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Article Info ABSTRACT 

Article History: 
Boosting is a powerful technique for enhancing predictive accuracy by iteratively 

reweighting observations, and is particularly effective in high-dimensional settings and 

for variable selection. While previous studies have demonstrated the advantages of 

integrating boosting with generalized linear mixed models (GLMMs) for binary 

outcomes, its application to count data within hierarchical frameworks remains limited. 

This study addresses that gap by extending boosting methods to count data through the 

development of a boosted Poisson mixed model (bPMM), a novel approach for small area 

estimation and variable selection in complex survey designs. The proposed model is 

applied to fertility data in the Indonesian provinces of Bali and East Nusa Tenggara, 

where the response variable is the number of live births and the predictors include twenty-

eight socio-demographic covariates. Using the Akaike Information Criterion (AIC) for 

model selection, three significant variables were identified in Bali (Model 1), and one in 

East Nusa Tenggara (Model 2). The results demonstrate that bPMM not only improves 

variable selection in high-dimensional settings but also accommodates hierarchical 

structure in count data. 
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1. INTRODUCTION 

One of the main problems in statistical research is the development of algorithms for building 

models and selecting variables. This problem can arise when data sets are not high-dimensional.  For 

example, continuous variables can be entered into statistical models in the form of linear, nonlinear, or 

interaction with other predictor variables. To overcome this problem, various regression techniques have 

been developed in recent years. The progress in statistical methodology is mainly due to the fact that 

classic techniques for building models in the selection of variables (such as generalized linear modeling 

with stepwise selection) are known to be unreliable or even biased [1]. 

A different and more appropriate method for variable selection has been developed in machine 

learning-one of them is the boosting approach. According to [1]-[4], boosting is one of the most powerful 

learning methods, introduced about twenty years ago. Although originally designed for a classification 

problem, the method can also be applied to regression. A general description of the boosting method can 

be found in [4]. This concept can be seen as a breakthrough for several methods called ensemble schemes 

that rely on the principle of repetitive prediction by repeating or resampling original data sets and finally 

averaging the results of individual classifications. 

The boosting algorithm is fairly well-known, particularly AdaBoost, which is used for classification 

of data [5], [6]. The success of AdaBoost [7], [8] is attributed to its ability to decompose classification 

prediction errors by reducing both bias and variance. Another important aspect is its association with 

determining the optimal number of boosting steps.    

Research [9] further improved the concept of boosting as a gradient descent optimization method 

and boosting expansion method to deal with problems in the regression method. This research succeeded 

in proving an exponential dependency between bias and variants of the boosting method, which explains 

that the boosting algorithm is resistant to overfitting. This discovery represents some of the most important 

results regarding the theoretical nature of the boosting algorithm. Similar studies that are related to these 

results are [10], [11]. 

Generalized Linear Mixed Models (GLMM) are right for modeling dependency structures from 

longitudinal data and designs with repeated measurements. However, its use is usually limited to several 

variables, because the presence of many variables produces unstable estimates. Research [12] proposes a 

GLMM boosting approach (GLMM) that can be used in high-dimensional research when many variables 

are influential in the model by implicitly selecting variables. For the resulting estimator complexity, the 

information criteria are used; otherwise, it can combine random slope on linear effects that produce a 

flexible and suitable GLMM in cases where simple random intercepts cannot capture all variations of the 

effects of all subjects. This method has been investigated in simulation studies with the Poisson and 

Bernoulli connecting functions and the application of real data in cases of AIDS (Acquired Immune 

Deficiency Syndrome). Research [13] using gradient boosting to predict ‘‘at-fault’’ accidents on car loss 

costs. Another case was developed by researchers [13]-[16].  

This research will be applied to fertility cases. Fertility (birth) can be measured by the number of 

live births a mother has given. The fertility rate of an area is measured by the Total Fertility Rate (TFR) 

[16]. This is one indicator to compare the success between regions in implementing the Family Planning 

(KB) program. Based on the IDHS data, Indonesia’s TFR has decreased from 2.6 in 2012 to 2.4 in 2017. 

However, this figure has not yet reached the Strategic Plan, which sets 2.3 for 2017. That is because there 

is still a TFR gap between provinces. In 2017, the highest TFR was in the province of East Nusa Tenggara 

(NTT) of 3.4, and the lowest was in the province of Bali of 2.1 [17].  

These regional disparities highlight the critical need for localized, data-driven analyses of fertility 

patterns that account for both demographic heterogeneity and contextual factors. Despite this, most prior 

studies have predominantly employed binary or Gaussian response models, which may be ill-suited for 

modeling count-based fertility outcomes. Moreover, the application of boosted Poisson mixed models 

(bPMM) within the context of fertility research remains notably underexplored—particularly when 

addressing high-dimensional explanatory variables and hierarchical data structures commonly 

encountered in large-scale survey designs. To bridge this methodological gap, the present study applies 

the bPMM framework to model fertility data in Indonesia. This approach offers improved variable 
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selection capabilities, accommodates random effects to capture cluster-level variation, and provides more 

nuanced insights into the socio-demographic determinants of fertility. 

2. RESEARCH METHODS 

2.1 Generalized Linear Mixed Models 

Generalized Linear Mixed Models (GLMM) are the result of the development of two models, 

namely Linear Mixed Models (LMM) and Generalized Linear Models (GLM). In its development, GLMM 

can answer more complex problems, especially those related to random effects, variance components, and 

the shape of the distribution of response variable data that does not have to be normally distributed. The 

model with random effects is expected to be more efficient in identifying the distribution of random 

components, to be able to explain more precisely the effects of these random components. 

Let 𝑦𝑖𝑡 is an observation of 𝑡 in 𝑖 clusters 𝑖 = 1, . . . , 𝑛, 𝑡 =  1, . . . , 𝑇𝑖, collected in 𝐲𝑖
𝑇 =

(𝑦𝑖1, … , 𝑦𝑖 𝑝), 𝐱𝑖𝑡
𝑇 = (𝑥𝑖𝑡 1, … , 𝑥𝑖𝑡 𝑝) are covariate vectors associated with fixed effects, 𝒛𝑖𝑡

𝑇 =

(𝑧𝑖𝑡 1, … , 𝑧𝑖𝑡 𝑝) is a covariate vector associated with random effects. It is assumed that the observations of 

𝑦𝑖𝑡 are conditionally independent of the middle-value 𝜇𝑖𝑡 = 𝐸(𝐲𝑖𝑡|𝐛𝑖, 𝐱𝑖𝑡 , 𝐳𝑖𝑡) and the variance of 

𝑣𝑎𝑟(𝐲𝑖𝑡|𝐛𝑖) = 𝜙𝜈(𝜇𝑖𝑡), where υ(.) is a known function of variance and 𝜙 is a variant of the parameter 

scale [18]. The GLMM model, which has a continuous and monotonous interface, can be derived, namely: 

𝜼 = 𝑔(𝜇𝑖𝑡) = 𝛽0 + 𝑥𝑖𝑡
𝑇 𝛽 + 𝑧𝑖𝑡

𝑇 𝑏𝑖 

= 𝛽0 + 𝜂𝑖𝑡
𝑝𝑎𝑟

+ 𝜂𝑖𝑡
𝑟𝑎𝑛𝑑. (1) 

The connecting function that can be used is log for 𝒚𝑖𝑗|𝐛𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑖𝑡), Therefore, Eq. (1) becomes 

bPMM [19], [20]: 

𝜼 = log(𝜇𝑖𝑡) = 𝛽0 + 𝑥𝑖𝑡
𝑇 𝛽 + 𝑧𝑖𝑡

𝑇 𝑏𝑖 

= 𝛽0 + 𝜂𝑖𝑡
𝑝𝑎𝑟

+ 𝜂𝑖𝑡
𝑟𝑎𝑛𝑑. (2) 

2.2 Boosted Poisson Mixed Models 

Boosting machine learning is proposed to improve classification procedures by combining estimates 

with reweighted observations. Reweighting is related to minimizing the loss function iteratively [21].  

Boosting has been extended to the regression problem in L2-estimation [22]. The procedure is very similar 

to the gradient descent method by using the specific loss function [23].  The initial idea of boosting is the 

urgent need for estimation problems for high-dimensional models. 

The boosting algorithm presented in this study is based on the likelihood function and operates by 

repeatedly fitting residuals using ‘weak learners’, which are simple models (e.g., single-variable 

regressions) that individually have limited predictive power but can be combined to form a strong overall 

model. This process of sequentially updating the model by fitting one variable at a time is known as 

component-wise boosting, allowing for efficient variable selection in high-dimensional settings. That step 

means that only one predictor component, in this case, is fitted at a time. More precisely, the model 

contains intercepts and only one 𝑥𝑟𝛽𝑟 in one iteration step. This study uses 𝐱𝑖.𝑟
𝑇 = (𝑥𝑖1𝑟,, … , 𝑥𝑖𝑇𝑖𝑟,) notation 

for covariate vectors on the 𝑟-linear effect on the 1st cluster, 𝑟 = 1, . . . , 𝑝. Therefore, the corresponding 𝑟-

th matrix contains only intercepts, and the 𝑟-th covariate vector is 𝑿𝑖.𝑟 = [𝟏, 𝒙𝒊.𝒓] and  𝑿.𝑟 = [𝟏, 𝒙.𝒓] for 

each 𝑖-th cluster and the entire sample. For the 𝑖-cluster of predictors that only contain the 𝑟-th covariate 

has the following form of Eq. (3): 

 𝜼𝑖𝑟 = 𝑿𝑖.𝑟𝜷̌𝑟 + 𝒁𝑖𝒃𝑖 (3) 

where 𝜷̌𝑟
𝑇 = (𝛽0, 𝛽𝑟) and for all samples are: 

𝜼 = 𝑿𝑟𝜷̌𝑟 + 𝒁𝒃 (4) 
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where 𝜼 is the vector of linear predictors, 𝑿𝑟 is the design matrix for the 𝑟-th covariate and intercept, 𝜷̌𝑟
𝑇 =

(𝛽0, 𝛽𝑟) is the coefficient vector for the intercept and the 𝑟-th covariate, 𝒁 is the random effect design 

matrix, and 𝒃~𝑵(𝟎, 𝜎𝑏
2𝑰) the random effect vector. 

A more complete description of the single step of the bPMM algorithm is the calculation of Fisher’s 

score and matrix functions, calculation of variance-covariance components, and determining initial values, 

stopping criteria, and selection in bPMM. The calculation of the variance-covariance matrix 𝐐̂(𝑙) is 

performed using the Restricted Maximum Likelihood (REML) estimation approach or other alternative 

approaches. This approach is an alternative form of the Maximum Likelihood (ML) estimator, which is 

often used to reduce bias in estimating ML. REML estimation as a method of estimating variance-

covariance components in an Unbalanced Incomplete Block Design based on optimization of the log-

likelihood function. Another algorithm is Expectation-Maximization (EM). However, this algorithm has 

the main disadvantage of a slow process of convergence. Therefore, the EM algorithm is rarely used except 

to provide the initial value of another algorithm. 

2.3 Case Study 

Fertility refers to the number of children born alive, with the understanding that children who have 

been born in living conditions are showing signs of life. Fertility is usually measured by the frequency of 

births occurring in a given population and is more accurately represented as the number of live births per 

person or partner during their fertile period. One measure of fertility is the Total Fertility Rate (TFR), 

which is defined as the number of live births of men and women per 1000 women living until the end of 

their reproductive period. In 2017, the lowest Total Fertility Rate (TFR) occurred in Bali, while the highest 

was in NTT (Nusa Tenggara Timur). A high TFR value can often reflect several underlying conditions, 

such as the low average age of first marriage or the number of early marriages, low education levels, and 

low socio-economic levels. Therefore, various efforts are needed to suppress the TFR, one of which is by 

re-evaluating the family planning program. Seeing these conditions, this case study aims to analyze the 

factors influencing the number of live births in the two provinces, Bali and NTT (Nusa Tenggara Timur), 

to assess the success of their respective family planning programs in both regions. The factors influencing 

the high or low live birth rates can be divided into two categories: demographic and non-demographic. 

This study uses twenty-eight predictor variables representing both demographic and non-demographic 

factors. The response variable is the number of live births in women of reproductive age (15-49 years). 

The method used to model the number of live births in Bali and NTT is bPMM. While research [18] used 

bGLMM (EM) and bGLMM (REML), this study uses the REML algorithm, considering its model 

goodness and stability. The model for the case in Bali will be referred to as Model 1, and the model for 

the case in NTT will be referred to as Model 2. 

2.3.1 Data 

This study uses secondary data from the 2017 IDHS. The IDHS data is part of the international 

Demographic and Health Survey (DHS) program designed to provide information on birth rates, deaths, 

family planning, and health. Something similar to the IDHS is also carried out in Latin American, Asian, 

African, and Middle Eastern countries. In general, the IDHS questions are the same as the DHS 

(Demographic and Health Surveys) pattern. The response variable in the study used was the number of 

live children born to women within their reproductive age (15-49 years). The permanent effects used in 

this study consist of twenty-eight variables, which are presented in Table 1. The random effect used was 

the cluster, represented by the Census Block used in the 2017 IDHS. The number of Census Blocks used 

in Indonesia was 1.950, covering 49.250 households, and with a total of 59.100 women of childbearing 

(reproductive) age. In this study, sample coverage in Bali was 32 Census Blocks with a total of 500 women 

of childbearing age, while the sample from NTT included 86 Census Blocks comprising 1.327 women of 

childbearing age. 
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Table 1. The Explanatory Variables Used in This Study 

Variables Initial Notation Description 

Maternal Age 𝑋1 Continuous variable in years (15–49) 

Age of first marriage 𝑋2 Continuous variable in years 

Husband/partner’s age 𝑋3 Continuous variable in years 

Residential area 𝑋4 0: Rural; 1: Urban 

Pregnancy history 𝑋5 0: Complications; 1: No complications 

Marital status 𝑋6 0: No married; 1: Married/Never married 

Education Level 𝑋7 
0: No education; 

1: Primary; 2: Secondary; 3: Higher 

Working status 𝑋8 0: No; 1: Yes 

Decision making: health problems 𝑋9 0: Doesn’t involve a wife; 1: Involve wife 

Decision making: 

Large household purchases 
𝑋10 0: Excludes wife; 1: Involve wife 

Decision making: 

Visits to family or relatives 
𝑋11 0: Excludes wife; 1: Involve wife 

Decision making: 

The money the husband/partner earns 
𝑋12 0: Excludes wife; 1: Involve wife 

The household has electricity 𝑋13 0: No; 1: Yes 

The household has: radio 𝑋14 0: No; 1: Yes 

The household has: television 𝑋15 0: No; 1: Yes 

The household has: refrigerator 𝑋16 0: No; 1: Yes 

The household has: bicycle 𝑋17 0: No; 1: Yes 

The household has: motorcycle/scooter 𝑋18 0: No; 1: Yes 

The household has: car/truck 𝑋19 0: No; 1: Yes 

Has an account in a bank /financial institution 𝑋20 0: No; 1: Yes 

Wealth Indkes 𝑋21 0: Poor; 1: Middle; 2: Rich 

Current contraceptive method 𝑋22 0: No; 1: Yes 

Desire for more children 𝑋23 
0: Wants; 1: Undecided; 

2: No more children desired 

Husband’s desire for children 𝑋24 

0: Husband wants more; 

1: Same preference (both); 
2: Husband wants fewer 

Ideal number of children 𝑋25 0: > 2 children ; 1: <= 2 children 

Family Planning: radio 𝑋26 0: No; 1: Yes 

Family Planning:  television 𝑋27 0: No; 1: Yes 

Family Planning: newspaper/magazine 𝑋28 0: No; 1: Yes 

2.3.2 Data Analysis Procedure 

The steps to get a bPMM for Model 1 and Model 2 are as follows: 

1. Conduct data exploration processes on all variables used in research.  

2. Initialization by calculating initial values 𝝁̂(0), 𝐐(0), 𝐛(0)with 𝜼(0) = 𝐗𝜷̂̃(0) + 𝐙𝐛(0). 

3. Iteration for all l = 1, 2, ..., max with refitting residuals and calculating the covariance-variance 

component by estimating from 𝐐̂(𝑙)is obtained by the REML estimation approach. 

4. The criteria stop by finding the appropriate complexity of the model by using effective degrees 

of freedom, which are given by the trace of the hat matrix [1]. 
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5. Selection in bPMM, the given hat matrix shows the complexity of the model determined by 

the information criteria used in the boosting step that minimizes AIC or BIC. 

𝐴𝐼𝐶𝑟
(𝑙)

= −2𝑙 (𝝁̂𝑟
(𝑙)

) + 2 trace (𝐇̂𝑟
(𝑙)

),  

𝐵𝐼𝐶𝑟
(𝑙)

= −2𝑙 (𝝁̂𝑟
(𝑙)

) + 2 trace (𝐇̂𝑟
(𝑙)

) log(𝑛) 

with 

𝑙 (𝝁̂𝑟
(𝑙)

) = ∑ log 𝑓 (𝐲𝑖 |𝝁̂𝑖𝑟
(𝑙)

)

𝑛

𝑖=1

 

For example, chosen 𝐿: =  {1,2, . . . , 𝑙𝑚𝑎𝑥}the lopt component, where AIC(l) or BIC(l) is the 

smallest, i.e. 

𝑙𝑜𝑝𝑡 = arg min
𝑙∈ℒ

𝐴𝐼𝐶(𝑙) 

𝑙𝑜𝑝𝑡 = arg min
𝑙∈ℒ

𝐵𝐼𝐶(𝑙) 

Finally, the estimation of the parameters  𝜹̂(𝑙𝑜𝑝𝑡), 𝐐̂(𝑙𝑜𝑝𝑡) is obtained and corresponds to the 

model 𝝁̂(𝑙𝑜𝑝𝑡), for 𝑟 ∈ {1, … , 𝑝} component 𝑗 which produces the smallest 𝐴𝐼𝐶𝑟
(𝑙)

 or 𝐵𝐼𝐶𝑟
(𝑙)

 with 

(𝜹̂𝑗
(𝑙)

)
𝑇

= (𝛽̂0
∗, 𝛽̂𝑗

∗, (𝐛̂∗)
𝑇

). 

6. Interpretation of both models. 

3. RESULTS AND DISCUSSION 

Fertility refers to the actual production capacity of a population (actual reproductive performance) 

or the number of live births experienced by one or a group of women. As outlined in the previous chapter, 

one of the objectives of this research is to find out the success of the family planning program. For this 

purpose, the number of live births is categorized into two groups: (1) a maximum of two live-born children, 

and (2) more than two live-born children. Based on Table 4, it can be seen that in Bali, the majority of 

women who have a maximum number of children born alive tend to reside in rural areas, have no history 

of pregnancy complications, are currently married, have completed primary education, and demonstrate 

good autonomy status as indicated in variables 𝑋7 to 𝑋12. These women also generally have better 

economic status, as indicated by variables 𝑋13  to 𝑋21, and demonstrate active participation in family 

planning programs, as reflected in variables 𝑋22 to 𝑋28. Overall, these variables show higher proportions 

in the first category. Similar patterns are also observed among women in NTT, with the main differences 

found in the characteristics of residence area, pregnancy history, marital status, and wealth index. 

NTT remains the region with the highest TFR in Indonesia. Fig. 1 shows that in NTT, there are still 

women who have more than 10 live-born children, while women in Bali province only have a maximum 

of 10 live-born children. Across both provinces, most women have 2 to 3 live-born children. 
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Figure 1. Live Births Percentage Among WRA in (a) Bali and (b) East Nusa Tenggara 

(Source: RStudio) 

Data plots on the variables of wives’ age, age of first marriage, and husbands’ age in the provinces 

of Bali and NTT have similar patterns (Fig. 2). The highest number of live births in Bali province is 

reached by women at the age of 30-40 years, with the age of first marriage around 25 years, and the age 

of the husband between 30-40 years. NTT Province has the highest number of live births, with most 

women aged 25-30 years, had their first marriage at around 20 years old, and the age of the husband is 

between 30-40 years. When viewed from the six data plots, there is no correlation. 

 

   

   
   

   
   

 

Figure 2. Scatter Plot Variable: The Number of Live Births with (a) Wives’ Age in Bali, (b) Age of First 

Marriage in Bali, (c) Husbands’ Age in Bali, (d) Wives’ Age in NTT, (e) Age of First Marriage in NTT, and 

(f) Husbands’ Age in NTT  

(Source: RStudio) 

3.1 Boosted Poisson Mixed Models for Live Births in Bali  

An illustration of how model 1 works using the REML algorithm for the coefficients that enter the 

model is shown in Fig. 3 (a). In this study, the maximum step (𝑙𝑚𝑎𝑥) used was 100 steps. The selected 

variables model 2 are the residential area (𝑋4), households with motorcycles (𝑋18), receiving family 

planning information from radio (𝑋26), and the source of family planning information comes from 
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television (𝑋27). Estimation of the coefficients is carried out in stages by setting the initial coefficients to 

zero. 

 
 (a) 

 
(b) 

 
(c) 

Figure 3. The Plot of Predictor (a) Model with Intercept (b) Model without Intercept, 

 and (c) AIC Values in Model 1 

 (Source: RStudio) 

 

In Fig. 3 (b), a plot was generated without including the intercept term in order to identify 

significant variables entered into model 1. It can be seen that from twenty-eight variables, only three 

variables significantly affect the number of live births in Bali; these variables are 𝑋4, 𝑋18 and 𝑋26. The 

first variable entered into the model is 𝑋4, followed successively by the variable 𝑋26, and the last is 𝑋18. 

It can be seen in Fig. 3 (b) that the optimum step (𝑙𝑚𝑎𝑥) selected in model 1 are at step 63, even after step 

48, all coefficients have stabilized, even though the variables 𝑋18 and 𝑋26 have begun to stabilize at step 

14. This is under research by [18], which states that the optimum step in bPMM is determined by the 

minimum AIC and BIC values at the boosting step. If we look at the AIC value, before the 10th step, the 

AIC value of all variables has started to stabilize, and in the previous step, the AIC value has experienced 

a very sharp spike Fig. 3 (c). 

Model 1 has form:  

 

log(𝜇𝑖𝑗) = 1.18420 − 0.00286𝑋4𝑖𝑗  − 0.05174𝑋18𝑖𝑗 
− 0.07910𝑋26𝑖𝑗

 + 0.00005𝑋27𝑖𝑗 + 𝑏𝑖 

 

with 𝜇𝑖𝑗 is the average number of live births of women of reproductive age in the 𝑖 Census Block and 𝑏𝑖 

is a random intercept in the Census Block.  
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Table 2. Estimator Coefficient, Standard Error, and 𝒑-value on Model 1 

Description Coefficient 
Standard 

Error 
𝒑-value Description Coefficient 

Standard 

Error 
𝒑-value 

Fixed Effect    Fixed Effect    

(Intercept) 1.1842 0.1424 0 𝑋16 0 0 - 

𝑋1 0 0 - 𝑋17 0 0 - 

𝑋2 0 0 - 𝑋18(1) -0.0517 0.0203 0.0100 

𝑋3 0 0 - 𝑋19 0 0 - 

𝑋4(1) -0.0029 0.0027 0.0283 𝑋20 0 0 - 

𝑋5 0 0 - 𝑋21 0 0 - 

𝑋6 0 0 - 𝑋22 0 0 - 

𝑋7 0 0 - 𝑋23 0 0 - 

𝑋8 0 0 - 𝑋24 0 0 - 

𝑋9 0 0 - 𝑋25 0 0 - 

𝑋10 0 0 - 𝑋26(1) -0.0791 0.0273 0.0030 

𝑋11(1) 0 0 - 𝑋27 0.0001 0.0131 0.9971 

𝑋12 0 0 - 𝑋28 0 0 - 

𝑋13 
0 0 - 

Random 

Effects    

𝑋14 0 0 -  Variance   

𝑋15 0 0 - Cluster (BS)  0.0340   

As seen in Table 2, the area of residence (𝑋4), households with motorcycles (𝑋18), and receiving 

family planning information from the radio (𝑋26) significantly influenced the number of live births in Bali 

with different real levels. Women who live in rural areas are estimated to have approximately 0.3% more 

children compared to those in urban areas. Similarly, women who do not own a motorcycle are expected 

to have about 5.3% more live births than those who do. Moreover, women who are not exposed to family 

planning information through the radio tend to have approximately 8.2% more live births than women 

who receive such information. These results suggest that limited economic resources and restricted access 

to reproductive health information are associated with higher fertility. The findings highlight the 

importance of targeted interventions to improve both economic empowerment and access to family 

planning outreach, particularly in rural communities. 

These findings suggest that women living in rural areas, with low economic status, and with no 

family planning, tend to have higher fertility rates. This condition is further supported by the percentage 

of women in Bali who have live births of more than 2 people and live in rural areas is 51 percent, where 

76.2 percent do not possess a motorcycle, and 60.6 percent do not receive family planning information 

from the radio. However, this trend appears to contrast with contraceptive usage data, where 96 percent 

of women who have family members who live in rural areas, are reporting to use contraception-

highlighting the complexity of factors influencing fertility. Despite these factors, Bali continues to report 

the lowest fertility rate among provinces. 

The model 1 uses the Census Block as a random effect. In the model, a different coefficient will be 

obtained for each 𝑗-woman in the 𝑖 Census Block. Table 2 shows that the diversity of the Census Block 

random variables is 0.0340. 

 

 

 

 



824 Wulandari, et al.    POISSON MIXED MODELS WITH A BOOSTING APPROACH FOR THE ANALYSIS…  

 
3.2 Boosted Poisson Mixed Models for Modeling Live Births in NTT  

Based on Fig. 4 (a) and (b), it can be seen that the variable residential area (𝑋4) and the household 

has a refrigerator (𝑋16) enter model 2. The smallest AIC value was obtained in step 6 with a value of -

890.739. It can be seen in Fig. 4 (c) that the AIC value for all coincident variables indicates the AIC value 

obtained tends to be almost the same for each variable. The highest AIC value was obtained in the first 

step with a positive AIC value, then down in the second step with a negative AIC value, and began to 

stabilize in the sixth step. 

 
 

  

  

 
(c) 

 
Figure 4. The Plot of Predictor (a) Model with Intercept, (b) Model without Intercept,  

and (c) AIC Values in the NTT Model  

(Source: RStudio) 

Regional variables of residence significantly affect the number of live births in NTT with a 

significant level of 10 percent (Table 3). This can also be observed from Fig. 4 (b), where the coefficient 

value of the variable does not coincide with zero, unlike the household has refrigerator variable, which 

tends to coincide with zero. 

Table 3. Estimator Coefficient, Standard Error, and 𝒑-value on Model 2 

Description Coefficient 
Standard 

Error 
𝒑-value Description Coefficient 

Standard 

Error 
𝒑-value 

Fixed  Effect    Fixed  Effect    

(Intercept) 1.2113 0.0254 0 𝑋19  0 0 - 

𝑋1 0 0 - 𝑋20(1) 0 0 - 

(a) (b) 
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Description Coefficient 
Standard 

Error 
𝒑-value Description Coefficient 

Standard 

Error 
𝒑-value 

𝑋2 0 0 - 𝑋21 0 0 - 

𝑋3 0 0 - 𝑋17 0 0 - 

𝑋4 -0.0162 0.0090 0.0730 𝑋18 0 0 - 

𝑋5 0 0 - 𝑋22 0 0 - 

𝑋6(1) 0 0 - 𝑋23 0 0 - 

𝑋7 0 0 - 𝑋24 0 0 - 

𝑋8 0 0 - 𝑋25 0 0 - 

𝑋9 0 0 - 𝑋26 0 0 - 

𝑋10 0 0 - 𝑋27 0 0 - 

𝑋11 0 0 - 𝑋28 0 0 - 

𝑋12 0 0 -     

𝑋13 
0 0 - 

Random 

Effects    

𝑋14 0 0 -  Variance   

𝑋15 0 0 - Cluster (BS) 0.0215   

𝑋16 -0.0011 0.0114 0.9216     

The results of the selection of variables with bPMM on twenty-eight predictor variables can be seen in 

Table 4. The bPMM model 2 formed is: 

log(𝜇𝑖𝑗) = 1.21134 − 0.01621𝑋4𝑖𝑗  − 0.00112𝑋16𝑖𝑗
 + 𝑏𝑖 

NTT (Nusa Tenggara Timur) is an archipelagic province where much of its territory consists of 

islands separated by the sea. Consequently, many rural areas differ substantially from urban areas in terms 

of access to public infrastructure such as healthcare facilities, clean water, electricity, and transportation. 

These disparities contribute to regional differences in fertility patterns. The diversity of areas selected into 

the random effect structure reflects this variation, with a calculated variance of 0.0215. When compared 

to Bali, the selected Census Blocks in NTT appear more homogeneous, suggesting a relatively consistent 

pattern of contextual influences within rural settings across the province. 

Table 4. Distribution of Samples Based on Variables Used 

Variable 
Bali Model NTT Model 

Variable 
Bali Model NTT Model 

>2 ≤ 2 >2 ≤ 2 ≤ 2 ≤ 2 >2 ≤ 2 

𝑿𝟒     𝑿𝟏𝟕     

0 51.0 49.0 65.0 35.0 0 59.5 40.5 64.0 36.0 

1 62.9 37.1 62.7 37.3 1 58.9 41.1 68.2 31.8 

𝑿𝟓     𝑿𝟏𝟖     

0 59.8 40.2 64.0 36.0 0 76.2 23.8 66.2 34.8 

1 51.4 48.6 66.9 33.1 1 58.5 41.5 63.7 36.3 

𝑿𝟔     𝑿𝟏𝟗     

0 66.7 33.3 65.6 34.4 0 56.5 43.5 64.9 35.1 

1 58.9 41.1 60.1 39.9 1 67.5 32.5 58.4 41.6 

𝑿𝟕     𝑿𝟐𝟎     

0 66.7 33.3 64.2 35.8 0 55.1 44.9 65.7 34.3 
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Variable 
Bali Model NTT Model 

Variable 
Bali Model NTT Model 

>2 ≤ 2 >2 ≤ 2 ≤ 2 ≤ 2 >2 ≤ 2 

1 54.0 46.0 64.3 35.7 1 63.4 49.2 62.1 37.9 

2 60.3 39.7 64.3 35.7 𝑿𝟐𝟏     

3 62.3 37.7 66.1 33.9 0 48.7 28.9 64.6 35.4 

𝑿𝟖     1 58.6 41.4 67.1 32.9 

0 59.0 41.0 64.4 35.6 2 63.4 36.6 61.0 39.0 

1 71.4 28.6 76.5 23.5 𝑿𝟐𝟐     

𝑿𝟗     0 65.5 34.5 64.2 35.8 

0 66.0 34.0 70.7 29.3 1 58.8 41.2 64.6 35.4 

1 58.4 41.6 64.1 35.9 𝑿𝟐𝟑     

𝑿𝟏𝟎     0 54.6 33.8 62.7 37.3 

0 65.9 34.1 66.2 33.8 1 76.2 23.8 76.1 23.9 

1 55.8 44.2 64.3 35.7 2 60.4 39.6 65.4 34.6 

𝑿𝟏𝟏     𝑿𝟐𝟒     

0 73.8 26.2 65.6 34.4 0 52.7 47.3 65.0 35.0 

1 57.0 43.0 64.5 35.5 1 60.8 39.2 64.9 35.1 

𝑿𝟏𝟐     2 57.6 42.4 63.2 36.8 

0 63.3 36.7 67.9 32.1 𝑿𝟐𝟓     

1 58.1 41.9 64.2 35.8 0 60.0 40.0 63.9 36.1 

𝑿𝟏𝟑     1 58.9 41.1 66.3 33.7 

0 85.7 14.3 64.5 35.5 𝑿𝟐𝟔     

1 58.8 41.2 64.5 35.5 0 60.6 39.4 64.1 35.9 

𝑿𝟏𝟒     1 51.4 48.6 67.7 32.3 

0 57.0 43.0 64.9 35.1 𝑿𝟐𝟕     

1 62.0 38.0 60.2 39.8 0 56.8 43.2 64.4 35.6 

𝑿𝟏𝟓     1 61.4 38.6 64.7 35.3 

0 60.0 40.0 65.2 34.8 𝑿𝟐𝟖     

1 59.2 40.8 63.6 36.4 0 59.5 40.5 64.2 35.8 

𝑿𝟏𝟔     1 56.1 43.9 67.2 32.8 

0 53.6 46.4 64.6 35.4      

1 61.7 38.3 64.1 35.9      

Based on Table 4, the distribution of women of reproductive age in Bali and NTT, categorized by 

whether they have more than two or at most two live-born children, based on selected explanatory 

variables. For instance, 65% of women in NTT who live in rural areas (𝑋4) have more than two children, 

compared to 35% who have two or fewer. This suggests a strong association between rural residence and 

higher fertility. Similarly, the table indicates that 39.8% of rural women in NTT only completed primary 

education (𝑋7 ), and 96% fall into the poor wealth index category (𝑋21), showing the predominance of low 

socio-economic status in rural settings. 

Despite this, 81.5% of these women report participating in family planning programs, as reflected 

in the high percentage (𝑋22) among those with more than two children. This apparent contradiction may 

reflect the limited effectiveness or delayed impact of such programs in high-fertility areas. Notably, 
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although the program coverage is high, it may not yet translate into a significant reduction in fertility, 

likely due to underlying cultural or structural factors such as early marriage, limited access to health 

education, or low contraceptive consistency. 

This analysis focuses on NTT, the province with the highest fertility rate in Indonesia. However, 

comparisons to Bali also reveal important contrasts. For example, in Bali, urban women (𝑋4) are more 

prevalent among those with fewer than two children (37.1%), while rural women dominate in the higher 

fertility group (51%). These patterns suggest that geographical, educational, and economic disparities 

contribute significantly to fertility outcomes. 

4. CONCLUSION 

The boosted Poisson mixed model (bPMM) was applied to analyze the number of live births among 

women of reproductive age in the provinces of Bali and East Nusa Tenggara (NTT). Using twenty-eight 

explanatory variables as fixed effects and one random effect at the Census Block level, the study identified 

key predictors for each region. In Bali, residential area, motorcycle ownership, and access to family 

planning information via radio significantly influenced the number of live births, while in NTT, only 

residential area emerged as a significant factor. The model achieved optimal fit at step 63 for Bali and step 

6 for NTT, based on the minimum AIC values. The results suggest that women residing in rural areas with 

lower economic status and limited exposure to family planning tend to have higher fertility rates, 

particularly in Bali. Although the family planning program in rural NTT appears effective based on high 

participation rates, the province still reports the highest fertility rate in Indonesia. It is important to note 

that this study focused only on two provinces and relied on cross-sectional data, which may not fully 

reflect temporal changes or national patterns. Additionally, the assumption of a Poisson distribution 

without adjusting for potential overdispersion and the challenges of variable selection in high-dimensional 

settings may affect the precision of the estimates. Future research should consider extending the model to 

accommodate overdispersion and zero-inflation, incorporating longitudinal or more recent data, and 

integrating spatial and measurement error adjustments to enhance model robustness and policy relevance. 

Author Contributions 

Ita Wulandari: Conceptualization, Methodology, Writing-Original Draft, and Data Curation. Khairil 

Anwar Notodiputro: Draft Preparation and Formal Analysis. Bagus Sartono: Formal Analysis and 

Visualization. Anwar Fitrianto: Formal Analysis and Writing-Review and Editing. Anang Kurnia: Formal 

Analysis and Writing-Review. All authors discussed the results and contributed to the final manuscript. 

Funding Statement 

This research was funded by Statistics Indonesia (BPS) through a doctoral scholarship grant from the 

national budget (APBN) of Indonesia. 

Acknowledgment 

The author gratefully acknowledges the guidance and support provided by academic supervisors and 

lecturers at IPB University throughout the doctoral program. Appreciation is also extended to Statistics 

Indonesia (BPS) for awarding the doctoral scholarship funded by the national budget (APBN). Their 

contributions were instrumental in the completion of this research. Any remaining errors are the sole 

responsibility of the author. 

Declarations 

We declare that we have no conflicts of interest to report in this study. The research was conducted without 

any commercial or financial relationships that could be construed as a potential conflict of interest. 



828 Wulandari, et al.    POISSON MIXED MODELS WITH A BOOSTING APPROACH FOR THE ANALYSIS…  

 
REFERENCES 

[1] T. Hastie, R. Tibshirani, and J. Friedman, THE ELEMENTS OF STATISTICAL LEARNING: DATA MINING, 

INFERENCE, AND PREDICTION, 2nd ed. New York: Springer, 2009. [Online]. Available: 

https://link.springer.com/book/10.1007/978-0-387-84858-7?utm_source=chatgpt.com 

[2] M. Balzer, E. Bergherr, S. Hutter, and T. Hepp, GRADIENT BOOSTING FOR DIRICHLET REGRESSION MODELS, 

no. 0123456789. Springer Berlin Heidelberg, 2025. doi: https://doi.org/10.1007/s10182-025-00526-5 

[3] A. Alsahaf, N. Petkov, V. Shenoy, and G. Azzopardi, “A FRAMEWORK FOR FEATURE SELECTION THROUGH 

BOOSTING”, Expert Syst. Appl., vol. 187, no. Sept. 2021, p. 115895, 2022. doi: 

https://doi.org/10.1016/j.eswa.2021.115895. 

[4] G. Schultz Lindenmeyer and H. da Silva Torrent, “BOOSTING AND PREDICTABILITY OF MACROECONOMIC 

VARIABLES: EVIDENCE FROM BRAZIL”, vol. 64, no. 1. Springer US, 2024. doi: https://doi.org/10.1007/s10614-023-

10421-3. 

[5] P. Bühlmann and T. Hothorn, “BOOSTING ALGORITHMS: REGULARIZATION, PREDICTION AND MODEL 

FITTING”, Stat. Sci., vol. 22, no. 4, pp. 477–505, 2007. doi: https://doi.org/10.1214/07-STS242. 

[6] Y. Freund and R. E. Schapire, “EXPERIMENTS WITH A NEW BOOSTING ALGORITHM”, Proc. 13th Int. Conf. 

Mach. Learn., pp. 148–156, 1996, doi: https://doi.org/10.1.1.133.1040. 

[7] R. Wang, “ADABOOST FOR FEATURE SELECTION, CLASSIFICATION AND ITS RELATION WITH SVM, A 

REVIEW”, Phys. Procedia, vol. 25, pp. 800–807, 2012. doi: https://doi.org/10.1016/j.phpro.2012.03.160. 

[8] L. Pebrianti, F. Aulia, H. Nisa, and K. Saputra S, “IMPLEMENTATION OF THE ADABOOST METHOD TO 

OPTIMIZE THE CLASSIFICATION OF DIABETES DISEASES WITH THE NAÏVE BAYES ALGORITHM”, J. Sist. 

dan Teknol. Inf., vol. 7, no. 2, pp. 122–127, 2022, [Online]. Available: 

http://jurnal.unmuhjember.ac.id/index.php/JUSTINDO 

[9] P. Beja-Battais and C. Borelli, “OVERVIEW OF ADABOOST : RECONCILING ITS VIEWS TO BETTER 

UNDERSTAND ITS DYNAMICS”, arXiv:2310.18323v1, pp. 3–31, 2023, [Online]. Available: 

http://arxiv.org/abs/2310.18323 

[10] J. Friedman, T. Hastie, and R. Tibshirani, “ADDITIVE LOGISTIC REGRESSION: A STATISTICAL VIEW OF 

BOOSTING”, Ann. Stat., vol. 28, no. 2, pp. 337–374, 2000. doi: https://doi.org/10.1214/aos/1016120463. 

[11] A. S. Suggala, B. Liu, and P. Ravikumar, “GENERALIZED BOOSTING,” in Advances in Neural Information 

Processing Systems 33, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, Eds. Vancouver, Canada: 

NeurIPS, 2020. 

[12] L. Knieper, T. Hothorn, E. Bergherr, and C. Griesbach, “GRADIENT BOOSTING FOR GENERALISED ADDITIVE 

MIXED MODELS”, Stat. Comput., vol. 35, no. 4, 2025. doi: https://doi.org/10.1007/s11222-025-10612-y. 

[13] G. Tutz and A. Groll, “LIKELIHOOD-BASED BOOSTING IN BINARY AND ORDINAL RANDOM EFFECTS 

MODELS”, J. Comput. Graph. Stat., vol. 22, no. 2, pp. 356–378, Jan. 2013. doi: 

https://doi.org/10.1080/10618600.2012.694769. 

[14] E. Fammaldo and M. Lestari, “GRADIENT BOOSTING TREES UNTUK PEMODELAN DAN PREDIKSI BIAYA 

KERUGIAN ASURANSI MOBIL”, no. 01, pp. 634–642, 2024. 

[15] Y. Yang, W. Qian, and H. Zou, “A BOOSTED TWEEDIE COMPOUND POISSON MODEL FOR INSURANCE 

PREMIUM”, arXiv:1508.06378v2 [stat.ME], p. 11, Aug. 2016. doi: https://doi.org/10.1080/07350015.2016.1200981. 

[16] Badan Pusat Statistik, “HASIL SENSUS PENDUDUK 2020”, in Statistik Demografi Indonesia, Badan Pusat Statistik, 

2025. 

[17] Kementrian Kesehatan RI, Badan Pusat Statistik RI, and USAID, SURVEI DEMOGRAFI DAN KESEHATAN 

INDONESIA TAHUN 2017. 2018. [Online]. Available: 

https://ia802800.us.archive.org/30/items/LaporanSDKI2017/Laporan SDKI 2017.pdf 

[18] G. Willame, J. Trufin, and M. Denuit, “BOOSTED POISSON REGRESSION TREES: A GUIDE TO THE BT 

PACKAGE IN R”, Ann. Actuar. Sci., vol. 18, no. 3, pp. 605–625, 2024. doi: 

https://doi.org/10.1017/S174849952300026X. 

[19] F. Hadiji, A. Molina, S. Natarajan, and K. Kersting, “POISSON DEPENDENCY NETWORKS: GRADIENT 

BOOSTED MODELS FOR MULTIVARIATE COUNT DATA”, Mach. Learn., vol. 100, no. 2–3, pp. 477–507, 2015. 

doi: https://doi.org/10.1007/s10994-015-5506-z. 

[20] G. Gao, H. Wang, and M. V. Wüthrich, “BOOSTING POISSON REGRESSION MODELS WITH TELEMATICS CAR 

DRIVING DATA”, Mach. Learn., vol. 111, no. 1, pp. 243–272, 2022. doi: https://doi.org/10.1007/s10994-021-05957-

0. 

[21] L. Breiman, “ARCING CLASSIFIERS”, Ann. Stat., vol. 26, no. 3, pp. 801–824, Jun. 1998, [Online]. Available: 

http://www.jstor.org/stable/120055. doi: https://doi.org/10.1214/aos/1024691079 

[22] J. H. Friedman, “GREEDY FUNCTION APPROXIMATION: A GRADIENT BOOSTING MACHINE”, Ann. Stat., vol. 

29, no. 5, pp. 1189–1232, 2001, [Online]. Available: http://www.jstor.org/stable/2699986?origin=JSTOR-pdf. doi: 

https://doi.org/10.1214/aos/1013203451 

[23] P. Bühlmann and B. Yu, “BOOSTING WITH THE L2 LOSS: REGRESSION AND CLASSIFICATION”, J. Am. Stat. 

Assoc., vol. 98, no. 462, pp. 324–339, 2003. doi: https://doi.org/10.1198/016214503000125. 

 

https://doi.org/10.1007/s10182-025-00526-5
https://doi.org/10.1016/j.eswa.2021.115895
https://doi.org/10.1007/s10614-023-10421-3
https://doi.org/10.1007/s10614-023-10421-3
https://doi.org/10.1214/07-STS242
https://doi.org/10.1.1.133.1040
https://doi.org/10.1016/j.phpro.2012.03.160
https://doi.org/10.1214/aos/1016120463
https://doi.org/10.1007/s11222-025-10612-y
https://doi.org/10.1080/10618600.2012.694769
https://doi.org/10.1080/07350015.2016.1200981
https://doi.org/10.1017/S174849952300026X
https://doi.org/10.1007/s10994-015-5506-z
https://doi.org/10.1007/s10994-021-05957-0
https://doi.org/10.1007/s10994-021-05957-0
https://doi.org/10.1214/aos/1024691079
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1198/016214503000125

	POISSON MIXED MODELS WITH A BOOSTING APPROACH FOR THE ANALYSIS OF COUNT DATA
	1. INTRODUCTION
	2. RESEARCH METHODS
	2.1 Generalized Linear Mixed Models
	2.2 Boosted Poisson Mixed Models
	2.3 Case Study
	2.3.1 Data
	2.3.2 Data Analysis Procedure


	3. RESULTS AND DISCUSSION
	3.1 Boosted Poisson Mixed Models for Live Births in Bali
	3.2 Boosted Poisson Mixed Models for Modeling Live Births in NTT

	4. CONCLUSION
	Author Contributions
	Funding Statement
	Acknowledgment
	Declarations
	REFERENCES

