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Article Info ABSTRACT 

Article History: 
High rainfall intensity in Makassar often leads to flooding. Therefore, forecasting the 

amount of rainfall is necessary as a reference for taking appropriate mitigation measures. 

This study was conducted to select the best model between the SARIMA and Fuzzy Time 

Series (FTS) Chen based on a comparison of their forecasting accuracy, as well as to 

forecast the amount of rainfall in Makassar for 2024 using the best model. For this study, 

monthly rainfall data covering the period from January 2014 to December 2024 were 

collected from the official website of the Central Statistics Agency (BPS) Makassar. Based 

on the analysis results, SARIMA(7,2,3)(1,1,1)12 was selected as the best model, with an 

MAE value of 2.654 and an RMSE value of 3.846. The contribution of this study lies in 

providing an empirical comparison between SARIMA and FTS Chen for rainfall forecasting 

in tropical regions. However, the limitation of this study is that the forecasting relies solely 

on historical rainfall data, without incorporating other meteorological variables that may 

influence rainfall patterns. 
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1. INTRODUCTION 

Indonesia has a tropical climate due to its location along the equator, resulting in high rainfall, including 

in Makassar. Rainfall is the amount of rainwater accumulated in a flat area that does not flow, absorb, or 

evaporate and is measured in millimeters or inches. One millimeter of rainfall represents the volume of water 

over one square meter, which is equivalent to one liter [1]. In Indonesia, the dry season usually runs from 

May to October, whereas the rainy season extends from November to April. Increased rainfall during the 

rainy season can trigger hydrometeorological disasters such as landslides and floods [2]. Makassar is 

classified as a flood-prone area [3]. According to information from www.news.detik.com, the flood that 

occurred in Makassar on December 26, 2022, was recorded as the most severe of the year [4]. The flood 

submerged three districts—namely, Manggala, Biringkanaya, and Tamalanrea. Furthermore, a total of 8,687 

people were affected by the flood. According to information from the Regional Disaster Management Agency 

of Makassar, the flood, which reached a height of up to 2 meters, caused severe disruption to public mobility. 

It also resulted in material losses amounting to billions of rupiah due to 3,046 housing units being submerged. 

Additionally, 182 flood evacuees suffered from various health problems [4]. 

In light of this issue, an accurate forecasting method is needed to predict the amount of rainfall over a 

certain period. This information is essential as a reference for both the public and local government in taking 

mitigation measures to minimize the risk of flooding. Forecasting involves analyzing historical data to predict 

future events [5]. Currently, time series analysis is a popular method used in forecasting. Several time series 

methods frequently applied include ARIMA, SARIMA, Fuzzy Time Series (FTS), and Exponential 

Smoothing [6], [7], [8]. SARIMA is a modified version of the ARIMA model that incorporates seasonal 

patterns [9]. The advantage of SARIMA lies in its effectiveness in capturing seasonal patterns and trends 

through the seasonal components integrated into the model, which are not present in the standard ARIMA 

model [10], [11], [12]. However, SARIMA requires the data to meet the assumption of stationarity [13]. A 

study in Nigeria showed that the SARIMA (2,0,1)(2,1,1)12 was optimal model based on statistical criteria 

such as the Box-Pierce residuals test. It was effective in modeling the seasonal rainfall patterns in Nigeria 

and capable of providing accurate forecasts for the medium to long term [10]. However, this study has a 

limitation. It only applied the SARIMA model without comparing it to alternative forecasting methods, such 

as Fuzzy Time Series, so it is unclear whether other methods could provide higher accuracy for data with 

complex seasonal patterns.  

The FTS method offers a solution to this limitation by using fuzzy sets to map data without the need 

to satisfy assumptions such as stationarity, normality, or homoscedasticity [13], [14]. Moreover, FTS is 

capable of capturing the complexity and uncertainty inherent in rainfall data, which often exhibit irregular 

patterns [15]. However, the accuracy of FTS depends on the number of classes and the length of intervals 

defined at the outset [16]. Several FTS models include those proposed by Song-Chissom et al. [17]. The Chen 

model is chosen in this study because Chen’s method provides better short-term forecasting accuracy, can 

handle variability in rainfall more robustly, and has a simple computational process, making it easier to 

implement compared to other Fuzzy Time Series models [18]. A study in Medan found that the Chen model 

outperformed others in forecasting monthly rainfall, achieving a lower MAPE value of 8.002% compared to 

the Cheng model and the Markov Chain [19]. However, this study also has several limitations. It was 

conducted only in Medan, so the results may not be directly generalizable to other regions with different 

rainfall patterns. The comparison was limited to FTS variants and did not include classical time series models 

such as SARIMA, leaving uncertainty about the relative performance of Chen’s model against these methods. 

According to the previous explanation, a research gap remains regarding the comparison between 

SARIMA and FTS Chen in rainfall forecasting, as most prior studies have applied only one of these methods. 

Therefore, this study was conducted to compare the performance of both methods in order to select the best 

model and forecast the rainfall in Makassar for 2024.     
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2. RESEARCH METHODS 

2.1 Research Process 

The following diagram outlines the steps taken in this research: 

 

 

 

 

 

 

 

 

 

 

 

 

                              

 

Figure 1. Research Process Diagram 

Based on Fig. 1, this study begins with problem identification and a literature review to determine the 

appropriate forecasting methods, namely SARIMA and Fuzzy Time Series Chen. Rainfall data from the 

Central Statistics Agency (BPS) Makassar are used and divided into in-sample data (January 2014 – 

December 2023) for modeling and out-sample data (January 2024 – December 2024) for validation. 

Following exploratory analysis and preprocessing, both models are constructed and evaluated using MAE 

and RMSE. The model with the best performance is then applied in the forecasting and validation stage to 

compare predicted rainfall with actual data.   

All analyses in this study were performed using R [20]. The SARIMA modeling was implemented 

with the forecast package [21], while the Fuzzy Time Series Chen method was carried out using the 

AnalyzeTS package [22]. Stationarity analysis was conducted using the tseries package [23] for the 

Augmented Dickey-Fuller and Phillips-Perron tests, and the astsa [24] package for ACF and PACF plots. 

Model diagnostics, including the Ljung-Box test and Kolmogorov-Smirnov tests, were performed with the 

stats package [20]. Data visualization was supported by the ggplot2 package [25]. 

2.2 Seasonal Autoregressive Integrated Moving Average (SARIMA)                                      

The SARIMA (𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝑠 model is generally represented by the following equation:  

𝜙p(𝐵)𝛷P(𝐵
𝑠)(1 − 𝐵)𝑑(1 − 𝐵𝑠)𝐷𝑌𝑡 = 𝜃𝑞(𝐵)𝛩𝑄(𝐵

𝑠)𝜀𝑡 , (1) 

where: 

(𝑝, 𝑑, 𝑞) : Non-seasonal components; 

(𝑃, 𝐷, 𝑄) : Seasonal components; 

𝜙𝑝(𝐵) : Backward shift operator for non-seasonal AR; 

𝛷𝑃(𝐵
𝑠) : Backward shift operator for seasonal AR; 

(1 − 𝐵)𝑑 : Non-seasonal differencing process of order 𝑑; 



1392 Claudia, et al.     A COMPARATIVE EVALUATION OF SARIMA AND FUZZY TIME SERIES CHEN …  

(1 − 𝐵𝑠 )𝐷 : Seasonal differencing process of order 𝐷; 

𝑌𝑡 : Time series at time 𝑡; 
𝜃𝑞(𝐵) : Backward shift operator for non-seasonal MA; 

𝛩𝑄(𝐵
𝑠) : Backward shift operator for seasonal MA; 

𝑠 : Number of periods in one seasonal cycle; 

𝜀𝑡  : Forecasting error at time 𝑡. 

2.3 Fuzzy Time Series (FTS) Chen  

The steps involved in the FTS Chen are as follows [26]: 

1. Determine the Universe of Discourse 𝑈 

𝑈 =  [𝐷𝑚𝑖𝑛 − 𝐷1; 𝐷𝑚𝑎𝑥 + 𝐷2]. (2)                      

2. Determine the Interval Length 

a. Determine the Number of Class Intervals 

𝐾 = 1 + 3.322 log(𝑛) . (3) 

b. Determine the Range  

𝑅 = (𝐷𝑚𝑎𝑥 + 𝐷2) − (𝐷𝑚𝑖𝑛 + 𝐷1). (4) 

c. Determine the Interval Length 

𝐼 =  
𝑅

𝐾
. (5) 

From the results, the partition of the universe of discourse is obtained according to the interval 

length. 

𝑢1 = (𝐷𝑚𝑖𝑛 − 𝐷1 ;  𝐷𝑚𝑖𝑛 + 𝐷1 + 𝐼), 
𝑢2 = (𝐷𝑚𝑖𝑛 − 𝐷1 + 𝐼 ;  𝐷𝑚𝑖𝑛 − 𝐷1 + 2𝐼), 
𝑢3 = (𝐷𝑚𝑖𝑛 − 𝐷1 + 2𝐼 ;  𝐷𝑚𝑖𝑛 − 𝐷1 + 3𝐼), 
⋮  

𝑢𝑛 = (𝐷𝑚𝑖𝑛 − 𝐷1 + (𝐾 − 1)𝐼  ;  𝐷𝑚𝑖𝑛 − 𝐷1 + 𝐾𝐼). (6) 

d. Finding the Midpoint Value 

𝑚𝑖 = 
𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 + 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑

2
(7) 

where:  

𝐾  : Number of class intervals; 

𝑛  : Number of observation data;  

𝑅  : Range; 

𝐷𝑚𝑖𝑛  : The smallest data value;  

𝐷𝑚𝑎𝑥  : The largest data value;  

𝐷1  : The first constant number set by the researcher; 

𝐷2  : The second constant number set by the researcher; 

𝐼  : Interval length; 

𝑢𝑛  : Partition of the universe of discourse; 

𝑚𝑖  : Median of the 𝑖 interval; 

3. Fuzzy Set Classification 

Let fuzzy sets 𝐴1, 𝐴2, … , 𝐴𝑘, defined by linguistic variables over 𝑈 = {𝑢1, 𝑢2, . . , 𝑢𝑛}, represent 

the 𝑘 class intervals identified earlier. These fuzzy sets are constructed as follows:   



BAREKENG: J. Math. & App., vol. 20(2), pp. 1389- 1404, Jun, 2026.     1393 

 

𝐴𝑘 = 

{
  
 

  
 

1

𝑢1
+
1

𝑢2
, 𝑖𝑓 𝑘 = 1

0.5

𝑢𝑘−1
+
1

𝑢𝑘
+
0.5

𝑢𝑘+1
, 𝑖𝑓 2 ≤ 𝑘 ≤ 𝑛 − 1

0.5

𝑢𝑛−1
+
1

𝑢𝑛
, 𝑖𝑓 𝑘 = 𝑛.

 (8) 

Here, 
𝑥

𝑢𝑘
= 𝑥, represents the membership degree of 𝑢𝑘 in the fuzzy set 𝐴𝑘. 

4. Fuzzification of Historical Data 

The purpose of fuzzification is to convert numerical (crisp) values into linguistic (fuzzy) values 

using predefined fuzzy sets. If a data value falls within the interval 𝑢𝑘, it is classified into the 

corresponding fuzzy set 𝐴𝑘.  

5. Fuzzy Logical Relationship (FLR) 

FLR involves establishing connections according to historical data. By observing the connections 

between fuzzy sets 𝐴𝑖 from one period to the next, these connections are organized into an FLR 

table.    

6. Fuzzy Logical Relationship Group (FLRG) 

According to the previous step, FLRs are grouped into categories based on similar current states, 

ensuring no repetition.  

7. Defuzzification 

Defuzzification is the process of converting fuzzy sets into numerical data. In the FTS Chen 

method, there are several important aspects to consider:  

a. Rule 1: If the current state is 𝐴𝑖 and the FLRG of 𝐴𝑖 is empty, then the forecast result is the 

midpoint of 𝑢𝑖. For example, if 𝐴𝑖  →  ∅, then the forecast = 𝑚𝑖 (midpoint 𝑢𝑖). 

b. Rule 2: If the current state is 𝐴𝑖 and the FLRG of 𝐴𝑖 has a one-to-one relationship, then the 

forecast result is the midpoint of 𝑢𝑗. For example, if 𝐴𝑖  →  𝐴𝑗, then the forecast = 𝑚𝑗 

(midpoint 𝑢𝑗).  

c. Rule 3: If the current state is 𝐴𝑖 and the FLRG of 𝐴𝑖 has a one-to-many relationship, then the 

forecast result is the average of the midpoints of 𝑢𝑖, 𝑢𝑗, … , 𝑢𝑛. The forecast can be computed 

with the equation below:  

𝐹𝑡 = 
𝑚𝑖(𝑡−1) + 𝑚𝑗(𝑡−1) +⋯+ 𝑚𝑛(𝑡−1)  

𝑛
. (9) 

2.3 Measurement of Forecast Accuracy   

Model performance evaluation provides an overview of how accurately the forecasting model predicts 

compared to the actual values. The smaller the Mean Absolute Error (MAE) and Root Mean Squared Error 

(RMSE) values, the more accurate the model is in predicting the given data [27]. 

𝑀𝐴𝐸 = (
1

𝑛
∑ |𝑌𝑡 − 𝑌̂𝑡|

𝑛

𝑡=1
) , (10) 

𝑅𝑀𝑆𝐸 = √
∑ (𝑌𝑡 − 𝑌̂𝑡)

2𝑛
𝑡=1

𝑛
, (11) 

where: 

𝑌𝑡 : Actual value;  

𝑌̂𝑡 : Forecasted value;  

𝑛 : Total number of data points. 
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3. RESULTS AND DISCUSSION 

3.1 Exploratory Data Analysis  

Table 1. Descriptive Statistics 

Measure of Central Tendency Measure of Skewness Measure of Normality 

Type of Measure Value Type of Measure Value Test Statistic 𝒑-value 

Minimum 0 Skewness 1.17077 Kolmogorov- 

Smirnov 

0.00185 

 Median 152.5   

Mean 275.9   

Maximum 1,195     

Standard Deviation 293.2     

Table 1 shows that the average monthly rainfall in Makassar from January 2014 to December 2023  is 

classified as moderate rainfall. The minimum and maximum values recorded were 0 mm and 1,195 mm, 

respectively. The relatively high standard deviation indicates fluctuations in monthly rainfall. Additionally, 

a 𝑝-value of the Kolmogorov-Smirnov test below 0.05 and a skewness of 1.17077 indicate that the data are 

not normally distributed and tend to be right-skewed, meaning that some months have rainfall significantly 

above the average.  

3.2 Preprocessing 

The dataset used in this study contains missing values. Therefore, median imputation was applied, as 

it is effective for handling skewed or non-normally distributed data [28]. The normality test results in Table 

1 confirm that the data are not normally distributed, making a transformation necessary. A square root 

transformation was chosen because it is suitable for data containing zeros, helps reduce skewness, and tends 

to normalize the data distribution [29]. The outcomes of this transformation are shown in Table 2. 

Table 2. Results of the Square Root Transformation  

Year Month Actual Data Transformed Data 

2014 January 836.00 28.913 

 February 313.00 17.691 

 March 311.00 17.635 

⋮ ⋮ ⋮ ⋮ 
2023 Oktober 7.50 2.738 

 November 92.40 9.612 

 December 190.70 13.809 

3.3 Seasonal Autoregressive Integrated Moving Average (SARIMA)  

3.3.1 Time Series Plot Identification  

 
Figure 2. Rainfall Data Plot in Makassar 

Fig. 2 indicates that the monthly rainfall in Makassar from January 2014 to December 2023 exhibited 

significant fluctuations. Rainfall levels tend to increase at the beginning and end of each year, while the 

remaining months generally experience lower amounts. This recurring pattern suggests the presence of a 

seasonal trend in the data.  
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3.3.2 Stationarity Analysis of the Data 

In this study, stationarity analysis was carried out using two approaches: first, through the identification 

of ACF and PACF plots; and second, by employing statistical methods, specifically the Augmented Dickey-

Fuller (ADF) and Phillips-Perron tests.   

                          
                                                                (a)                                                             (b) 

Figure 3. Transformed Data Plots (a) ACF Plot, (b) PACF Plot 

Fig. 3 presents a strong seasonal pattern in the ACF plot, indicated by significant spikes at lags that are 

multiples of 12, reflecting an annual seasonal pattern (12 months). This suggests that there is a significant 

fluctuation in the mean of the data. In contrast, the PACF plot shows that most lags fall within the significance 

bounds, indicating that there is no significant fluctuation in the variance of the data. 

 Table 3. ADF and Phillips-Perron Test Statistics of the Data After Transformation 

Test Statistics 𝒑-value Decision 

 Augmented Dickey-Fuller 0.4856 𝐻0 is not rejected 

Phillps-Perron 0.01 𝐻0 is rejected 

Table 3 shows that the 𝑝-value of the Phillips-Perron test is less than 0.05. Therefore, the null 

hypothesis (𝐻0) is rejected, indicating that the data is stationary in terms of variance. On the other hand, the 

𝑝-value of the ADF test is greater than 0.05. Thus, the null hypothesis (𝐻0) is not rejected, indicating that the 

data is non-stationary in terms of mean. Consequently, differencing is required to achieve stationarity in the 

SARIMA method.  

Table 4. ADF and Phillips-Perron Test Statistics After Seasonal Differencing (𝑫 =  𝟏)   

Test Statistics 𝒑-value Decision 

 Augmented Dickey-Fuller 0.01 𝐻0 is rejected 

Phillps-Perron 0.01 𝐻0 is rejected 

Table 4 shows that after applying one seasonal differencing step (𝐷 = 1), both the ADF and Phillips-

Perron tests have 𝑝-values less than 0.05, indicating that the seasonal component of the data is now stationary. 

This seasonal differencing was necessary due to the strong annual pattern observed in the ACF plot. However, 

inspection of non-seasonal lags in the ACF and PACF plots suggested that non-seasonal trends might still be 

present. 

Table 5. ADF and Phillips-Perron Test Statistics After Non-Seasonal Differencing (𝒅 = 𝟏 and 𝒅 = 𝟐)  

Non-Seasonal Differencing (𝒅 = 𝟏) 
Test Statistics 𝒑-value Decision 

 Augmented Dickey-Fuller 0.13 𝐻0 is not rejected 

Phillps-Perron 0.01 𝐻0 is rejected 

Non-Seasonal Differencing (𝒅 = 𝟐) 
Test Statistics 𝒑-value Decision 

 Augmented Dickey-Fuller 0.01 𝐻0 is rejected 

Phillps-Perron 0.01 𝐻0 is rejected 

Table 5 shows that after applying the first non-seasonal differencing (𝑑 = 1), the Phillips-Perron test 

indicates stationarity in variance (𝑝-value = 0.01), but the ADF test does not reject 𝐻0 (𝑝-value = 0.13), 

suggesting that the data is not yet fully stationary in mean. By applying a second non-seasonal differencing 
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step (𝑑 = 2), both tests have 𝑝-values less than 0.05, confirming that the data is now fully stationary in both 

variance and mean.  

Based on the results above, the selected differencing orders are 𝐷 = 1 for seasonal differencing and 

𝑑 = 2 for non-seasonal differencing. Seasonal differencing (𝐷 = 1) is applied to remove the annual seasonal 

effect, while two steps of non-seasonal differencing (𝑑 = 2) ensure that the data is fully stationary in both 

mean and variance. This combination satisfies the stationarity assumption required for SARIMA modeling. 

3.3.3 SARIMA Model Identification 

 

 
(a) 

 
(b) 

 
(c)  

(d) 
                          Figure 4. Stationary Non-Seasonal and Seasonal Components Plots 

(a) Non-Seasonal ACF Plot, (b) Non-Seasonal PACF Plot, (c) Seasonal ACF Plot, (d) Seasonal PACF Plot 

Fig. 4 displays several significant lags in the non-seasonal ACF (lags 1, 3, 4, 5, and 7) and PACF (lags 

1, 2, 3, 4, 5, 7, and 10) plots. Accordingly, the non-seasonal moving average orders considered are 𝜃1, 𝜃3, 𝜃4, 

𝜃5, and 𝜃7, while the non-seasonal autoregressive orders considered are ∅1, ∅2, ∅3, ∅4, ∅5, ∅7, ∅8, and ∅10. 

Additionally, Fig. 4 presents seasonal ACF and PACF plots, showing a significant lag at 12, corresponding 

to the first seasonal lag. Therefore, the seasonal moving average and autoregressive orders considered are 𝛩1 

and 𝛷1, respectively. Based on these, a total of 30 tentative models were generated, as presented in Table 6.   

Table 6. SARIMA Model Identification 

No.  Model 

1. SARIMA(1,2,1)(1,1,1)12 

⋮ ⋮ 
7. SARIMA(2,2,1)(1,1,1)12 

⋮ ⋮ 
29. SARIMA(7,2,3)(1,1,1)12 

30. SARIMA(10,2,3)(1,1,1)12  

3.3.4 Parameter Estimation and Significance Testing  

The parameter estimation process is carried out using the Maximum Likelihood Estimation method, followed 

by testing the significance of the estimated parameters.   

Table 7. Parameter Estimation Values and Significance Tests 

No. Model Parameters Estimation 𝒑-value Decision 

1. SARIMA(1,2,1)(1,1,1)12 ∅1, 𝜃1,  

Φ1, Θ1 

-0.376, -0.999, 

-0.370, -0.750 

0.000, 0.000,  

0.001, 0.000 

𝐻0 is rejected 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
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No. Model Parameters Estimation 𝒑-value Decision 

7. SARIMA(2,2,1)(1,1,1)12 ∅1, ∅2, 𝜃1, 

 Φ1, Θ1 

-0.541, -0.418, -0.998, 

-0.318, -0.857 

0.000, 0.000, 0.000, 

0.006, 0.000 

𝐻0 is rejected 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

29. SARIMA(7,2,3)(1,1,1)12 ∅1, ∅2, ∅3, 

∅4, ∅5, ∅6, 

∅7, 𝜃1, 𝜃2, 

𝜃3, Φ1, Θ1 

0.231, -0.835, -0.344,  

-0.503, -0.303, -0.215,  

-0.278, -1.989, 1.984,  

-0.957, -0.276, -0.852 

0.042, 0.000, 0.014, 

0.000, 0.029, 0.038, 

0.016, 0.000, 0.000, 

0.000, 0.029, 0.000 

 

𝐻0 is rejected 

30. SARIMA(10,2,3)(1,1,1)12 ∅1, ∅2, ∅3, 

∅4, ∅5, ∅6, 

∅7, ∅8, ∅9, 

∅10, 𝜃1, 𝜃2, 

𝜃3, Φ1, Θ1 

-1.149, -2.008, -1.584, 

-1.424, -1.174, -1.006, 

-1.058, -0.833, -0.595, 

-0.331, -0.511, 0.687, 

 -0.862, -0.405, -0.926 

0.000, 0.000, 0.000, 

0.000, 0.001, 0.002, 

0.000, 0.002. 0.000, 

0.004, 0,000, 0.000, 

0.000, 0.001, 0.000 

 

𝐻0 is rejected  

Table 7 presents that out of the 30 models analyzed, four models were selected. The parameters of 

these four models have 𝑝-values less than 0.05. Therefore, the null hypothesis (𝐻0) is rejected for each model, 

indicating that all parameters are significant in explaining the patterns in the data. Thus, these four models 

are considered the main candidates for further analysis. 

3.3.5 Residual Assumption Tests  

1. White Noise Test 

This test aims to determine whether the residuals are random. If they are, it means the model has 

successfully captured all patterns in the data. The test is conducted using the Ljung-Box test. 

Table 8. Ljung-Box Test Statistics 

Model 𝒑-value Decision 

SARIMA(1,2,1)(1,1,1)12 0.0805 𝐻0 is not rejected 

SARIMA(2,2,1)(1,1,1)12 0.3817 𝐻0 is not rejected 

SARIMA(7,2,3)(1,1,1)12 0.9944 𝐻0 is not rejected 

SARIMA(10,2,3)(1,1,1)12 0.9376 𝐻0 is not rejected 

According to Table 8, all four models have 𝑝-values greater than 0.05. Therefore, the null hypothesis 

(𝐻0) is not rejected for each model, indicating that the residuals of all four models are random. As a result, 

all four models satisfy the assumption of white noise.  

2. Residual Normality Test 

This test aims to determine whether the residuals from the model follow a normal distribution. The 

assessment is conducted using the Kolmogorov-Smirnov test.   

 Table 9. Kolmogorov-Smirnov Test Statistics  

Model 𝒑-value Decision 

SARIMA (1,2,1) (1,1,1)12 0.1133 𝐻0 is not rejected 

SARIMA (2,2,1) (1,1,1)12 0.0662 𝐻0 is not rejected 

SARIMA (7,2,3) (1,1,1)12 0.0782 𝐻0 is not rejected 

SARIMA (10,2,3) (1,1,1)12 0.3355 𝐻0 is not rejected 

According to Table 9, all four models have 𝑝-values greater than 0.05. Therefore, the null hypothesis 

(𝐻0) is not rejected, indicating that the residuals of all four models follow a normal distribution. As a result, 

all models satisfy the assumption of normality.   

3.3.6 AIC Value Selection  

The next step is to compare the AIC values of the four models. A smaller AIC value indicates that the 

model achieves a better balance between complexity and explanatory power in capturing the data patterns. 

 Table 10. AIC Comparison 

Model AIC 

SARIMA(1,2,1)(1,1,1)12 693.53 

SARIMA(2,2,1)(1,1,1)12 676.54 



1398 Claudia, et al.     A COMPARATIVE EVALUATION OF SARIMA AND FUZZY TIME SERIES CHEN …  

Model AIC 

SARIMA(7,2,3)(1,1,1)12 672.62 

SARIMA(10,2,3)(1,1,1)12 675.19  

According to Table 10, the model with the smallest AIC value is SARIMA(7,2,3)(1,1,1)12. Therefore, this 

model is considered the most suitable for forecasting.  

3.4 Fuzzy Time Series (FTS) Chen 

3.4.1 Determine the Universe of Discourse 𝑼 

The data have a minimum value of 0 and a maximum value of 34,568. Assuming 𝐷1 = 𝐷2 = 0, the 

universe of discourse is determined using Eq. (2), yielding the following result:  

𝑈 = [0 − 0 ;  34.568 + 0] = [0  ;  34.568]. 

In this study, the values of D1 and D2 were set to 0 because the data after transformation did not exhibit 

extreme outliers, so no extension or contraction of the universe of discourse was required. This approach is 

also consistent with previous studies [30] that applied 𝐷1 = 𝐷2 = 0 when the data were within a stable range. 

To strengthen this decision, additional trials with 𝐷1 and 𝐷2 ≠ 0 were conducted. However, the results did 

not improve the forecasting accuracy, so the values 𝐷1 = 𝐷2 = 0 were ultimately selected. 

3.4.2 Determine the Interval Length 

1. Determine the Number of Class Intervals 

The number of class intervals is calculated using Eq. (3), with 𝑛 = 120, resulting in the following outcome: 

𝐾 = 1 + 3.322 × log (120) = 1 + 3.322 × 2.079 ; 𝐾 = 7.906 ≈ 8. 

In this study, the number of fuzzy intervals was determined using Sturges’ rule, taking the sample size 

into account, resulting in 𝐾 = 8. This choice is appropriate because it balances the representation of data 

variation and interval frequency. Validation with several alternative values of 𝐾 showed that this setting 

provided the best forecasting accuracy, with MAE and RMSE values not significantly different from the 

nearest alternatives, thereby reinforcing the empirical basis for this selection. 

2. Determine the Range 

The range is calculated using Eq. (4), resulting in: 

𝑅 = (34.568 + 0) − (0 + 0) = 34.568. 

3. Determine the Interval Length 

The interval length is calculated using Eq. (5), resulting in:   

𝐼 =  
34.568

8
=  4.321. 

4. Finding the Midpoint (𝒎𝒊)  

The universe of discourse is partitioned by interval length using Eq. (6), resulting in:       

𝑢1 = [0 ; 4.321] 

𝑢2 = (4.321 ; 8.642] 

𝑢3 = (8.642 ; 12.963] 

⋮ 

𝑢8 = (30.247 ; 34.568] 

After determining the intervals 𝒖𝟏 to 𝒖𝟖, the midpoint of each class interval is calculated using Eq. (7), based 

on the lower and upper bounds, as presented in Table 11.  
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Table 11. Midpoint (𝒎𝒊) 

Class Lower Bound Upper Bound Midpoint (𝒎𝒊) 

𝑢1 0 4.321 2.161 

𝑢2 4.321 8.642 6.482 

𝑢3 8.642 12.963 10.803 

𝑢4 12.963 17.284 15.124 

𝑢5 17.284 21.605 19.445 

𝑢6 21.605 25.926 23.766 

𝑢7 25.926 30.247 28.087 

𝑢8 30.247 34.568 32.408 

3.4.3 Fuzzy Set Classification 

The fuzzy sets 𝐴1, 𝐴2, … 𝐴8 are determined based on the intervals (𝑢1, 𝑢2, … 𝑢8) formed in the previous 

step, by adapting the model in Eq. (8).   

𝐴1 =
1

𝑢1
+ 
0,5

𝑢2
 𝐴3 =

0,5

𝑢2
+ 

1

𝑢3
+ 
0,5

𝑢4
 𝐴5 =

0,5

𝑢4
+ 

1

𝑢5
+ 
0,5

𝑢6
 𝐴7 =

0,5

𝑢6
+ 

1

𝑢7
+ 
0,5

𝑢8
 

𝐴2 =
0,5

𝑢1
+ 

1

𝑢2
+ 
0,5

𝑢3
 𝐴4 =

0,5

𝑢3
+ 

1

𝑢4
+ 
0,5

𝑢5
 𝐴6 =

0,5

𝑢5
+ 

1

𝑢6
+ 
0,5

𝑢7
 𝐴8 =

0,5

𝑢7
+ 

1

𝑢8
 

Here, each fuzzy set 𝐴𝑖  corresponds to an interval class 𝑢𝑖. For example, 𝐴1 represents the interval  

𝑢1 = [0, 4.321], 𝐴2 represents 𝑢2 = (4.321, 8.642], and so on until 𝐴8 which represents 𝑢8 = (30.247, 34.568]. 

These fuzzy sets provide the linguistic labels used in the fuzzification process. In other words, 𝐴1 can be 

interpreted as the fuzzy set for “very low rainfall”, 𝐴2 as “low rainfall”, 𝐴3 as “moderately low rainfall”, and 

so forth, up to 𝐴8 as “very high rainfall”. 

3.4.4 Fuzzification of Historical Data 

This step converts numerical values into linguistic (fuzzy) values using the defined fuzzy sets.  

Table 12. Fuzzification 

Year Month Data Fuzzification 

2014 January 28.913 𝐴7 

 February 17.691 𝐴5 

 March 17.635 𝐴5 

⋮ ⋮ ⋮ ⋮ 
2023 October 2.738 𝐴1 

 November 9.612 𝐴3 

 December 13.809 𝐴4 

According to Table 12, the data for January 2014, which is 28.913, falls into the fuzzy set  
𝐴7 because the value lies within the interval class 𝑢7. The data for February 2014, which is 17.691, falls into 

the fuzzy set 𝐴5 because the value lies within the interval class 𝑢5. A similar process is applied to the data for 

the subsequent months up to December 2023, where the value 13.809 falls into the fuzzy set  
𝐴4, as it lies within the interval class 𝑢4. 

3.4.5 Fuzzy Logical Relationship (FLR)  

This relationship is formed based on the sequence of values from time 𝒕 to time 𝒕 + 𝟏 within a fuzzy structure.  

Table 13. Fuzzy Logical Relationship (FLR)  

Year Month FLR 

2014 January NA → 𝐴7 

 February 𝐴7 → 𝐴5 

 March 𝐴5 → 𝐴5 

⋮ ⋮ ⋮ 
2023 October 𝐴3 → 𝐴1 

 November 𝐴1 → 𝐴3 

 December 𝐴3 → 𝐴4 
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According to Table 13, the FLR shows the relationship between the fuzzification of one month and the 

following month. For instance, in January 2014, since there is no earlier data, it is recorded as NA → 𝐴7. In 

February 2014, the fuzzification in January is 𝐴7 and the fuzzification in February is 𝐴5, forming the 

relationship 𝐴7 → 𝐴5. In March 2014, the fuzzification in February is 𝐴5 and the fuzzification in March is also 

𝐴5, resulting in the relationship 𝐴5 → 𝐴5. This process continues sequentially until November 2023, which 

relates to December 2023. 

3.4.6 Fuzzy Logical Relationship Group (FLRG)  

The next step is to group the results from the previous step into several categories according to similar current 

states, ensuring no repetition.  

Table 14. Fuzzy Logical Relationship (FLRG)  

Current State  Next State 

𝐴1 → 𝐴1 , 𝐴2 , 𝐴3 

𝐴2 → 𝐴1 , 𝐴2 , 𝐴3 , 𝐴4 , 𝐴5 

𝐴3 → 𝐴1 , 𝐴2 , 𝐴3 , 𝐴4 , 𝐴5 , 𝐴6 , 𝐴7 

𝐴4 → 𝐴1 , 𝐴2 , 𝐴3 , 𝐴4 , 𝐴5 , 𝐴6 , 𝐴8 

𝐴5 → 𝐴2 , 𝐴3 , 𝐴4 , 𝐴5 , 𝐴7 , 𝐴8 

𝐴6 → 𝐴3 , 𝐴4 , 𝐴5 , 𝐴6 , 𝐴7 , 𝐴8 

𝐴7 → 𝐴4 , 𝐴5 , 𝐴6 , 𝐴7 , 𝐴8 

𝐴8 → 𝐴4 , 𝐴5 , 𝐴7 , 𝐴8  

Table 14 presents the relationships between states. For example, if the current state is 𝐴1, then the next 

state is likely to be 𝐴1,𝐴2, or 𝐴3. If the current state is 𝐴2, then the next state is likely to be 𝐴1,𝐴2,𝐴3,𝐴4, or 

𝐴5. This pattern continues similarly up to the current state 𝐴8.    

3.4.7 Defuzzification  

After forming the FLRG, defuzzification is carried out to convert a fuzzy set into numerical values using Eq. 

(9).   

Table 15. Defuzzification 

FLRG F(t) FLRG Defuzzification 

𝐴1 → 𝐴1 , 𝐴2 , 𝐴3 𝑚1 +𝑚2 +𝑚3

3
 

6.481 

𝐴2 → 𝐴1 , 𝐴2 , 𝐴3 , 𝐴4 , 𝐴5 𝑚1 +𝑚2 +𝑚3 +𝑚4 +𝑚5

5
 

10.802 

𝐴3 → 𝐴1 , 𝐴2 , 𝐴3 , 𝐴4 , 𝐴5 , 𝐴6 , 𝐴7 𝑚1 +𝑚2 +𝑚3 +𝑚4 +𝑚5 +𝑚6 +𝑚7

7
 

15.123 

𝐴4  → 𝐴1 , 𝐴2 , 𝐴3 , 𝐴4 , 𝐴5 , 𝐴6 , 𝐴8 𝑚1 +𝑚2 +𝑚3 +𝑚4 +𝑚5 +𝑚6 +𝑚8

7
 

15.741 

𝐴5 → 𝐴2 , 𝐴3 , 𝐴4 , 𝐴5 , 𝐴7 , 𝐴8 𝑚2 +𝑚3 +𝑚4 +𝑚5 +𝑚7 +𝑚8

6
 

19.444 

𝐴6  → 𝐴3 , 𝐴4 , 𝐴5 , 𝐴6 , 𝐴7 , 𝐴8 𝑚3 +𝑚4 +𝑚5 +𝑚6 +𝑚7 +𝑚8

6
 

21.605 

𝐴7 → 𝐴4 , 𝐴5 , 𝐴6 , 𝐴7 , 𝐴8 𝑚4 +𝑚5 +𝑚6 +𝑚7 +𝑚8

5
 

23.766 

𝐴8 → 𝐴4 , 𝐴5 , 𝐴7 , 𝐴8 𝑚4 +𝑚5 +𝑚7 +𝑚8

4
 

23.766 

After obtaining the FLRG defuzzification values presented in Table 15, they can be directly applied to the 

entire dataset. These values serve as the model outputs for all data, as presented in Table 16.   

Table 16. Forecasting Results  

Year Month Defuzzification 

2014 January NA 

 February 23.766 

 March 19.444 

⋮ ⋮ ⋮ 
2023 October 15.123 

 November 6.481 

 December 15.123 
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According to Table 16, there is no forecast result for January 2014 because the FTS Chen model can 

only predict for the subsequent period (𝑡 + 1). For February 2014, the forecasted value is 23.766 because 

January 2014 falls within the fuzzy set 𝐴7, which has a defuzzified value of 23.766. This process continues 

until December 2023, where the forecasted value is determined based on the fuzzy set of the previous month, 

November 2023.   

3.5 Model Evaluation 

The evaluation of the SARIMA (7,2,3)(1,1,1)12 model and the FTS Chen model was conducted based on the 

calculation of MAE using Eq. (10) and RMSE using Eq. (11).   

Table 17. Model Evaluation of SARIMA (7,2,3)(1,1,1)12 and FTS Chen  
Model MAE RMSE 

SARIMA(7,2,3)(1,1,1)12 2.654 3.846 

Fuzzy Time Series Chen  5.575 6.594 

Table 17 presents that the SARIMA (7,2,3)(1,1,1)12 model achieved lower MAE and RMSE values, 

specifically 2.654 and 3.846, compared to 5.575 and 6.594 for the FTS Chen model. While the FTS Chen 

method provides flexibility in handling uncertainty, its forecasts tend to deviate more during extreme rainfall 

months and fail to fully capture seasonal fluctuations. In contrast, SARIMA explicitly models seasonal and 

autoregressive components, allowing it to closely track both the peaks and troughs of rainfall patterns. To 

further illustrate these findings, Fig. 5 presents a visual comparison between actual data, 

SARIMA(7,2,3)(1,1,1)12 forecasts, and FTS Chen forecasts.  

 
Figure 5. Plot of Comparison Between Actual Data, SARIMA Forecast, and FTS Forecast 

Based on Fig. 5, it can be seen that SARIMA (blue line) is able to consistently follow the actual data 

(black line), both during rainy season peaks and dry season troughs. This indicates that SARIMA successfully 

captures the seasonal component and short-term dependencies, resulting in more accurate forecasts. On the 

other hand, the FTS Chen model (red line) shows greater deviations, especially during extreme rainfall 

periods, where the predictions appear smoother and less responsive to sharp fluctuations. This visual evidence 

reinforces the numerical evaluation in Table 17, confirming that SARIMA (7,2,3)(1,1,1)12  is the more 

suitable model for forecasting rainfall in this study. Based on Eq. (1), this model can be expressed as follows:       

(1 − 0.231𝐵 + 0.835𝐵2 + 0.344𝐵3 + 0.503𝐵4 + 0.303𝐵5 + 0.215𝐵6 + 0.278𝐵7)(1 + 0.276𝐵12) 
(1 − 𝐵)2 (1 − 𝐵12)𝑌𝑡 = (1 + 1.989𝐵 − 0.984𝐵

2 + 0.957𝐵3)(1 + 0.852𝐵12)𝜀𝑡.  

3.6 Forecasting and Validation 

Forecasting rainfall in Makassar for the year 2024 was carried out using the SARIMA (7,2,3)(1,1,1)12 model, 

as shown below.    

Table 18. Comparison Between Actual Data and Forecasted Results  

Period Actual Data (mm) SARIMA Forecast (mm) 

January 2024 556.0 439.5 

February 2024 465.6 196.1 

March 2024 262.2 151.2 

April 2024 107.0 105.5 
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Period Actual Data (mm) SARIMA Forecast (mm) 

May 2024 15.8 91.9 

June 2024 47.6 33.1 

July 2024 78.4 23.6 

August 2024 0.2 78.8 

September 2024 12.6 19.2 

October 2024 46.8 23.7 

November 2024 330.8 108.4 

December 2024  1,105.4 507.5 

Table 18 shows the differences between the forecasted and actual rainfall values for several months. 

For instance, in February 2024, the actual rainfall reached 465.6 mm, whereas the forecast was only 196.1 

mm. Conversely, the forecasts were relatively accurate from April to July, as well as in September and 

October 2024. For example, in April, the actual rainfall was 107.0 mm, whereas the forecast was 105.5 mm. 

 
Figure 6. Plot of Comparison Between Actual Data and SARIMA Forecast 

Furthermore, Fig. 6 illustrates that the SARIMA (7,2,3)(1,1,1)12 model effectively captured the 

seasonal rainfall patterns, showing a similar trend between the actual and forecasted results. The rainy season 

was observed at the beginning and end of the year, while the dry season occurred mid-year. Overall, the 

SARIMA (7,2,3)(1,1,1)12 model demonstrated satisfactory performance in forecasting rainfall in Makassar 

for 2024.   

4. CONCLUSION 

The research results indicated that the SARIMA (7,2,3)(1,1,1)12 was the best model compared to the 

FTS Chen model in forecasting rainfall in Makassar. The SARIMA (7,2,3)(1,1,1)12 model achieved lower 

MAE and RMSE values, namely 2.654 and 3.846, respectively, whereas the FTS Chen model had an MAE 

of 5.575 and an RMSE of 6.594. Forecasting rainfall for 2024 in Makassar using this model proved effective 

in capturing seasonal patterns. Although there were considerable differences in certain months—specifically 

January, February, March, August, November, and December 2024—the model successfully distinguished 

between the rainy and dry seasons. More accurate forecasts were observed from April to July, as well as in 

September and October 2024. Overall, the SARIMA (7,2,3)(1,1,1)12 model demonstrated reliable and 

accurate performance in forecasting rainfall in Makassar for 2024. However, this study has limitations, as it 

relies solely on historical rainfall data and does not consider other meteorological variables such as 

temperature, humidity, or wind patterns. Future research could explore hybrid models and include these 

factors to improve forecasting accuracy.  
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