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1. INTRODUCTION

One of the main problems in statistical research is the development of algorithms for building
models and selecting variables. This problem can arise when data sets are not high-dimensional. For
example, continuous variables can be entered into statistical models in the form of linear, nonlinear, or
interaction with other predictor variables. To overcome this problem, various regression techniques have
been developed in recent years. The progress in statistical methodology is mainly due to the fact that
classic techniques for building models in the selection of variables (such as generalized linear modeling
with stepwise selection) are known to be unreliable or even biased [1].

A different and more appropriate method for variable selection has been developed in machine
learning-one of them is the boosting approach. According to [1]-[4], boosting is one of the most powerful
learning methods, introduced about twenty years ago. Although originally designed for a classification
problem, the method can also be applied to regression. A general description of the boosting method can
be found in [4]. This concept can be seen as a breakthrough for several methods called ensemble schemes
that rely on the principle of repetitive prediction by repeating or resampling original data sets and finally
averaging the results of individual classifications.

The boosting algorithm is fairly well-known, particularly AdaBoost, which is used for classification
of data [5], [6]. The success of AdaBoost [7], [8] is attributed to its ability to decompose classification
prediction errors by reducing both bias and variance. Another important aspect is its association with
determining the optimal number of boosting steps.

Research [9] further improved the concept of boosting as a gradient descent optimization method
and boosting expansion method to deal with problems in the regression method. This research succeeded
in proving an exponential dependency between bias and variants of the boosting method, which explains
that the boosting algorithm is resistant to overfitting. This discovery represents some of the most important
results regarding the theoretical nature of the boosting algorithm. Similar studies that are related to these
results are [10], [11].

Generalized Linear Mixed Models (GLMM) are right for modeling dependency structures from
longitudinal data and designs with repeated measurements. However, its use is usually limited to several
variables, because the presence of many variables produces unstable estimates. Research [12] proposes a
GLMM boosting approach (GLMM) that can be used in high-dimensional research when many variables
are influential in the model by implicitly selecting variables. For the resulting estimator complexity, the
information criteria are used; otherwise, it can combine random slope on linear effects that produce a
flexible and suitable GLMM in cases where simple random intercepts cannot capture all variations of the
effects of all subjects. This method has been investigated in simulation studies with the Poisson and
Bernoulli connecting functions and the application of real data in cases of AIDS (Acquired Immune
Deficiency Syndrome). Research [13] using gradient boosting to predict ‘“at-fault’” accidents on car loss
costs. Another case was developed by researchers [13]-[16].

This research will be applied to fertility cases. Fertility (birth) can be measured by the number of
live births a mother has given. The fertility rate of an area is measured by the Total Fertility Rate (TFR)
[16]. This is one indicator to compare the success between regions in implementing the Family Planning
(KB) program. Based on the IDHS data, Indonesia’s TFR has decreased from 2.6 in 2012 to 2.4 in 2017.
However, this figure has not yet reached the Strategic Plan, which sets 2.3 for 2017. That is because there
is still a TFR gap between provinces. In 2017, the highest TFR was in the province of East Nusa Tenggara
(NTT) of 3.4, and the lowest was in the province of Bali of 2.1 [17].

These regional disparities highlight the critical need for localized, data-driven analyses of fertility
patterns that account for both demographic heterogeneity and contextual factors. Despite this, most prior
studies have predominantly employed binary or Gaussian response models, which may be ill-suited for
modeling count-based fertility outcomes. Moreover, the application of boosted Poisson mixed models
(bPMM) within the context of fertility research remains notably underexplored—particularly when
addressing high-dimensional explanatory variables and hierarchical data structures commonly
encountered in large-scale survey designs. To bridge this methodological gap, the present study applies
the bPMM framework to model fertility data in Indonesia. This approach offers improved variable



BAREKENG: J. Math. & App., vol. 20(1), pp. 0815- 0828, Mar, 2026. 817

selection capabilities, accommodates random effects to capture cluster-level variation, and provides more
nuanced insights into the socio-demographic determinants of fertility.

2. RESEARCH METHODS
2.1 Generalized Linear Mixed Models

Generalized Linear Mixed Models (GLMM) are the result of the development of two models,
namely Linear Mixed Models (LMM) and Generalized Linear Models (GLM). In its development, GLMM
can answer more complex problems, especially those related to random effects, variance components, and
the shape of the distribution of response variable data that does not have to be normally distributed. The
model with random effects is expected to be more efficient in identifying the distribution of random
components, to be able to explain more precisely the effects of these random components.

Let y;; is an observation of t in iclusters i=1,...,n,t = 1,...,T;, collected in yl-T=

(¥i1, - ¥ip)s Xiz = (i1, .., %;cp) are covariate vectors associated with fixed effects, zj, =

(Zig 1, e» Zi p) is a covariate vector associated with random effects. It is assumed that the observations of
y;e are conditionally independent of the middle-value w;; = E(y;¢|b;, X, Z;r) and the variance of
var(y;:|b;) = ¢v(u;:), where v(.) is a known function of variance and ¢ is a variant of the parameter
scale [18]. The GLMM model, which has a continuous and monotonous interface, can be derived, namely:

n = gQui) = Bo + x}B + zi;b;
= Bo + b + e €Y

The connecting function that can be used is log for y;;|b;~Poisson(u;.), Therefore, Eq. (1) becomes
bPMM [19], [20]:

n= log(#it)ar: Bo + x:B + z}ib;
=Po + Uft + Uirtand- 2)

2.2 Boosted Poisson Mixed Models

Boosting machine learning is proposed to improve classification procedures by combining estimates
with reweighted observations. Reweighting is related to minimizing the loss function iteratively [21].
Boosting has been extended to the regression problem in L2-estimation [22]. The procedure is very similar
to the gradient descent method by using the specific loss function [23]. The initial idea of boosting is the
urgent need for estimation problems for high-dimensional models.

The boosting algorithm presented in this study is based on the likelihood function and operates by
repeatedly fitting residuals using ‘weak learners’, which are simple models (e.g., single-variable
regressions) that individually have limited predictive power but can be combined to form a strong overall
model. This process of sequentially updating the model by fitting one variable at a time is known as
component-wise boosting, allowing for efficient variable selection in high-dimensional settings. That step
means that only one predictor component, in this case, is fitted at a time. More precisely, the model
contains intercepts and only one x,.3, in one iteration step. This study uses x;, = (X7, ..., xL-Tl.T,) notation
for covariate vectors on the r-linear effect on the 1st cluster, r = 1,..., p. Therefore, the corresponding r-
th matrix contains only intercepts, and the r-th covariate vector is X;,, = [1,x;,] and X, = [1,x,.] for
each i-th cluster and the entire sample. For the i-cluster of predictors that only contain the r-th covariate
has the following form of Eq. (3):

Nir = Xi7Br + Z;b; (3)
where BI = (B,, 8,) and for all samples are:

n= XrBr +Zb (4)
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where 7 is the vector of linear predictors, X, is the design matrix for the r-th covariate and intercept, I =
(Bo, B;) is the coefficient vector for the intercept and the r-th covariate, Z is the random effect design
matrix, and b~N(0, 62 1) the random effect vector.

A more complete description of the single step of the bPMM algorithm is the calculation of Fisher’s
score and matrix functions, calculation of variance-covariance components, and determining initial values,
stopping criteria, and selection in bPMM. The calculation of the variance-covariance matrix Q® is
performed using the Restricted Maximum Likelihood (REML) estimation approach or other alternative
approaches. This approach is an alternative form of the Maximum Likelihood (ML) estimator, which is
often used to reduce bias in estimating ML. REML estimation as a method of estimating variance-
covariance components in an Unbalanced Incomplete Block Design based on optimization of the log-
likelihood function. Another algorithm is Expectation-Maximization (EM). However, this algorithm has
the main disadvantage of a slow process of convergence. Therefore, the EM algorithm is rarely used except
to provide the initial value of another algorithm.

2.3 Case Study

Fertility refers to the number of children born alive, with the understanding that children who have
been born in living conditions are showing signs of life. Fertility is usually measured by the frequency of
births occurring in a given population and is more accurately represented as the number of live births per
person or partner during their fertile period. One measure of fertility is the Total Fertility Rate (TFR),
which is defined as the number of live births of men and women per 1000 women living until the end of
their reproductive period. In 2017, the lowest Total Fertility Rate (TFR) occurred in Bali, while the highest
was in NTT (Nusa Tenggara Timur). A high TFR value can often reflect several underlying conditions,
such as the low average age of first marriage or the number of early marriages, low education levels, and
low socio-economic levels. Therefore, various efforts are needed to suppress the TFR, one of which is by
re-evaluating the family planning program. Seeing these conditions, this case study aims to analyze the
factors influencing the number of live births in the two provinces, Bali and NTT (Nusa Tenggara Timur),
to assess the success of their respective family planning programs in both regions. The factors influencing
the high or low live birth rates can be divided into two categories: demographic and non-demographic.
This study uses twenty-eight predictor variables representing both demographic and non-demographic
factors. The response variable is the number of live births in women of reproductive age (15-49 years).
The method used to model the number of live births in Bali and NTT is bPMM. While research [18] used
bGLMM (EM) and bGLMM (REML), this study uses the REML algorithm, considering its model
goodness and stability. The model for the case in Bali will be referred to as Model 1, and the model for
the case in NTT will be referred to as Model 2.

2.3.1 Data

This study uses secondary data from the 2017 IDHS. The IDHS data is part of the international
Demographic and Health Survey (DHS) program designed to provide information on birth rates, deaths,
family planning, and health. Something similar to the IDHS is also carried out in Latin American, Asian,
African, and Middle Eastern countries. In general, the IDHS questions are the same as the DHS
(Demographic and Health Surveys) pattern. The response variable in the study used was the number of
live children born to women within their reproductive age (15-49 years). The permanent effects used in
this study consist of twenty-eight variables, which are presented in Table 1. The random effect used was
the cluster, represented by the Census Block used in the 2017 IDHS. The number of Census Blocks used
in Indonesia was 1.950, covering 49.250 households, and with a total of 59.100 women of childbearing
(reproductive) age. In this study, sample coverage in Bali was 32 Census Blocks with a total of 500 women
of childbearing age, while the sample from NTT included 86 Census Blocks comprising 1.327 women of
childbearing age.
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Table 1. The Explanatory Variables Used in This Study

819

Variables

Initial Notation

Description

Maternal Age

Age of first marriage
Husband/partner’s age
Residential area
Pregnancy history
Marital status

Education Level

Working status

Decision making: health problems

Decision making:

Large household purchases

Decision making:

Visits to family or relatives

Decision making:

The money the husband/partner earns

The household has electricity

The household has: radio

The household has: television

The household has: refrigerator

The household has: bicycle

The household has: motorcycle/scooter

The household has: car/truck

Has an account in a bank /financial institution
Wealth Indkes

Current contraceptive method

Desire for more children

Husband’s desire for children

Ideal number of children
Family Planning: radio
Family Planning: television

Family Planning: newspaper/magazine

X1
Xz

Continuous variable in years (15-49)

Continuous variable in years
Continuous variable in years
0: Rural; 1: Urban

0: Complications; 1: No complications

0: No married; 1: Married/Never married

0: No education;

1: Primary; 2: Secondary; 3: Higher

0: No; 1: Yes

0: Doesn’t involve a wife; 1: Involve wife

0: Excludes wife; 1: Involve wife
0: Excludes wife; 1: Involve wife

0: Excludes wife; 1: Involve wife
0: No; 1: Yes
:No; 1: Yes
:No; 1: Yes
:No; 1: Yes
:No; 1: Yes
:No; 1: Yes
:No; 1: Yes
0: No; 1: Yes
0: Poor; 1: Middle; 2: Rich
0: No; 1: Yes
0: Wants; 1: Undecided;
2: No more children desired
0: Husband wants more;

1: Same preference (both);
2: Husband wants fewer

0: > 2 children ; 1: <=2 children
0: No; 1: Yes
0: No; 1: Yes
0: No; 1: Yes

O O O O o o

2.3.2 Data Analysis Procedure

The steps to get a bPMM for Model 1 and Model 2 are as follows:

1. Conduct data exploration processes on all variables used in research.

2. Initialization by calculating initial values i(®, Q(®, b(®with n(® = Xg© + Zb(©®,

3. lteration forall I = 1, 2, ..., max with refitting residuals and calculating the covariance-variance
component by estimating from Q(®is obtained by the REML estimation approach.

4. The criteria stop by finding the appropriate complexity of the model by using effective degrees
of freedom, which are given by the trace of the hat matrix [1].
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5. Selection in bPMM, the given hat matrix shows the complexity of the model determined by
the information criteria used in the boosting step that minimizes AIC or BIC.

a1c?? = =21 (L) + 2 trace (AY),

BIc® = 21 (ﬁg)) + 2 trace (ﬁg)) log(n)

with

n
{(m®) = ) 108 f (v:]af)
i=1

For example, chosen L:= {1,2,..., Lnax}the lopt component, where AIC® or BICOY is the
smallest, i.e.

lopt = argmin AICO
leL

lope = argmin BICY
leL

Finally, the estimation of the parameters S(lovt),ﬁ(lovt) is obtained and corresponds to the
model ﬁ(loz’t), forr € {1, ..., p} component j which produces the smallestAICr(l) or BICT(Z) with

(3°) = (5s.8.(6)")

6. Interpretation of both models.

3. RESULTS AND DISCUSSION

Fertility refers to the actual production capacity of a population (actual reproductive performance)
or the number of live births experienced by one or a group of women. As outlined in the previous chapter,
one of the objectives of this research is to find out the success of the family planning program. For this
purpose, the number of live births is categorized into two groups: (1) a maximum of two live-born children,
and (2) more than two live-born children. Based on Table 4, it can be seen that in Bali, the majority of
women who have a maximum number of children born alive tend to reside in rural areas, have no history
of pregnancy complications, are currently married, have completed primary education, and demonstrate
good autonomy status as indicated in variables X, to X;,. These women also generally have better
economic status, as indicated by variables X;5 to X,;, and demonstrate active participation in family
planning programs, as reflected in variables X, to X,g. Overall, these variables show higher proportions
in the first category. Similar patterns are also observed among women in NTT, with the main differences
found in the characteristics of residence area, pregnancy history, marital status, and wealth index.

NTT remains the region with the highest TFR in Indonesia. Fig. 1 shows that in NTT, there are still
women who have more than 10 live-born children, while women in Bali province only have a maximum
of 10 live-born children. Across both provinces, most women have 2 to 3 live-born children.
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Percent
W
Percent

1 2 3 4 5 8 7 8 a 10

The number of live births The number of live births

(@) (b)

Figure 1. Live Births Percentage Among WRA in (a) Bali and (b) East Nusa Tenggara
(Source: RStudio)

Data plots on the variables of wives’ age, age of first marriage, and husbands’ age in the provinces
of Bali and NTT have similar patterns (Fig. 2). The highest number of live births in Bali province is
reached by women at the age of 30-40 years, with the age of first marriage around 25 years, and the age
of the husband between 30-40 years. NTT Province has the highest number of live births, with most
women aged 25-30 years, had their first marriage at around 20 years old, and the age of the husband is
between 30-40 years. When viewed from the six data plots, there is no correlation.

The number of live births

@) (b) ©)

The number of live births

Wives’ age Age of first marriage Husbands’ age
(d) (e) )
Figure 2. Scatter Plot Variable: The Number of Live Births with (a) Wives’ Age in Bali, (b) Age of First
Marriage in Bali, (c) Husbands’ Age in Bali, (d) Wives’ Age in NTT, (e) Age of First Marriage in NTT, and

(f) Husbands’ Age in NTT
(Source: RStudio)

3.1 Boosted Poisson Mixed Models for Live Births in Bali

An illustration of how model 1 works using the REML algorithm for the coefficients that enter the
model is shown in Fig. 3 (a). In this study, the maximum step (L,,,4,) Used was 100 steps. The selected
variables model 2 are the residential area (X,), households with motorcycles (X;g), receiving family
planning information from radio (X,¢), and the source of family planning information comes from
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television (X,-). Estimation of the coefficients is carried out in stages by setting the initial coefficients to
zero.

2 I 8 | o i
I o 'l |
T | l |
0 l -4 1 |
o | | 1 |
Ao . | 3 | 1L| I
| o |1 |
e} ! ' \ |
Q] | _ 1 |
] intercept == X286 ! 1 I
- - X4 xar | @ 1 [ — x4 --- x28
W | g i O | e A = - s xa7
N S T
1 9 18 29 40 51 62 73 84 95 1 9 18 29 40 51 62 73 84 95
Step Step
@) ()
S I
= :
_ |
|
[} |
= — |
o “° }
= ] [
o |
S |
> :
o | I
=l |
o i
' [ I I I I [
0 20 40 60 a0 100
Step
(©)

Figure 3. The Plot of Predictor (a) Model with Intercept (b) Model without Intercept,
and (c) AIC Values in Model 1
(Source: RStudio)

In Fig. 3 (b), a plot was generated without including the intercept term in order to identify
significant variables entered into model 1. It can be seen that from twenty-eight variables, only three
variables significantly affect the number of live births in Bali; these variables are X,, X;5 and X,¢,. The
first variable entered into the model is X,, followed successively by the variable X,¢, and the last is X;g.
It can be seen in Fig. 3 (b) that the optimum step (L,,,4) Selected in model 1 are at step 63, even after step
48, all coefficients have stabilized, even though the variables X;g and X, have begun to stabilize at step
14. This is under research by [18], which states that the optimum step in bPMM is determined by the
minimum AIC and BIC values at the boosting step. If we look at the AIC value, before the 10th step, the
AIC value of all variables has started to stabilize, and in the previous step, the AIC value has experienced
a very sharp spike Fig. 3 (c).

Model 1 has form:

log(p;j) = 1.18420 — 0.00286X,;; — 0.05174Xy5;; — 0.07910X5¢,; + 0.00005X,7,; + b;

with y;; is the average number of live births of women of reproductive age in the i Census Block and b;
is a random intercept in the Census Block.
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Table 2. Estimator Coefficient, Standard Error, and p-value on Model 1
Standard Standard

Description Coefficient Error p-value Description Coefficient Error p-value
Fixed Effect Fixed Effect
(Intercept) 1.1842  0.1424 0 X16 0 0 -
Xy 0 0 - X17 0 0 -
Xz 0 0 - X18(1) -0.0517 0.0203 0.0100
X3 0 0 - Xi9 0 0 -
Xan) -0.0029  0.0027  0.0283 X20 0 0 -
Xs 0 0 - X1 0 0 -
Xe 0 0 - Xa2 0 0 -
X7 0 0 - Xa3 0 0 -
Xs 0 0 - X4 0 0 -
Xo 0 0 - X35 0 0 -
X10 0 0 - X26(1) -0.0791 0.0273 0.0030
X11(1) 0 0 - X7 0.0001 0.0131 0.9971
X1z 0 0 - Xog 0 0 -
Xis Random
0 0 - Effects
Xia 0 0 - Variance
Xis 0 0 - Cluster (BS) 0.0340

As seen in Table 2, the area of residence (X,), households with motorcycles (X;g), and receiving
family planning information from the radio (X,¢) significantly influenced the number of live births in Bali
with different real levels. Women who live in rural areas are estimated to have approximately 0.3% more
children compared to those in urban areas. Similarly, women who do not own a motorcycle are expected
to have about 5.3% more live births than those who do. Moreover, women who are not exposed to family
planning information through the radio tend to have approximately 8.2% more live births than women
who receive such information. These results suggest that limited economic resources and restricted access
to reproductive health information are associated with higher fertility. The findings highlight the
importance of targeted interventions to improve both economic empowerment and access to family
planning outreach, particularly in rural communities.

These findings suggest that women living in rural areas, with low economic status, and with no
family planning, tend to have higher fertility rates. This condition is further supported by the percentage
of women in Bali who have live births of more than 2 people and live in rural areas is 51 percent, where
76.2 percent do not possess a motorcycle, and 60.6 percent do not receive family planning information
from the radio. However, this trend appears to contrast with contraceptive usage data, where 96 percent
of women who have family members who live in rural areas, are reporting to use contraception-
highlighting the complexity of factors influencing fertility. Despite these factors, Bali continues to report
the lowest fertility rate among provinces.

The model 1 uses the Census Block as a random effect. In the model, a different coefficient will be
obtained for each j-woman in the i Census Block. Table 2 shows that the diversity of the Census Block
random variables is 0.0340.
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3.2 Boosted Poisson Mixed Models for Modeling Live Births in NTT

Based on Fig. 4 (a) and (b), it can be seen that the variable residential area (X,) and the household
has a refrigerator (X;¢) enter model 2. The smallest AIC value was obtained in step 6 with a value of -
890.739. It can be seen in Fig. 4 (c) that the AIC value for all coincident variables indicates the AIC value
obtained tends to be almost the same for each variable. The highest AIC value was obtained in the first
step with a positive AIC value, then down in the second step with a negative AIC value, and began to
stabilize in the sixth step.

e
-

0.5

-0.5

-1.5

intercept - -+ X18

i C)

19 18 29 40 51 62 73 84 95

Step

(@)

<
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O

3 :

(= :

o :

' H

[ i

o | — X4 —- X
oL ;

19 18 28 38 48 58 66 78 86 98

Step
(b)

3000
|

AlC
1000

-1000

T T T T
40 60 80 100

Step
(©

Figure 4. The Plot of Predictor (a) Model with Intercept, (b) Model without Intercept,
and (c) AIC Values in the NTT Model
(Source: RStudio)

Regional variables of residence significantly affect the number of live births in NTT with a
significant level of 10 percent (Table 3). This can also be observed from Fig. 4 (b), where the coefficient
value of the variable does not coincide with zero, unlike the household has refrigerator variable, which
tends to coincide with zero.

Table 3. Estimator Coefficient, Standard Error, and p-value on Model 2

Description Coefficient Sté?g:rrd p-value  Description Coefficient Sté?g:rrd p-value
Fixed Effect Fixed Effect
(Intercept) 1.2113 0.0254 0 X1 0 0 -
X 0 0 - X2000) 0 0 -
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Description Coefficient Stér;;j:rrd p-value  Description Coefficient Sté?f:rrd p-value
X2 0 0 - X1 0 0 -

X3 0 0 - X17 0 0 -

X4 -0.0162 0.0090 0.0730 Xig 0 0 -

Xs 0 0 - X2 0 0 -
Xe(1) 0 0 - X3 0 0 -

X7 0 0 - Xa4 0 0 -

Xg 0 0 - X25 0 0 -

Xo 0 0 - X26 0 0 -

X1 0 0 - X7 0 0 -

X11 0 0 - X8 0 0 -

Xi2 0 0 -
Xis Random

0 0 - Effects
X4 0 0 - Variance
X5 0 0 . Cluster (BS) 0.0215
X16 -0.0011 0.0114 0.9216

The results of the selection of variables with bPMM on twenty-eight predictor variables can be seen in
Table 4. The bPMM model 2 formed is:

log(pij) = 1.21134 — 0.01621X,,; — 0.00112X14; + b;

NTT (Nusa Tenggara Timur) is an archipelagic province where much of its territory consists of
islands separated by the sea. Consequently, many rural areas differ substantially from urban areas in terms
of access to public infrastructure such as healthcare facilities, clean water, electricity, and transportation.
These disparities contribute to regional differences in fertility patterns. The diversity of areas selected into
the random effect structure reflects this variation, with a calculated variance of 0.0215. When compared
to Bali, the selected Census Blocks in NTT appear more homogeneous, suggesting a relatively consistent
pattern of contextual influences within rural settings across the province.

Table 4. Distribution of Samples Based on Variables Used

Bali Model NTT Model Bali Model NTT Model
Variable Variable

>2 <2 >2 <2 <2 <2 >2 <2

X4- X17
0 51.0 49.0 65.0 35.0 0 59.5 405 64.0 36.0
1 62.9 371 627 37.3 1 589 411 682 318

Xs Xig
0 59.8 40.2 640 36.0 0 76.2 238 66.2 348
1 51.4 486 66.9 331 1 585 415 63.7 36.3

X6 X19
0 66.7 33.3 656 344 0 56,5 435 649 351
1 58.9 41.1 601 39.9 1 675 325 584 416

X; X20
0 66.7 333 642 358 0 55.1 449 65.7 343
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Variable Bali Model NTT Model Variable Bali Model NTT Model
>2 <2 >2 <2 <2 <2 >2 <2
1 540 460 643 357 1 634 49.2 621 379
2 60.3 397 643 357 X,
3 623 377 66.1 339 0 487 289 646 354
Xg 1 586 414 671 329
0 590 410 644 356 2 634 366 610 39.0
1 714 286 765 235 X3
Xq 0 655 345 642 358
0 66.0 340 70.7 293 1 588 412 646 354
1 584 416 641 359 X,3
X10 0 546 338 627 373
0 659 341 66.2 338 1 76.2 238 76.1 239
1 55.8 442 643 357 2 604 396 654 346
X11 X24
0 738 262 656 344 0 52.7 473 650 350
1 570 430 645 355 1 608 392 649 351
Xi2 2 576 424 632 36.8
0 633 367 679 321 X5
1 58.1 419 642 358 0 60.0 400 639 361
X3 1 589 411 66.3 337
0 85.7 143 645 355 X206
1 588 412 645 355 0 606 394 641 359
Xi4 1 514 486 677 323
0 570 430 649 351 X7
1 620 380 60.2 3938 0 56.8 432 644 356
Xis 1 614 386 647 353
0 60.0 400 652 3438 X,s
1 59.2 408 636 364 0 595 405 642 358
Xi6 1 56.1 439 672 328
0 536 464 646 354
1 61.7 383 641 359

Based on Table 4, the distribution of women of reproductive age in Bali and NTT, categorized by
whether they have more than two or at most two live-born children, based on selected explanatory
variables. For instance, 65% of women in NTT who live in rural areas (X,) have more than two children,
compared to 35% who have two or fewer. This suggests a strong association between rural residence and
higher fertility. Similarly, the table indicates that 39.8% of rural women in NTT only completed primary
education (X, ), and 96% fall into the poor wealth index category (X,), showing the predominance of low
socio-economic status in rural settings.

Despite this, 81.5% of these women report participating in family planning programs, as reflected
in the high percentage (X,,) among those with more than two children. This apparent contradiction may
reflect the limited effectiveness or delayed impact of such programs in high-fertility areas. Notably,
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although the program coverage is high, it may not yet translate into a significant reduction in fertility,
likely due to underlying cultural or structural factors such as early marriage, limited access to health
education, or low contraceptive consistency.

This analysis focuses on NTT, the province with the highest fertility rate in Indonesia. However,
comparisons to Bali also reveal important contrasts. For example, in Bali, urban women (X,) are more
prevalent among those with fewer than two children (37.1%), while rural women dominate in the higher
fertility group (51%). These patterns suggest that geographical, educational, and economic disparities
contribute significantly to fertility outcomes.

4. CONCLUSION

The boosted Poisson mixed model (bPMM) was applied to analyze the number of live births among
women of reproductive age in the provinces of Bali and East Nusa Tenggara (NTT). Using twenty-eight
explanatory variables as fixed effects and one random effect at the Census Block level, the study identified
key predictors for each region. In Bali, residential area, motorcycle ownership, and access to family
planning information via radio significantly influenced the number of live births, while in NTT, only
residential area emerged as a significant factor. The model achieved optimal fit at step 63 for Bali and step
6 for NTT, based on the minimum AIC values. The results suggest that women residing in rural areas with
lower economic status and limited exposure to family planning tend to have higher fertility rates,
particularly in Bali. Although the family planning program in rural NTT appears effective based on high
participation rates, the province still reports the highest fertility rate in Indonesia. It is important to note
that this study focused only on two provinces and relied on cross-sectional data, which may not fully
reflect temporal changes or national patterns. Additionally, the assumption of a Poisson distribution
without adjusting for potential overdispersion and the challenges of variable selection in high-dimensional
settings may affect the precision of the estimates. Future research should consider extending the model to
accommodate overdispersion and zero-inflation, incorporating longitudinal or more recent data, and
integrating spatial and measurement error adjustments to enhance model robustness and policy relevance.
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