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ABSTRACT

High rainfall intensity in Makassar often leads to flooding. Therefore, forecasting the
amount of rainfall is necessary as a reference for taking appropriate mitigation measures.
This study was conducted to select the best model between the SARIMA and Fuzzy Time
Series (FTS) Chen based on a comparison of their forecasting accuracy, as well as to
forecast the amount of rainfall in Makassar for 2024 using the best model. For this study,
monthly rainfall data covering the period from January 2014 to December 2024 were
collected from the official website of the Central Statistics Agency (BPS) Makassar. Based
on the analysis results, SARIMA(7,2,3)(1,1,1)* was selected as the best model, with an
MAE value of 2.654 and an RMSE value of 3.846. The contribution of this study lies in
providing an empirical comparison between SARIMA and FTS Chen for rainfall forecasting
in tropical regions. However, the limitation of this study is that the forecasting relies solely
on historical rainfall data, without incorporating other meteorological variables that may
influence rainfall patterns.
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1. INTRODUCTION

Indonesia has a tropical climate due to its location along the equator, resulting in high rainfall, including
in Makassar. Rainfall is the amount of rainwater accumulated in a flat area that does not flow, absorb, or
evaporate and is measured in millimeters or inches. One millimeter of rainfall represents the volume of water
over one square meter, which is equivalent to one liter [1]. In Indonesia, the dry season usually runs from
May to October, whereas the rainy season extends from November to April. Increased rainfall during the
rainy season can trigger hydrometeorological disasters such as landslides and floods [2]. Makassar is
classified as a flood-prone area [3]. According to information from www.news.detik.com, the flood that
occurred in Makassar on December 26, 2022, was recorded as the most severe of the year [4]. The flood
submerged three districts—namely, Manggala, Biringkanaya, and Tamalanrea. Furthermore, a total of 8,687
people were affected by the flood. According to information from the Regional Disaster Management Agency
of Makassar, the flood, which reached a height of up to 2 meters, caused severe disruption to public mobility.
It also resulted in material losses amounting to billions of rupiah due to 3,046 housing units being submerged.
Additionally, 182 flood evacuees suffered from various health problems [4].

In light of this issue, an accurate forecasting method is needed to predict the amount of rainfall over a
certain period. This information is essential as a reference for both the public and local government in taking
mitigation measures to minimize the risk of flooding. Forecasting involves analyzing historical data to predict
future events [5]. Currently, time series analysis is a popular method used in forecasting. Several time series
methods frequently applied include ARIMA, SARIMA, Fuzzy Time Series (FTS), and Exponential
Smoothing [6], [7], [8]. SARIMA is a modified version of the ARIMA model that incorporates seasonal
patterns [9]. The advantage of SARIMA lies in its effectiveness in capturing seasonal patterns and trends
through the seasonal components integrated into the model, which are not present in the standard ARIMA
model [10], [11], [12]. However, SARIMA requires the data to meet the assumption of stationarity [13]. A
study in Nigeria showed that the SARIMA (2,0,1)(2,1,1)*? was optimal model based on statistical criteria
such as the Box-Pierce residuals test. It was effective in modeling the seasonal rainfall patterns in Nigeria
and capable of providing accurate forecasts for the medium to long term [10]. However, this study has a
limitation. It only applied the SARIMA model without comparing it to alternative forecasting methods, such
as Fuzzy Time Series, so it is unclear whether other methods could provide higher accuracy for data with
complex seasonal patterns.

The FTS method offers a solution to this limitation by using fuzzy sets to map data without the need
to satisfy assumptions such as stationarity, normality, or homoscedasticity [13], [14]. Moreover, FTS is
capable of capturing the complexity and uncertainty inherent in rainfall data, which often exhibit irregular
patterns [15]. However, the accuracy of FTS depends on the number of classes and the length of intervals
defined at the outset [16]. Several FTS models include those proposed by Song-Chissom et al. [17]. The Chen
model is chosen in this study because Chen’s method provides better short-term forecasting accuracy, can
handle variability in rainfall more robustly, and has a simple computational process, making it easier to
implement compared to other Fuzzy Time Series models [18]. A study in Medan found that the Chen model
outperformed others in forecasting monthly rainfall, achieving a lower MAPE value of 8.002% compared to
the Cheng model and the Markov Chain [19]. However, this study also has several limitations. It was
conducted only in Medan, so the results may not be directly generalizable to other regions with different
rainfall patterns. The comparison was limited to FTS variants and did not include classical time series models
such as SARIMA, leaving uncertainty about the relative performance of Chen’s model against these methods.

According to the previous explanation, a research gap remains regarding the comparison between
SARIMA and FTS Chen in rainfall forecasting, as most prior studies have applied only one of these methods.
Therefore, this study was conducted to compare the performance of both methods in order to select the best
model and forecast the rainfall in Makassar for 2024.


http://www.news.detik.com/
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2. RESEARCH METHODS

2.1 Research Process

The following diagram outlines the steps taken in this research:

Problem Identification
Literature Review

Data Collection and Data Splitting I

| Out-sample Data

In-sample Data

Exploratory Data Analysis

Modelling (SARIMA and Fuzzy
Time Series Chen)

| Model Evaluation |

Forecasting and
Validation

Figure 1. Research Process Diagram

Y

Based on Fig. 1, this study begins with problem identification and a literature review to determine the
appropriate forecasting methods, namely SARIMA and Fuzzy Time Series Chen. Rainfall data from the
Central Statistics Agency (BPS) Makassar are used and divided into in-sample data (January 2014 —
December 2023) for modeling and out-sample data (January 2024 — December 2024) for validation.
Following exploratory analysis and preprocessing, both models are constructed and evaluated using MAE
and RMSE. The model with the best performance is then applied in the forecasting and validation stage to
compare predicted rainfall with actual data.

All analyses in this study were performed using R [20]. The SARIMA modeling was implemented
with the forecast package [21], while the Fuzzy Time Series Chen method was carried out using the
AnalyzeTS package [22]. Stationarity analysis was conducted using the tseries package [23] for the
Augmented Dickey-Fuller and Phillips-Perron tests, and the astsa [24] package for ACF and PACF plots.
Model diagnostics, including the Ljung-Box test and Kolmogorov-Smirnov tests, were performed with the
stats package [20]. Data visualization was supported by the ggplot2 package [25].

2.2 Seasonal Autoregressive Integrated Moving Average (SARIMA)
The SARIMA (p, d, q)(P, D, Q)° model is generally represented by the following equation:

¢p(B)Pp(B*)(1 — B)?(1 = B5)Y, = 6,(B)0o(B*)¢;, €Y)
where:
(p,d,q) : Non-seasonal components;
(P,D,Q) : Seasonal components;
¢, (B) : Backward shift operator for non-seasonal AR;
®p(B%) : Backward shift operator for seasonal AR;

(1-B)¢ : Non-seasonal differencing process of order d;
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(1-B*)°
Y

6q(B)

0o (B®)

s

&t

: Seasonal differencing process of order D;

: Time series at time t;

: Backward shift operator for non-seasonal MA;
: Backward shift operator for seasonal MA;

: Number of periods in one seasonal cycle;

: Forecasting error at time t.

2.3 Fuzzy Time Series (FTS) Chen
The steps involved in the FTS Chen are as follows [26]:

1.

2.

3.

Determine the Universe of Discourse U

U= [Dmin — D1; Dipax + Dz]- (2)

Determine the Interval Length

a.

b.

Determine the Number of Class Intervals
K =1+ 3.322log(n). 3)
Determine the Range
R = (Dmax + D2) = (Dyin + D). 4
Determine the Interval Length

From the results, the partition of the universe of discourse is obtained according to the interval
length.

Uy = (Dipin — D15 Dppin + D1 + 1),

Uy = (Din — D1 + 15 Diyin — Dy + 21),

Uz = (Dmm - Dl + 21, Dmin - Dl + 31),

Uy = (Dppin — D1 + (K = DI ; Diyiny — Dy + KI). (6)
Finding the Midpoint Value

lower bound + upper bound

m; = > (7)

where

K - Number of class intervals;

n - Number of observation data;

R : Range;

Dinin : The smallest data value;

Dinax : The largest data value;

D, : The first constant number set by the researcher;

D, : The second constant number set by the researcher;

I . Interval length;

Uy : Partition of the universe of discourse;

m; : Median of the i interval;

Fuzzy Set Classification

Let fuzzy sets A4, A,, ... , A, defined by linguistic variables over U = {uy,u,,..,u,}, represent
the k class intervals identified earlier. These fuzzy sets are constructed as follows:
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! + ! ifk=1
U Uy if ke =
0.5 1 0.5 .
A = A +—+ , if2<k<n-1 (8)
Ug—1 Ug Ug4q
0.5 1 ]
+—, if k=n.
Up-1 Up

Here, ui = x, represents the membership degree of u; in the fuzzy set A;.
k

4. Fuzzification of Historical Data
The purpose of fuzzification is to convert numerical (crisp) values into linguistic (fuzzy) values

using predefined fuzzy sets. If a data value falls within the interval uy, it is classified into the
corresponding fuzzy set Ay.

5. Fuzzy Logical Relationship (FLR)

FLR involves establishing connections according to historical data. By observing the connections
between fuzzy sets A; from one period to the next, these connections are organized into an FLR
table.

6. Fuzzy Logical Relationship Group (FLRG)

According to the previous step, FLRs are grouped into categories based on similar current states,
ensuring no repetition.

7. Defuzzification

Defuzzification is the process of converting fuzzy sets into numerical data. In the FTS Chen
method, there are several important aspects to consider:

a. Rule 1: If the current state is A; and the FLRG of A; is empty, then the forecast result is the
midpoint of u;. For example, if A; — @, then the forecast = m; (midpoint u;).

b. Rule 2: If the current state is A; and the FLRG of A; has a one-to-one relationship, then the
forecast result is the midpoint of w;. For example, if A; — A;, then the forecast = m;
(midpoint w;).

c.  Rule 3: If the current state is A; and the FLRG of A; has a one-to-many relationship, then the
forecast result is the average of the midpoints of w;, u;, ..., u,,. The forecast can be computed

with the equation below:
Mit—1) + Mje—1) T =+ My-1)

F = - : 9

2.3 Measurement of Forecast Accuracy

Model performance evaluation provides an overview of how accurately the forecasting model predicts
compared to the actual values. The smaller the Mean Absolute Error (MAE) and Root Mean Squared Error
(RMSE) values, the more accurate the model is in predicting the given data [27].

1 .
MAE = (—z |Y; — Yt|), (10)
n t=1
n(Y, —Y,)2
RMSE = ZM(% (11)

where:

Y; :Actual value;
Y, :Forecasted value;
n : Total number of data points.
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3. RESULTS AND DISCUSSION
3.1 Exploratory Data Analysis

Table 1. Descriptive Statistics

Measure of Central Tendency Measure of Skewness Measure of Normality
Type of Measure Value Type of Measure Value Test Statistic p-value
Minimum 0 Skewness 1.17077 Kolmogorov- 0.00185
Median 152.5 Smirnov
Mean 275.9
Maximum 1,195
Standard Deviation 293.2

Table 1 shows that the average monthly rainfall in Makassar from January 2014 to December 2023 is
classified as moderate rainfall. The minimum and maximum values recorded were 0 mm and 1,195 mm,
respectively. The relatively high standard deviation indicates fluctuations in monthly rainfall. Additionally,
a p-value of the Kolmogorov-Smirnov test below 0.05 and a skewness of 1.17077 indicate that the data are
not normally distributed and tend to be right-skewed, meaning that some months have rainfall significantly
above the average.

3.2 Preprocessing

The dataset used in this study contains missing values. Therefore, median imputation was applied, as
it is effective for handling skewed or non-normally distributed data [28]. The normality test results in Table
1 confirm that the data are not normally distributed, making a transformation necessary. A square root
transformation was chosen because it is suitable for data containing zeros, helps reduce skewness, and tends
to normalize the data distribution [29]. The outcomes of this transformation are shown in Table 2.

Table 2. Results of the Square Root Transformation

Year Month Actual Data Transformed Data
2014 January 836.00 28.913
February 313.00 17.691
March 311.00 17.635
2023 Oktober 7.50 2.738
November 92.40 9.612
December 190.70 13.809

3.3 Seasonal Autoregressive Integrated Moving Average (SARIMA)

3.3.1 Time Series Plot Identification

1200
|

Rainfall

0 200 400 600 800

‘ v, b i ) ¥ ‘ ‘ # ‘
2014 2016 2018 2020 2022 2024

Year

Figure 2. Rainfall Data Plot in Makassar

Fig. 2 indicates that the monthly rainfall in Makassar from January 2014 to December 2023 exhibited
significant fluctuations. Rainfall levels tend to increase at the beginning and end of each year, while the
remaining months generally experience lower amounts. This recurring pattern suggests the presence of a
seasonal trend in the data.
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3.3.2 Stationarity Analysis of the Data

In this study, stationarity analysis was carried out using two approaches: first, through the identification
of ACF and PACF plots; and second, by employing statistical methods, specifically the Augmented Dickey-
Fuller (ADF) and Phillips-Perron tests.

0.2 04 06

ACF
Partial ACF

-04 -02 00 02 04 06

-0.6

(a) (b)
Figure 3. Transformed Data Plots (a) ACF Plot, (b) PACF Plot

Fig. 3 presents a strong seasonal pattern in the ACF plot, indicated by significant spikes at lags that are
multiples of 12, reflecting an annual seasonal pattern (12 months). This suggests that there is a significant
fluctuation in the mean of the data. In contrast, the PACF plot shows that most lags fall within the significance
bounds, indicating that there is no significant fluctuation in the variance of the data.

Table 3. ADF and Phillips-Perron Test Statistics of the Data After Transformation

Test Statistics p-value Decision
Augmented Dickey-Fuller 0.4856 H, is not rejected
Phillps-Perron 0.01 H, is rejected

Table 3 shows that the p-value of the Phillips-Perron test is less than 0.05. Therefore, the null
hypothesis (H,) is rejected, indicating that the data is stationary in terms of variance. On the other hand, the
p-value of the ADF test is greater than 0.05. Thus, the null hypothesis (H,) is not rejected, indicating that the
data is non-stationary in terms of mean. Consequently, differencing is required to achieve stationarity in the
SARIMA method.

Table 4. ADF and Phillips-Perron Test Statistics After Seasonal Differencing (D = 1)

Test Statistics p-value Decision
Augmented Dickey-Fuller 0.01 H, is rejected
Phillps-Perron 0.01 H, is rejected

Table 4 shows that after applying one seasonal differencing step (D = 1), both the ADF and Phillips-
Perron tests have p-values less than 0.05, indicating that the seasonal component of the data is now stationary.
This seasonal differencing was necessary due to the strong annual pattern observed in the ACF plot. However,
inspection of non-seasonal lags in the ACF and PACF plots suggested that non-seasonal trends might still be
present.

Table 5. ADF and Phillips-Perron Test Statistics After Non-Seasonal Differencing (d = 1 and d = 2)
Non-Seasonal Differencing (d = 1)

Test Statistics p-value Decision
Augmented Dickey-Fuller 0.13 H, is not rejected
Phillps-Perron 0.01 H, is rejected
Non-Seasonal Differencing (d = 2)
Test Statistics p-value Decision
Augmented Dickey-Fuller 0.01 H, is rejected
Phillps-Perron 0.01 H, is rejected

Table 5 shows that after applying the first non-seasonal differencing (d = 1), the Phillips-Perron test
indicates stationarity in variance (p-value = 0.01), but the ADF test does not reject H, (p-value = 0.13),
suggesting that the data is not yet fully stationary in mean. By applying a second non-seasonal differencing
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step (d = 2), both tests have p-values less than 0.05, confirming that the data is now fully stationary in both
variance and mean.

Based on the results above, the selected differencing orders are D = 1 for seasonal differencing and
d = 2 for non-seasonal differencing. Seasonal differencing (D = 1) is applied to remove the annual seasonal
effect, while two steps of non-seasonal differencing (d = 2) ensure that the data is fully stationary in both
mean and variance. This combination satisfies the stationarity assumption required for SARIMA modeling.

3.3.3 SARIMA Model Identification

0.2

-0.2 0.0

ACF

Partial ACF

-06 -04 -02 00 02
|

|
-06 -04

0 12 24 36 48

0 12 24 36 48
Lag Lag
a
(@ (b)
~ | o
o ‘ o
‘\ \‘ ‘ L1 \\H‘ ‘\ ‘ ‘ ‘
, S | L ““\‘”‘ UH““ e ‘ LEL S ‘ \H N
X T
S Foo
T o CI’-_
=
Q g
3
T T T T T T T T T T
0 12 24 36 48 0 12 24 36 48
Lag Lag
(c) (d)

Figure 4. Stationary Non-Seasonal and Seasonal Components Plots
(a) Non-Seasonal ACF Plot, (b) Non-Seasonal PACF Plot, (c) Seasonal ACF Plot, (d) Seasonal PACF Plot

Fig. 4 displays several significant lags in the non-seasonal ACF (lags 1, 3, 4, 5, and 7) and PACF (lags
1,2,3,4,5,7,and 10) plots. Accordingly, the non-seasonal moving average orders considered are 6,, 05, 0.,
0, and 6,, while the non-seasonal autoregressive orders considered are @;, @,, @3, @4, 05, @,, Bg, and @,,.
Additionally, Fig. 4 presents seasonal ACF and PACF plots, showing a significant lag at 12, corresponding
to the first seasonal lag. Therefore, the seasonal moving average and autoregressive orders considered are 6,
and @,, respectively. Based on these, a total of 30 tentative models were generated, as presented in Table 6.

Table 6. SARIMA Model Identification

No. Model

1. SARIMA(1,2,1)(1,1,1)*2
7. SARIMA(2,2,1)(1,1,1)*?
29. SARIMA(7,2,3)(1,1,1)*?
30. SARIMA(10,2,3)(1,1,1)*

3.3.4 Parameter Estimation and Significance Testing

The parameter estimation process is carried out using the Maximum Likelihood Estimation method, followed
by testing the significance of the estimated parameters.

Table 7. Parameter Estimation Values and Significance Tests
No. Model Parameters Estimation p-value Decision
1.  SARIMA(1,2,1)(1,1,1) 04, 64, -0.376, -0.999, 0.000, 0.000, H, is rejected
D, 0, -0.370, -0.750 0.001, 0.000
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No. Model Parameters Estimation p-value Decision
7. SARIMA(2,2,1)(1,1,1)2  @,,0,,6,, -0.541,-0.418,-0.998, 0.000, 0.000, 0.000, H, is rejected

D, 0, -0.318, -0.857 0.006, 0.000

29. SARIMA(7,2,3)(1,1,1)¥*  @,, 0,, 05, 0.231, -0.835, -0.344,  0.042, 0.000, 0.014,
@4, Os, B¢,  -0.503,-0.303,-0.215, 0.000, 0.029, 0.038,  H, is rejected
@, 64, 6,, -0.278, -1.989, 1.984,  0.016, 0.000, 0.000,
03, @4, 0, -0.957, -0.276, -0.852  0.000, 0.029, 0.000
30. SARIMA(10,2,3)(1,1,1)*2 @, @,, 05, -1.149,-2.008, -1.584, 0.000, 0.000, 0.000,
@,, Os, By, -1.424,-1.174,-1.006, 0.000,0.001, 0.002, H, is rejected
@,, 0g, @9,  -1.058,-0.833, -0.595, 0.000, 0.002. 0.000,
00, 64, 6,,  -0.331,-0.511,0.687,  0.004, 0,000, 0.000,
05, P4, 04 -0.862, -0.405, -0.926  0.000, 0.001, 0.000

Table 7 presents that out of the 30 models analyzed, four models were selected. The parameters of
these four models have p-values less than 0.05. Therefore, the null hypothesis (H,) is rejected for each model,
indicating that all parameters are significant in explaining the patterns in the data. Thus, these four models
are considered the main candidates for further analysis.

3.3.5 Residual Assumption Tests
1. White Noise Test

This test aims to determine whether the residuals are random. If they are, it means the model has
successfully captured all patterns in the data. The test is conducted using the Ljung-Box test.

Table 8. Ljung-Box Test Statistics

Model p-value Decision
SARIMA(1,2,1)(1,1,1)*? 0.0805 H, is not rejected
SARIMA(2,2,1)(1,1,1)*? 0.3817 H, is not rejected
SARIMA(7,2,3)(1,1,1)*? 0.9944 H, is not rejected
SARIMA(10,2,3)(1,1,1)**  0.9376 H, is not rejected

According to Table 8, all four models have p-values greater than 0.05. Therefore, the null hypothesis
(Hyp) is not rejected for each model, indicating that the residuals of all four models are random. As a result,
all four models satisfy the assumption of white noise.

2. Residual Normality Test

This test aims to determine whether the residuals from the model follow a normal distribution. The
assessment is conducted using the Kolmogorov-Smirnov test.

Table 9. Kolmogorov-Smirnov Test Statistics
Model p-value Decision
SARIMA (1,2,1) (1,1,1)* 0.1133 H, is not rejected
SARIMA (2,2,1) (1,1,1)* 0.0662 H, is not rejected
SARIMA (7,2,3) (1,1,1)* 0.0782 H, is not rejected
SARIMA (10,2,3) (1,1,1)* 0.3355 H, is not rejected

According to Table 9, all four models have p-values greater than 0.05. Therefore, the null hypothesis
(Hy) is not rejected, indicating that the residuals of all four models follow a normal distribution. As a result,
all models satisfy the assumption of normality.

3.3.6 AIC Value Selection

The next step is to compare the AIC values of the four models. A smaller AIC value indicates that the
model achieves a better balance between complexity and explanatory power in capturing the data patterns.

Table 10. AIC Comparison
Model AlC
SARIMA(1,2,1)(1,1,1)*2 693.53
SARIMA(2,2,1)(1,1,1)*? 676.54
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Model AIC
SARIMA(7,2,3)(1,1,1)%2 672.62
SARIMA(10,2,3)(1,1,1)* 675.19

According to Table 10, the model with the smallest AIC value is SARIMA(7,2,3)(1,1,1)*2. Therefore, this
model is considered the most suitable for forecasting.

3.4 Fuzzy Time Series (FTS) Chen

3.4.1 Determine the Universe of Discourse U

The data have a minimum value of 0 and a maximum value of 34,568. Assuming D; = D, = 0, the
universe of discourse is determined using Eq. (2), yielding the following result:

U=1[0-0; 34568+ 0] = [0 ; 34.568].

In this study, the values of D, and D, were set to 0 because the data after transformation did not exhibit
extreme outliers, so no extension or contraction of the universe of discourse was required. This approach is
also consistent with previous studies [30] that applied D; = D, = 0 when the data were within a stable range.
To strengthen this decision, additional trials with D; and D, # 0 were conducted. However, the results did
not improve the forecasting accuracy, so the values D; = D, = 0 were ultimately selected.

3.4.2 Determine the Interval Length
1. Determine the Number of Class Intervals
The number of class intervals is calculated using Eq. (3), with n = 120, resulting in the following outcome:

K =1+3.322xlog(120) =1+ 3.322 % 2.079;K = 7.906 = 8.

In this study, the number of fuzzy intervals was determined using Sturges’ rule, taking the sample size
into account, resulting in K = 8. This choice is appropriate because it balances the representation of data
variation and interval frequency. Validation with several alternative values of K showed that this setting
provided the best forecasting accuracy, with MAE and RMSE values not significantly different from the
nearest alternatives, thereby reinforcing the empirical basis for this selection.

2. Determine the Range
The range is calculated using Eq. (4), resulting in:
R = (34.568 + 0) — (0 + 0) = 34.568.
3. Determine the Interval Length
The interval length is calculated using Eq. (5), resulting in:

34.568
I = = 4.321.

4. Finding the Midpoint (m;)

The universe of discourse is partitioned by interval length using Eq. (6), resulting in:
uy, =[0;4.321]
u, = (4.321; 8.642]
U = (8.642; 12.963]

ug = (30.247 ; 34.568]

After determining the intervals u4 to ug, the midpoint of each class interval is calculated using Eq. (7), based
on the lower and upper bounds, as presented in Table 11.
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Table 11. Midpoint (m;)

1399

Class Lower Bound Upper Bound Midpoint (m;)
Uy 0 4.321 2.161
U, 4.321 8.642 6.482
Us 8.642 12.963 10.803
Uy 12.963 17.284 15.124
Us 17.284 21.605 19.445
Ug 21.605 25.926 23.766
U, 25.926 30.247 28.087
Ug 30.247 34.568 32.408

3.4.3 Fuzzy Set Classification

The fuzzy sets A4, A,, ... Ag are determined based on the intervals (uq, u,, ... ug) formed in the previous
step, by adapting the model in Eqg. (8).

1 0,5 0,5 1 0,5 0,5 1 0,5 0,5 1 0,5
A =—+ 3= —t —F+ — A= —t —+ — A= —t —+ —
Uy U, U, Us Uy Uy Us Ug Ug Uz Ug
0,5 1 0,5 0,5 1 0,5 0,5 1 0,5 0,5 1
Az = — 4 = + —+ Aﬁ = + —+ AS == —
u; U, Us U3 Uy Us Us  Ug Uy U;  Ug

Here, each fuzzy set A; corresponds to an interval class u;. For example, A; represents the interval
uq = [0, 4.321], A, represents u, = (4.321, 8.642], and so on until Ag which represents ug = (30.247, 34.568].
These fuzzy sets provide the linguistic labels used in the fuzzification process. In other words, A; can be
interpreted as the fuzzy set for “very low rainfall”, A, as “low rainfall”, A5 as “moderately low rainfall”, and
so forth, up to Ag as “very high rainfall”.

3.4.4 Fuzzification of Historical Data

This step converts numerical values into linguistic (fuzzy) values using the defined fuzzy sets.

Table 12. Fuzzification

Year Month Data Fuzzification
2014 January 28.913 A,
February 17.691 Ag
March 17.635 As
2023 October 2.738 A
November 9.612 A
December 13.809 A,

According to Table 12, the data for January 2014, which is 28.913, falls into the fuzzy set
A, because the value lies within the interval class u,. The data for February 2014, which is 17.691, falls into
the fuzzy set A5 because the value lies within the interval class ug. A similar process is applied to the data for
the subsequent months up to December 2023, where the value 13.809 falls into the fuzzy set
Ay, as it lies within the interval class u,.

3.4.5 Fuzzy Logical Relationship (FLR)

This relationship is formed based on the sequence of values from time ¢ to time ¢ + 1 within a fuzzy structure.

Table 13. Fuzzy Logical Relationship (FLR)

Year Month FLR
2014 January NA — A,
February A, — Ag
March Ag — Ag
2023 October A; — Ay
November A} — Ag
December A; — A,
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According to Table 13, the FLR shows the relationship between the fuzzification of one month and the
following month. For instance, in January 2014, since there is no earlier data, it is recorded as NA — 4,. In
February 2014, the fuzzification in January is A, and the fuzzification in February is A5, forming the
relationship 4, — 4. In March 2014, the fuzzification in February is A5 and the fuzzification in March is also
Ag, resulting in the relationship A5 — Ac. This process continues sequentially until November 2023, which
relates to December 2023.

3.4.6 Fuzzy Logical Relationship Group (FLRG)

The next step is to group the results from the previous step into several categories according to similar current
states, ensuring no repetition.

Table 14. Fuzzy Logical Relationship (FLRG)

Current State Next State
Ay - Ay Ay, A
A, — A Ay Az Ay, As
Az - Ay Ay Az Ay A5 A6 Ay
A, - Ay Ay Az Ay A5 Ag  Ag
As — Ay Az, Ay, As  A;, Ag
Ag - Az Ay, A5, Ag A7, Ag
A, — Ay As  Ag Ay, Ag
Ag — Ay, As A, Ag

Table 14 presents the relationships between states. For example, if the current state is A, then the next
state is likely to be A;,A,, or As. If the current state is A,, then the next state is likely to be A;,4,,43,44, Or
As. This pattern continues similarly up to the current state Ag.

3.4.7 Defuzzification
After forming the FLRG, defuzzification is carried out to convert a fuzzy set into numerical values using Eq.

9).

Table 15. Defuzzification

FLRG F(t) FLRG Defuzzification
Ay — A Ay, Ag my; +m; +m 6.481
A, > A Ay Ag Ay, A m1+mz+"%3+m4+ms 10.802
Ay — Ay Ay As A, As, Ag A, m1+mz+m3+fg4+ms+me+m7 15.123
Ay —> Ay Ay A Ay As Ay, Ag m1+mz+m3+"7l4+ms+m6+m8 15.741
As — Ay Az Ay As A, Ag mz+m3+m447-ms+m7+m8 19.444
Ag — Az Ay Ag , Ag , Ay, Ag m3+m4+ms-?-me+m7+m8 21.605
A, —> Ay As , Ag , Ay, Ag m4+ms+"§6+m7+ms 23.766
Ag — A, As A, Ag m4+ms-?-m7+ms 23.766

4

After obtaining the FLRG defuzzification values presented in Table 15, they can be directly applied to the
entire dataset. These values serve as the model outputs for all data, as presented in Table 16.

Table 16. Forecasting Results

Year Month Defuzzification
2014 January NA
February 23.766
March 19.444
2023 October 15.123
November 6.481

December 15.123
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According to Table 16, there is no forecast result for January 2014 because the FTS Chen model can
only predict for the subsequent period (t + 1). For February 2014, the forecasted value is 23.766 because
January 2014 falls within the fuzzy set A, which has a defuzzified value of 23.766. This process continues
until December 2023, where the forecasted value is determined based on the fuzzy set of the previous month,
November 2023.

3.5 Model Evaluation

The evaluation of the SARIMA (7,2,3)(1,1,1)*2 model and the FTS Chen model was conducted based on the
calculation of MAE using Eq. (10) and RMSE using Eq. (11).

Table 17. Model Evaluation of SARIMA (7,2,3)(1,1,1)*? and FTS Chen

Model MAE RMSE
SARIMA(7,2,3)(1,1,1)*? 2.654 3.846
Fuzzy Time Series Chen 5.575 6.594

Table 17 presents that the SARIMA (7,2,3)(1,1,1)*2 model achieved lower MAE and RMSE values,
specifically 2.654 and 3.846, compared to 5.575 and 6.594 for the FTS Chen model. While the FTS Chen
method provides flexibility in handling uncertainty, its forecasts tend to deviate more during extreme rainfall
months and fail to fully capture seasonal fluctuations. In contrast, SARIMA explicitly models seasonal and
autoregressive components, allowing it to closely track both the peaks and troughs of rainfall patterns. To
further illustrate these findings, Fig. 5 presents a visual comparison between actual data,
SARIMA(7,2,3)(1,1,1)*? forecasts, and FTS Chen forecasts.

1200

| = Actual Data
—— SARIMA Forecast
= FTS Chen Forecast

Rainfall

200 400 600 800

0
|

Time

Figure 5. Plot of Comparison Between Actual Data, SARIMA Forecast, and FTS Forecast

Based on Fig. 5, it can be seen that SARIMA (blue line) is able to consistently follow the actual data
(black line), both during rainy season peaks and dry season troughs. This indicates that SARIMA successfully
captures the seasonal component and short-term dependencies, resulting in more accurate forecasts. On the
other hand, the FTS Chen model (red line) shows greater deviations, especially during extreme rainfall
periods, where the predictions appear smoother and less responsive to sharp fluctuations. This visual evidence
reinforces the numerical evaluation in Table 17, confirming that SARIMA (7,2,3)(1,1,1)*? is the more
suitable model for forecasting rainfall in this study. Based on Eq. (1), this model can be expressed as follows:

(1 —0.231B + 0.835B% + 0.344B3 + 0.503B* + 0.303B° + 0.215B° + 0.278B7)(1 + 0.276B'?)
(1—-B)? (1 - B'?)Y, = (1 + 1.989B — 0.984B2 + 0.957B%)(1 + 0.852B'?)s,.
3.6 Forecasting and Validation

Forecasting rainfall in Makassar for the year 2024 was carried out using the SARIMA (7,2,3)(1,1,1)*? model,
as shown below.

Table 18. Comparison Between Actual Data and Forecasted Results

Period Actual Data (mm) SARIMA Forecast (mm)
January 2024 556.0 439.5
February 2024 465.6 196.1
March 2024 262.2 151.2

April 2024 107.0 1055
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Period Actual Data (mm) SARIMA Forecast (mm)

May 2024 15.8 91.9
June 2024 47.6 331
July 2024 78.4 23.6
August 2024 0.2 78.8
September 2024 12.6 19.2
October 2024 46.8 23.7
November 2024 330.8 108.4
December 2024 1,105.4 507.5

Table 18 shows the differences between the forecasted and actual rainfall values for several months.
For instance, in February 2024, the actual rainfall reached 465.6 mm, whereas the forecast was only 196.1
mm. Conversely, the forecasts were relatively accurate from April to July, as well as in September and
October 2024. For example, in April, the actual rainfall was 107.0 mm, whereas the forecast was 105.5 mm.

— Actual Data
—— SARIMA Forecast

Rainfall

200 400 600 800

0

I I I I I
2024.0 2024.2 2024.4 2024.6 2024.8

Period

Figure 6. Plot of Comparison Between Actual Data and SARIMA Forecast

Furthermore, Fig. 6 illustrates that the SARIMA (7,2,3)(1,1,1)* model effectively captured the
seasonal rainfall patterns, showing a similar trend between the actual and forecasted results. The rainy season
was observed at the beginning and end of the year, while the dry season occurred mid-year. Overall, the
SARIMA (7,2,3)(1,1,1)* model demonstrated satisfactory performance in forecasting rainfall in Makassar
for 2024.

4. CONCLUSION

The research results indicated that the SARIMA (7,2,3)(1,1,1)*? was the best model compared to the
FTS Chen model in forecasting rainfall in Makassar. The SARIMA (7,2,3)(1,1,1)*2 model achieved lower
MAE and RMSE values, namely 2.654 and 3.846, respectively, whereas the FTS Chen model had an MAE
of 5.575 and an RMSE of 6.594. Forecasting rainfall for 2024 in Makassar using this model proved effective
in capturing seasonal patterns. Although there were considerable differences in certain months—specifically
January, February, March, August, November, and December 2024—the model successfully distinguished
between the rainy and dry seasons. More accurate forecasts were observed from April to July, as well as in
September and October 2024. Overall, the SARIMA (7,2,3)(1,1,1)* model demonstrated reliable and
accurate performance in forecasting rainfall in Makassar for 2024. However, this study has limitations, as it
relies solely on historical rainfall data and does not consider other meteorological variables such as
temperature, humidity, or wind patterns. Future research could explore hybrid models and include these
factors to improve forecasting accuracy.
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