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1. INTRODUCTION 

It is common knowledge that one of the characteristic properties of complex networks is their 

structured nature. Nodes of such networks are grouped into more or less distinct communities (clusters), so 

the density of connections within communities is significantly higher than the density of connections between 

nodes of different communities. The task of partitioning a network into communities is very relevant; there 

are many options for setting this problem, methods for solving it, and, accordingly, criteria for assessing the 

partition quality. 

The most common criterion for the quality of partitioning a network into communities is modularity. 

This criterion, proposed by Girvan and Newman [1] is used not only as a maximized objective function of 

network partitioning algorithms, as in the Louvain algorithm [2], but also as an external criterion for the 

partition quality. That is, to assess the effectiveness of solving the problem of identifying communities using 

methods that are not based on modularity. Modularity is additive with respect to communities and even single 

nodes, and is easy to calculate, which explains its widespread use. An alternative to modularity can be such 

criteria as conductivity and entropy ratio [3]. According to experimental studies [4] if one of the three criteria 

indicates a high/low network structure, the other two also indicate the same. 

The modularity criterion is based on comparing the actual number of connections within communities 

with the number predicted by the null model. A homogeneous unstructured graph with the same distribution 

of vertex degrees as for the network under consideration is treated as such a model. The modularity value is 

generally in the range [-1, 1]. Positive values correspond to homophilic networks [5]-[7], i.e., those in which 

nodes tend to connect with nodes of their communities. Negative modularity indicates a homophobic nature 

of network nodes, i.e., a preference for forming connections with nodes belonging to other communities. A 

network that does not contain distinct communities (i.e., homogeneous) has a modularity asymptotically equal 

to zero. 

It is known [8] , [9] that many real-world networks are scale-free. The key property of such networks 

is the power law of node degree distribution [10], [11]. Models of scale-free networks are based on using the 

preferential attachment rule [12]. Some of such models are rather simple [13]-[15]. Others are more complex, 

based on multi-type branching processes [16], [17], but most of them generate homogeneous networks. The 

most important class of network models is generative ones, i.e., those that allow creating a network in step-

by-step mode [18], [19].  

In [20] a generative model of a homophilic scale-free network was proposed. It is based on a two-stage 

application of the preferential attachment rule: first, it is used to select a community to which a new node will 

belong, and then to select the nodes of this community to which the new node will be connected. This ensures 

the creation and maintenance of a natural community structure and, at the same time, scale-freeness is 

preserved. It is important to note that for homogeneous networks, the scale-free property refers to the 

distribution of node degrees (and means the discrete-power Yule-Simon law [21]-[24]. 

Then, in the case where the network consists of communities, the distribution of the sizes of these 

communities can also be scale-free. Obtaining analytical estimates of various characteristics of scale-free 

networks has been and remains [25] a relevant theoretical problem. Thus, in [26] an asymptotic estimate of 

the average path length in a hierarchical scale-free network was obtained. At the same time, the issue of 

asymptotic boundaries of the modularity of homophilic scale-free networks remains insufficiently studied. 

Despite the simplicity of calculation and wide use, the practical application of modularity as a criterion 

for the degree of homophily/homophobia of a network faces serious problems. Thus, an undesirable property 

of the modularity criterion is that the null model underlying it assumes that communities have approximately 

the same density of connections. A significant difference in the density of connections of communities affects 

both the absolute value and even the sign of the network’s modularity. To eliminate this drawback, a modified 

modularity criterion was proposed [27], which explicitly takes into account the number of nodes in 

communities. 

An important problem is the limited resolution of the modularity criterion. It consists of the fact that 

for large network sizes, maximizing modularity leads to forced merging of small-sized communities. This 

problem was considered in detail by Lancichinetti and Fortunato [28]. To increase the resolution, it was 

proposed to introduce a resolution parameter 𝛾 > 1 into the modularity calculation formula. Its increase 

improves the resolution of community detection methods based on modularity maximization. At the same 
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time, it was noted that the actually achievable upper limit of modularity is less than one, but its evaluation 

was not included in the scope of these works [29], [30]. 

Thus, the problem of quantitative assessment of network modularity boundaries under conditions of 

significant unevenness of community sizes remains open. This problem acquires particular relevance when 

assessing the degree of homophily of structured scale-free networks due to the unevenness of community 

sizes inherent in such networks. 

The solution to the problem of finding quantitative estimates of the modularity boundaries for 

homophilic scale-free networks is implemented in two stages. Section 2 provides definitions of network 

modularity, analyzes the reasons for its significant dependence on the distribution of community volumes, 

and provides mathematical expressions for the distribution of community volumes for homophilic scale-free 

networks.  

In Section 3, analytical estimates of the modularity boundaries for networks of the considered class are 

obtained in a strict form. Such estimates are expressed through non-elementary mathematical functions and, 

therefore, are of little practical use. So, the problem of numerical approximation of estimates of the modularity 

boundaries of homophilic scale-free networks for asymptotically large networks is posed and solved. For this 

purpose, the hypergeometric function included in the analytical estimate of modularity is approximated, then 

estimates of the sum of squares of the relative volumes of network communities are found, and then 

approximate estimates of the modularity boundaries of homophilic networks with a scale-free distribution of 

their community volumes are found.  

2. RESEARCH METHODS 

2.1 Criteria of Modularity 

Let 𝐺 = {𝑉, 𝐸} be a network with 𝑛 nodes and 𝑚 edges. Given a partition, the network modularity is 

defined [1] as: 

𝜇(𝐺) =
1

2𝑚
∑(𝐴𝑖𝑗 − 𝑃𝑖𝑗)𝛿𝑐𝑖,𝑐𝑗
𝑖,𝑗

, (1) 

where the summation runs over all pairs of vertices, 𝐴 is the adjacency matrix, 𝑃𝑖𝑗 is the expected number of 

edges between vertices 𝑖 and 𝑗 in a null graph, 𝑐𝑘 is a community to which node 𝑘 belongs, 𝛿𝑥,𝑦 is the 

Kronecker delta. 

Therefore, network modularity essentially depends on the null graph model, i.e., on 𝑃𝑖𝑗. According to 

the conventional approach, 𝑃𝑖𝑗 = 𝑑𝑒𝑔𝑖 ∙ 𝑑𝑒𝑔𝑗/2𝑚, where 𝑑𝑒𝑔𝑘 is the degree of node 𝑘. In this case 

modularity of a particular community is: 

𝜇𝑘 = 𝑒𝑘
𝑖𝑛 − (𝑒𝑘

𝑡𝑜𝑡)2, (2) 

where 𝑒𝑘
𝑖𝑛 is the relative number of links between nodes within community 𝑘,  

𝑒𝑘
𝑡𝑜𝑡 = 𝑣𝑜𝑙(𝑐𝑘)/𝑣𝑜𝑙(𝐺) is the relative volume of the k-th community, i.e., the relative sum of degrees of 

nodes that belong to the k-th community. Relativity means normalizing the corresponding amounts by 

dividing by the network volume (𝑣𝑜𝑙(𝐺) = 2𝑚). 

Network modularity is the sum of modularity of particular communities in Eq. (2): 

𝜇(𝐺) = ∑(𝑒𝑘
𝑖𝑛 − (𝑒𝑘

𝑡𝑜𝑡)2)

𝐾

𝑘=1

. (3) 

In the case when the resolution parameter 𝛾 > 1 is used, the network modularity definition in Eq. (3) is 

modified [29] as: 

𝜇(𝐺, 𝛾) = ∑(𝑒𝑘
𝑖𝑛 − 𝛾(𝑒𝑘

𝑡𝑜𝑡)2)

𝐾

𝑘=1

. (4) 
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The modified modularity criterion [27], which explicitly takes into account the number of nodes in 

communities, has the form: 

𝜇∗(𝐺) = ∑(𝑒𝑘
𝑖𝑛 − 𝑝𝑘 ∙ 𝑒𝑘

𝑡𝑜𝑡)

𝐾

𝑘=1

, (5) 

where 𝑝𝑘 = (𝑛𝑘 − 1)/(𝑛 − 1),  𝑛𝑘 is the size of k-th community, i.e., the number of nodes in it. 

It is easy to see that modularity, in all variants in Eqs. (3) – (5) of its definition, which depends on the 

share of connections within communities 𝑒𝑘
𝑖𝑛 compared to their volumes 𝑒𝑘

𝑡𝑜𝑡. This is quite natural and reflects 

the essence of this indicator as a measure of the clarity of the partition of the network into communities. 

Obviously, for any network and any community 0 ≤ 𝑒𝑘
𝑖𝑛 ≤ 𝑒𝑘

𝑡𝑜𝑡. The upper limit (𝑒𝑘
𝑖𝑛 = 𝑒𝑘

𝑡𝑜𝑡) is achieved 

only in the case when community k forms a separate component of network connectivity.  

However, at the same time, modularity expressions in Eqs. (3) – (5) contain the sums of squares of 

relative volumes of communities, and this factor is determined by the distribution of communities by their 

volumes, i.e., it is a characteristic of the structural properties of the network, and not a measure of the quality 

of the community extraction algorithm. The specified sums of squares take a minimum value (1/K) in the 

case when communities have the same volume (also equal to 1/K). 

2.2 Modularity Property of Homophilic Scale-Free Networks 

As noted in [20], a natural property of homophilic scale-free networks is a scale-free (i.e., discrete-

power) distribution of volumes (and sizes) of communities: 

𝑒𝑘
𝑡𝑜𝑡 = 𝑔(𝐾, 𝛼, 𝛿) ∙

Γ(𝑘 + 𝛿)

Γ(𝑘 + 𝛿 + 𝛼)
, (6) 

where factor 𝑔(𝐾, 𝛼, 𝛿) depends on the total number of communities (K), scaling factor of community 

volumes (𝛼 > 0) and delay factor (𝛿 > −min⁡{1, 𝛼}): 

𝑔(𝐾, 𝛼, 𝛿) = (𝛼 − 1) ∙
Γ(𝛿 + 𝛼)

Γ(𝛿 + 1)
∙

Γ(𝐾 + 𝛿 + 𝛼)
Γ(𝐾 + 𝛿)

Γ(𝐾 + 𝛿 + 𝛼)
Γ(𝐾 + 𝛿)

−
Γ(𝛿 + 𝛼)
Γ(𝛿 + 1)

∙ (𝐾 + 𝛿)
. (7) 

Factor 𝛿 determines not only the delay in the power law in Eq. (6) but also the intensity of the 

appearance of new communities compared to the growth rate of the number of network nodes. An example 

[20] of the network of 500 nodes and 7 communities (delta is 0, alpha equals 3, having a scale-free 

distribution Eq. (6) of community volumes) is shown in Fig. 1. 

 

Figure 1. Example of a Homophilic Scale-Free Network 
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The rank distribution of the community sizes of the considered network is shown in Fig. 2. Markers’ 

colors in Fig. 2 correspond to the colors of the communities in Fig. 1, while the solid line shows the 

community sizes predicted by the scale-free distribution law in Eq. (6). Therefore, the community sizes of 

the generated homophilic network are distributed in good accordance with the theoretically predicted law, 

and this distribution law is scale-free. 

 
Figure 2. Rank Distribution of the Community Sizes of the Considered Example  

of a Homophilic Scale-Free Network 

An example of the node degrees distribution for the homophilic scale-free network is shown in Fig. 3. 

The considered network is of 𝑛 = 10000 nodes, alpha⁡= 4, and the number of communities is 11. As one 

can see, not only do community sizes follow a scale-free distribution, but node degrees too. 

 
Figure 3. Example of the Rank Distribution of Degrees of Nodes of a Homophilic Network 

Distribution in Eq. (6) follows from the ratio of the volumes of two consecutive communities (with numbers 

𝑘 and 𝑘 + 1), which has the form: 

𝑒𝑘+1
𝑡𝑜𝑡 = 𝑒𝑘

𝑡𝑜𝑡 ∙
𝑘 + 𝛿

𝑘 + 𝛿 + 𝛼
. (8) 

The model based on Eq. (8) is generative and is intended for step-by-step modeling of a growing 

network with the properties of homophily and scale-freeness, similar to the example shown in Fig. 1. At the 

same time, for real networks, the relation in Eq. (8) may not be fulfilled exactly, or may be fulfilled only 

asymptotically. The necessity of the community volumes corresponding to Eq. (8), and therefore distribution 

in Eq. (6), is a limitation of the considered model. 

In the general case, estimating the dependence 𝐾(𝑛) of the number of communities on the network 

size is a non-trivial problem [31], [32]. According to the model [20], the number of communities depends 
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functionally not only on the network size (𝑛), but also on homophilicity factors 𝛼 and 𝛿, but this dependence 

is rather cumbersome. Asymptotic form of this dependence for large networks (𝑛 → ∞) is 

𝑛 ≈ {

𝑐𝑜𝑛𝑠𝑡 ∙ (𝐾 + 𝛿)𝛼 , 𝛼 > 1,
𝑐𝑜𝑛𝑠𝑡 ∙ (𝐾 + 𝛿) ∙ ln⁡(𝐾 + 𝛿 + 1), 𝛼 = 1,

𝑐𝑜𝑛𝑠𝑡 ∙ (𝐾 + 𝛿), 0 < 𝛼 < 1.
(9) 

Therefore, if 𝛼 < 1, then the number of communities grows asymptotically linearly with 𝑛, while this 

dependence is a power law for 𝛼 > 1: 

𝐾 ≈ {
𝜃 (𝑛

1
𝛼) , 𝛼 > 1,

𝜃(𝑛), 0 < 𝛼 < 1.
⁡ (10) 

In the general case (i.e., 𝐾 is finite), the factor in Eq. (7) is very unwieldy, but this expression can be 

substantially simplified in the asymptotic case 𝐾 → ∞, 𝛼 > 1: 

𝑔𝑎𝑠(𝛼, 𝛿) = lim
𝐾→∞

𝑔(𝐾, 𝛼, 𝛿) = (𝛼 − 1) ∙
Γ(𝛿 + 𝛼)

Γ(𝛿 + 1)
⁡. (11) 

It should be noted that the asymptotic transition 𝐾 → ∞,𝛼 > 1 limits the admissibility of replacing Eq. 

(7) with Eq. (11). The question of how large the network size (𝑛), the number of communities (𝐾), and the 

alpha factor should require further research. 

Substituting Eq. (11) into Eq. (6), we get 

(𝑒𝑘
𝑡𝑜𝑡)𝑎𝑠 = 𝑔𝑎𝑠(𝛼, 𝛿) ∙

Γ(𝑘 + 𝛿)

Γ(𝑘 + 𝛿 + 𝛼)
= (𝛼 − 1) ∙

Γ(𝛿 + 𝛼)

Γ(𝛿 + 1)
∙

Γ(𝑘 + 𝛿)

Γ(𝑘 + 𝛿 + 𝛼)
⁡. (12) 

The dependence in Eq. (12) for different values of 𝛼 and 𝛿 is shown in Fig. 4. 

 
Figure 4. Dependence of Eq. (12) of the Asymptotical Volume of Communities  on Community Rank for 

Homophilic Scale-Free Networks 

As one can see, this dependence asymptotically follows a power law with a scaling factor 𝛼. At the 

same time, factor 𝛿 influences the rate of approximation of the dependence in Eq. (12) to the power law and 

the deviation from it for small values of the community number (𝑘). 
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3. RESULTS AND DISCUSSION 

3.1 Obtaining Strict Estimates of the Modularity Boundaries of Homophilic Scale-Free Networks 

Considering that min{∑𝑒𝑘
𝑖𝑛} = 0 and max{∑𝑒𝑘

𝑖𝑛} = ∑𝑒𝑘
𝑡𝑜𝑡 = 1, the actual boundaries of the 

modularity criterion in Eq. (3) are determined by the sum of the squares of the relative volumes of the 

communities. Therefore, the asymptotic boundaries of modularity have the form: 

−S(α, δ) ≤ 𝜇(𝐺) ≤ 1 − S(α, δ), (13) 

where 

𝑆(𝛼, 𝛿) = ∑((𝑒𝑘
𝑡𝑜𝑡)𝑎𝑠)2

∞

𝑘=1

= (𝑔𝑎𝑠(𝛼, 𝛿))
2
∙ ∑ (

Γ(𝑘 + 𝛿)

Γ(𝑘 + 𝛿 + 𝛼)
)

2∞

𝑘=1

. (14) 

The problem is to estimate this sum at least in the considered asymptotic case (𝐾 → ∞, 𝛼 > 1).  

The exact value of Eq. (14) is equal to 

𝑆(𝛼, 𝛿) = (
𝛼 − 1

𝛼 + 𝛿
)
2

∙ 𝐹23 (1, 𝛿 + 1, 𝛿 + 1; 𝛼 + 𝛿 + 1, 𝛼 + 𝛿 + 1; 1), (15) 

where 𝐹23 (𝑎1, 𝑎2, 𝑎3; 𝑏1, 𝑏2; 𝑧) is the hypergeometric function. 

Thus, exact expressions in Eqs. (13) and (15) for boundaries of modularity of homophilic scale-free networks 

for the case of asymptotically large ones are obtained. 

3.2 Approximation of the Hypergeometric Function 3F2 

The essence of the problem is that 𝐹23 (… ) is not an elementary mathematical function and cannot be 

expressed through them except in some special cases (𝛼 is a small positive integer or half-integer). Hence, 

one has difficulty in practically using the mathematically strict form, Eq. (15), of the modularity boundaries.  

The dependence of Eq. (15) is shown in Fig. 5. 

 
Figure 5. Dependence of Eq. (15) of the Asymptotic Sum of Squares of Relative Community Volumes on Scale 

and Delay Factors  

Thus, for 𝛼 = 2, Eq. (15) takes the form 

𝑆(2, 𝛿) = 2(𝛿 + 1)2 ∙ 𝜓(1)(𝛿 + 1) − (2𝛿 + 3). (16) 
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Here function 𝜓(1)(𝑥) (that is first derivative of the digamma function) is also not elementary. 

However, the approximation of Eq. (16) is rather simple: 

𝑆(2, 𝛿) ≈
1

3(𝛿 + 1)
. (17) 

Therefore, the problem of approximation the 3F2 function arises. We first consider an important special 

case of Eq. (15): namely, 𝛿 = 0. In this case, the function 𝐹23 (1,1,1; 𝛼 + 1, 𝛼 + 1; 1) can be approximated 

(Fig. 6) with very high accuracy using: 

𝐹23 (1,1,1; 𝛼 + 1, 𝛼 + 1; 1) ≈ 1 + (
𝜋2

6
− 1) ∙ 𝛼−2. (18) 

 
Figure 6. Dependence 3F2(1, 1, 1; α+1, α+1; 1) on α 

In the general case, function 𝐹23 (1,1,1; 𝛼 + 1, 𝛼 + 1; 1) was approximated as: 

𝐹23 (1, 𝛿 + 1, 𝛿 + 1; 𝛼 + 𝛿 + 1, 𝛼 + 𝛿 + 1; 1) ≈ 1 + (𝑏 ∙ 𝛿 + 𝑑) ∙ 𝛼−2 + 𝑐 ∙ 𝛿 ∙ 𝛼−1, (19) 

where 𝑏 = 0.6746, 𝑐 = 0.308,⁡⁡⁡𝑑 = 0.522. 

The surface plot of the approximation error of the function 𝐹23 (… ) by Eq. (19) is shown in Fig. 7. 

 

Figure 7. Approximation for the Error of the Function 𝑭𝟐𝟑 (… ) by Eq. (19)  

The R-squared approximation criterion is 0.9988, the maximum absolute value of the error does not exceed 

0.2, and thus, this approximation can be considered as rather accurate.  
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Moreover, the approximation error is most significant for alpha values close to unity, but due to Eq. 

(15), it can be assumed that the approximation error of 𝐹23 (… ) with 𝛼 close to one will not greatly affect the 

accuracy of approximation the desired dependence 𝑆(𝛼, 𝛿). 

3.3 Approximation of the Sum of Squares of Relative Community Volumes 

By substituting Eq. (19) into Eq. (15), we get the desired approximation of the sum of squares of 

relative community volumes in the asymptotic case: 

𝑆𝑎𝑝𝑝(𝛼, 𝛿) = (
𝛼 − 1

𝛼 + 𝛿
)
2

∙ (1 +
𝑏 ∙ 𝛿 + 𝑑

𝛼2
+ 𝑐 ∙

𝛿

𝛼
) . (20) 

A graphical representation of the error in approximating the asymptotic sum of squares of the relative 

volumes of communities, Eq. (15), by the obtained function in Eq. (20) is shown in Fig. 8. 

 

 
Figure 8. Approximation of the Error of the Asymptotic Sum of Squares of the Relative Volumes of 

Communities 

It can be seen that the accuracy of the approximation provided by Eq. (20) is rather high.  

Moreover, it should be taken into account that the characteristic range of variation of the scaling 
parameter is 𝛼 ≤ 5. In most of this range, the approximation error does not exceed ±0.005, which further 
demonstrates the acceptability of the obtained approximation. 

3.4 Estimation of Asymptotic Modularity Bounds for Homophilic Scale-Free Networks  

According to the approximation in Eq. (20), the asymptotic boundaries, Eq. (13), of modularity have the form 

−𝑆𝑎𝑝𝑝(α, δ) ≤ 𝜇(𝐺) ≤ 1 − 𝑆𝑎𝑝𝑝(α, δ). (21) 

For the most important special cases, namely, 𝛿 = 0 and 𝛿 = 1, the asymptotic estimates of the modularity 

bounds are: 

−(
𝛼 − 1

𝛼
)
2

∙ (1 +
0.522

𝛼2
) ≤ 𝜇(𝐺)|𝛿=0 ≤ 1 − (

𝛼 − 1

𝛼
)
2

∙ (1 +
0.522

𝛼2
) , (22) 

−(
𝛼 − 1

𝛼 + 1
)
2

(1 +
1.1966

𝛼2
+
0.308

𝛼
) ≤ 𝜇(𝐺)|𝛿=1 ≤ 1 − (

𝛼 − 1

𝛼 + 1
)
2

(1 +
1.1966

𝛼2
+
0.308

𝛼
) . (23) 

Graphs of the upper bounds of Eqs. (22) and (23) of modularity for networks with scale-free 

distribution of community volumes are shown in Fig. 9. 
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Figure 9. Upper Bounds of Modularity for Networks with Scale-Free Distribution of Community Volumes 

As already mentioned, the characteristic range of the scaling parameter is 𝛼 ≤ 5, and in most cases of 
homophilic scale-free networks 𝛼 ∈ [2; 3]. Thus, the examples in Fig. 9 show that the modularity values of 
0.5 ÷ 0.7 in most cases should be considered as close to the achievable upper limit. 

Returning to the discussion of figures in general, it should be borne in mind that most of them (Figs. 
4, 5, 7, and 8) are based on an alpha-delta coordinate plane, which reflects the influence of the 𝛿 parameter 
on the displayed values. Graphs of the upper bounds of Eqs. (22) and (23) of modularity (Fig. 9) are really 
built only for special cases 𝛿 = 0 and 𝛿 = 1. And we treated that cases as the most important. 

4. CONCLUSION 

Our general comments on the possibility, necessity, and direction of further research are as follows:  

1. The problem of estimating the boundaries for modularity of homophilic scale-free networks is 

solved. In conclusion, we consider it appropriate to note that conductivity and entropy ratio, as 

well as modularity, are determined by the ratios of community volumes (𝑒𝑘
𝑡𝑜𝑡 in the manuscript). 

At the same time, analytical evaluation of these metrics is significantly more complex and even 

more cumbersome than in the case of modularity. It should also be noted that these alternative 

metrics are used quite rarely. For this reason, the evaluation of conductivity and entropy ratio is 

considered a promising topic for our further work in this direction. 

2. According to definitions of network modularity and mathematical expressions for the distribution 

of communities by their volumes, analytical estimates of the modularity boundaries for 

homophilic scale-free networks are found, Eqs. (13) and (15). The obtained estimates are shown 

in Fig. 5. However, the obtained estimates are expressed through a non-elementary mathematical 

function (hypergeometric function 𝐹23 ), and therefore are of little use for practical application. 

Therefore, the problem of approximating the estimate Eq. (15) arises. 

3. The hypergeometric function 𝐹23  was approximated by a rather simple fractional-polynomial 

form, Eq. (19). Considering this, an approximation in Eq. (20) was obtained for the sum of the 

squares of the relative sizes of communities. The accuracy of this approximation is very high. In 

most of the characteristic range of varying network parameters, the approximation error does not 

exceed ±0.005, which was illustrated in Fig. 8. As for the examples shown in Fig. 9, an achievable 

upper limit of modularity values for homophilic networks in most cases is close to 0.5 ÷ 0.7. 

4. Thus, estimates of the modularity boundaries of homophilic networks with a scale-free 

distribution of the volumes of their communities have been found, both in a mathematically exact 

form, Eq. (15), and in an approximate form, Eq. (20). Assessing other measures of network 
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homophilicity, such as conductance and entropy ratio, is considered a promising direction for 

future research. 
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