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1. INTRODUCTION

It is common knowledge that one of the characteristic properties of complex networks is their
structured nature. Nodes of such networks are grouped into more or less distinct communities (clusters), so
the density of connections within communities is significantly higher than the density of connections between
nodes of different communities. The task of partitioning a network into communities is very relevant; there
are many options for setting this problem, methods for solving it, and, accordingly, criteria for assessing the
partition quality.

The most common criterion for the quality of partitioning a network into communities is modularity.
This criterion, proposed by Girvan and Newman [1] is used not only as a maximized objective function of
network partitioning algorithms, as in the Louvain algorithm [2], but also as an external criterion for the
partition quality. That is, to assess the effectiveness of solving the problem of identifying communities using
methods that are not based on modularity. Modularity is additive with respect to communities and even single
nodes, and is easy to calculate, which explains its widespread use. An alternative to modularity can be such
criteria as conductivity and entropy ratio [3]. According to experimental studies [4] if one of the three criteria
indicates a high/low network structure, the other two also indicate the same.

The modularity criterion is based on comparing the actual number of connections within communities
with the number predicted by the null model. A homogeneous unstructured graph with the same distribution
of vertex degrees as for the network under consideration is treated as such a model. The modularity value is
generally in the range [-1, 1]. Positive values correspond to homophilic networks [5]-[7], i.e., those in which
nodes tend to connect with nodes of their communities. Negative modularity indicates a homophobic nature
of network nodes, i.e., a preference for forming connections with nodes belonging to other communities. A
network that does not contain distinct communities (i.e., homogeneous) has a modularity asymptotically equal
to zero.

It is known [8] , [9] that many real-world networks are scale-free. The key property of such networks
is the power law of node degree distribution [10], [11]. Models of scale-free networks are based on using the
preferential attachment rule [12]. Some of such models are rather simple [13]-[15]. Others are more complex,
based on multi-type branching processes [16], [17], but most of them generate homogeneous networks. The
most important class of network models is generative ones, i.e., those that allow creating a network in step-
by-step mode [18], [19].

In [20] a generative model of a homophilic scale-free network was proposed. It is based on a two-stage
application of the preferential attachment rule: first, it is used to select a community to which a new node will
belong, and then to select the nodes of this community to which the new node will be connected. This ensures
the creation and maintenance of a natural community structure and, at the same time, scale-freeness is
preserved. It is important to note that for homogeneous networks, the scale-free property refers to the
distribution of node degrees (and means the discrete-power Yule-Simon law [21]-[24].

Then, in the case where the network consists of communities, the distribution of the sizes of these
communities can also be scale-free. Obtaining analytical estimates of various characteristics of scale-free
networks has been and remains [25] a relevant theoretical problem. Thus, in [26] an asymptotic estimate of
the average path length in a hierarchical scale-free network was obtained. At the same time, the issue of
asymptotic boundaries of the modularity of homophilic scale-free networks remains insufficiently studied.

Despite the simplicity of calculation and wide use, the practical application of modularity as a criterion
for the degree of homophily/homophobia of a network faces serious problems. Thus, an undesirable property
of the modularity criterion is that the null model underlying it assumes that communities have approximately
the same density of connections. A significant difference in the density of connections of communities affects
both the absolute value and even the sign of the network’s modularity. To eliminate this drawback, a modified
modularity criterion was proposed [27], which explicitly takes into account the number of nodes in
communities.

An important problem is the limited resolution of the modularity criterion. It consists of the fact that
for large network sizes, maximizing modularity leads to forced merging of small-sized communities. This
problem was considered in detail by Lancichinetti and Fortunato [28]. To increase the resolution, it was
proposed to introduce a resolution parameter y > 1 into the modularity calculation formula. Its increase
improves the resolution of community detection methods based on modularity maximization. At the same
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time, it was noted that the actually achievable upper limit of modularity is less than one, but its evaluation
was not included in the scope of these works [29], [30].

Thus, the problem of quantitative assessment of network modularity boundaries under conditions of
significant unevenness of community sizes remains open. This problem acquires particular relevance when
assessing the degree of homophily of structured scale-free networks due to the unevenness of community
sizes inherent in such networks.

The solution to the problem of finding quantitative estimates of the modularity boundaries for
homophilic scale-free networks is implemented in two stages. Section 2 provides definitions of network
modularity, analyzes the reasons for its significant dependence on the distribution of community volumes,
and provides mathematical expressions for the distribution of community volumes for homophilic scale-free
networks.

In Section 3, analytical estimates of the modularity boundaries for networks of the considered class are
obtained in a strict form. Such estimates are expressed through non-elementary mathematical functions and,
therefore, are of little practical use. So, the problem of numerical approximation of estimates of the modularity
boundaries of homophilic scale-free networks for asymptotically large networks is posed and solved. For this
purpose, the hypergeometric function included in the analytical estimate of modularity is approximated, then
estimates of the sum of squares of the relative volumes of network communities are found, and then
approximate estimates of the modularity boundaries of homophilic networks with a scale-free distribution of
their community volumes are found.

2. RESEARCH METHODS

2.1 Criteria of Modularity

Let G = {V, E} be a network with n nodes and m edges. Given a partition, the network modularity is
defined [1] as:

1
u(G) = EZ(AU - Pij)5ci,cj' €]
l']

where the summation runs over all pairs of vertices, 4 is the adjacency matrix, P;; is the expected number of
edges between vertices i and j in a null graph, ¢, is a community to which node k belongs, &, , is the
Kronecker delta.

Therefore, network modularity essentially depends on the null graph model, i.e., on P;;. According to
the conventional approach, P;; = deg; - degj/2m, where deg, is the degree of node k. In this case
modularity of a particular community is:

e = e — (ef°?, 2)

where ef® is the relative number of links between nodes within community k,
et = vol(cy)/vol(G) is the relative volume of the k-th community, i.e., the relative sum of degrees of
nodes that belong to the k-th community. Relativity means normalizing the corresponding amounts by
dividing by the network volume (vol(G) = 2m).

Network modularity is the sum of modularity of particular communities in Eq. (2):
K
K(G) = ) (el = (ef?). 3)
k=1
In the case when the resolution parameter y > 1 is used, the network modularity definition in Eg. (3) is
modified [29] as:

K
KGY) = ) (el = y(el?). 4
k=1



832 Shergin, et al. ESTIMATING MODULARITY BOUNDS FOR HOMOPHILIC SCALE-FREE NETWORKS ...

The modified modularity criterion [27], which explicitly takes into account the number of nodes in
communities, has the form:

K
W(6) = ) (el = pe-ef), 5)
k=1
where p,, = (ny —1)/(n — 1), ny is the size of k-th community, i.e., the number of nodes in it.

It is easy to see that modularity, in all variants in Egs. (3) — (5) of its definition, which depends on the
share of connections within communities e/ compared to their volumes e£°¢. This is quite natural and reflects
the essence of this indicator as a measure of the clarity of the partition of the network into communities.
Obviously, for any network and any community 0 < ef* < ef°t. The upper limit (ef* = ef°?) is achieved
only in the case when community k forms a separate component of network connectivity.

However, at the same time, modularity expressions in Egs. (3) — (5) contain the sums of squares of
relative volumes of communities, and this factor is determined by the distribution of communities by their
volumes, i.e., it is a characteristic of the structural properties of the network, and not a measure of the quality
of the community extraction algorithm. The specified sums of squares take a minimum value (1/K) in the
case when communities have the same volume (also equal to 1/K).

2.2 Modularity Property of Homophilic Scale-Free Networks

As noted in [20], a natural property of homophilic scale-free networks is a scale-free (i.e., discrete-
power) distribution of volumes (and sizes) of communities:

I'k+6)
r'k+6+a)’

where factor g(K, a,§) depends on the total number of communities (K), scaling factor of community
volumes (a > 0) and delay factor (6 > —min {1, a}):

e’ = g(K,a,6) - (6)

'K+ +a)

T +a) "T(K+6)
[G+1) T(K+o+a) T(G+a)
rK+6) TOG+1D

Factor & determines not only the delay in the power law in Eq. (6) but also the intensity of the
appearance of new communities compared to the growth rate of the number of network nodes. An example
[20] of the network of 500 nodes and 7 communities (delta is 0, alpha equals 3, having a scale-free
distribution Eq. (6) of community volumes) is shown in Fig. 1.

9K, a,6) = (a—1) (7)

(K+6)

Figure 1. Example of a Homophilic Scale-Free Network
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The rank distribution of the community sizes of the considered network is shown in Fig. 2. Markers’
colors in Fig. 2 correspond to the colors of the communities in Fig. 1, while the solid line shows the
community sizes predicted by the scale-free distribution law in Eq. (6). Therefore, the community sizes of
the generated homophilic network are distributed in good accordance with the theoretically predicted law,
and this distribution law is scale-free.

Community Sizes

]00 i L I H I T O O
1 2 3 4 5 6 7 8

Community Ranks
Figure 2. Rank Distribution of the Community Sizes of the Considered Example
of a Homophilic Scale-Free Network

An example of the node degrees distribution for the homophilic scale-free network is shown in Fig. 3.
The considered network is of n = 10000 nodes, alpha = 4, and the number of communities is 11. As one
can see, not only do community sizes follow a scale-free distribution, but node degrees too.

400 |

300¢ 11

200 10
%100 | |’
5 8
Y 7
K 50
2 5
@]
Z 20 | s

4
10 :
1 1 1 2
10° 10! 10 103 10* M |
Node Ranks

Figure 3. Example of the Rank Distribution of Degrees of Nodes of a Homophilic Network

Distribution in Eq. (6) follows from the ratio of the volumes of two consecutive communities (with numbers
k and k + 1), which has the form:
k+6
tot _ _tot .
€r+1 = €k k+6+a (8)
The model based on Eq. (8) is generative and is intended for step-by-step modeling of a growing
network with the properties of homophily and scale-freeness, similar to the example shown in Fig. 1. At the
same time, for real networks, the relation in Eq. (8) may not be fulfilled exactly, or may be fulfilled only
asymptotically. The necessity of the community volumes corresponding to Eg. (8), and therefore distribution
in Eq. (6), is a limitation of the considered model.

In the general case, estimating the dependence K (n) of the number of communities on the network
size is a non-trivial problem [31], [32]. According to the model [20], the number of communities depends
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functionally not only on the network size (n), but also on homophilicity factors a and &, but this dependence
is rather cumbersome. Asymptotic form of this dependence for large networks (n — o) is

const - (K + 6)%, a>1,
n~=<{const-(K+6)-In(K+46+1), a=1, 9
const- (K + 6), O0<a<l.

Therefore, if a < 1, then the number of communities grows asymptotically linearly with n, while this
dependence is a power law for a > 1:
1
K ~ 6 (nrx> , a>1,
o(n), 0<a<l

In the general case (i.e., K is finite), the factor in Eq. (7) is very unwieldy, but this expression can be
substantially simplified in the asymptotic case K —» o, a > 1:

(10)

I'(6 +a)
ré+1)°
It should be noted that the asymptotic transition K — oo, « > 1 limits the admissibility of replacing Eq.

(7) with Eq. (11). The question of how large the network size (n), the number of communities (K), and the
alpha factor should require further research.

Substituting Eq. (11) into Eq. (6), we get

9% (@ 6) = lim g(K,a,8) = (¢ — 1) (11)

I'(k+6) —( H Fr6+a) T(k+96)
rk+6+a) r6+1) Tk+o+a)
The dependence in Eq. (12) for different values of a and ¢ is shown in Fig. 4.

(e’ = g% (a,6) - (12)
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Figure 4. Dependence of Eq. (12) of the Asymptotical Volume of Communities on Community Rank for
Homophilic Scale-Free Networks

As one can see, this dependence asymptotically follows a power law with a scaling factor a. At the
same time, factor § influences the rate of approximation of the dependence in Eq. (12) to the power law and
the deviation from it for small values of the community number (k).
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3. RESULTS AND DISCUSSION

3.1 Obtaining Strict Estimates of the Modularity Boundaries of Homophilic Scale-Free Networks
Considering that min{Y e[} =0 and max{Ye/*} = Y ef°* =1, the actual boundaries of the

modularity criterion in Eq. (3) are determined by the sum of the squares of the relative volumes of the
communities. Therefore, the asymptotic boundaries of modularity have the form:

—S(a,8) < u(6) <1 —-5(at, 6), (13)
where
c o[ Tk+68)
— totyasy2 — as 2, z
S@8) = ) (l*)™)? = (9°(@5)) <F(k o a)) : a4
k=1 k=1
The problem is to estimate this sum at least in the considered asymptotic case (K — o, a > 1).
The exact value of Eq. (14) is equal to
a—1\?
S(a,8) = (m) LS+ 1,6+ La+s+lats+1;1), (15)

where ;F,(aq,a,, as; by, by; z) is the hypergeometric function.
Thus, exact expressions in Egs. (13) and (15) for boundaries of modularity of homophilic scale-free networks
for the case of asymptotically large ones are obtained.

3.2 Approximation of the Hypergeometric Function sF

The essence of the problem is that ;F,(...) is not an elementary mathematical function and cannot be
expressed through them except in some special cases (« is a small positive integer or half-integer). Hence,
one has difficulty in practically using the mathematically strict form, Eq. (15), of the modularity boundaries.

The dependence of Eq. (15) is shown in Fig. 5.

delta 0 o

alpha
Figure 5. Dependence of Eq. (15) of the Asymptotic Sum of Squares of Relative Community VVolumes on Scale
and Delay Factors

Thus, for a = 2, Eq. (15) takes the form

$2,8) =26+ 1)2-pD( +1) — (26 + 3). (16)
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Here function ¥ (x) (that is first derivative of the digamma function) is also not elementary.
However, the approximation of Eq. (16) is rather simple:

S(2,6) = 17)

360+ 1)
Therefore, the problem of approximation the sF function arises. We first consider an important special

case of Eg. (15): namely, § = 0. In this case, the function ;F,(1,1,1;a@ + 1,@ + 1; 1) can be approximated
(Fig. 6) with very high accuracy using:

7.[2
JF(LLLa+La+ ;1) ~1+ <? - 1) a2, (18)

3F2(1,1,1;a+1,a+1;1)

0 2 4 6 8 0 12 14 16 18 20
alpha
Figure 6. Dependence sF2(1, 1, 1; a+1, +1; 1) on &

In the general case, function ;F,(1,1,1;a + 1, + 1; 1) was approximated as:
1,6+ 1L,6+La+d+L,a+8+ 1) ~1+(b-6+d)-a?+c-5-a’?, (19)
where b = 0.6746, ¢ = 0.308, d = 0.522.

The surface plot of the approximation error of the function ;F,(...) by Eq. (19) is shown in Fig. 7.
0.2,
0.15
0.1
0.05,

““

0, Wy |
T
-0.05 iy

delta

04— T T T | 1 | 1
0
alpha

Figure 7. Approximation for the Error of the Function 3F,(...) by Eq. (19)

The R-squared approximation criterion is 0.9988, the maximum absolute value of the error does not exceed
0.2, and thus, this approximation can be considered as rather accurate.
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Moreover, the approximation error is most significant for alpha values close to unity, but due to Eq.

(15), it can be assumed that the approximation error of ;F,(...) with a close to one will not greatly affect the
accuracy of approximation the desired dependence S(«, 6§).

3.3 Approximation of the Sum of Squares of Relative Community Volumes

By substituting Eg. (19) into Eq. (15), we get the desired approximation of the sum of squares of
relative community volumes in the asymptotic case:

a—1\? b-6+d 5
app —_ — . - .-
SWP (g, 8) (a+ 5) (1+ e a). (20)

A graphical representation of the error in approximating the asymptotic sum of squares of the relative
volumes of communities, Eq. (15), by the obtained function in Eq. (20) is shown in Fig. 8.

__
Z RND
__ \\\\\\\\\\

delta 0 o alpha
Figure 8. Approximation of the Error of the Asymptotic Sum of Squares of the Relative VVolumes of
Communities

It can be seen that the accuracy of the approximation provided by Eq. (20) is rather high.

Moreover, it should be taken into account that the characteristic range of variation of the scaling
parameter is @ < 5. In most of this range, the approximation error does not exceed +0.005, which further
demonstrates the acceptability of the obtained approximation.

3.4 Estimation of Asymptotic Modularity Bounds for Homophilic Scale-Free Networks

According to the approximation in Eq. (20), the asymptotic boundaries, Eq. (13), of modularity have the form

-SSP (0, 8) < u(G) <1 —S5%P(q,d). (21)

For the most important special cases, namely, § = 0 and § = 1, the asymptotic estimates of the modularity
bounds are:

a—1y? 0.522 a—1)\? 0.522
_( ) -(1+—2 )SH(G)LS:oSl—(—) -(1+ 2 ) (22)
a a a a
(cx - 1)2 (1 | 11966 0.308) < 4@y < 1 (a - 1)2 (1 L 11966 0.308) 23)
a+1 a? a )=H ls=1 < a+1 a? a /)

Graphs of the upper bounds of Egs. (22) and (23) of modularity for networks with scale-free
distribution of community volumes are shown in Fig. 9.
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G)

0.3 1 1 | 1 1 I 1
1 1.5 2 25 3 3.5 4 4.5 5

alpha

Figure 9. Upper Bounds of Modularity for Networks with Scale-Free Distribution of Community Volumes

As already mentioned, the characteristic range of the scaling parameter is @ < 5, and in most cases of
homophilic scale-free networks a € [2; 3]. Thus, the examples in Fig. 9 show that the modularity values of
0.5 = 0.7 in most cases should be considered as close to the achievable upper limit.

Returning to the discussion of figures in general, it should be borne in mind that most of them (Figs.
4,5, 7, and 8) are based on an alpha-delta coordinate plane, which reflects the influence of the § parameter
on the displayed values. Graphs of the upper bounds of Eqgs. (22) and (23) of modularity (Fig. 9) are really
built only for special cases § = 0 and § = 1. And we treated that cases as the most important.

4. CONCLUSION

Our general comments on the possibility, necessity, and direction of further research are as follows:

1.

The problem of estimating the boundaries for modularity of homophilic scale-free networks is
solved. In conclusion, we consider it appropriate to note that conductivity and entropy ratio, as
well as modularity, are determined by the ratios of community volumes (e£°" in the manuscript).
At the same time, analytical evaluation of these metrics is significantly more complex and even
more cumbersome than in the case of modularity. It should also be noted that these alternative
metrics are used quite rarely. For this reason, the evaluation of conductivity and entropy ratio is
considered a promising topic for our further work in this direction.

According to definitions of network modularity and mathematical expressions for the distribution
of communities by their volumes, analytical estimates of the modularity boundaries for
homophilic scale-free networks are found, Egs. (13) and (15). The obtained estimates are shown
in Fig. 5. However, the obtained estimates are expressed through a non-elementary mathematical
function (hypergeometric function 3F,), and therefore are of little use for practical application.
Therefore, the problem of approximating the estimate Eq. (15) arises.

The hypergeometric function ;F, was approximated by a rather simple fractional-polynomial
form, Eq. (19). Considering this, an approximation in Eq. (20) was obtained for the sum of the
squares of the relative sizes of communities. The accuracy of this approximation is very high. In
most of the characteristic range of varying network parameters, the approximation error does not
exceed +0.005, which was illustrated in Fig. 8. As for the examples shown in Fig. 9, an achievable
upper limit of modularity values for homophilic networks in most cases is close to 0.5 + 0.7.

Thus, estimates of the modularity boundaries of homophilic networks with a scale-free
distribution of the volumes of their communities have been found, both in a mathematically exact
form, Eg. (15), and in an approximate form, Eq. (20). Assessing other measures of network
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homophilicity, such as conductance and entropy ratio, is considered a promising direction for
future research.
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