



## OPTIMIZATION OF ARIMA RESIDUALS USING LSTM IN STOCK PRICE PREDICTION OF PT MEDCO ENERGI INTERNASIONAL TBK

**Achmad Fachril Yusuf Ababil<sup>✉</sup><sup>1</sup>, Abdulloh Hamid<sup>✉</sup><sup>2</sup>, Hani Khaulasari<sup>✉</sup><sup>3\*</sup>,  
Dian Candra Rini Novitasari<sup>✉</sup><sup>4</sup>, Wika Dianita Utami<sup>✉</sup><sup>5</sup>**

<sup>1,2,3,4,5</sup>Department of Mathematics, Faculty of Science and Technology, UIN Sunan Ampel Surabaya  
Jln. Ahmad Yani, No. 117, Jemur Wonosari, Wonocolo, Surabaya, 60237, Indonesia

Corresponding author's e-mail: \* [hani.khaulasari@uinsa.ac.id](mailto:hani.khaulasari@uinsa.ac.id)

### Article Info

#### Article History:

Received: 7<sup>th</sup> June 2025

Revised: 9<sup>th</sup> August 2025

Accepted: 13<sup>th</sup> September 2025

Available online: 26<sup>th</sup> January 2026

#### Keywords:

ARIMA-LSTM optimization;

Investment;

Medco Energi;

Prediction;

Stock price.

### ABSTRACT

The capital market plays an important role in the economy by providing a means for companies to obtain capital and as a place to invest. Stocks are one of the popular investment instruments because their potential profits are attractive to investors. The stocks used in this study are PT Medco Energi Internasional Tbk (MEDC) shares. The purpose of this study is to obtain the optimal ARIMA-LSTM residual optimization model, how much the accuracy, and to predict Medco stock prices for the next 8-month period. The data used starts from January 4, 2021, to October 31, 2024, was obtained from the yahoofinance.com website. The ARIMA model, which is known to be effective in handling linear data, will be combined with LSTM. The use of residuals in the LSTM model can help LSTM capture patterns in the entire stock data so as to increase prediction accuracy. The research results obtained are the optimal ARIMA-LSTM optimization model, namely, ARIMA ([5,9],1,[5,9,11]) and LSTM with the best hyperparameter, namely, hidden layer 64, batch size 16, and learning rate 0.01. The accuracy of the ARIMA-LSTM optimization model is classified as very accurate, with a MAPE value of 0.3%. Medco Energi's stock price for the next 8-month period is predicted to increase from IDR1312 to IDR1430 or an increase of 9%.



This article is an open access article distributed under the terms and conditions of the [Creative Commons Attribution-ShareAlike 4.0 International License](#).

#### How to cite this article:

A. F. Y. Ababil, A. Hamid, H. Khaulasari, D. C. R. Novitasari, and W. D. Utami, "OPTIMIZATION OF ARIMA RESIDUALS USING LSTM IN STOCK PRICE PREDICTION OF PT MEDCO ENERGI INTERNASIONAL TBK", *BAREKENG: J. Math. & App.*, vol. 20, no. 2, pp. 1405-1420, Jun, 2026.

Copyright © 2026 Author(s)

Journal homepage: <https://ojs3.unpatti.ac.id/index.php/barekeng/>

Journal e-mail: [barekeng.math@yahoo.com](mailto:barekeng.math@yahoo.com); [barekeng.journal@mail.unpatti.ac.id](mailto:barekeng.journal@mail.unpatti.ac.id)

Research Article · Open Access

## 1. INTRODUCTION

The Indonesian market is a crucial component of the economy as a source of business capital and investment opportunities. Businesses can use investor modalities to achieve operational, expansion, or other needs. In addition, investors may make investments in the modal market to profit from depreciation or appreciation [1]. According to data from the Indonesian Central Securities Depository (KSEI), the number of available investors increased from 7.4 million in 2021 to 14.8 million in 2024 [2]. The Financial Services Authority (OJK), Indonesia Stock Exchange (IDX), Self-Regulatory Organization (SRO), and other stakeholders work together to increase the number of investors in the Indonesian capital market with an effective digitalization strategy to improve public financial literacy. IDX has organized various educational activities that have reached millions of participants, including the Capital Market School program and campaigns that have succeeded in attracting the interest of the younger generation, with the majority of new investors being under 40 years old. In addition, the development of digital infrastructure such as IDX Mobile and the expansion of the IDX Investment Gallery in various regions have further facilitated access to information and investment for the wider community [3].

Energy sector stocks, especially oil and gas, play a vital role in various fields such as the economy, transportation, and industry [4]. One of the companies engaged in the oil and gas sector is PT Medco Energi Internasional Tbk (MEDC). Medco has a market capitalization of IDR 32.17 trillion, making it the largest oil and gas company in Indonesia with extensive exploration areas not only in Indonesia but also in Thailand, Oman, Yemen, Tanzania, Libya, and Mexico. In addition, Medco has a sustainability commitment, along with the MSCI predicate increasing from BBB to A and being listed in the IDX LQ45 Low Carbon Leaders [5]. Stock prices are volatile, so investors must be careful in investing. Therefore, market analysis is needed to determine the right time to buy or sell stocks [6]. One way is to predict stock prices based on historical stock price data. Stock price data is time series data collected over time and consists of linear and nonlinear components [7]. The linear component reflects stable price changes, while the nonlinear component shows sharp fluctuations due to various factors. Causes an increase or decrease in stock prices, namely market news, changes in economic policy, and other external factors [8].

The Autoregressive Integrated Moving Average (ARIMA) is one statistical model used to analyze and predict linear and statistical time series data [9]. However, ARIMA's shortcomings in handling complex nonlinear data mean that the residuals that are produced frequently highlight data points that the model is unable to explain [10]. As a result, additional techniques like Long Short Term Memory (LSTM) are needed to increase prediction accuracy [11]. LSTM, as part of the Artificial Neural Network (ANN), excels in handling nonlinear data and is able to remember temporal relationships in sequential data with its internal memory mechanism [12]. ARIMA-LSTM optimization is carried out by utilizing ARIMA to capture linear patterns, while LSTM is used to model ARIMA residuals containing nonlinear patterns [13]. This combination also helps reduce bias in estimation, because LSTM can adjust the model to fluctuation patterns that cannot be captured by ARIMA. This makes it a more flexible solution in handling data with complex characteristics and unexpected pattern changes [14].

According to the research conducted by [15] on the prediction of the stock price in the Istanbul, Turkey index, ARIMA has a high level of accuracy when predicting the stock price movement, achieving a MAPE of 5.73%. On the other hand, research conducted by [16] compares the SVR, RNN, and LSTM methods for predicting future stock prices at the Nigerian Exchange Group (NGX). The study's findings indicate that LSTM is more accurate in predicting stock prices at a MAPE of 1.33%, compared to 2.17% for RNN and 3.40% for SVR. Further research conducted by [17] compares the ARIMA, LSTM, and ARIMA-LSTM optimizations in predicting the stock price on the Shanghai Stock Exchange. The study's findings indicate that the ARIMA-LSTM optimization model has the highest accuracy with a MAPE of 0.009%, compared to ARIMA 0.56% and LSTM 0.10%.

Although these studies demonstrate the potential of ARIMA-LSTM in improving stock price prediction accuracy, several research gaps remain. Most previous studies have been conducted on general market indices or foreign exchanges, while sector-specific studies in emerging markets such as Indonesia are still limited. Moreover, research rarely focuses on the energy sector, which is highly sensitive to global oil price fluctuations, geopolitical issues, and sustainability transitions. In addition, previous research has tended to emphasize technical accuracy, while practical implications for investors and industry stakeholders have not been deeply addressed. The choice of PT Medco Energi Internasional Tbk (MEDC) as a case study is therefore highly relevant, as it not only represents the largest oil and gas company in Indonesia but also faces global market

challenges and sustainability demands. Based on these considerations, this study seeks to fill the gap by applying ARIMA-LSTM optimization for stock price prediction in MEDC, aiming to provide both methodological contributions to time series forecasting and practical insights for decision-making in the capital market.

## 2. RESEARCH METHODS

### 2.1 Research Data

Among the data used is secondary data, namely the closing price of PT Medco Energi Internasional Tbk (MEDC) stock in the period from January 4, 2021, to October 31, 2024. The total number of data is 930 with 1 variable, namely close. The sample data that is utilized in this study are in accordance with [Table 1 \[18\]](#).

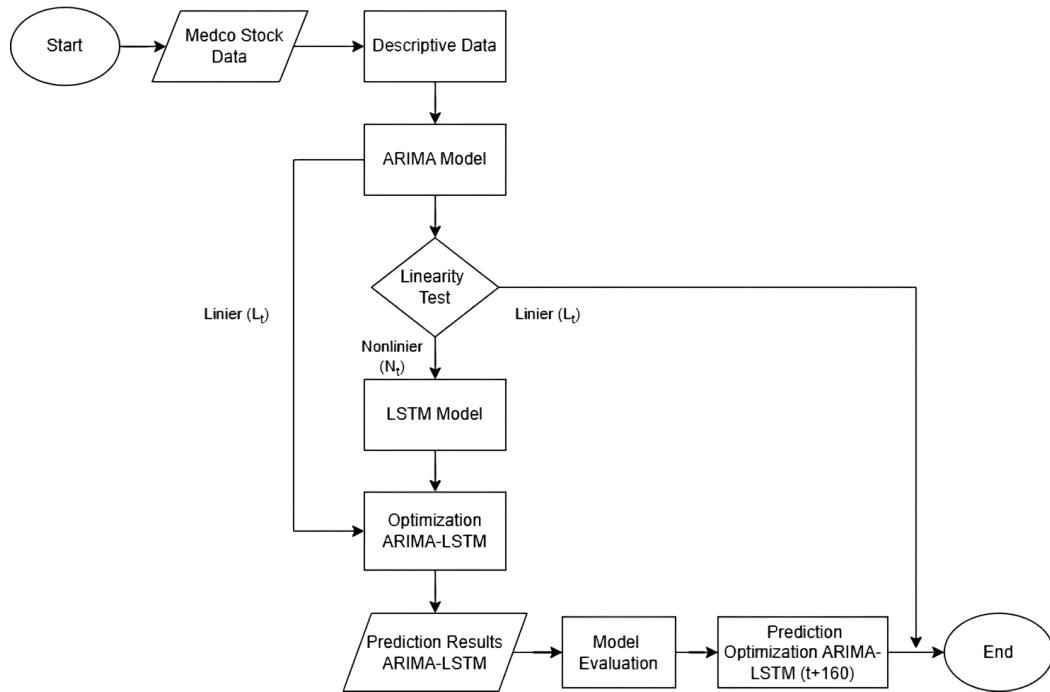
**Table 1. Sample Data**

| No  | Date       | Close |
|-----|------------|-------|
| 1   | 04-01-2021 | 635   |
| 2   | 05-01-2021 | 635   |
| ... | ...        | ...   |
| 930 | 31-10-2024 | 1.280 |

*Data source: Yahoo Finance, 2024*

### 2.2 Technical Research

[Fig. 1](#) shows a flowchart illustrating the research process aimed at optimizing stock price prediction for Medco data using the ARIMA-LSTM approach. This diagram applies a structured integration of linear and nonlinear modeling techniques to improve prediction accuracy.



**Figure 1. Flowchart Research**

The study began with the collection of Medco stock data for descriptive analysis, such as identifying data patterns and their characteristics. Furthermore, the data is processed using an ARIMA model to determine the linear components in the time series data. After that, a linearity test is done to find out whether residual data (nonlinear components) cannot be modeled with ARIMA. If there are nonlinear components, the data is then analyzed using an LSTM model for analyzing complex nonlinear systems. After combining the ARIMA

and LSTM prediction outputs into an ARIMA-LSTM optimization, the model is evaluated to determine the prediction accuracy. The final step is to predict stock prices for the next 8-month period or  $(t + 160)$ .

### 2.3 ARIMA Model

The Autoregressive Integrated Moving Average (ARIMA) model is a technique for time series prediction. This model is suitable for use in short-term predictions and has good forecast accuracy [19]. In ARIMA, there are three parts: Autoregressive (AR), Moving Average (MA), and Integrated (I) [20]. Autoregressive (AR) is a model where the value of the dependent variable influences the dependent variable itself and can be formulated as in Eq. (1) [21]. However, according to research by [22], even if both assumptions are not fully satisfied, ARIMA prediction can still be carried out by selecting the model with the smallest AIC value as the basis for determining the best model.

$$Y_t = \phi_0 + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \cdots + \phi_p Y_{t-p} - \varepsilon_t, \quad (1)$$

Moving Average (MA) is a model that measures the autocorrelation between error or residual values and can be formulated as in Eq. (2) [23].

$$Y_t = \varepsilon_t - \theta_1 \varepsilon_{t-1} - \theta_2 \varepsilon_{t-2} - \cdots - \theta_q \varepsilon_{t-q}, \quad (2)$$

ARMA( $p, q$ ) is an acronym for Autoregressive Moving Average, which is a combined model combining AR( $p$ ) and MA( $q$ ), then can be formulated as in Eq. (3) [24].

$$Y_t = \phi_0 + \phi_1 Y_{t-1} + \cdots + \phi_p Y_{t-p} + \varepsilon_t - \theta_1 \varepsilon_{t-1} - \cdots - \theta_q \varepsilon_{t-q} \quad (3)$$

Autoregressive Integrated Moving Average (ARIMA) is a model for stationary data to produce accurate predictions. The ARIMA ( $p, d, q$ ) model can be formulated as in Eq. (4) [25].

$$\phi_p(B)(1 - B)^d Y_t = \theta_0 + \theta_q (B) \varepsilon_t. \quad (4)$$

The next step is testing using the Akaike Information Criterion (AIC) to determine the model with the smallest AIC value. The model with the lowest AIC is chosen because it shows an optimal balance between complexity and accuracy, thus producing more representative residuals for further processing by the LSTM model [26]. The AIC calculation can be formulated in Eq. (5) [27].

$$AIC = -2 \log(L) + 2k, \quad (5)$$

where  $L$  is the likelihood function of the data under the model and  $k$  is the total number of parameters in the model.

After making predictions using ARIMA to obtain the predicted value of the linear component ( $\hat{L}_t$ ), it can be continued to find the ARIMA residual value [28]. Based on the equation to obtain the value of the nonlinear component ( $N_t$ ), namely the ARIMA residual, which will be used as input in the LSTM model, can be formulated as in Eq. (6) [29].

$$N_t = Y_t - \hat{L}_t, \quad (6)$$

where  $N_t$  is the  $t$ -th ARIMA residual,  $Y_t$  is the  $t$ -th time series data,  $\hat{L}_t$  is the ARIMA prediction result at time  $t$ .

### 2.4 Linearity Test

The data linearity test is conducted to determine whether there are nonlinear components in the data [30]. The ARIMA residual data that has been obtained will be tested using the terasvirta test and can be formulated as in Eq. (7) [31]. The following are the hypotheses of the Terasvirta test:

$H_0$ : Residuals do not contain nonlinear patterns,

$H_1$ : Residuals contain nonlinear patterns.

$$F_{statistic} = \frac{\frac{SSR_0 - SSR_1}{m}}{\frac{SSR_1}{n - p - 1 - m}}, \quad (7)$$

where  $F_{Statistic}$  is  $F$  value calculated for hypothesis testing,  $SSR_1$  is sum of squared residuals for linear models,  $SSR_2$  is sum of squared residuals for nonlinear models,  $m$  number of additional parameters in the nonlinear model,  $n$  number of observed data,  $p$  number of parameters in the initial linear model.

## 2.5 Normalization

Data in the dataset contains values with unequal ranges [32]. This can impact the results of data analysis calculations; therefore, data normalization is needed. Data normalization is a method for changing the data range value to between 0 and 1 [33]. The calculation of min-max scale normalization can be formulated as in Eq. (8) [34].

$$N' = \frac{N_t - N_{min}}{N_{max} - N_{min}}, \quad (8)$$

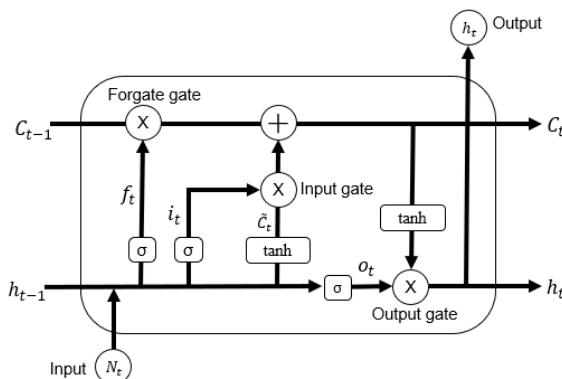
where  $N'$  is a normalized residual,  $N_t$  is residual at time  $t$ ,  $N_{min}$  is the minimum residual,  $N_{max}$  is the maximum residual.

## 2.6 Hyperparameter Tuning Grid Search

Hyperparameter tuning using grid search is a method of testing hyperparameter combinations that uses a grid configuration [35]. The grid search method will search for all possibilities by preparing a grid, which is then evaluated to obtain the hyperparameter combination with the best value among all grids [36]. This process provides a comprehensive approach to finding the most optimal hyperparameters without missing any combination [37].

## 2.7 LSTM Model

LSTM is a model created to solve the vanishing gradient problem. In addition, LSTM can be used to process various types of data, namely text, video, and time series data. This method is designed to process data sequences [38]. LSTM is very suitable for handling data with nonlinear characteristics [39].



**Figure 2. Architecture of LSTM**

In LSTM, there are two activation functions: a sigmoid function and a tanh function [40]. The sigmoid activation function has a function to produce output from 0 to 1. While the tanh activation function can be called a hyperbolic tangent, and has a value between -1 to 1. The equations of the sigmoid and tanh activation functions can be seen in Eqs. (9) and (10) [41].

$$\sigma(x) = \frac{1}{(1 + e^{-x})}, \quad (9)$$

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}, \quad (10)$$

where,  $\sigma$  sigma is the sigmoid activation function,  $x$  is the input data and  $e$  is Euler's constant.

LSTM has 3 gates, the first is the forget gate ( $f_t$ ) which determines which information needs to be removed from the cell state. The formula of the forget gate can be seen in Eq. (11) [42].

$$f_t = \sigma(W_f \cdot [N_t, h_{t-1}] + b_f), \quad (11)$$

where  $f_t$  is the forget gate,  $\sigma$  is the sigmoid activation function,  $W_f$  is the weight of the forget gate,  $h_{t-1}$  is the output before time  $t$ ,  $N_t$  is residual at time  $t$ , and  $b_f$  is the bias of forget.

The second gate is the input gate, which has a function to select new information to be stored in the cell state. The input gate has a sigmoid layer and a tanh layer. The input gate can be formulated in Eq. (12) and the candidate gate in Eq. (13) [43].

$$i_t = \sigma(W_i \cdot [N_t, h_{t-1}]) + b_i, \quad (12)$$

$$\tilde{C}_t = \tanh(W_c \cdot [N_t, h_{t-1}]) + b_c, \quad (13)$$

where  $i_t$  is the gate input,  $\sigma$  is the sigmoid activation function,  $W_i$  is the gate input weight,  $h_{t-1}$  is the previous hidden state,  $N_t$  is the residual at time  $t$ ,  $b_i$  is the gate input bias,  $\tilde{C}_t$  is the candidate gate,  $\tanh$  is the tanh activation function,  $W_c$  is the cell state weight, and  $b_c$  is the cell state bias.

Cell state has a function to update the value in the previous cell state with the new cell state value. The update process is carried out by. Cell state calculations can be formulated in Eq. (14) [44].

$$C_t = f_t \cdot C_{t-1} + i_t \cdot \tilde{C}_t, \quad (14)$$

where  $C_t$  is cell state,  $f_t$  is the forget gate,  $C_{t-1}$  is the previous candidate gate,  $i_t$  is the input gate, and  $\tilde{C}_t$  is the candidate gate.

The output gate determines the output value of the cell state by selecting the part to be output through the sigmoid layer. Next, the output is multiplied by the result of the tanh layer to ensure compliance with the previous decision. The output gate is shown in Eq. (15) and the hidden gate in Eq. (16) [45].

$$O_t = \sigma(W_o \cdot [N_t, h_{t-1}]) + b_o, \quad (15)$$

$$h_t = O_t \cdot \tanh(C_t), \quad (16)$$

where  $O_t$  is the output gate,  $\sigma$  is the sigmoid activation function,  $W_o$  is the weight of the output gate,  $h_{t-1}$  is the previous hidden state,  $N_t$  is residual at time  $t$ ,  $b_o$  is the bias of the output gate,  $h_t$  is a hidden gate at time  $t$ ,  $\tanh$  is the tanh activation function, and  $C_t$  is the cell state.

## 2.8 Denormalization

After the prediction results are obtained, denormalization must be done before determining the accuracy of the prediction findings by changing the data to its original scale. Denormalization can be formulated as in Eq. (17) [46].

$$\hat{N}' = N'(N_{max} - N_{min}) + N_{min}, \quad (17)$$

where  $\hat{N}'$  is the denormalized prediction results,  $N'$  is a prediction,  $N_{min}$  is minimum residual,  $N_{max}$  is the maximum residual.

## 2.9 Optimization ARIMA-LSTM

ARIMA-LSTM optimization is a combination of statistical and machine learning methods, where ARIMA is effective for linear data, and LSTM excels in handling nonlinear data [47]. In the first stage, ARIMA is used to model linear components, while the residuals obtained are modeled with LSTM to handle nonlinear components [48]. The prediction results from ARIMA and LSTM are then combined according to the equation formulated in Eq. (18) [49].

$$\hat{Y}_t = \hat{L}_t + \hat{N}_t \quad (18)$$

where  $\hat{Y}_t$  is the predicted value of ARIMA-LSTM optimization at time  $t$ ,  $\hat{L}_t$  is ARIMA predicted at time  $t$ ,  $\hat{N}_t$  is the predicted value of LSTM at time  $t$ .

## 2.10 MAPE

Model evaluation using Mean Absolute Percentage Error (MAPE) aims to measure the accuracy of the prediction results [50]. The smaller the MAPE value, the more accurate the model used [51]. The calculation of the MAPE value can be formulated as in Eq. (19) [52].

$$MAPE = \frac{\sum_{t=1}^n \left| \frac{Y_t - \hat{Y}_t}{Y_t} \right|}{n} \times 100\% \quad (19)$$

Based on **Table 2**, the MAPE value is divided into four categories. First, the MAPE value of less than 10% is included as a very accurate prediction, then the MAPE between 10-20% is included as a good prediction. The MAPE between 20-50% is included in the decent prediction category, and the MAPE above 50% is included in the inaccurate prediction category [53].

**Table 2. MAPE Value Range**

| MAPE Range | Category Prediction     |
|------------|-------------------------|
| < 10%      | Prediction is Very Good |
| 10 - 20%   | Prediction is Good      |
| 20 - 50%   | Prediction is Fair      |
| > 50%      | Prediction is Bad       |

### 3. RESULTS AND DISCUSSION

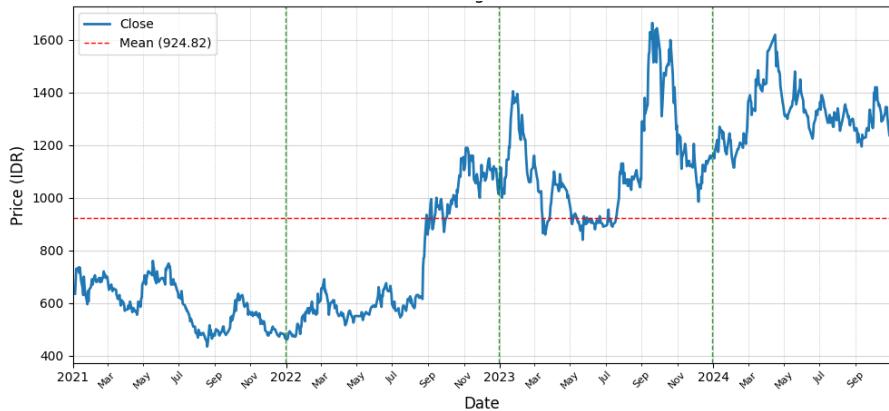
#### 3.1 Descriptive Data

Data description has the purpose of providing a general analysis of statistics of PT Medco Energi Internasional Tbk (MEDC) stock price data. Data description includes various important information, such as minimum, maximum, mean, and standard deviation values that help understand data patterns. This information is presented in detail in **Table 3** to facilitate further analysis and interpretation.

**Table 3. Descriptive Data**

| Year        | Mean    | Std. Deviation | Max  | Min |
|-------------|---------|----------------|------|-----|
| (2021-2024) | 924.82  | 329.33         | 1665 | 434 |
| 2021        | 591.58  | 84.50          | 760  | 434 |
| 2022        | 748.07  | 230.08         | 1190 | 462 |
| 2023        | 1128.43 | 200.56         | 1665 | 840 |
| 2024        | 1312.68 | 91.74          | 1620 | 115 |

**Table 3** above shows descriptive statistics of PT Medco Energi's stock price from 2021 to 2024, with an overall average of IDR 924.82, a maximum value of IDR 1665, and a minimum of IDR 434. In 2021, the stock price was relatively stable with an average of IDR 591.58 and a standard deviation of IDR 84.50, while in 2022, it increased with an average of IDR 748.06 and higher volatility indicated by a standard deviation of IDR 230.08. In 2023, it recorded an average of IDR 1128.43 with a standard deviation of IDR 200.58, reflecting a more dynamic price movement. In 2024, the stock price fluctuated with an average of IDR 1312.68, a maximum value of IDR 1620, and a lower standard deviation of IDR 91.74. Overall, the stock price experienced an upward trend with volatility that varied each year.



**Figure 3. Medco Energi Stock Price**  
 (Source: Data processing results from Python)

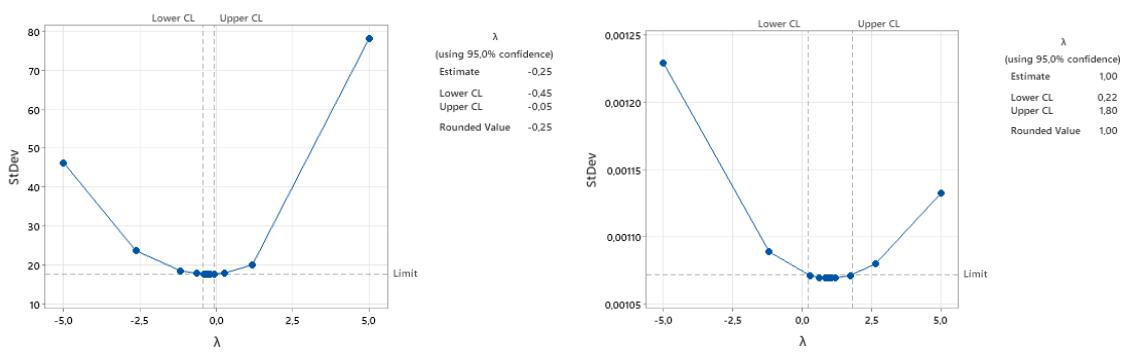
Visualization in Fig. 3 shows the movement of PT Medco Energi Internasional Tbk (MEDC) stock prices from early 2021 to October 2024. The stock price was relatively stable in 2021 to mid-2022 in the range of IDR 430–IDR 760 due to the post-COVID-19 economic recovery. A significant spike occurred from July 2022 to March 2023, reaching IDR 1400, influenced by the Russia-Ukraine war, which disrupted global oil supplies. An increase occurred again in September 2023 to October 2023 due to reduced oil production by Saudi Arabia, while in early 2024, the price jumped to IDR 1600 due to Iran-Israel tensions. However, after the ceasefire between Iran and Israel, the stock price fell gradually until October 2024 to IDR 1285.

### 3.2 Proportion Data

After the data is described, then continued with data division. The division is very important because it affects the prediction results. In this study, the division is done by dividing the data into 80% train data and 20% test data used to predict stock prices from the original data.

### 3.3 ARIMA Model

The first step in the ARIMA model is to perform a stationarity test. This is done because stationarity is an important requirement in time series analysis in the ARIMA model, where a series is considered stationary if the variance and mean are constant over time. Here is the Box-Cox test to test stationarity in the variance as shown in Fig. 4 (a) and Fig. 4 (b). Then the results of the ACF plot to test stationarity in the mean as shown in Fig. 5 below.

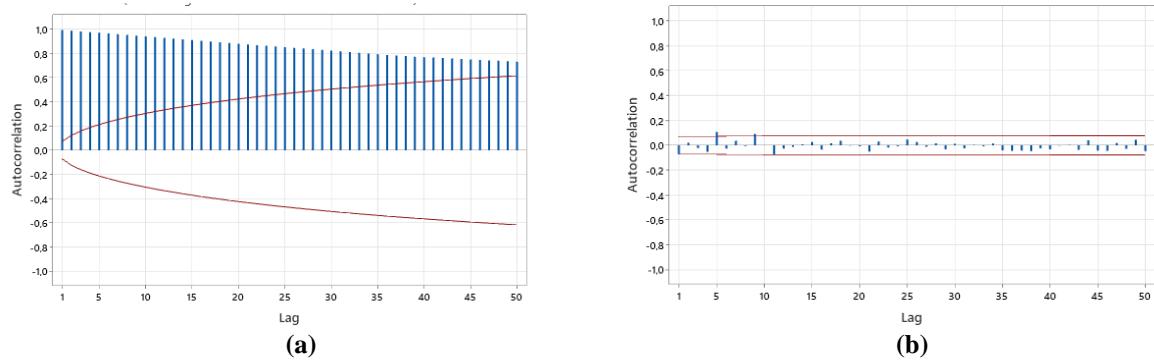


(a) Indicating Whether Variance Stabilization is needed

(b) Showing the Effect of Transformation on Data Distribution

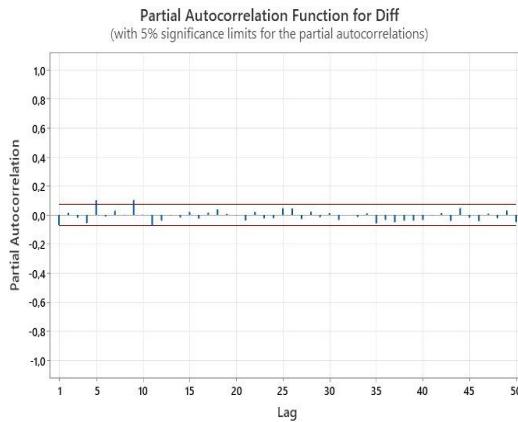
**Figure 4. Plot Box-Cox Test of Close (a), Plot Box-Cox Test of Trans (b)**  
 (Source: Data processing results from Minitab)

In Fig. 4 (a), it can be seen that the closed data produces a rounded value or  $\lambda$  of -0.25, which means that the data is not stationary to the variant, so a transformation is carried out. Then Fig. 4 (b) shows the result of the transformation producing a rounded value or  $\lambda$  of 1, so the data is stationary to the variant.



**Figure 5. Plot ACF Before Differencing (a), Plot ACF After Differencing (b)**  
 (Source: Data processing results from Minitab)

From Fig. 5 (a), it can be said that the data is not stationary because all the blue lines at each lag are outside the confidence limits (red lines), the correlation between current data and previous data is very significant, so differencing is needed. Then, in Fig. 5 (b), the data have been stationary in the mean because the blue lines have been around the mean.



**Figure 6. Plot PACF**  
 (Source: Data processing results from Minitab)

The next step is to identify the temporary model with the aim of finding the most appropriate model based on the plot ACF in Fig. 5 (b) and plot PACF in Fig. 6. The results of the identification of the ACF and PACF plots of the ARIMA model obtained temporary estimates are ARIMA (1,1,1), ARIMA (1,1,0), ARIMA (0,1,1), ARIMA ([5,9],1,[5,9,11]), ARIMA (9,1,[5,9,11]), and ARIMA ([9,11],1,[1,9,11]).

**Table 4. Parameters Estimation**

| Models                   | Parameters | Estimate | p-value | Criteria        | AIC     |
|--------------------------|------------|----------|---------|-----------------|---------|
| ARIMA (1,1,1)            | MA [1]     | -0.263   | 0.583   | Not Significant | 7266.85 |
|                          | AR [1]     | -0.070   | 0.482   | Not Significant |         |
| ARIMA (1,1,0)            | AR [1]     | -0.064   | 0.081   | Not Significant | 7265.46 |
| ARIMA (0,1,1)            | MA [1]     | 0.059    | 0.106   | Not Significant | 7265.69 |
| ARIMA ([5,9],1,[5,9,11]) | MA [5]     | -0.382   | 0.000   | Significant     | 7247.24 |
|                          | MA [9]     | 0.593    | 0.000   | Significant     |         |
|                          | MA [11]    | 0.048    | 0.036   | Significant     |         |
|                          | AR [5]     | -2.292   | 0.000   | Significant     |         |
|                          | AR [9]     | 0.676    | 0.000   | Significant     |         |
| ARIMA [9,11],1,[1,9,11]) | MA [1]     | 0.061    | 0.009   | Significant     | 7251.42 |
|                          | MA [9]     | 0.671    | 0.000   | Significant     |         |
|                          | MA [11]    | 0.266    | 0.000   | Significant     |         |
|                          | AR [9]     | 0.724    | 0.000   | Significant     |         |
|                          | AR [11]    | 0.161    | 0.018   | Significant     |         |
| ARIMA ([1,9],1,[1,9,11]) | MA [1]     | 0.287    | 0.000   | Significant     | 7250.79 |
|                          | MA [9]     | 0.646    | 0.000   | Significant     |         |
|                          | MA [11]    | 0.075    | 0.017   | Significant     |         |
|                          | AR [1]     | 0.208    | 0.000   | Significant     |         |
|                          | AR [9]     | 0.709    | 0.000   | Significant     |         |

After estimation and significance test were conducted on [Table 4](#), three models were obtained that met the requirements, namely ARIMA ([5,9],1,[5,9,11]), ARIMA (9,1,[5,9,11]), and ARIMA ([9,11],1,[1,9,11]). Of the 3 models, ARIMA ([5,9],1,[5,9,11]) was chosen because it has the smallest AIC value.

Then, by conducting a white noise test and a normality test, the results were obtained  $p - \text{value} = 0.0754 > \alpha(0.05)$  and  $Q = 11.50 > 3.841$  do not meet the white noise requirements. So, it is concluded that we reject  $H_0$  so that ARIMA ([5,9],1,[5,9,11]) does not meet the white noise assumption. Based on the Kolmogorov-Smirnov test above, the results are  $KS$  value  $= 0.0899 > KS_{(0.05,743)} = 0.0495$  and  $p\text{-value} = 0.01 < 0.05$ , so it is decided to fail to reject  $H_0$  which means the residual is not normally distributed. Based on the results of the white noise test and the normality test, ARIMA ([5,9],1,[5,9,11]) does not meet both requirements. However, because this study uses ARIMA-LSTM optimization, the assumption can be violated, so that ARIMA ([5,9],1,[5,9,11]) can be used to make predictions. Then, for the ARIMA equation ([5,9],1,[5,9,11]) to make predictions can be formulated as follows.

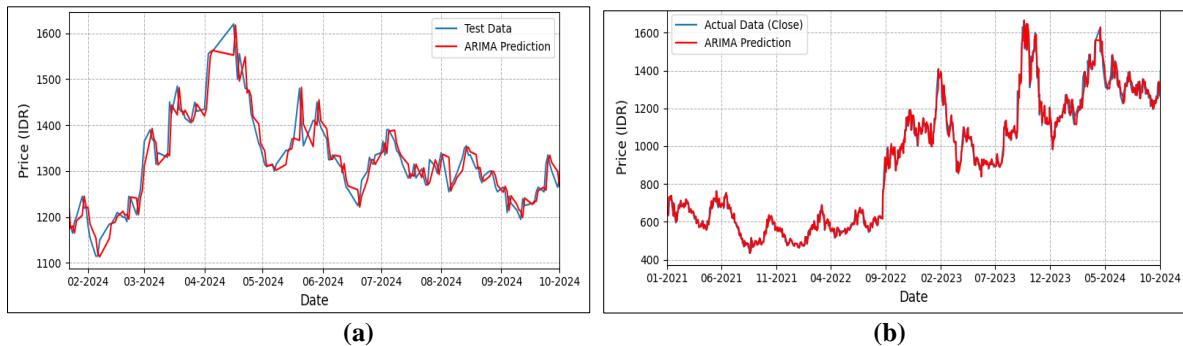
$$Y_t = Y_{t-1} - 0.292Y_{t-5} - 0.292Y_{t-6} + 0.676Y_{t-9} - 0.676Y_{t-10} + \varepsilon_t - 0.3822\varepsilon_{t-5} + 0.593\varepsilon_{t-9} + 0.048\varepsilon_{t-11}.$$

The results of Medco Energi stock price predictions using the ARIMA model ([5,9],1,[5,9,11]) are shown in [Table 5](#).

**Table 5. ARIMA Prediction Results**

| Date       | Close | ARIMA Prediction |
|------------|-------|------------------|
| 2021-01-04 | 635   | -                |
| 2021-01-05 | 635   | 635.69           |
| 2021-01-06 | 685   | 635.69           |
| ...        | ...   | ...              |
| 2024-10-30 | 1285  | 1249.46          |
| 2024-10-31 | 1280  | 1234.76          |

Visualization in [Fig. 7](#) (a) shows that this model is quite good at capturing the general pattern of price fluctuations. Meanwhile, [Fig. 7](#) (b) is a comparison of actual stock prices for January 2021 to October 2024 and the ARIMA prediction results. In general, the ARIMA model is able to predict stock prices from actual data, but there are quite large differences. The difference between actual and predicted data becomes more apparent as the end of the period approaches.



**Figure 7. Plot Test Data Vs ARIMA Prediction (a), Plot Actual Data Vs ARIMA Prediction (b)**  
(Source: Data processing results from Python)

After obtaining the ARIMA prediction results used to model the linear component ( $L_t$ ), the next step is to calculate the residual or ( $N_t$ ) from the ARIMA prediction. ARIMA residuals can be obtained by calculating the mismatch between actual data and ARIMA prediction results, as shown in [Table 6](#).

**Table 6. Residuals ARIMA**

| Actual Data | ARIMA Prediction | Residuals ARIMA |
|-------------|------------------|-----------------|
| 635         | -                | -               |
| 635         | 635.69           | -0.69           |
| 685         | 635.69           | 49.30           |

| Actual Data | ARIMA Prediction | Residuals ARIMA |
|-------------|------------------|-----------------|
| ...         | ...              | ...             |
| 1285        | 1249.46          | -14.46          |
| 1280        | 1234.76          | 50.23           |

### 3.4 Linearity Test

The next step is to conduct a linearity test to check whether there are nonlinear components or not using the terasvirta test according to the equation. The test criteria are to reject  $H_0$  if  $F_{\text{statistics}} > F_{(\alpha, m(n-p-1-m))}$  or  $p\text{-value} < \alpha$ . The test results obtained  $3.07 > 2.37$  or  $0.016 < 0.05$  then reject  $H_0$  which can be concluded as nonlinear residuals.

### 3.5 LSTM Model

After the residual data is processed, normalization is continued with min min-max scaler. Then the formation of a time series in the LSTM model from residual data ( $N_t$ ), is based on the ARIMA model lag error to be used as input data and target data. Based on the equation obtained above, the ARIMA lag errors are 5, 9, and 11. Therefore, the LSTM input data used is  $t - 5$ ,  $t - 9$  and  $t - 11$ , while the target data starts from  $t = 12$ . The time series formation pattern is shown in [Table 7](#).

**Table 7. Time Series Formation**

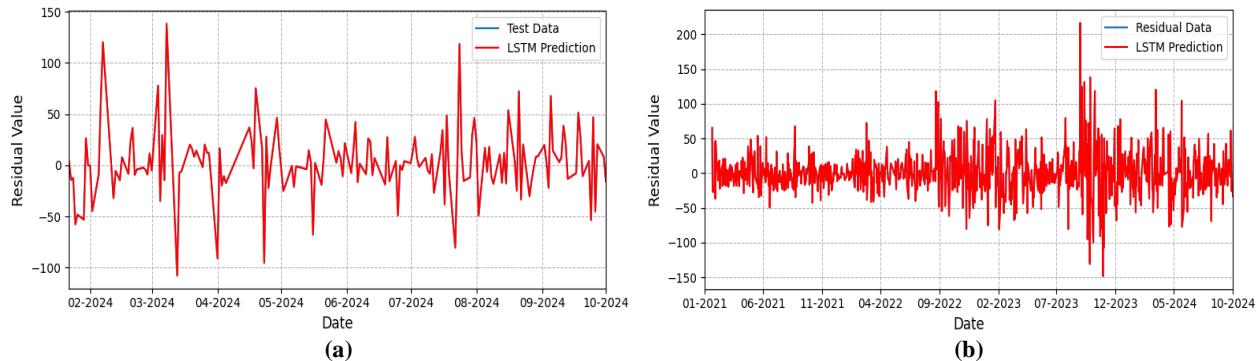
| $N_{t-5}$ | $N_{t-9}$ | $N_{t-11}$ | $\hat{N}_{t=12}$ |
|-----------|-----------|------------|------------------|
| 0.350     | 0.307     | 0.585      | 0.585            |
| 0.451     | 0.329     | 0.338      | 0.338            |
| ...       | ...       | ...        | ...              |
| 0.425     | 0.412     | 0.229      | 0.229            |
| 0.472     | 0.296     | 0.367      | 0.367            |
| 0.483     | 0.229     | 0.544      | 0.544            |

After the formation of the time series, the next step is hyperparameter tuning grid search with hyperparameters tested, namely hidden layer (32, 64, 128), batch size (16, 32, 64), and learning rate (0.1, 0.01, 0.001). Below is [Table 8](#), which displays the results of hyperparameter tuning.

**Table 8. Hyperparameter Tuning Grid Search Results**

| Hidden Layer | Batch Size | Learning Rate | MAPE (%)    | MAPE Average (%) |
|--------------|------------|---------------|-------------|------------------|
| 32           | 16         | 0.001         | 1.06        | 2.24             |
|              |            | 0.01          | 0.22        |                  |
|              |            | 0.1           | 0.39        |                  |
|              | 32         | 0.001         | 1.26        |                  |
|              |            | 0.01          | 0.38        |                  |
|              |            | 0.1           | 0.54        |                  |
|              | 64         | 0.001         | 14.86       |                  |
|              |            | 0.01          | 0.43        |                  |
|              |            | 0.1           | 1.03        |                  |
| 64           | 16         | 0.001         | 1.17        | 2.67             |
|              |            | <b>0.01</b>   | <b>0.08</b> |                  |
|              |            | 0.1           | 1.98        |                  |
|              | 32         | 0.001         | 2.28        |                  |
|              |            | 0.01          | 0.66        |                  |
|              |            | 0.1           | 0.55        |                  |
|              | 64         | 0.001         | 10.14       |                  |
|              |            | 0.01          | 0.41        |                  |
|              |            | 0.1           | 0.56        |                  |
|              | 16         | 0.001         | 1.20        |                  |
|              |            | 0.01          | 1.19        |                  |
|              |            | 0.1           | 17.76       |                  |
| 128          | 32         | 0.001         | 0.81        | 3.91             |
|              |            | 0.01          | 1.21        |                  |
|              |            | 0.1           | 4.66        |                  |
|              | 64         | 0.001         | 5.41        |                  |
|              |            | 0.01          | 0.82        |                  |
|              |            | 0.1           | 2.15        |                  |

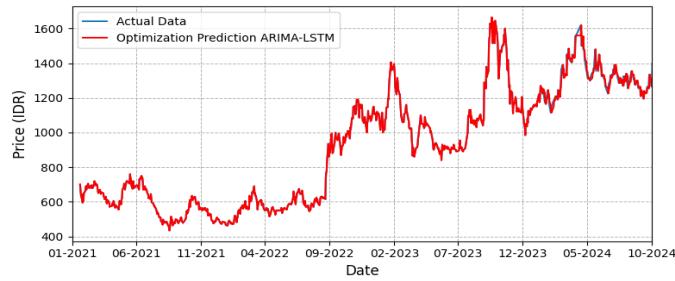
The best hyperparameter configuration obtained was a hidden layer of 64, a batch size of 16, and a learning rate of 0.01 with a very small MAPE value of 0.08%. The LSTM prediction results using the best hyperparameters are shown in Fig. 8 (a) and Fig. 8 (b) below. It can be said that the LSTM prediction results are very good because they are able to capture characteristics of the residual data.



**Figure 8.** Plot Test Data Vs LSTM Prediction (a), Plot Residual Data Vs LSTM Prediction (b)  
(Source: Data processing results from Python)

### 3.6 Optimization ARIMA-LSTM

ARIMA-LSTM optimization prediction is obtained by combining ARIMA prediction results and LSTM prediction results. The visualization of ARIMA-LSTM optimization prediction results is shown in Fig. 9 below. By optimizing ARIMA residuals, more accurate Medco Energi stock price prediction results are obtained because the model is able to capture almost all data patterns and characteristics.



**Figure 9.** Plot Actual Data Vs Optimization ARIMA-LSTM  
(Source: Data processing results from Python)

### 3.7 Evaluation Models

Next, compare the results of each prediction model, ARIMA, LSTM and ARIMA-LSTM optimization to find out how accurate the model is in predicting Medco Energi stock prices as shown in Table 9.

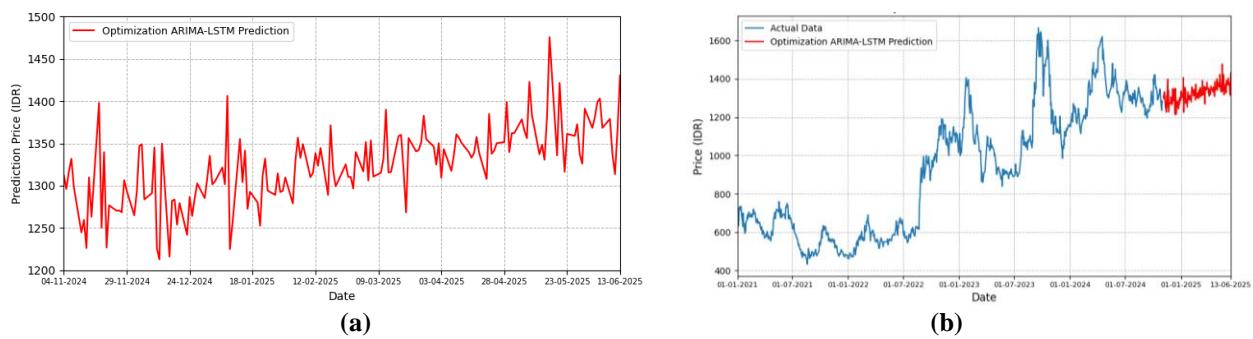
**Table 9. Compare MAPE Value**

| Model Prediction           | MAPE Value |
|----------------------------|------------|
| ARIMA                      | 2.5%       |
| LSTM (ARIMA residual data) | 2.6%       |
| LSTM (actual data)         | 1.8%       |
| ARIMA-LSTM Optimization    | 0.3%       |

Based on Table 9, it can be said that the results of ARIMA-LSTM optimization prediction are able to improve the results of ARIMA prediction alone without optimization. With an ARIMA MAPE value of 2.5%, it decreases when ARIMA-LSTM optimization is carried out to 0.3%.

### 3.8 Prediction 8 Months Forward

ARIMA-LSTM optimization prediction for the next 8 months or ( $t + 160$ ) is needed because during this period, it is able to capture relevant market fluctuations more accurately, given the rapidly changing market dynamics. 8-month predictions provide stock price predictions that can be applied as a reference for making investment planning decisions. Visualization of the prediction results is shown in Fig. 10.



**Figure 10. (a) Optimization ARIMA-LSTM ( $t + 160$ ), (b) Actual Data and Optimization ARIMA-LSTM ( $t + 160$ )**  
**(Source: Data processing results from Python)**

Based on the visualization in Fig.10 above, between actual data and the ARIMA-LSTM optimization prediction ( $t + 160$ ), it can be seen that after experiencing an increase and a decrease in prices from early January 2024 to the end of October 2024, the ARIMA-LSTM optimization prediction ( $t + 160$ ) has increased, approaching the highest price in 2024.

The ARIMA-LSTM optimization model in this study still has shortcomings because outlier detection has not been carried out, and exogenous variables have not been added. Research by [54] shows that outlier detection can reduce errors by up to 50.3%, while research by [55] shows that adding exogenous variables such as inflation and world crude oil prices can reduce errors by up to 83.6%. Based on these two findings, it is proven that outlier detection and the addition of exogenous variables can increase prediction accuracy.

In practice, these findings imply that while the ARIMA-LSTM model can capture stock price trends with reasonable accuracy, prediction risks remain due to unaccounted outliers and external factors. Investors are therefore advised to complement predictive models with fundamental indicators such as inflation and global commodity prices. For the capital market industry, this study highlights the potential to develop more reliable forecasting systems by integrating macroeconomic variables, enabling more effective investment strategies.

#### 4. CONCLUSION

From the analysis that has been done, the stock price prediction of PT Medco Energi Internasional Tbk (MEDC) through ARIMA residual using LSTM shows that the ARIMA-LSTM optimization approach produces very good predictions with a MAPE value of 0.3%. This advantage shows that linear and non-linear optimization in the ARIMA-LSTM model can effectively capture complex patterns in stock data. Then it is predicted that there will be an increase in stock prices in the next 8 months, from IDR 1312 on November 1, 2024, to IDR 1430 on June 13, 2025, or an increase of 9%.

#### Author Contributions

Achmad Fachril Yusuf Ababil: Conceptualization, Methodology, Data curation, and Initial Drafting. Abdulloh Hamid: Formal Analysis, Software, Visualization, Funding, and Writing - Review and Editing. Hani Khulasari: Investigation, Resources, Project Administration, and Validation. Dian Candra Rini Novitasari: Supervision, Validation, Funding Acquisition. Wika Dianita Utami: Writing - Original Draft, Supervision. All authors reviewed and approved the final manuscript.

#### Funding Statement

This research received financial support from the academic advisor, to whom we extend our sincere gratitude

#### Acknowledgment

The authors sincerely thank all parties who have contributed to the completion of this research, especially the supervisors who have assisted in data processing and analysis, manuscript editing, and valuable input during

the writing process. We also extended our thanks to the reviewers for constructive suggestions and corrections in improving this article.

## Declarations

This research is carried out jointly according to the division of tasks of each one, without any conflict of interest between authors.

## Declaration of Generative AI and AI-assisted Technologies

AI-assisted technology (ChatGPT) was used to support light paraphrasing and sentence restructuring for clarity. The authors confirm that the underlying ideas, arguments, data analyses, and conclusions are original and were not generated by AI. All AI-assisted edits were critically reviewed and validated by the authors.

## REFERENCES

- [1] F. Al-Fadhat, "BIG BUSINESS CAPITAL EXPANSION AND THE SHIFT OF INDONESIA'S GLOBAL ECONOMIC POLICY OUTLOOK," *East Asia*, vol. 39, no. 4, pp. 389–406, 2022. doi: <https://doi.org/10.1007/s12140-022-09384-3>.
- [2] KSEI, "LAPORAN JUMLAH INVESTOR PADA PASAR MODAL INDONESIA BULAN AGUSTUS 2024." Accessed: Feb. 12, 2025. [Online]. Available: [https://www.ksei.co.id/files/uploads/press\\_releases/press\\_file/id-id/242\\_berita\\_pers\\_membangun\\_pasar\\_modal\\_yang\\_terpercaya\\_dan\\_inklusif\\_menuju\\_indonesia\\_emas\\_20240815105840.pdf](https://www.ksei.co.id/files/uploads/press_releases/press_file/id-id/242_berita_pers_membangun_pasar_modal_yang_terpercaya_dan_inklusif_menuju_indonesia_emas_20240815105840.pdf)
- [3] B. E. Indonesia, "14 MILLION CAPITAL MARKET INVESTORS: SYNERGY, DIGITAL INNOVATION, AND INCLUSIVE ACCESS TO INFORMATION." Accessed: Feb. 15, 2025. [Online]. Available: <https://www.idx.co.id/en/news/press-release/2234>
- [4] T. Semenova and A. Al-Dirawi, "ECONOMIC DEVELOPMENT OF THE IRAQI GAS SECTOR IN CONJUNCTION WITH THE OIL INDUSTRY," *Energies*, vol. 15, no. 7, 2022. doi: <https://doi.org/10.3390/en15072306>.
- [5] Medco, "PROFIL PERUSAHAAN PT MEDCO ENERGI INTERNASIONAL TBK." Accessed: Feb. 12, 2025. [Online]. Available: <https://www.medcoenergi.com/id/page/view/245>
- [6] C. C. Wu, Y. Yan, T. Yuan, C. C. Huang, and Y. J. Tsai, "A STUDY OF NETWORK NEGATIVE NEWS BASED ON BEHAVIORAL FINANCE ANALYSIS OF ABNORMAL FLUCTUATION OF STOCK PRICE," *Discret. Dyn. Nat. Soc.*, vol. 2022, 2022. doi: <https://doi.org/10.1155/2022/7952532>.
- [7] J. Sen and S. Mehtab, "A TIME SERIES ANALYSIS-BASED STOCK PRICE PREDICTION USING MACHINE LEARNING AND DEEP LEARNING MODELS," *Int. J. Bus. Forecast. Mark. Intell.*, vol. 6, no. 1, p. 272, 2021. doi: <https://doi.org/10.1504/ijbfmi.2020.10038524>.
- [8] A. Mappadang, "MACROECONOMIC, CORPORATE FUNDAMENTALS, SYSTEMATIC RISK ON FIRM VALUE: EVIDENCE FROM INDONESIAN MANUFACTURING SECTOR," *J. Keuang. dan Perbank.*, vol. 25, no. 4, pp. 836–854, 2021. doi: <https://doi.org/10.26905/jkdp.v25i4.5769>.
- [9] A. L. Schaffer, T. A. Dobbins, and Sallie-Anne, "INTERRUPTED TIME SERIES ANALYSIS USING AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) MODELS: A GUIDE FOR EVALUATING LARGE-SCALE HEALTH INTERVENTIONS," *J. BMC Med. Res. Methodol.*, vol. 21, pp. 1–12, 2021. doi: <https://doi.org/10.1111/jmwh.13601>.
- [10] E. B. Sinu, M. A. Kleden, and A. Atti, "APPLICATION OF ARIMA MODEL FOR FORECASTING NATIONAL ECONOMIC GROWTH: A FOCUS ON GROSS DOMESTIC PRODUCT DATA," *BAREKENG J. Ilmu Mat. dan Terap.*, vol. 18, no. 2, pp. 1261–1272, 2024. doi: <https://doi.org/10.30598/barekengvol18iss2pp1261-1272>.
- [11] P. Chhajer, M. Shah, and A. Kshirsagar, "THE APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS, SUPPORT VECTOR MACHINES, AND LONG-SHORT TERM MEMORY FOR STOCK MARKET PREDICTION," *Decis. Anal. J.*, vol. 2, no. November 2021, p. 100015, 2022. doi: <https://doi.org/10.1016/j.dajour.2021.100015>.
- [12] Darussalam and G. Arief, "RICE PRICE PREDICTION WITH LONG SHORT-TERM MEMORY (LSTM) NEURAL NETWORK," *J. RESTI (Rekayasa Sist. dan Teknol. Informasi)*, vol. 8, no. 5, pp. 658–664, 2024. doi: <https://doi.org/10.29207/resti.v8i5.6041>.
- [13] Z. S. Khozani, F. B. Banadkooki, M. Ehteram, A. N. Ahmed, and A. El-Shafie, "COMBINING AUTOREGRESSIVE INTEGRATED MOVING AVERAGE WITH LONG SHORT-TERM MEMORY NEURAL NETWORK AND OPTIMISATION ALGORITHMS FOR PREDICTING GROUND WATER LEVEL," *J. Clean. Prod.*, vol. 348, pp. 131–224, 2022. doi: <https://doi.org/10.1016/j.jclepro.2022.131224>.
- [14] Brahmnapalli Kalyan, S Parameshwara Reddy, Dr. Krovvidi Krishna Kumari, and Dr. Manish Jain, "COMPARATIVE ANALYSIS OF STOCK PRICE PREDICTION ACCURACY: A MACHINE LEARNING APPROACH WITH ARIMA, LSTM, AND RANDOM FOREST MODELS," *Int. Res. J. Adv. Eng. Hub*, vol. 2, no. 05, pp. 1141–1151, 2024. doi: <https://doi.org/10.47392/irjaeh.2024.0157>.
- [15] T. Mashadihasanli, "STOCK MARKET PRICE FORECASTING USING THE ARIMA MODEL: AN APPLICATION TO ISTANBUL, TURKIYE," *J. Econ. Policy Res. / İktisat Polit. Araştırmaları Derg.*, vol. 9, no. 2, pp. 439–454, 2022. doi: <https://doi.org/10.26650/jepr1056771>.
- [16] O. Shobayo, S. Adeyemi-longe, O. Popoola, and O. Okoyeigbo, "A COMPARATIVE ANALYSIS OF MACHINE LEARNING AND DEEP LEARNING TECHNIQUES FOR ACCURATE MARKET PRICE FORECASTING," *Analytics*, vol. 1, 2025. doi: <https://doi.org/10.3390/analytics4010005>.
- [17] C. Ma, J. Wu, H. Hu, Y. N. Chen, and J. Y. Li, "PREDICTING STOCK PRICES USING HYBRID LSTM AND ARIMA MODEL," *IAENG Int. J. Appl. Math.*, vol. 54, no. 3, pp. 424–432, 2024.

- [18] F. Yahoo, "HARGA SAHAM MEDCO ENERGI TAHUN 2021-2024." [Online]. Available: <https://finance.yahoo.com/quote/MEDC.JK/history/>
- [19] E. Suryatin, M. Hadijati, and Z. Widya Baskara, "HYBRID ARIMA MODELING WITH STOCHASTIC VOLATILITY FOR FORECASTING THE VALUE OF NON-OIL AND GAS EXPORTS IN INDONESIA," *Int. J. Comput. Sci. Appl. Math.*, vol. 10, no. 1, p. 27, 2024. doi: <https://doi.org/10.12962/j24775401.v10i1.20265>.
- [20] A. Gifty and D. Yang Li, "A COMPARATIVE ANALYSIS OF LSTM, ARIMA, XGBOOST ALGORITHMS IN PREDICTING STOCK PRICE DIRECTION," *Eng. Technol. J.*, vol. 09, no. 08, pp. 4978–4986, 2024. doi: <https://doi.org/10.47191/etj/v9i08.50>.
- [21] Melina *et al.*, "COMPARATIVE ANALYSIS OF TIME SERIES FORECASTING MODELS USING ARIMA AND NEURAL NETWORK AUTOREGRESSION METHODS," *BAREKENG J. Ilmu Mat. dan Terap.*, vol. 18, no. 4, pp. 2563–2576, 2024. doi: <https://doi.org/10.30598/barekengvol18iss4pp2563-2576>.
- [22] R. Agustianto, I. Purnamasari, and Suyitno, "ANALYSIS OF WATER SURFACE HEIGHT DATA OF THE MAHKAM RIVER IN THE KUTAI KARTANEGARA REGION IN 2010-2016 USING THE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) MODEL WITH OUTLIER EFFECT (CASE STUDY: AVERAGE OF WATER SURFACE HEIGHT DATA OF MAHKAM RIVER, TENGGARONG, KALIMANTAN TIMUR)", *Jurnal Eksponensial*, Vol.11, No.1, Mei 2020. pp 39-46. doi: <https://doi.org/10.30872/eksponensial.v11i1.643>.
- [23] I. Mardiyah, W. Dianita Utami, D. C. Rini Novitasari, M. Hafiyusholeh, and D. Sulistiawati, "ANALISIS PREDIKSI JUMLAH PENDUDUK DI KOTA PASURUAN MENGGUNAKAN METODE ARIMA," *BAREKENG J. Ilmu Mat. dan Terap.*, vol. 15, no. 3, pp. 525–534, 2021. doi: <https://doi.org/10.30598/barekengvol15iss3pp525-534>.
- [24] F. D. Yuliawanti, D. C. R. Novitasari, N. Widodo, A. Hamid, and W. D. Utami, "PENERAPAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) UNTUK PREDIKSI BILANGAN SUNSPOT," *BAREKENG J. Ilmu Mat. dan Terap.*, vol. 15, no. 3, pp. 555–564, 2021. doi: <https://doi.org/10.30598/barekengvol15iss3pp555-564>.
- [25] P. Kartikasari, H. Yasin, and D. A. I. Maruddani, "AUTOREGRESSIVE FRACTIONAL INTEGRATED MOVING AVERAGE (ARFIMA) MODEL TO PREDICT COVID-19 PANDEMIC CASES IN INDONESIA," *Media Stat.*, vol. 14, no. 1, pp. 44–55, 2021. doi: <https://doi.org/10.14710/medstat.14.1.44-55>.
- [26] Y. C. Jin, Q. Cao, K. N. Wang, Y. Zhou, Y. P. Cao, and X. Y. Wang, "PREDICTION OF COVID-19 DATA USING IMPROVED ARIMA-LSTM HYBRID FORECAST MODELS," *IEEE Access*, vol. 11, pp. 67956–67967, 2023. doi: <https://doi.org/10.1109/ACCESS.2023.3291999>.
- [27] R. Ospina, J. A. M. Gondim, V. Leiva, and C. Castro, "AN OVERVIEW OF FORECAST ANALYSIS WITH ARIMA MODELS DURING THE COVID-19 PANDEMIC: METHODOLOGY AND CASE STUDY IN BRAZIL," *Mathematics*, vol. 11, no. 14, pp. 1–18, 2023. doi: <https://doi.org/10.3390/math11143069>.
- [28] M. Ridwan, K. Sadik, and M. Afendi, "COMPARISON OF ARIMA AND GRU MODELS FOR HIGH-FREQUENCY TIME SERIES FORECASTING," *Sci. J. Informatics*, vol. 10, no. 3, p. 389, 2023. doi: <https://doi.org/10.15294/sji.v10i3.45965>.
- [29] K. N. Vavlakakis, A. Siallis, and A. L. Symeonidis, "OPTIMIZING SALES FORECASTING IN E-COMMERCE WITH ARIMA AND LSTM MODELS," *Int. Conf. Web Inf. Syst. Technol. WEBIST - Proc.*, vol. 2021-Octob, no. Webist, pp. 299–306, 2021. doi: <https://doi.org/10.5220/0010659500003058>.
- [30] N. Gasim and A. Sciences, "A COMPARATIVE STUDY ON THE FORECASTING PERFORMANCE OF TIME-VARYING COEFFICIENT MODELS EVIDENCE FROM USD/TRY EXCHANGE RATE," *J. Mod. Technol. Eng.*, vol. 8, no. 2, pp. 119–139, 2023.
- [31] C. Vista Magdalena Sihombing, S. Martha, and A. Miftahul Huda, "ANALISIS METODE HYBRID ARIMA-SVR PADA INDEKS HARGA SAHAM GABUNGAN," *Bul. Ilm. Math. Stat. dan Ter.*, vol. 11, no. 3, pp. 413–422, 2022. doi: <https://doi.org/10.26418/bbimst.v11i3.54618>.
- [32] H. Khatimah, I. Jaya, and A. S. Atmadipoera, "SIGNIFICANT WAVE HEIGHT FORECASTING USING LONG-SHORT TERM MEMORY (LSTM) IN SERIBU ISLAND WATERS," *IJCCS (Indonesian J. Comput. Cybern. Syst.)*, vol. 18, no. 2, pp. 1–14, 2024. doi: <https://doi.org/10.22146/ijccs.95044>.
- [33] Y.-S. Kim, M. K. Kim, N. Fu, J. Liu, J. Wang, and J. Srebric, "INVESTIGATING THE IMPACT OF DATA NORMALIZATION METHODS ON PREDICTING ELECTRICITY CONSUMPTION IN A BUILDING USING DIFFERENT ARTIFICIAL NEURAL NETWORK MODELS," *Sustain. Cities Soc.*, vol. 118, no. October 2023, p. 105570, 2024. doi: <https://doi.org/10.1016/j.scs.2024.105570>.
- [34] D. D. Pramesti, D. C. R. Novitasari, F. Setiawan, and H. Khaulasari, "LONG-SHORT TERM MEMORY (LSTM) FOR PREDICTING VELOCITY AND DIRECTION SEA SURFACE CURRENT ON BALI STRAIT," *BAREKENG J. Ilmu Mat. dan Terap.*, vol. 16, no. 2, pp. 451–462, 2022. doi: <https://doi.org/10.30598/barekengvol16iss2pp451-462>.
- [35] R. A. Dhiya'ulhaq, A. Safira, I. Fahmiyah, and M. Ghani, "OCEAN WAVE PREDICTION USING LONG SHORT-TERM MEMORY (LSTM) AND EXTREME GRADIENT BOOSTING (XGBOOST) IN TUBAN REGENCY FOR FISHERMAN SAFETY," *MethodsX*, vol. 13, no. July, p. 103031, 2024. doi: <https://doi.org/10.1016/j.mex.2024.103031>.
- [36] D. A. Anggoro and S. S. Mukti, "PERFORMANCE COMPARISON OF GRID SEARCH AND RANDOM SEARCH METHODS FOR HYPERPARAMETER TUNING IN EXTREME GRADIENT BOOSTING ALGORITHM TO PREDICT CHRONIC KIDNEY FAILURE," *Int. J. Intell. Eng. Syst.*, vol. 14, no. 6, pp. 198–207, 2021. doi: <https://doi.org/10.22266/ijies2021.1231.19>.
- [37] L. González-Castro, M. Chávez, P. Duflot, V. Bleret, G. Del Fiol, and M. López-Nores, "IMPACT OF HYPERPARAMETER OPTIMIZATION TO ENHANCE MACHINE LEARNING PERFORMANCE: A CASE STUDY ON BREAST CANCER RECURRENCE PREDICTION," *Appl. Sci.*, vol. 14, no. 13, 2024. doi: <https://doi.org/10.3390/app14135909>.
- [38] R. Sari, K. Kusrini, T. Hidayat, and T. Orphanoudakis, "IMPROVED LSTM METHOD OF PREDICTING CRYPTOCURRENCY PRICE USING SHORT-TERM DATA," *IJCCS (Indonesian J. Comput. Cybern. Syst.)*, vol. 17, no. 1, p. 33, 2023. doi: <https://doi.org/10.22146/ijccs.80776>.
- [39] A. A. Pierre, S. A. Akim, A. K. Semenyo, and B. Babiga, "PEAK ELECTRICAL ENERGY CONSUMPTION PREDICTION BY ARIMA, LSTM, GRU, ARIMA-LSTM AND ARIMA-GRU APPROACHES," *Energies*, vol. 16, no. 12, 2023. doi: <https://doi.org/10.3390/en16124739>.
- [40] K. Alkhatib, H. Khazaleh, H. A. Alkhazaleh, A. R. Alsoud, and L. Abualighah, "A NEW STOCK PRICE FORECASTING

- METHOD USING ACTIVE DEEP LEARNING APPROACH," *J. Open Innov. Technol. Mark. Complex.*, vol. 8, no. 2, 2022. doi: <https://doi.org/10.3390/joitmc8020096>.
- [41] E. S. Nugraha, Z. Alika, and D. Amir Hamzah, "FORECASTING THE STOCK PRICE OF PT ASTRA INTERNATIONAL USING THE LSTM METHOD," *J. RESTI (Rekayasa Sist. dan Teknol. Informasi)*, vol. 8, no. 3, pp. 431–437, 2024. doi: <https://doi.org/10.29207/resti.v8i3.5699>.
- [42] S. Hamiane, Y. Ghanou, H. Khalifi, and M. Telmem, "COMPARATIVE ANALYSIS OF LSTM, ARIMA, AND HYBRID MODELS FOR FORECASTING FUTURE GDP," *Ing. des Syst. d'Information*, vol. 29, no. 3, pp. 853–861, 2024. doi: <https://doi.org/10.18280/isi.290306>.
- [43] T. B. Sianturi, I. Cholissodin, and N. Yudistira, "PENERAPAN ALGORITMA LONG SHORT-TERM MEMORY (LSTM) BERBASIS MULTI FUNGSI AKTIVASI TERBOBOT DALAM PREDIKSI HARGA ETHEREUM," *J. Pengemb. Teknol. Inf. dan Ilmu Komput.*, vol. 7, no. 3, pp. 1101–1107, 2023, [Online]. Available: <http://j-ptiik.ub.ac.id>
- [44] M. I. K. Sinapoy, Y. Sibaroni, and S. S. Prasetyowati, "COMPARISON OF LSTM AND INDOBERT METHOD IN IDENTIFYING HOAX ON TWITTER," *J. RESTI (Rekayasa Sist. dan Teknol. Informasi)*, vol. 7, no. 3, pp. 657–662, 2023. doi: <https://doi.org/10.29207/resti.v7i3.4830>.
- [45] P. Sugiartawan, Y. E. Saputra, and A. Q. Munir, "CONVOLUTIONAL LONG SHORT-TERM MEMORY (C-LSTM) FOR MULTI PRODUCT PREDICTION," *IJCCS (Indonesian J. Comput. Cybern. Syst.)*, vol. 17, no. 4, p. 417, 2023. doi: <https://doi.org/10.22146/ijccs.90149>.
- [46] F. Oil, G. Export, D. Kurniasari, M. E. Nuraini, and R. K. Nisa, "A CASE STUDY : COMPARISON OF LSTM AND GRU METHODS FOR FORECASTING OIL, NON-OIL, AND GAS EXPORT VALUES IN INDONESIA," *JTI, J. Tek. Inform.*, vol. 17, no. 2, pp. 127–138, 2024.
- [47] W. Wang, B. Ma, G. Xing, C. Yong, and X. Yonghong, "A HYBRID ARIMA-LSTM MODEL FOR SHORT-TERM VEHICLE SPEED PREDICTION," *Energies*, vol. 17, no. 15, pp. 1–18, 2024. doi: <https://doi.org/10.3390/en17153736>.
- [48] L. Yu, C. Wu, and N. N. Xiong, "AN INTELLIGENT DATA ANALYSIS SYSTEM COMBINING ARIMA AND LSTM FOR PERSISTENT ORGANIC POLLUTANTS CONCENTRATION PREDICTION," *Electron.*, vol. 11, no. 4, 2022. doi: <https://doi.org/10.3390/electronics11040652>.
- [49] H. Li, C. Qin, W. He, F. Sun, and P. Du, "IMPROVED PREDICTIVE PERFORMANCE OF CYANOBACTERIAL BLOOMS USING A HYBRID STATISTICAL AND DEEP-LEARNING METHOD," *Environ. Res. Lett.*, vol. 16, no. 12, 2021. doi: <https://doi.org/10.1088/1748-9326/ac302d>.
- [50] A. Lawi, H. Mesra, and S. Amir, "IMPLEMENTATION OF LONG SHORT-TERM MEMORY AND GATED RECURRENT UNITS ON GROUPED TIME-SERIES DATA TO PREDICT STOCK PRICES ACCURATELY," *J. Big Data*, vol. 9, no. 1, 2022. doi: <https://doi.org/10.1186/s40537-022-00597-0>.
- [51] E. Zukhronah, W. Sulandari, S. Subanti, I. Slamet, Sugianto, and I. Susanto, "FORECASTING OF INDONESIAN CRUDE PRICES USING ARIMA AND HYBRID TSR-ARIMA," vol. 10, no. 2, pp. 64–68, 2024. doi: <https://doi.org/10.12962/Fj24775401.v10i2.21946>.
- [52] B. GÜLMEZ, "STOCK PRICE PREDICTION WITH OPTIMIZED DEEP LSTM NETWORK WITH ARTIFICIAL RABBITS OPTIMIZATION ALGORITHM," *Expert Syst. Appl.*, vol. 227, no. April, p. 120346, 2023. doi: <https://doi.org/10.1016/j.eswa.2023.120346>.
- [53] C. S. Sucipto, W. Sulandari, and Y. Susanti, "IMPLEMENTATION OF CROSS-VALIDATION ON HANG SENG INDEX FORECASTING USING HOLT'S EXPONENTIAL SMOOTHING AND AUTO-ARIMA METHOD," *BAREKENG J. Ilmu Mat. dan Terap.*, vol. 19, no. 1, pp. 13–24, 2025. doi: <https://doi.org/10.30598/barekengvol19iss1pp0013-0024>.
- [54] T. R. Trydini, Helmi, and N. M. Huda, "PREDIKSI HARGA SAHAM MENGGUNAKAN MODEL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE DENGAN INNOVATIONAL OUTLIER," *Bul. Ilm. Math. Stat. dan Ter.*, vol. 12, no. 1, pp. 1–10, 2023. doi: <https://doi.org/10.26418/bbimst.v12i1.61975>.
- [55] A. Syukur, R. Zega, A. K. Hidayat, and N. T. Jannah, "SELECTING THE BEST MODEL FOR FORECASTING INDONESIA'S OIL AND GAS IMPORT VALUE USING ARIMAX AND ARIMAX-LSTM," vol. 8, no. 4, pp. 912–941, 2024. doi: <https://doi.org/10.31000/dmj.v8i4>.