perform regression using machine learning methods, it is essential to first examine the dataset. The
AQI dataset used in this study contains missing values, which are addressed using the KNN Imputer from the
scikit-learn library. This method is chosen for its effectiveness and accuracy compared to other imputation
techniques. After the imputation process, the dataset is normalized using Min-Max Scaling to ensure
compatibility with machine learning algorithms. This scaling enables effective prediction using the Extreme
Learning Machine (ELM) and Kernel Extreme Learning Machine (K-ELM) method.

2.4 Utilizing Kernel

The kernel function can calculate the inner product directly on the higher-dimensional space (feature
space) without the need to understand the mapping function from the input space to the feature space. In other
words, the kernel function is the inner product function in the feature space. Choosing the right kernel will
improve the performance of machine learning. RBF, Laplacian, Linear, Sigmoid, and Cosine kernels are
some popular kernel functions. In this research, we further evaluate different types of kernel functions to
examine their impact on the learning performance of the model. The selected kernel functions are as follows.

1. Radial Basic Function (RBF) Kernel

2
X. —_— X.
K(Xl" Xj)l‘bf = exp <_ %) ’ (1)

where x; and x; are input vectors (data points), ||x; — xj||2 is the squared Euclidean distance
between the two vectors, and sigma is a parameter that controls the width of the Gaussian function.
The purpose of the RBF kernel is to measure similarity between points; closer points have higher
values.

2. Laplacian Kernel
K(Xi'xj)lap = exp(—y|xi - x]-|), 2)

where x; and x; are input vectors (data points), |x; — x;|| is the Euclidean distance between the

two vectors, y is a kernel parameter that affects the decay rate of the exponential function. The
purpose of the Laplacian kernel is similar to the RBF kernel but with a sharper drop-off in
similarity.

3. Linear Kernel
K(xi, %)y, = (%i %)), 3)
where x; and x; are input vectors (data points), x; - x; is the dot product of the two vectors. The
purpose of the Linear kernel is to measure linear similarity between points.
4.  Sigmoid Kernel

K(Xi'xf)sig = tanh(a(x; - x;) +¢), 4)

where x; and x; are input vectors (data points), a is the slope parameter that scales the dot product,

c is the offset or bias term, tanh is the hyperbolic tangent function. The purpose of the Sigmoid
kernel is to mimic the behavior of neural networks and can be used for nonlinear classification.
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5. Cosine Kernel

Xi'X]'

where x; and x; are input vectors (data points), x; - X; is the dot product of the two vectors, ||x;||
and ||x;|| are the norms (magnitudes) of the vectors. The purpose of the Cosine kernel is to

measure the cosine of the angle between two vectors, which is useful when the magnitude is less
important than the direction.

2.5 Training Process

The dataset in this study is partitioned using the k-Fold Cross-Validation method [38], as illustrated in
Fig. 3. This technique involves randomly dividing the original dataset into k equally sized subsets or “folds.”
In this paper, the number of folds is set to five (k = 5), meaning the model is trained and evaluated five
times, each time using a different fold as the test set and the remaining folds as the training set. This results
in an 80:20 ratio between training and testing data in each iteration. The training process of the K-ELM
method begins with kernel initialization, followed by the assignment of the regularization coefficient (C) and
kernel parameter, which influence the shape and behavior of the kernel function. The kernel function is then
computed to generate the training data’s kernel matrix, denoted as Qggrm, as defined in Eq. (9).

1. Kernel initialization, coefficient values (C), and a kernel parameter that controls the shape of the
kernel function.

2. Calculation of the kernel function to form the training data omega matrix (Qggm). The matrix
form can be seen in Eq. (9).

(6)

K(x3,x1) - K(xq,xy)
QgeLm = : . i ,

K&y x1) - K&y X yn

where N is the number of training data, K(xi,xi) is the kernel function of i-th data and j-th data.
This paper applies the RBF kernel function [39], the Laplacian kernel function [35], the Linear
kernel function [40], Sigmoid, and Cosine kernel functions [41] formulated in Egs. (4)-(8).

3. Calculate the output weight (B) value with Eg. (10) as follows

B= (% + Q-KELM)_l T, (7)

-1
where, Qggrym 1S the omega matrix of the training data, (é + .O.KELM) is the inverse operation of

the matrix, I is the identity matrix, C is the regularization of parameters or coefficients, and T is
the target training data.

Testing Data Training Data

» »
>

4
< >

Fold 1 ©0000000000000000000
Fold 2 00000000000000000000
00000000000000000000

k-Fold 00000000000000000000
‘ '

Figure 3. k-Fold Cross-Validation
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2.6 Testing

The objective of this process is to evaluate the implementation of the K-ELM technique based on the
training conducted in the previous stage. The following outlines the steps involved in the K-ELM testing
procedure.

1. Retrieve the output weight value from the training process.

2. The calculation of the kernel function is to form the testing data omega matrix (QggLm). The
matrix form can be seenin Eq. (11).

K(x,x1) T
QKELM = ] ) (8)
K(Xv XN) NXN
where, K(x,x;) is the kernel function of the j-th pair of testing data and training data
j=12,..,N.
3. Calculate the output target value using Eg. (12).

y = Qkem B )
where, ¥ is the target output, Qggyy IS the testing data omega matrix, B is the output weight matrix.

2.7 Denormalization

The denormalization process is intended to convert normalized values back to their original scale in
the AQI dataset. This involves restoring the data using the original minimum and maximum values. The
formula used for denormalization is presented in Eq. (13).

d = @'max—min) 4 min, (10)

where, d is the normalized value of the prediction, d’ is the denormalized value, min is the smallest value in
each input feature, max is the largest value in each input feature.

2.8 Evaluation

Prediction performance can be evaluated using standard model assessment metrics. In this study, the
evaluation is conducted using Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean
Absolute Error (MAE), and the Coefficient of Determination (R?). For MSE, RMSE, and MAE, lower
values—ideally approaching zero—indicate better model performance. In contrast, for R?, values closer to 1
signify a stronger correlation between predicted and actual values, reflecting higher predictive accuracy.

The pipeline process for the comparative study of KELM-based air quality prediction is shown in Fig.
4. The pipeline process begins with preprocessing, where the input data are normalized, and missing values
are handled to ensure data quality. The dataset is then subjected to K-fold cross-validation during the splitting
phase to improve model robustness and reduce overfitting. In the training stage, the Kernel Extreme Learning
Machine (KELM) is applied with appropriate kernel selection and hyperparameter tuning. Finally, the
model’s performance is assessed in the evaluation stage using common metrics such as MAE, RMSE, and
Rz,

Preprocessing
(Normalization,
Missing Data Handling)

Data Splitting (EeErI;’:I] ;—erla;:tlir:)i ‘ Evaluation
(K-Fold Cross Validation) : (MAE, RMSE, R?)
Hyperparameter Tuning)

Figure 4. The Pipeline on Comparative Study of KELM-Based Air Quality Prediction

3. RESULTS AND DISCUSSION

This study presents the evaluation results of the prediction performance matrices for the Extreme
Learning Machine (ELM) and Kernel Extreme Learning Machine (K-ELM) methods. In the ELM-based
prediction algorithm, key parameters include the number of hidden neurons and the choice of activation
functions. Meanwhile, the parameters used in the prediction algorithm using the K-ELM method are kernel,
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regularization coefficient (C), and kernel parameter. These parameters affect the results of the machine
learning model. This can be seen from the evaluation value of the matrix on the prediction results of Extreme
Learning Machine (ELM) and Kernel Extreme Learning Machine (K-ELM). In addition to the kernel
function, the Kernel Extreme Learning Machine (K-ELM) method also uses the kernel parameter and
regularization coefficient (C). A kernel parameter is a parameter that controls the shape of the kernel function
used in mapping data to a higher feature space. The kernel parameter values for the Laplacian kernel used in
the prediction process using the Kernel Extreme Learning Machine are y = 0.0001, y = 0.001, and y =
0.01. Regularization coefficient (C) is a parameter that can control the complexity of the model and overcome
over-fitting. The regularization coefficient values (C) used in the prediction process using Kernel Extreme
Learning Machine are 10, 20, and 30. The hyperparameters of the KELM model, including y and the
regularization coefficient (C), were tuned using a systematic grid search combined with cross-validation on
the training dataset. All computations in this project were performed using Google Colaboratory with the
Python programming language [42].

Fig. 5 illustrates PMyo air quality predictions from 2017 to 2023 generated using the Laplacian kernel,
comparing actual and predicted values for both training and testing datasets. The black and magenta dots
represent actual and predicted PMyg levels during training, respectively, while the blue and orange lines show
actual and predicted values during testing. The close alignment between the predicted and actual values in
both sets indicates that the model effectively learned the data. Furthermore, from Table 1, the learning process
applied to this dataset is not well-suited for feature mapping using linear and cosine kernels, as these kernels
are ineffective in separating the data. This inadequacy is evidenced by a negative R2 value, which indicates
poor model performance. The performance metrics for both the training and testing phases are presented in
Table 1. Among the evaluated kernel functions, the Laplacian kernel demonstrates the best predictive
performance, as reflected by the lowest error metrics. Fig. 5 presents the PMyo data plot for the DKI4 region,
generated using the Laplacian kernel.

Actual (Train)

Prediction (Train)
—— Actual (Test)
150 Prediction (Test)

175

125

PM10

75

50

25

2017 2018 2019 _ 2020 2021 2022 2023

Figure 5. Plot of PM1o DKI4 K-ELM

Fig. 6 is the plot of SO, DKI3 with the Laplacian kernel. The time series plot presents the predicted
and actual SO: concentrations from 2017 to 2023. Actual and predicted values for both training and testing
phases are shown using distinct color-coded dots. The model effectively captures the overall trend and key
fluctuations, including peaks in mid-2020 and early 2021. The close alignment between predicted and actual
values indicates satisfactory model performance and generalization capability for SO: air quality forecasting.
Fig. 7 illustrates the time series plot of carbon monoxide (CO) concentrations in the DKI3 region from 2017
to 2023, using the Laplacian kernel for prediction. The plot includes four data series: actual training data
(black dots), predicted training data (magenta dots), actual test data (blue line), and predicted test data (orange
line). The model demonstrates a strong ability to capture the temporal patterns of CO levels, with the predicted
values closely aligning with the actual observations in both training and testing phases. This alignment
indicates that the Laplacian kernel effectively models the underlying structure of the CO data, supporting its
suitability for air quality forecasting in the DKI3 region.
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Figure 6. Plot of SO2 DKI3 K-ELM
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Figure 7. Plot of CO DKI3 K-ELM

Fig. 8 presents the time series plot of ozone (Os) concentrations in the DKI1 region from 2017 to 2023,
modeled using the Laplacian kernel. The plot includes actual and predicted values for both training and testing
phases, with black and magenta dots representing actual and predicted training data, respectively, and blue
and orange lines representing actual and predicted test data. The model effectively captures the temporal
dynamics of Os levels, particularly the elevated concentrations observed between 2017 and early 2020. The
close alignment between predicted and actual values across both phases indicates that the Laplacian kernel
provides a reliable fit for forecasting Os concentrations in this region. Fig. 9 displays the time series plot of
nitrogen dioxide (NO:) concentrations in the DKI2 region from 2017 to 2023, modeled using the Laplacian
kernel. The plot includes actual and predicted values for both training and testing phases: black and magenta
dots represent actual and predicted training data, respectively, while blue and orange lines represent actual
and predicted test data. The model demonstrates a strong ability to replicate the temporal patterns of NO-
concentrations, with predicted values closely following the actual observations across both phases. This
alignment indicates that the Laplacian kernel effectively captures the underlying structure of the NO: data,
supporting its suitability for air quality prediction in the DKI2 region.
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Figure 8. Plot of O3 DKI1 K-ELM
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Figure 9. Plot of NO2 DKI2 K-ELM

From Table 1, the performance evaluation of the Extreme Learning Machine (ELM) and Kernel
Extreme Learning Machine (K-ELM) methods for air quality prediction in Jakarta reveals that K-ELM
consistently outperforms ELM across all gas types—PM.o, O3, SOz, NO2, and CO. Among the various kernel
functions tested, the Laplacian kernel yields the most accurate results, achieving the lowest RMSE, MSE,
and MAE values, along with the highest R2 scores in both training and testing phases. This indicates its
superior ability to model nonlinear relationships inherent in air quality data. In contrast, linear and cosine
kernels generally perform poorly, often resulting in negative or undefined R2 values, which reflect inadequate
model fit. For each pollutant, the Laplacian kernel within the K-ELM framework consistently provides the
best predictive performance, with R? values reaching as high as 0.898 for SO2 and 0.700 for NO: in the testing
phase. These findings underscore the effectiveness of kernel-based learning, particularly with the Laplacian
kernel, in enhancing the accuracy and reliability of air quality forecasting models.

Table 1. Performance Evaluation on the Regression Task of Air Quality Prediction in Jakarta

Method Evaluation of Training Data Evaluation of Testing Data Kernel Gas

RMSE MSE MAE R? RMSE MSE MAE R? type type
ELM 0.07 0005 0.054 0565 0.076 0.006 0.055 0.142 -

0.045 0.002 0.034 0788 0.071 0.005 0.053 0.488 Laplacian

0.062 0.004 0.045 0621 0.075 0.006 0.056 0.43 RBF PM1o
K-ELM 0.101 0.01 0.079 - 0.102 0.01 0.079 - Linear

0.097 0.009 0.074 0062 0099 001 0.076 0.016  Sigmoid

0.099 001 0.074 - 0.102 0.01 0.076 - Cosine

ELM 0.084 0.007r 0.064 0.678 0.077 0.006 0.057 0.161 - O3
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Method Evaluation of Training Data Evaluation of Testing Data Kernel Gas

RMSE MSE MAE R? RMSE MSE MAE R? type type

0.047 0.002 0.031 0861 0.079 0.006 0.051 0.602 Laplacian

0.066 0.004 0.044 0.713 0.083 0.007 0.056 0.556 RBF
K-ELM 0.114 0.013 0.83 0.151 0.117 0.014 0.084 0.133 Linear

0.109 0.012 0.076 0.245 0.11 0.012 0.077 0.225  Sigmoid

0.13  0.017 0.093 - 0.131 0.017 0.094 - Cosine
ELM 0.049 0.002 0.033 0.874 0.083 0.007 0.057 0.506 -

0.022 0.001 0.011 0969 0.041 0.002 0.019 0.898 Laplacian

0.036 0.001 0.017 0923 0.043 0.002 0.021 0.889 RBF SO,
K-ELM 0.145 0.021 0.119 - 0.149 0.022 0.123 - Linear

0.097 0.009 0.06 0441 0.097 0.009 0.059 0.44 Sigmoid

0.137 0.019 0.098 - 0.138 0.019 0.098 - Cosine
ELM 0.034 0.001 0.024 0.898 0.093 0.009 0.068 0.521 -

0.027 0.001 0.018 0.869 0.041 0.002 0.027 0.7 Laplacian

0.034 0.001 0.023 0.776 0.043 0.002 0.028 0.676 RBF NO,
K-ELM 0.091 0.008 0.075 - 0.102 0.01 0.083 - Linear

0.068 0.005 0.038 0.188 0.068 0.005 0.039 0.187  Sigmoid

0.072 0.005 0.047 - 0.078 0.006 0.049 - Cosine
ELM 0.058 0.002 0.042 0.777 0.039 0.002 0.03 0.19 -

0.04 0.002 0.024 0.75 0.058 0.003 0.037 0.465 Laplacian

0.049 0.002 0.032 0.592 0.06 0.004 0.038 0.422 RBF co
K-ELM  0.08 0.006 0.054 - 0.081 0.007 0.055 - Linear

0.074 0.006 0.047 0.115 0.074 0.006 0.048 0.106 Sigmoid

0.077 0.006 0.052 - 0.08 0.006 0.053 - Cosine

For R2, the x* value is 14.04 with a p-value of 0.003, also suggesting a significant difference in model
performance. These findings confirm that the choice of kernel function has a meaningful impact on the
accuracy and reliability of air quality predictions, justifying the use of statistical testing to support model
selection. We use the significance level threshold (denoted as @« = 0.05) to determine whether the observed
differences in model performance across kernel methods are statistically significant. From the test results, all
four evaluation metrics—RMSE (p = 0.001), MSE (p = 0.002), MAE (p = 0.001), and R? (p = 0.003)—
have p-values less than 0.05. This means that the null hypothesis (which assumes no difference in

performance among the methods) can be rejected for each metric.

Table 2. Friedman’s ANOVA Test on Air Quality Prediction in Jakarta

Effects SS df MS x> p > x* Evaluation
Variety 69.1 5 13.82 19.74 0.001
Error 18.4 20 0.92 - Fr-Test RMSE
Total 87.5 29 - -
Variety 65.9 5 13.18 18.83 0.002
Error 21.6 20 1.08 - Fr-Test MSE
Total 87.5 29 - -
Variety 73.1 5 14.62 20.89 0.001
Error 14.4 20 0.72 - Fr-Test MAE
Total 87.5 29 - -
Variety 234 3 7.8 14.04 0.003 Fr-Test R?
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Effects SS df MS x> p>x: Evaluation
Error 1.6 12 0.13 - -
Total 25 19 - - -
RMSE Comparison MSE Comparison

. PM10
0.141 mem O:
. 50
0.12 1 EEE NO-
[ ]

0.10 0.015

0.020 4

0.010

0.005 4

0.000 -

(@) | (b)

MAE Comparison R? Comparison

(© (d)
Figure 10. Performance Comparison of ELM vs. K-ELM Models for Air Quality Prediction in Jakarta (a)
RMSE comparison, (b) MSE comparison, (¢) MAE comparison, and (d) R? comparison

From Table 3, Friedman’s mean rank analysis was utilized to compare the performance of different
kernel methods across four evaluation metrics: RMSE, MSE, MAE, and R2. Friedman’s mean rank is a non-
parametric statistical method used when the data does not meet the assumptions required for parametric tests,
such as normal distribution or equal variances. From the results, the Laplacian kernel consistently achieved
the lowest mean ranks across all metrics (RMSE: 1.4, MSE: 1.4, MAE: 1.2, Rz 1.0), indicating superior
predictive accuracy and model consistency. This suggests that the Laplacian kernel is the most effective
among the tested methods for capturing the underlying patterns in air quality data. In contrast, the Linear and
Cosine kernels exhibited the highest mean ranks (e.g., Linear RMSE: 5.6, Cosine RMSE: 5.2), reflecting
comparatively poor performance. The ELM method, which does not utilize kernel mapping, showed moderate
performance with mean ranks ranging from 2.4 to 3.2. These findings imply that kernel selection significantly
influences model performance, with the Laplacian kernel offering the most robust results for regression tasks
in air quality forecasting. The comparative performance analysis of ELM and Kernel-ELM models across
multiple air pollutants using RMSE, MSE, MAE, and Rz metrics is shown in Fig. 10.

Table 3. Friedman Mean Rank on Air Quality Prediction in Jakarta
Methods Fr-Test RMSE  Fr-Test MSE  Fr-Test MAE  Fr-Test R? Kernel

ELM 2.6 2.4 2.8 3.2 -
1.4 1.4 1.2 1 Laplacian
2.4 2.6 2.4 2 RBF
K-ELM 5.6 5.4 5.8 - Linear
3.8 4 3.8 3.8 Sigmoid

5.2 5.2 5 - Cosine
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Another tool for comparing multiple algorithms in non-parametric tests is the Nemenyi test. Nemenyi
test is a post-hoc statistical test that indicates that there are differences among multiple groups, specifically
to find which pairs of groups (or algorithms, models, treatments, etc.) are significantly different from each
other. The critical difference (CD) in the Nemenyi test is a threshold for determining if the difference between
two groups’ average ranks is statistically significant, calculated from the number of groups, datasets, and
significance level. The critical difference can be calculated using this formula:

CD =q, f% (11)

where k is number of algorithms, N is number of samples. For « = 0.05 and k = 6, we have q, = 2.850,
and for k = 4, we have q, = 2.569.

Table 4. Nemenyi Test on Air Quality Prediction in Jakarta
Nemenyi Test (Average Ranks)

Algorithm

RMSE MSE MAE R?
ELM 2.6 2.6 2.8 3.2
K-ELM (Laplacian) 14 1.5 1.2
K-ELM (RBF) 24 2.3 24 2
K-ELM (Linear) 5.7 5.6 5.8 -
K-ELM (Sigmoid) 38 4.1 3.9 3.8
K-ELM (Cosine) 5.1 4.9 4.9 -
CD: 3.3722 CD: 3.3722
6 I 5 4 3 2 ‘ 1 68 l 5 4 3 2 I 1
K-ELM (Linear) J L K-ELM (Laplacian) K-ELM (Linear) —J L K-ELM (Laplacian)
K-ELM (Cosine) K-ELM (RBF) K-ELM (Cosine) K-ELM (RBF)
K-ELM (Sigmoid) ELM K-ELM (Sigmoid) ————— —— ELM
(@) (b)
CD: 3.3722 CD: 2.0976
6 5 4 3 2 ‘ 1 4 I 3 2 1
K-ELM (Linear) | L K-ELM (Laplacian) K-ELM (Sigmoid) J K-ELM (Laplacian)
K-ELM (Cosine) K-ELM (RBF) ELM — KELM(RBF)
K-ELM (Sigmoid) ELM
(c) (d)

Figure 11. Nemenyi Test Diagram on Evaluation Performance (a). RMSE (€D = 3.3722, a = 0.05), (b). MSE
(CD = 3.3722, a = 0.05), (). MAE (CD = 3.3722, a = 0.05) and (d). R? (CD = 2.0976, a = 0.05)

For the RMSE evaluation, based on the numerical results in Table 4 and Fig.11 (a), the Nemenyi post-
hoc test indicated that K-ELM with the Laplacian kernel achieved the best average rank, followed by K-ELM
with the RBF kernel and the standard ELM method. With a Critical Difference (CD) of 3.3722, statistically
significant differences were observed between K-ELM (Laplacian) and K-ELM (Cosine) (rank gap =~ 3.5)
and K-ELM (Linear) (rank gap =~ 4.5), as well as between K-ELM (RBF) and K-ELM (Linear) (rank gap =~
3.8). For the MSE evaluation, based on the numerical results in Table 4 and Fig. 11 (b), the Nemenyi post-
hoc test with a Critical Difference (CD) of 3.3722 revealed that only three pairwise differences were
statistically significant: K-ELM (Laplacian) outperformed K-ELM (Cosine) (rank gap ~ 3.5 > CD) and
K-ELM (Linear) (rank gap = 4.5 > CD), while K-ELM (RBF) outperformed K-ELM (Linear) (rank gap =~
3.8 > (D). All other rank gaps were below the CD threshold and therefore not statistically significant. For the
MAE evaluation, based on the numerical results in Table 4 and Fig. 11 (c), the Nemenyi post-hoc test with a
Critical Difference (CD) of 3.3722 revealed that only three pairwise differences were statistically significant:
K-ELM (Laplacian) outperformed K-ELM (Cosine) (rank gap = 3.5 > CD) and K-ELM (Linear) (rank gap ~
4.5 > CD), while K-ELM (RBF) outperformed K-ELM (Linear) (rank gap = 3.8 > CD). For the R? evaluation,
based on the numerical results in Table 4 and Fig. 11 (d), the Nemenyi post-hoc test with a Critical Difference
(CD) of 2.0976 revealed that only the comparisons involving the top method were statistically significant:
K-ELM (Laplacian) significantly outperformed K-ELM (Sigmoid) (rank gap =~ 3.0 > CD) and ELM (rank gap
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~ 2.1 > CD). These rank gaps exceeded the CD threshold, confirming the statistical superiority of the
Laplacian kernel in these pairwise comparisons.

4. CONCLUSION

The study evaluated Extreme Learning Machine (ELM) and Kernel-based ELM (K-ELM) models for
predicting air quality across five key pollutants (PM10, Os, SOz, NO2, and CO) using four regression metrics:
RMSE, MSE, MAE, and R2. The following summarizes the conclusions of the research conducted:

1. Among all configurations, K-ELM with the Laplacian kernel consistently outperformed other
models, demonstrating superior accuracy and generalization across pollutants.

2. The standard ELM served as a reliable baseline but was generally surpassed by the kernelized
variants, especially in capturing complex pollutant behaviors.

3. Specifically, the K-ELM model with a Laplacian kernel provided the most accurate predictions
for Jakarta’s air quality, outperforming both the standard ELM and other kernel configurations.

4. This study is limited to data from 2017-2022 with only five pollutant features, and the findings
may not fully generalize to other regions or conditions, highlighting the need for broader datasets
in future research. Numerical results on the DKI Jakarta AQI dataset (2017-2022) showed:

a. ELM: RMSE of 0.083, MSE of 0.007, MAE of 0.057, R2 of 0.506.
b. K-ELM (Laplacian kernel): RMSE of 0.041, MSE of 0.002, MAE of 0.019, R? of 0.898.

5. The Laplacian kernel consistently ranked highest across all evaluation metrics in the Friedman
test, with scores indicating its superior performance (1.4 for RMSE and MSE, 1.2 for MAE, and
1.0 for R?).

6. Across all evaluation metrics (RMSE, MSE, MAE, and R?), the Nemenyi post-hoc tests confirmed
that K-ELM with the Laplacian kernel consistently achieved the best average rank and
demonstrated statistically significant superiority in several pairwise comparisons.

7. By comparing ELM and KELM, we provide insights into the selection of efficient and reliable
predictive models that have the potential to strengthen early warning systems and support targeted
interventions aimed at reducing pollution levels. Air quality prediction performance and model
accuracy can be improved through the integration of meteorological data, the use of hybrid models
such as LSTM-KELM, and real-time deployment in future work.
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