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1. INTRODUCTION

Globally, cervical cancer ranks as the second most prevalent cancer among women [1]. It continues to
be a significant public health issue, particularly in developing nations where routine medical examinations
are uncommon [2]. Early Pap smear testing is crucial because it can detect abnormal cells before they develop
into invasive cancers [3]. Traditionally, Pap smear image analysis is performed manually by
cytotechnologists, but this process can be time-consuming and prone to human error [4]. As a result,
researchers are developing automated diagnostic systems that rely on digital image processing techniques.
Several public datasets are available to support these efforts, including SIPaKMeD, the Mendeley Liquid-
Based Cytology (LBC) dataset, and the HErlev Pap Smear Dataset. SIPaKMeD provides five classes of
single-cell images that experts have carefully labeled [5]. The Mendeley LBC dataset contains multi-class
Pap smear images with diverse visual qualities. Mendeley LBC helps test different analysis methods [6]. The
HErlev Pap Smear Dataset is one of the earliest and most widely used collections, which includes images
pre-classified into normal and abnormal categories. The Herlev dataset helps researchers benchmark the
performance of segmentation, classification, and diagnostic algorithms [7]. These three datasets offer a rich
foundation for evaluating and improving automated cervical cancer detection techniques.

Pap smear image quality is crucial for accurate diagnosis and the reliable functioning of automated
classification systems [8]. However, Pap smear images frequently encounter issues such as noise and
degradation [9]. Staining inconsistencies, microscope lens quality, or problems during digitization cause it.
This noise can obscure critical cell components, including the nucleus and cytoplasm, vital for identifying
malignant characteristics. Thus, reducing noise from pap smear images is essential to clarify cervical cell
images and preserve important details [10]. The study indicates that reducing noise in images enhances their
classification accuracy [11]. The PMD filter is a sophisticated image processing tool designed to improve
image smoothness while preserving crucial edges [12]. A modified Gaussian function is used to assess the
value of each pixel, with the highest values concentrated at the center and gradually diminishing towards the
periphery [13]. PMD filters can assist medical professionals in detecting and identifying malignant tumors
[14]. In the other study, the PMD filter has been utilized to enhance the performance of deep learning
algorithms in classifying cervical cancer [15]. Improving PMD filter performance can be done by tuning its
parameters. To overcome the problems with manual tuning, metaheuristic optimization algorithms offer
strong and flexible solutions for selecting parameters in complex processing problems [16]. These algorithms
simulate how groups act to explore the search space and find the optimal solutions. Particle Swarm
Optimization (PSO) is a method that copies the flight patterns of bird flocks [17]. The Genetic Algorithm
(GA) is inspired by natural selection and genetics [18]. The Spider Monkey Optimization (SMO) model
studies how spider monkeys find food by changing their groups [19]. Each algorithm has its way of exploring
and utilizing data to find the best solution for a problem. The SMO algorithm demonstrates superior
performance in optimizing UCAV path-planning problems. SMO surpasses other metaheuristic algorithms
in the UCAV path-planning problems [20]. This study compared PSO, GA, and SMO to optimize the PMD
filter for removing noise from cervical smear images.

The Spider Monkey Optimization (SMO) optimizes the PMD filter with Blind/ Referenceless Image
Spatial Quality Evaluator (BRISQUE) as an objective function. BRISQUE is a new objective function for
optimizing PMD filter performance to reduce image noise. It examines the appearance of objects based on
their spatial arrangement. Using BRISQUE as the objective function allows the optimization process to focus
on enhancing images consistent with human perception. BRISQUE is a no-reference image quality
assessment. BRISQUE is better than the SSIM and PSNR statistically [21]. This is important for medical
imaging applications, where the image quality and how clearly it shows the structure directly impact the
accuracy of the diagnosis. The SMO is guided to produce more explicit images by minimizing the BRISQUE
score during optimization.

To thoroughly assess the performance of the PMD filter when using each algorithm, this study used
five crucial image quality metrics, such as mean squared error (MSE), structural similarity index
measurement (SSIM), peak signal-to-noise ratio (PSNR), entropy, and processing time. The MSE and PSNR
measure the pixel-level error and signal fidelity, respectively. The SSIM assesses the structural similarity
between the original and denoised images, and entropy evaluates the amount of information preserved [22].
This study also examined the time processing for each algorithm, which helped us understand how well the
computer performed. The experimental results on the SIPaKMeD, Mendeley LBC, and Herlev datasets show
that the hybrid SMO-PMD filter achieved outstanding results across two datasets. The Mendeley dataset’s
filter achieved an average MSE of 0.3991, SSIM of 0.9994, PSNR of 53.08 dB, and Entropy of 5.489. In the
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Herlev dataset, the method achieved an MSE of 8.1191, SSIM of 0.9688, PSNR of 55.77 dB, and Entropy of
5.203. The SMO effectively reduces noise while preserving details. These findings present a new approach
for improving cervical cancer images using a hybrid SMO-PMD filter. This study has certain limitations.
First, the experiments were conducted on only three datasets, so validation on larger and more diverse clinical
collections is still required. Second, while SMO demonstrated broader parameter exploration, its tendency to
rely on extreme values of k may reduce stability when applied beyond the tested settings.

2. RESEARCH METHODS

2.1 Hybrid SMO-PMD Filter

The proposed method and its process are illustrated in Fig. 1. The PMD filter optimization focuses on
tuning three parameters: the diffusion coefficient (1), the edge-stopping threshold (K), and the number of
iterations (t). These three parameters balance smoothing noise and preserving important image structures like
edges. The SMO algorithm is employed to find the optimal set of parameters. The objective function used in
the optimization process is the BRISQUE score, which measures the perceptual quality of images without
needing a reference image. Lower scores of BRISQUE indicate better quality. Initially, a population of spider
monkeys is created, where each monkey represents a potential solution in the form of a set of PMD
parameters. The initial positions are randomly generated within defined bounds. Each solution’s fitness is
evaluated by applying the PMD filter to the noisy image using the monkey’s parameters and calculating the
resulting BRISQUE score. The PMD filter and BRISQUE explanations can be found in sections 2.4 and 2.6.

The optimization process then proceeds through several phases. In the Local Leader phase, each
monkey updates its position by following the best monkey in its group, encouraging localized improvement.
In the Global Leader phase, all monkeys may be influenced by the global best solution found so far. The
algorithm also includes Local Leader Decision and Global Leader Decision phases to prevent stagnation by
introducing random movements or group splitting if no improvement is detected over a set number of
iterations. This process of evaluating, updating, and adapting continues iteratively until the stopping criteria
are met. Finally, the best solution found — the spider monkey with the lowest BRISQUE score — provides
the optimal combination of A, K, and t for the PMD filter, this optimized filter achieves high-quality image
denoising while preserving critical diagnostic details in cervical cancer images. The SMO algorithm is
explained in section 2.5.

Tnput pap smear Initialize the Population
image
l W
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; ¥
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ot - i Select LL and GL
. =1 —
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Figure 1. Hybrid SMO-PMD filter

To formalize the hybridization, let the PMD filter be parameterized by three variables: the diffusion
coefficient A, the edge-stopping threshold k, and the number of iterations t. The PMD process can be
expressed as:
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Iev1 (6 y) = 1,0, y) + AV - (c(IVI(x, Y)I) VI (x,)), (1

where c(+) is the edge-stopping function controlled by k. The optimization goal is to minimize the BRISQUE
score f (4, k, t), which evaluates the perceptual quality of the filtered image:

miny i, f (A, k,t) = BRISQUE (PMD(I; A, k, 1)), (2)
in the SMO algorithm, each spider monkey represents a candidate solution.
Xi = (AiJ ki’ ti)ﬁ . (3)

The update rule in the local leader phase is:
XY =X +r- (X, — X)), (4)

where X, is the best local leader in the group, X; is a randomly selected solution from the same group, and
r € [—1,1] is a uniform random number. The global best solution X,z is selected based on the lowest
BRISQUE score. The hybridization is therefore explicit: the PMD filter provides the denoising mechanism,
while SMO adaptively searches for the optimal (4, k, t) that minimize BRISQUE.

2.2 Pap Smear Image Dataset

The pap smear image quality is crucial for the accurate early diagnosis of cervical cancer. Pap smear
images closely examine the structure of cervical cells, particularly the ratio of the nucleus to the cytoplasm,
the nucleus’s shape, and the cytoplasm’s texture. Image quality is essential for two reasons: for
cytotechnologists to examine samples manually and for automated diagnostic systems [23]. However, pap
smear images are blurry, stained, noisy, and unevenly lit. These issues can obscure critical cellular structures.
Low image quality is difficult to diagnose or misinterpret. This implies that image enhancement and denoising
are necessary steps in cervical cancer screening pipelines. The noise must be reduced while maintaining
essential details, to eliminate noise without losing important information [24].

The SIPaKMeD dataset is a publicly available dataset that researchers use to study the classification
of cervical cells. It contains 966 images of cells taken from Pap smear slides using the Papanicolaou method.
Each image is labeled into one of five types: superficial, intermediate, parabasal, koilocytotic, metaplastic,
or dyskeratotic. The pap smear images were high resolution (2048 x 1536 pixels) and were taken under
controlled conditions using an optical microscope with 400 x magnification [5]. These characteristics make
SIPaKMeD a good choice for evaluating cell-level image-analysis tasks. Although the imaging conditions
were relatively clean, some images still contained noise with low contrast. This makes it a good test set for
image denoising algorithms [25].

The Mendeley LBC dataset has a more diverse and realistic set of images. It closely resembles those
encountered in clinical settings. Mendeley LBC contains multiple full-slide pap smear images. Mendeley
LBC includes overlapping cells, clumped nuclei, and varying background textures. The samples were stained
using different methods, which led to significant differences in the appearance of the images [26]. The image
quality also varies across samples. It makes image samples more challenging to improve the image quality.
These images have more visual noise and natural imperfections than the SIPakKMeD dataset. Mendeley LBC
is ideal for checking the efficacy of denoising techniques. Any improvement algorithm tested on this set of
data must make things more straightforward without changing the important cell structures, even when there
is a large amount of visual noise [27].

The HErlev Pap Smear dataset is one of the earliest and most widely used cervical cell image analysis
collections. It contains 917 single-cell images manually segmented and classified into seven categories,
covering both normal and abnormal cell types. The images were captured under 20 x magnification,
including detailed cytoplasm and nucleus structures. Cytopathology experts carefully annotated each image,
making it a benchmark for classification and segmentation research. The HErlev dataset offers relatively
clean images with fewer background artifacts, but still presents challenges related to subtle differences
between cell types. It is beneficial for evaluating the accuracy of algorithms in distinguishing normal from
precancerous and cancerous cells, as well as for validating image denoising methods that must preserve
critical diagnostic features during enhancement [7],[28].
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2.3 Software and Hardware Settings

The simulation scenarios were conducted using Python. Python offers powerful image processing and
optimization libraries. The PMD filter was implemented in Python. The metaheuristic optimization
algorithms (SMO, PSO, and GA) were executed using the MealPy Python library. MealPy is a comprehensive
Python-based framework for implementing and comparing a wide range of optimization techniques [29]. We
used functions from the OpenCV, scikit-image, and piga libraries to calculate different image quality metrics.
MSE, BRISQUE, SSIM, entropy, and PSNR were used to evaluate the denoised image. All simulations and
testing procedures were performed on a computer with Windows 11 as the operating system.

The computer system used in this study had an AMD Ryzen 5 5500 processor with six cores and 12
threads for running multiple tasks simultaneously. The computer system is equipped with 32 GB of DDR4
memory. This memory can handle large image datasets and high-dimensional optimization tasks smoothly.
An NVIDIA GeForce RTX 3060 GPU with 12 GB of dedicated VRAM also accelerated specific
computational tasks in this computer system. This GPU can involve parallel image processing. This setup
provided sufficient computing power to efficiently run all denoising and optimization processes on the
SIPaKMeD, Herlev, and Mendeley LBC datasets. This hardware setting ensured we could reproduce the
results and minimize the processing time.

2.4 Image Denoising

Image noise reduction is essential in medical image analysis. Pap smear images are cervical images
that were used in cervical cancer screening. Pap smear images are noisy with low contrast [30]. Uneven
staining, scanning problems, or differences in light use can cause this noise. These problems can make it
challenging to see essential cell details, such as the nucleus’s location and the cytoplasm’s texture. Optimal
denoising clarifies pap smear images by reducing noise while retaining the necessary information for a correct
diagnosis.

The PMD filter is an algorithm for reducing noise in digital images. This is a special type of image
filter that can make the image smoother in some areas while keeping the edges around those areas unchanged
[31], [32]. The partial differential equation governing the PMD process is as follows:

ol

a: V'(C(x'yﬁt)VI)' (5)

where [ is the image intensity, t is the diffusion time (or iteration), and V - is the divergence operator. The
diffusion coefficient c(x, y, t) controls the diffusion rate and is defined in Eq. (6) by Perona and Malik.

Vil \?
e(vi D) = exp(—(%) ) (©)

where |VI| is the gradient magnitude, and k is the contrast parameter that determines sensitivity to edges. A
lower k value preserves fine details, and a higher value increases smoothing. The PMD filter depends on
three primary parameters: the number of times it is run (t), the diffusion coefficient function, and the contrast
threshold (k). It is crucial to adjust these settings correctly. This balances noise reduction and edge
preservation. This makes PMD highly effective in improving medical images. It does this in situations where
the features that help with diagnosis must be maintained [33].

2.5 Meta-heuristics optimization

Meta-heuristic optimization is a group of algorithms designed to find solutions to complex optimization
problems that are difficult to solve using traditional methods. These algorithms are inspired by natural
processes, such as evolution, swarm intelligence, and social behavior, and are especially effective for
problems that are nonlinear, multidimensional, or lack analytical gradients [34]. The main features include
random search behavior, exploration of different solutions, adaptability to various problem types, avoidance
of local minima through randomness, and innovative search strategies. Meta-heuristics are different from
exact optimization methods [35]. They do not guarantee a global optimum but can efficiently find good-
quality solutions in a reasonable amount of time. It has three main advantages. First, they are simple to use.
Second, they can be used in various ways. Third, they are strong even when the data are incomplete or
incorrect. In image-processing applications such as image denoising, meta-heuristic algorithms help adjust
filter parameters when the objective function (e.g., visual quality or non-differentiable metrics such as
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BRISQUE) is challenging to analyze. This makes meta-heuristic approaches, such as particle swarm
optimization (PSO), genetic algorithm (GA), and spider monkey optimization (SMO), very effective for
improving complex image enhancement techniques.

The SMO algorithm is a worldwide optimization technique that draws inspiration from the foraging
behavior of spider monkeys. It mimics how these animals follow leaders, share information, and divide into
smaller groups to explore their environment [36], [37]. In SMO, each spider monkey represents a possible
solution to a problem and is placed in a D-dimensional space using the formula:

SMy; = SMypin j + R X (SMynax j — SMuin ;). (7)

where R is a random number between 0 and 1, and SM,,;,, ; and SM,,,,. ; the lower and upper bounds of the
search space for each dimension.

The optimization process involves several phases. In the Local Leader (LL) phase, each monkey
updates its position based on the best monkey (local leader) in its group using the equation:

SMpewij = SM;; + R x (Leadery j — SM; ;) + U(—1,1) X (SM,.; — SM; ;), (8)

where SM,. ; is a randomly chosen monkey from the same group, and U(—1,1) it is a uniform random number
between -1 and 1. If this new position improves the result, it is accepted.

In the Global Leader (GL) phase, monkeys may follow the global best solution with a probability
calculated as:
fitness;
prob; =09 x — +0.1. 9)

max
fitness

This gives monkeys with better solutions higher chances to explore new positions.

SMO includes the Local Leader Decision (LLD) and Global Leader Decision (GLD) phases to
maintain diversity and prevent stagnation. If there is no improvement after several iterations, monkeys may
randomly change positions or split into subgroups to explore better areas. These collaborative and adaptive
strategies make SMO effective for solving complex optimization problems, such as tuning parameters in
image denoising tasks.

2.6 Image Quality Assessment

This study used five main metrics to evaluate the image quality: MSE, SSIM, PSNR, entropy, and
BRISQUE. These metrics show how well the processed images maintain the original images’ quality,
structure, details, and visual quality [38], [39]. Each metric shows a different aspect of image quality and
provides a thorough and objective evaluation.

1. Mean Squared Error (MSE):

MSE quantifies the mean of the squared differences between the original and the processed
(filtered) images. A smaller MSE value suggests that the filtered image more closely resembles the
original. The MSE is determined using this formula:

1 m n
MSE = —— " 3 10,)) = KG DI, (10)

i=1j=1
where I is the original image, K is the filtered image, and m X n is the image size.
2. Structural Similarity Index (SSIM):

SSIM evaluates how alike two images are by examining their brightness, contrast, and structure.
The resulting values span from -1 to 1, 1 signifying complete similarity. The SSIM formula is as
follows:

(2uetty + C1) (204 + C,)

SSIM(x,y) = ,
x.7) (2 +p2 + Cy)(0f + 0% +Cy)

(11)

where p is the mean, o2 is the variance, and Oxy is the covariance of the images.
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3. Peak Signal-to-Noise Ratio (PSNR):

The PSNR measures the quality of the filtered image based on the MSE. A higher PSNR value
indicates a better quality. This formula calculates PSNR.

MAX}?
MSE )’

PSNR = 10 - log;, ( (12)

where MAX; is the maximum possible pixel value (255 for 8-bit images).
4. Entropy:

Entropy measures the amount of information or details in an image. Higher entropy indicates that
the image contains more texture or variation. This formula calculates entropy.

Entropy = = » p(i)log, p (i), (13)

where p(i) is the probability of pixel intensity i.
5. Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE)

BRISQUE is a method for measuring the quality of a digital image. The original image is not
required to use BRISQUE. BRISQUE belongs to the NR-IQA metrics, so it is flexible and can be used
with different types of images. BRISQUE uses natural scene statistics (NSS) to calculate these
statistics. NSS is a method for measuring the statistics of natural images (images that have not been
altered). The BRISQUE algorithm uses NSS to understand the pixel intensity distribution of an image.
BRISQUE uses the distribution of mean-subtracted contrast-normalized (MSCN) coefficients to
extract features from an image [40]. The MSCN coefficients are calculated using the following
equation:

a. MSCN coefficients:

1(L,)) = cGNtC (14)
with I(i, j) is the intensity of the image, C a small constant to avoid division by zero,
K L

u(i,j) = Z Z wk, DIG+k,j+1), (15)

k=—-Kl=—K

K L
o(i,j) = Z Z we, DI +k,j+1) — u(i, ), (16)
k=—K I=—K

w (k,1) is the Gaussian kernel.
b. Feature Extraction

BRISQUE extracts features from the histogram of the MSCN coefficients and the pair
products derived from them: horizontal (H), vertical (V), main diagonal (D1), and secondary
diagonal (D2), as shown in Fig. 2.

Central pixel ij ij+1 W——— Horizontal neighbour

Off Diagonal neighbour

i-1,j+1 | i+l |i+1j+1 g——On Diagonal neighbour

Vertical neighbour

Figure 2. Coefficients MSCN
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C. Generalized Gaussian Distribution (GGD)
The extracted features are fed to the GGD to calculate the distribution parameters.

flx;a,0) = mexp (— (%) ) a7

r/o)
r/a)’

with I is the gamma functionand § = o

3. RESULTS AND DISCUSSION

Table 1 compares the original and enhanced images from the SIPakKMeD, Mendeley LBC, and Herlev
datasets. Significant improvements in image quality can be observed when comparing the original images
with those processed using the optimization-based PMD filter methods. These enhancements are evident in
the reduction of noise, sharper cell contours, and improved image clarity. Meanwhile, the visual differences
among the images enhanced using the three hybrid methods, the Hybrid PSO-PMD Filter, the Hybrid GA-
PMD Filter, and the Hybrid SMO-PMD Filter, appear minimal. All three methods produce images of
similarly high visual quality. It is difficult to determine the superior approach based solely on visual
inspection. However, objective evaluation using the BRISQUE metric offers a more precise image quality
assessment. BRISQUE measures distortions based on the natural statistical characteristics of images. Lower
BRISQUE scores indicate better image quality. The test results demonstrate that the Hybrid SMO-PMD Filter
consistently achieves the lowest BRISQUE scores compared to other methods. The Hybrid SMO-PMD Filter
is statistically considered to have optimal image quality.

In addition to visual assessment, the enhanced images’ quality was evaluated using several quantitative
metrics, including MSE, SSIM, PSNR, Entropy, BRISQUE, and computational time. The simulations were
conducted on 10 images from each dataset (SIPakKMeD, Mendeley LBC, and Herlev datasets). The simulation
results for each evaluation metric were averaged to ensure reliable and representative measurements. The
detailed simulation results for the three datasets used in this study are presented and discussed in Sections 3.1
to 3.4.

Table 1. The BRISQUE Score of Original Images vs Enhanced Images
Original Image PSO-PMD Filter GA-PMD Filter SMO-PMD Filter

Image Datasets

SIPaKMeD
(Brisque score)
67.75482 ) 58 63072 58. 93625 57 95712
[s® # [rogr & [s =
""“' ‘.0“ Ly '.o“ | "0
’ PR , PR i ‘0‘
.. W e S, TR .. A
Mendeley LBC '3-‘ ?"- | ‘.,;;{'.‘. ?". 1 | :{ - ." 1
(Brisque score) o AR O T TR
S TR

39.52214 _31.98296 _31.03850 _30.93457

Herlev
(Brisque score)

. . ~
40.25744 33.95107 34.06611 33.60054

3.1 Exploration Analysis of Optimizers

To quantify the exploration ability of each optimizer, we examined the distribution of PMD parameters
discovered in the Mendeley dataset. Fig. 3 presents boxplots of the two parameters. In terms of k in Fig. 3
(), SMO often reached the extremes of the search space (around 10 or 100), while PSO and GA were more
focused on intermediate ranges. For A in Fig. 3 (b), SMO solutions were mainly centred around 0.01, whereas
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PSO and GA showed wider variation. The number of iterations was generally consistent across methods
(mostly 5-7), but SMO demonstrated reliable convergence with less minor variance across methods (mostly
5-7), but SMO showed consistent convergence with less minor variance.

Parameter coverage is further illustrated in Fig. 4 (a), which plots x against A. SMO explored the
extreme corners of the search space (very low or very high x values combined with near-constant 1), whereas
GA and PSO clustered in more limited intermediate regions. This suggests that SMO employed a more
aggressive exploration strategy, contrasting with the more exploitative behavior of GA and PSO. We also
compared convergence behavior by plotting BRISQUE values against the number of iterations Fig. 4 (b).
SMO showed steady improvements across iterations, maintaining progress until convergence. By contrast,
PSO and GA often plateaued earlier, indicating premature convergence.

0.020
1001

-

0.018}
80

0.016

kappa
lambda,

0.014
aor |

0.012
20+ t

—_—
0.010 ———
PSO GIA SMO PSO GA SMO
method method
(@) (b)

Figure 3. Distribution (a) x Across Methods and (b) 2 Across Methods

Population diversity was approximated using the variance of the discovered parameters across
independent runs. SMO exhibited higher variance in , reflecting broader coverage of the search space, but
lower variance in 4, suggesting stable convergence toward a perceptually optimal region. In contrast, GA and
PSO maintained narrower ranges, which limited their ability to escape local minima. Statistical testing
confirmed these trends: the distributions of A differed significantly among methods (Kruskal-Wallis, p =
0.003), while the differences in k were not statistically significant (p = 0.457). These simulation results
substantiate the claim that SMO demonstrates stronger exploration capability, not by random scattering, but
by systematically pushing parameter searches toward extreme and informative regions of the domain. This
exploratory behavior directly translates into more effective noise reduction and superior denoising
performance compared to GA and PSO.

0.0201
® method method

o PsO —— PO
® % GA goL— GA

0.018} = SMO — SMO

wn
[l

0.016

%]
=]

lambda

0.014 ®

4=
[l

Fitness (BRISQUE)
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3.2 SIPaKMeD Dataset

Table 2 presents the optimization results of the PMD filter on the SIPaKMeD dataset. SMO produced
the most promising outcomes across nearly all evaluation metrics among the tested algorithms. It achieved
the lowest average MSE of 0.0454, indicating minimal deviation from the original images at the pixel level.
The SSIM score of 0.9984 further confirmed that SMO preserved the structural integrity of cervical cell
features, which is critical for accurate classification and analysis. Its PSNR value of 62.27 dB was the highest
among the methods, demonstrating strong noise suppression and fidelity preservation. From a perceptual
standpoint, the SMO also yielded the lowest BRISQUE score of 36.24, suggesting improved visual quality
without requiring a ground truth reference. These results collectively highlight SMO’s effectiveness in
enhancing microscopic cell images by producing visually clear and diagnostically valuable outputs.

In comparison, PSO achieved moderate results, with an MSE of 0.0617, SSIM of 0.9980, and PSNR
of 60.72 dB. While these values indicate reasonably good image quality, PSO’s slightly higher BRISQUE
score (36.77) suggests marginally less perceptual quality than SMO. The GA algorithm demonstrated the
lowest performance among the three, with the highest MSE (0.0670) and lowest PSNR (60.53 dB), though it
did retain a strong SSIM score of 0.9979. Interestingly, the entropy values were virtually identical across all
three methods (around 5.42), suggesting that all approaches maintained similar texture and information
content within the images. However, the trade-off becomes evident in processing time: SMO took an average
of 148.26 seconds, significantly longer than PSO (90.13 seconds) and GA (83.19 seconds).

Despite its longer runtime, SMQO’s superior performance across objective (MSE, PSNR) and perceptual
(SSIM, BRISQUE) metrics makes it an ideal candidate for applications requiring high image fidelity, such
as automated cervical cancer screening systems. In clinical practice, the cost of slower processing is often
outweighed by the importance of diagnostic accuracy. SMO’s hierarchical search strategy and dynamic
grouping allow it to explore the solution space more thoroughly, avoiding local optima that commonly hinder
GA and PSO. These characteristics make it particularly suitable for complex, nonlinear optimization tasks
like PMD filtering, where multiple competing objectives must be balanced simultaneously.

Table 2. PMD filter optimization on SIPaKMeD dataset
Algorithm MSE  SSIM  PSNR  Entropy BRISQUE Time

PSO 0.0617 0.9980 60.7169 5.4250 36.7708 90.1324
GA 0.0670 0.9979 60.5267 5.4249 37.0787 83.1949
SMO 0.0454 0.9984 62.2706 5.4251 36.2366 148.2581

3.3 Mendeley LBC dataset

On the Mendeley LBC dataset, SMO again delivered the best overall performance, as shown in Table
3. It achieved the lowest MSE (0.3991), indicating higher pixel-wise accuracy in noise removal, and the
highest PSNR (53.08 dB), signifying a higher quality reconstruction. The SSIM score of 0.9994 was nearly
perfect, suggesting that structural patterns, particularly nuclear and cytoplasmic boundaries, were well-
preserved, essential for detecting morphological abnormalities in Pap smear images. Moreover, SMO
recorded the lowest BRISQUE score (46.60), emphasizing its strength in producing visually coherent and
natural-looking images from a human perception standpoint. Notably, it also exhibited the highest entropy
value (5.4888), indicating richer textural detail and a higher degree of image information post-processing.

Compared to the other optimization techniques, GA achieved slightly higher entropy (5.4878) than
PSO but lower than SMO, and demonstrated a relatively low MSE (0.5339) with a PSNR of 51.29 dB.
Although it performed faster (44.49 seconds) than PSO and SMO, its higher BRISQUE score (46.98)
indicates slightly inferior visual quality. PSO, in contrast, had the highest MSE (0.7325) and the lowest PSNR
(49.98 dB), along with the worst BRISQUE score (47.43), despite achieving a high SSIM of 0.9988. These
results suggest that while PSO maintains a strong structural resemblance, it fails to reduce noise and artifacts
as effectively as SMO or GA. Regarding processing time, PSO completed optimization in 50.28 seconds—
faster than SMO but slower than GA.

The results reaffirm SMQO’s strength in quantitative and perceptual metrics, positioning it as the most
suitable algorithm for PMD filter optimization on the Mendeley dataset. This capability is particularly
relevant in cytopathological diagnostics, where image quality is critical in accurate interpretation by
automated systems and medical experts. While SMQO’s processing time was slightly higher, the quality gains
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are substantial and justifiable in contexts such as early cervical cancer detection, where high accuracy can
significantly affect patient outcomes.

Table 3. PMD filter optimization on the Mendeley LBC dataset

Algorithm MSE  SSIM  PSNR  Entropy BRISQUE Time

PSO 0.7325 0.9988 49.9801 5.4867  47.4270 50.2844
GA 0.5339 0.9989 51.2969 5.4878  46.9766 44.4851
SMO 0.3991 0.9994 53.0825 5.4888  46.5955 81.8744

To evaluate the relationship between execution time and the quality improvements achieved by SMO-
PMD, we analyzed all per-image optimization results on the Mendeley LBC dataset (n = 10). Fig. 5 (a)
shows a scatter plot of runtime versus PSNR for each run; Fig. 5 (b) presents runtime versus BRISQUE; and
Fig. 5 (c) depicts the Pareto frontier for PSNR versus runtime. On average, SMO achieved a 6.20% increase
in PSNR compared to PSO (95% CI +2.05%) and 3.50% compared to GA (95% CI +2.83%). BRISQUE
scores also improved, with a mean reduction of —1.98% relative to PSO (95% CI +0.83%) and —0.78%
relative to GA (95% CI +£0.42%). However, these improvements came with longer runtimes: SMO required
+62.85% more time than PSO (95% CI +2.69%) and +84.08% more than GA (95% CI £2.69%). At the per-
image level, PSNR(SMO) exceeded PSO in all 10 cases and GA in 9/10 cases; BRISQUE(SMO) was better
than both in all 10 cases. The Pareto frontier analysis showed that several GA runs remained non-dominated,
offering lower runtime with comparable quality. In contrast, SMO appeared on the frontier only once,
achieving the highest PSNR but at a significantly higher computational cost. These findings confirm that
SMO-PMD consistently improves image quality, but the corresponding runtime trade-off must be carefully
considered for practical use.
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3.4 Herlev Pap Smear Dataset

The Herlev Pap Smear dataset further validated the SMO algorithm’s superiority in PMD filter
optimization, which was shown in Table 4. SMO achieved the highest SSIM (0.9688) and PSNR (55.77 dB),
indicating robust noise reduction and structure preservation, even though its MSE (8.1191) was slightly
higher than PSO’s (7.9281). The entropy (5.2031) and lowest BRISQUE score (36.36) confirmed the
algorithm’s ability to preserve intricate cell features and produce perceptually superior images. Given that
BRISQUE was used as the objective function during optimization, the results reflect successful convergence
to perceptually optimal solutions.

While PSO achieved the lowest MSE, its slightly lower SSIM (0.9687) and higher BRISQUE (36.79)
suggest a trade-off between noise suppression and structure preservation. GA, on the other hand, yielded the
weakest results, with the highest MSE (8.14), lowest SSIM (0.9673), and highest BRISQUE score (37.06),
though it had the fastest processing time (28.18 seconds). SMO’s processing time (50.43 seconds) was
significantly higher but acceptable in clinical contexts where diagnostic accuracy is prioritized. The near-
identical entropy values across all three methods (=5.203) indicate that none of the algorithms excessively
simplified or distorted the image content during denoising.

In conclusion, the hybrid SMO-PMD approach is the most effective technique across all tested datasets.
Its ability to produce high-quality denoised images with preserved structural and perceptual features makes
it an ideal candidate for enhancing Pap smear images in automated screening systems. The slightly increased
computational time is a reasonable trade-off for improving diagnostic relevance, robustness, and visual
quality. These findings strongly support the integration of SMO into medical image processing pipelines,
particularly in systems aimed at cervical cancer detection and cytological analysis.

Table 4. PMD Filter Optimization on the HerLev Dataset
Algorithm MSE  SSIM  PSNR Entropy BRISQUE Time

PSO 7.9281 0.9687 54.8602 5.2030 36.7978 30.4619
GA 8.1424 0.9673 53.4722 5.2023 37.0565 28.1789
SMO 8.1191 0.9688 55.7737 5.2031 36.3616 50.4331

To assess the relationship between execution time and quality improvement provided by SMO-PMD,
we analyzed per-image optimization results on the Herlev dataset (n = 10). Fig. 6 (a) shows runtime versus
PSNR for each run, Fig. 6 (b) shows runtime versus BRISQUE, and Fig. 6 (c) depicts the Pareto frontier for
PSNR versus runtime. On average, SMO produced a 1.57% increase in PSNR compared to PSO (95% ClI
+1.48%) and a 4.15% increase compared to GA (95% CI £2.50%). BRISQUE scores also improved, with
mean reductions of 1.30% versus PSO (95% CI +0.64%) and 2.18% versus GA (95% CI £1.94%). These
improvements were achieved at the cost of longer runtimes: SMO required +67.61% more time than PSO
(95% CI £6.98%) and +79.48% more than GA (95% CIl +2.84%). At the per-image level, PSNR(SMO)
exceeded PSO for 7/10 images and GA for 8/10 images; BRISQUE(SMO) was better than both comparators
on all 10 images. Pareto analysis shows several GA and PSO runs remain non-dominated (favorable runtime
with competitive PSNR). At the same time, SMO occupies Pareto positions when it attains the highest PSNR
at substantially higher computational cost. Taken together, the Herlev results indicate that SMO-PMD can
improve image quality but imposes a substantial runtime penalty; whether this trade-off is acceptable depends
on application constraints.
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Figure 6. Time—quality trade-off on Herlev datasets. (a) runtime vs PSNR, (b) runtime vs BRISQUE, (c) Pareto
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4. CONCLUSIONS

This study introduced a hybrid SMO-PMD filter to enhance the quality of cervical images. The PMD
filter effectively reduced image noise, while the Spider Monkey Optimization (SMO) algorithm was
employed to optimize the filter parameters. By using the BRISQUE score as an objective function, the
optimization was directed toward perceptually relevant solutions. Across three benchmark datasets
(SIPaKMeD, Mendeley LBC, and Herlev), SMO-PMD demonstrated competitive—and in several cases
superior—performance compared to GA-PMD and PSO-PMD. On the Mendeley dataset, SMO achieved a
mean PSNR of 53.08 + 1.72 dB, compared with 49.98 £+ 1.35 dB for PSO and 51.30 £ 1.32 dB for GA. This
corresponds to an improvement of ~6.2% over PSO and ~3.5% over GA. BRISQUE scores showed smaller
differences, with averages of 46.60 £ 7.03 (SMO), 46.98 + 7.13 (GA), and 47.43 + 6.95 (PSO). These quality
gains came at the cost of increased runtime: SMO required ~60—70% longer than GA and PSO on average.
This time, the quality trade-off is important to consider for practical deployment. Representative per-image
statistics indicated consistent improvements across runs, and paired significance testing (Kruskal-Wallis,
p<0.05) confirmed significant differences in parameter distributions, particularly for 1. Nonetheless, several
limitations should be acknowledged. First, experiments were limited to three datasets; further validation on
larger and more diverse clinical datasets is necessary. Second, although SMO showed broader parameter
exploration, its reliance on extreme values of x suggests potential instability if applied outside the tested
settings. The hybrid SMO-PMD filter can be considered a competitive and, in many cases, superior approach
for enhancing Pap smear images. Future work should extend this analysis by incorporating alternative
objective functions, additional no-reference quality measures, and integration with deep learning-based
diagnostic systems.
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