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Article Info ABSTRACT 

Article History: 
In the era of Industry 4.0, Big Data from the IoT demands advanced analysis 

techniques. Outlier detection is vital as anomalies may indicate sensor failures, fraud, 

or abnormal medical records. Fuzzy clustering methods such as DOFCM are often 

applied, yet their performance depends on accurate cluster center placement, which 

remains challenging. While several Fuzzy C-Means extensions address outlier 

sensitivity, most rely on single optimization strategies. The integration of PSO and GA 

into DOFCM has been rarely explored, making this study novel in evaluating how 

different evolutionary algorithms enhance clustering robustness and anomaly 

detection. This research introduces DOFCM-PSO and DOFCM-GA, tested on five 

benchmark datasets with outliers: Iris, Wine, Sonar, Diabetes, and Ionosphere. The 

Silhouette Coefficient (SC) was used as the evaluation metric. Results show that GA 

consistently outperforms PSO, with SC values improving by approximately 0.02–0.03 

(equivalent to an increase of 8–12%) across datasets. For instance, the Iris dataset 

improved from 0.6029 (PSO) to 0.6291 (GA), while the Wine dataset increased from 

0.2759 to 0.2958. In addition, evaluation of computational time and outlier detection 

further supports these findings. Although GA required slightly longer runtime than 

PSO, it substantially reduced the number of outliers while still achieving higher SC 

values. A similar pattern was observed in the Diabetes dataset, where GA decreased 

outliers from 20 to 7 with a modest SC improvement. These results indicate that PSO is 

more efficient in runtime, but GA provides more robust clustering by minimizing 

anomalies and producing better separation quality. Despite promising results, this 

study is limited by the relatively small dataset sizes and sensitivity to parameter settings, 

which may influence outcomes. Future work should apply the method to larger datasets 

and include additional clustering indices. Overall, DOFCM-GA can be considered a 

robust approach for fuzzy clustering in the presence of anomalies. 
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1. INTRODUCTION 

In the era of Industry 4.0, advancements in information and communication technology have 

accelerated the growth of Big Data obtained from the Internet of Things (IoT) [1], [2]. Big Data encompasses 

large volumes, diverse types of data, and high velocity, necessitating sophisticated analytical techniques such 

as data mining to identify meaningful patterns [3]. One of the key techniques in data mining is outlier 

detection, which plays a crucial role in clustering and classification tasks [4]. Outliers, defined as data points 

that deviate significantly from the majority of observations, may occur in univariate or multivariate forms 

depending on the data dimensionality [5]-[7]. Their presence can distort analytical results and introduce 

uncertainty, making outlier detection critical in practical applications such as fraud detection, fault diagnosis, 

and medical analysis [8]-[10].  

However, the presence of outliers often leads to clustering results that do not align with the true patterns 

[11]. Conventional methods are effective at detecting global outliers but perform poorly when handling local 

anomalies within clusters of varying densities [12]. Fuzzy clustering methods, particularly Density Oriented 

Fuzzy C-Means (DOFCM), have been developed to address this issue by partitioning data into groups based 

on membership levels [13]-[15]. Previous studies have shown that DOFCM generally outperforms other 

fuzzy techniques in handling outliers [16]-[18]. Nevertheless, the performance of this method is highly 

dependent on the accurate placement of cluster centers, which remains a challenging task [19].  

Recent years have witnessed rapid advances in meta-heuristic optimization algorithms, which have 

been widely applied to clustering and outlier detection problems. Studies from 2022 to 2024 highlight that 

approaches based on Particle Swarm Optimization (PSO), Genetic Algorithm (GA), as well as newer 

algorithms such as Grey Wolf Optimizer (GWO) and Differential Evolution (DE), have significantly 

improved clustering quality [20]-[22]. However, the integration of meta-heuristic strategies into Density 

Oriented Fuzzy C-Means (DOFCM) remains underexplored. This study contributes to filling this gap by 

evaluating how PSO and GA can be incorporated into DOFCM to enhance clustering robustness and outlier 

detection. 

While prior research has explored individual optimization approaches, there is still a lack of 

comparative studies that systematically evaluate the effectiveness of PSO and GA in optimizing DOFCM for 

outlier detection. The novelty of this research lies in the direct comparison between DOFCM optimized with 

PSO and GA for detecting outliers. Although both meta-heuristic algorithms are widely applied in 

optimization, studies that systematically assess their effectiveness in the context of DOFCM for handling 

outlier data remain limited. Therefore, this research is relevant to demonstrate which algorithm is more 

effective in generating representative cluster centers and improving anomaly detection quality. 

 This study aims to optimize the DOFCM method using PSO and GA for outlier detection, and to 

compare their effectiveness across multiple benchmark datasets using the Silhouette Coefficient as the 

primary evaluation metric. The remainder of this paper is organized as follows. Section 2 presents the 

methodology, including the DOFCM framework and optimization strategies using PSO and GA. Section 3 

describes the experimental setup, datasets, and clustering evaluation, followed by the results and discussion. 

Finally, Section 4 concludes the study by summarizing the main findings, highlighting limitations, and 

providing directions for future research. 

2. RESEARCH METHODS 

This research employs DOFCM optimization for outlier detection. The PSO and the GA is applied to 

find the optimal configuration of cluster centers. Fig. 1 illustrates the flowchart of the research, which includes 

the application of DOFCM for outlier detection and optimizing the cluster centers by using the PSO and GA.  
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Figure 1. The Flowchart of the Research 

Fig. 1 illustrates the overall research flowchart, starting from data input and preprocessing using Min-

Max normalization to ensure that all features are on the same scale. The normalized data is then processed 

using the DOFCM algorithm for initial outlier detection. In this stage, the data are grouped into two clusters 

(𝑘 = 2), representing valid data and potential outliers, based on membership values in the DOFCM 

framework. This grouping enables the optimization algorithms PSO and GA to adjust cluster centers more 

effectively, thereby improving the separation of anomalies from the main data distribution. After 

optimization, data grouping and outlier counting are performed, followed by cluster evaluation using the 

Silhouette Coefficient (SC) to measure clustering quality. Additionally, the computational time of each 

method is recorded to analyze efficiency. Finally, the results are compared based on SC values, the number 

of detected outliers, and runtime, providing a comprehensive evaluation of the proposed approach. 

2.1 Dataset Description  

In this study, five benchmark datasets with diverse characteristics were used to evaluate the proposed 

method. The Iris dataset [23] contains measurements of sepal length, sepal width, petal length, and petal 

width for three Iris species (Setosa, Versicolor, and Virginica). The Wine dataset [24] consists of 13 chemical 

attributes, such as alcohol content, flavonoids, and color intensity, used to classify three wine cultivars. The 

Sonar dataset [25] records sonar signals reflected from underwater objects, labeled as rock or mine. The 

Diabetes dataset [26] is the Pima Indians Diabetes, which includes patient medical records with features such 

as glucose concentration and BMI, labeled as diabetic or non-diabetic. Finally, the Ionosphere dataset [27] 

represents radar signals for detecting ionospheric structures, categorized into good and bad signals. A 

summary of the dataset characteristics, including the number of features, number of classes, total records, 

and percentage of outliers, is presented in Table 1. Outliers were identified using the DOFCM framework, 

where data points with membership values below the threshold (𝛼) were classified as anomalies. 

The percentage of outliers was calculated using Eq. (1). 

𝑃𝑜𝑢𝑡𝑙𝑖𝑒𝑟 =
𝑁𝑜𝑢𝑡𝑙𝑖𝑒𝑟

𝑁𝑡𝑜𝑡𝑎𝑙
𝑥100%, (1) 

where 𝑁𝑜𝑢𝑡𝑙𝑖𝑒𝑟 is the number of data points identified as outliers, and 𝑁𝑡𝑜𝑡𝑎𝑙 is the total number of records in 

the dataset. 

Table 1. Characteristics of Benchmark Datasets 

Dataset Features Classes Records %Outliers 

Iris 4 3 150 2.00 % 

Wine 13 3 178 2.81 % 

Sonar 60 2 208 4.81 % 

Diabetes 8 2 768 2.60 % 

Ionosphere 34 2 351 1.99 % 

From Table 1, it can be observed that the proportion of outliers varies across datasets. The Sonar dataset 

has the highest percentage of outliers (4.81%), indicating a higher degree of noise or anomalous patterns. In 

contrast, the Ionosphere dataset shows the lowest percentage of outliers (1.99%), suggesting more 
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homogeneous data. The Iris, Wine, and Diabetes datasets exhibit moderate levels of anomalies, ranging from 

2.00% to 2.81%. These variations highlight the importance of applying robust clustering methods such as 

DOFCM, where optimization with PSO and GA is expected to improve the ability to separate valid data from 

anomalous points across datasets with different characteristics. 

2.2 Data Pre-Processing   

Big data, characterized by the 5Vs (volume, velocity, variety, veracity, and value), refers to large 

datasets that can be analyzed to gain valuable insights. This data can be structured, semi-structured, or 

unstructured [28]. Data mining, on the other hand, is the process that utilizes pattern recognition techniques 

from mathematics and statistics to discover patterns, relationships, and trends within big data. By analyzing 

stored data, data mining facilitates better decision-making and the utilization of previously hidden 

information within large datasets [29]. In handling such large volumes of data, it is essential to apply data 

normalization to ensure that each feature contributes equally to the analysis. One commonly used method is 

Min-Max normalization, which scales the data to a fixed range, typically between 0 and 1. This approach 

helps improve the performance and accuracy of clustering algorithms by eliminating the bias caused by 

differing value ranges [22]. The formula for performing min-max normalization is given in Eq. (2).  

𝑥𝑖,𝑗
′ =

𝑥𝑖,𝑗 − 𝑚𝑖𝑛(𝑥:,𝑗)

𝑚𝑎𝑥(𝑥:,𝑗) − 𝑚𝑖𝑛(𝑥:,𝑗)
, (2) 

where, 𝑥𝑖,𝑗 represents the original value of the data element at row 𝑖 and column 𝑗, while 𝑥𝑖,𝑗
′  is the normalized 

value. The notation 𝑥:,𝑗 refers to all values in the column 𝑗, so 𝑚𝑖𝑛(𝑥:,𝑗) and 𝑚𝑎𝑥(𝑥:,𝑗) indicate the minimum 

and maximum values in that column, respectively. This normalization process is performed per column 

(feature), ensuring that each feature has a consistent scale and does not dominate others during data analysis 

or model training, such as in clustering or machine learning algorithms. 

2.3 Clustering and Outlier Detection  

Clustering is a technique used to group data into homogeneous subsets, where data points with similar 

characteristics are grouped together in the same cluster [23]. The main objective is to maximize similarity 

within clusters and minimize similarity between clusters [24]. However, not all data points fit neatly into 

clusters; some exhibit behaviors that significantly deviate from the rest. These anomalous data points are 

known as outliers, which may arise due to noise, variability, or truly rare events. Outlier detection is therefore 

a critical step in data analysis, as these data points can distort clustering results or reveal meaningful 

exceptions. Outliers are typically identified using statistical or distance-based approaches that evaluate how 

far a point deviates from the structure of established clusters [33].To address the challenge of grouping data 

while accounting for uncertainty and data fuzziness, various clustering techniques have been developed. One 

of the most widely used methods in this category is Fuzzy C-Means (FCM), which allows data points to 

belong to multiple clusters with varying degrees of membership. A dataset is denoted by 𝑋, where  

𝑋 = {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛} represents 𝑛 points in an 𝑀 dimensional space. The centroid of cluster 𝑘 is denoted 

𝑣𝑘 , 𝑑𝑖𝑘 is the distance between 𝑥𝑖 and 𝑣𝑘   and ′𝑐′ is the number of clusters present in the dataset [34]. One of 

the most widely used clustering techniques and the basis for many extended methods is Fuzzy C-Means 

(FCM). FCM assumes that the number of clusters ‘𝑐’ is known a priori and minimizes the objective function 

(𝐽𝐹𝐶𝑀) as follows: 

𝐽𝐹𝐶𝑀(𝑈, 𝑉) = ∑ ∑ 𝑢𝑘𝑖
𝑚𝑑𝑘𝑖

2

𝑛

i=1

𝑐

𝑘=1

, (3) 

where 𝑑𝑘𝑖 = ‖𝑥𝑖 − 𝑣𝑘‖ and 𝑢𝑘𝑖 represents the membership of 𝑥𝑖 in cluster ′𝑘′ which satisfies  

∑ 𝑢𝑘𝑖

𝑐

𝑘=1

= 1, 𝑖 = 1,2, … , 𝑛. (4) 

Known as the fuzzifier (fuzziness index), and any norm ‖∙‖ can be used to calculate 𝑑𝑘𝑖 (using 

Euclidean distance). Minimization of 𝐽𝐹𝐶𝑀 is performed using an iterative fixed-point scheme known as the 

alternating optimization technique. The conditions for local extrema of Eqs. (3) and (4) are derived using 

Lagrange multipliers. This minimization process is carried out by repeating two main steps, update the 

membership 𝑢𝑘𝑖 is implemented by using Eq. (5). 
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𝑢𝑘𝑖 =
1

∑ (
𝑑𝑘𝑖
𝑑𝑖𝑗

)𝑐
𝑗=1

2
𝑚−1

, (5)
 

where 1 ≤ 𝑘 ≤ 𝑐 and 1 ≤ 𝑖 ≤ 𝑛.  Eq. (5) calculates the membership degree 𝑢𝑘𝑖 of a data point 𝑥𝑖  with respect 

to cluster 𝑘. This value depends on the distance between 𝑥𝑖 and the cluster center 𝑣𝑘, normalized by the sum 

of distance ratios to all cluster centers. The parameter 𝑚 > 1 is a fuzzifier that controls the level of fuzziness 

in the clustering process. The notation 𝑑𝑘𝑖 refers to the distance between 𝑥𝑖 and cluster center 𝑣𝑘, while 𝑑𝑗𝑖 

denotes the distance from 𝑥𝑖 to cluster center 𝑣𝑗. Here, 𝑐 represents the total number of clusters, with index 

ranges 1 ≤ 𝑗, 𝑘 ≤ 𝑐, and 1 ≤ 𝑖 ≤ 𝑛, where 𝑛 is the number of data points. The closer the data point 𝑥𝑖 is to 

the centroid 𝑣𝑘 the higher the value of 𝑢𝑘𝑖, update the centroid 𝑣𝑘 by using Eq. (6). 

𝑣𝑘 =
∑ (𝑢𝑘𝑖

𝑚𝑥𝑖)𝑛
𝑖=1

∑ (𝑢𝑘𝑖
𝑚)𝑛

𝑖=1

 . (6) 

Eq. (6) is used to update the position of the centroid 𝑣𝑘 of cluster 𝑘, taking into account the 

contributions of all data points within the cluster based on their membership degrees. The centroid is updated 

as the weighted average of all data points in the cluster, where the weights are the membership degrees raised 

to the power of 𝑚. This ensures that the centroid moves toward the center of mass of the data within the 

cluster, thereby improving clustering accuracy. 

2.4 Density Oriented Fuzzy C-Means (DOFCM)  

Although Fuzzy C-Means (FCM) is effective in forming clusters based on membership degrees, it has 

limitations in handling outliers since all data points are considered to contribute equally to the formation of 

cluster centroids. To address this issue, several extensions have been proposed, including DOFCM, which 

specifically incorporates density information to improve outlier detection.  

DOFCM modifies the membership function of FCM by considering the density of surrounding points 

[19], [35]. The algorithm forms ′𝑛 + 1′  clusters, where 𝑛 represent valid clusters, and one outlier cluster is 

assigned to the outlier. DOFCM uses neighboring membership to assess the density of objects within a certain 

radius, where distances between points are measured using Euclidean distance. 

𝑑(𝑥𝑖, 𝑥𝑗) = √ ∑ (𝑥𝑖𝑚 − 𝑥𝑗𝑚)
2

𝑝

𝑚=1

. (7) 

The neighborhood membership of a point 𝑖 in the dataset 𝑋 is defined as: 

𝑀𝑖
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 =

𝜂𝑖
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑

𝜂𝑚𝑎𝑥
. (8) 

Let 𝑞 be the neighborhood surrounding point 𝑖, then 𝑞 will satisfy: 

{𝑞 ∈ 𝑋|𝑑𝑖𝑠𝑡(𝑖, 𝑞) ≤ 𝑟𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑}. (9) 

The neighborhood membership of each point in the dataset 𝑋 is calculated, and the threshold ′𝛼′ is 

determined based on the density of points. 𝐴 point is considered an outlier if its neighborhood membership 

is less than 𝛼. 

𝑀𝑖
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 = {

< 𝛼, 𝑜𝑢𝑡𝑙𝑖𝑒𝑟
≥ 𝛼, 𝑛𝑜𝑛 𝑜𝑢𝑡𝑙𝑖𝑒𝑟

. (10) 

The value of 𝛼 is chosen from the range of neighborhood membership values and is typically close to 

zero. A data point with membership below 𝛼 is classified as an outlier. Since 𝛼 depends on the dataset density, 

it becomes a critical parameter for outlier identification. 

To illustrate the difference, consider a simple two-dimensional dataset with two compact clusters and 

one distant point. As shown in Fig. 2, FCM treats all points equally, causing the outlier to influence the cluster 

centroids. In contrast, DOFCM assigns a very low neighborhood membership to the outlier, isolating it into 

a separate cluster without affecting the main centroids. This demonstrates how DOFCM enhances clustering 

robustness by effectively identifying outliers. 
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Figure 2. Comparison of Clustering Results Between FCM and DOFCM 

Fig. 2 illustrates the difference between FCM and DOFCM in handling outliers. In the case of FCM, 

the outlier is treated as part of the cluster, which shifts the centroid position and reduces clustering accuracy. 

In contrast, DOFCM assigns a low neighborhood membership value to the outlier, isolating it into a separate 

cluster. This prevents the outlier from influencing the main cluster centroids and demonstrates the robustness 

of DOFCM in identifying anomalies more effectively. 

2.5 Particle Swarm Optimization (PSO)  

PSO is an optimization technique inspired by the social behavior of organisms such as flocks of birds 

or schools of fish [36], [37].  This algorithm is used to find optimal solutions in large and complex search 

spaces [38]. The process of PSO is as follows: 

1. Initializing particles 

𝑥𝑖(0) = 𝑥𝑚𝑖𝑛,𝑑 + 𝑟𝑑(𝑥𝑚𝑎𝑥,𝑑 − 𝑥𝑚𝑖𝑛,𝑑), 

∀𝑑 = 1, … , 𝑛𝑥, ∀𝑖 = 1, … 𝑛𝑠. (11) 

 Eq. (11) initializes the initial position of particles in the search space of the PSO algorithm. The initial 

position 𝑥𝑖(0) of the 𝑖 particle is determined randomly within the range bounded by 𝑥max,𝑑 and 𝑥max,𝑑 where 

𝑟𝑑 is a random number between 0 and 1.  

2. Calculating the objective function (𝑓(𝑥)) 

Complex optimization problems can be addressed using the PSO algorithm, where the objective 

function value is used to evaluate the fitness of individuals. To maximize the function ℎ, the fitness is 

calculated as 𝑓(𝑥) = ℎ, while for minimization, the fitness is computed as 𝑓(𝑥) =
1

ℎ
, as stated in Eq. (12). 

𝑉𝑖𝑑(0) = 0. (12) 

The initial position of the optimal individual (𝑝𝐵𝑒𝑠𝑡𝑖) can be initialized with the particle’s position at 

time 𝑡 = 0. Eq. (13) indicates that the initial velocity 𝑉𝑖𝑑(0) of the particle in each dimension is considered 

to be zero. 

𝑝𝐵𝑒𝑠𝑡𝑖(0) = 𝑥𝑖(0). (13) 

3. Finding the Local Best (pBest) and Global Best (gBest) 

This version maintains formal and clear language appropriate for scientific writing. If you have specific 

calculations or formulas for 𝑝𝐵𝑒𝑠𝑡 can provide them for a more detailed explanation. 

𝑝𝐵𝑒𝑠𝑡𝑖(𝑡 + 1) = {
𝑝𝐵𝑒𝑠𝑡𝑖(𝑡), If  𝑓(𝑥𝑖𝑑(𝑡 + 1)) ≥ 𝑓(𝑝𝐵𝑒𝑠𝑡𝑖(𝑡)),

𝑥𝑖𝑑(𝑡 + 1), If  𝑓(𝑥𝑖𝑑(𝑡 + 1)) < 𝑓(𝑝𝐵𝑒𝑠𝑡𝑖(𝑡)).
(14) 



BAREKENG: J. Math. & App., vol. 20(2), pp. 1453- 1472, Jun, 2026.     1459 

 

 

Eq. (14) states that the 𝑝𝐵𝑒𝑠𝑡 of a particle in the next iteration 𝑝𝐵𝑒𝑠𝑡 remains the same as the current 

𝑝𝐵𝑒𝑠𝑡 if the objective function value 𝑝𝐵𝑒𝑠𝑡 at the new position is not better than the current 𝑝𝐵𝑒𝑠𝑡. However, 

if the value of 𝑝𝐵𝑒𝑠𝑡 at the new position is better, then 𝑝𝐵𝑒𝑠𝑡 is updated to this new position. 

𝑓(𝑔𝐵𝑒𝑠𝑡𝑖(𝑡)) = min{𝑓(𝑥𝑖𝑑(𝑡)), … , 𝑓(𝑥𝑛𝑑(𝑡 + 𝑚))} . (15) 

Eq. (15) defines 𝑝𝐵𝑒𝑠𝑡 as the minimum value of  𝑓 among all particles in the population at the current 

iteration, representing the best position discovered by any particle in the population. This ensures that PSO 

continuously directs particles towards the best solution found so far. 

4. Updating Speed and Position 

The velocity (𝑣𝑖𝑑) and position (𝑥𝑖𝑑) of a particle can be calculated using the obtained 𝑝𝐵𝑒𝑠𝑡 and 

𝑔𝐵𝑒𝑠𝑡. The following Equation describes the change in velocity (𝑣𝑖𝑑). 

𝑣𝑖𝑑
(𝑡+1)

= 𝑤 ∗ 𝑣𝑖𝑑
𝑡 + 𝑐1

𝑡 ∗ 𝑟1 ∗ (𝑝𝐵𝑒𝑠𝑡𝑖
𝑡 − 𝑥𝑖𝑑

𝑡 ) + 𝑐2
𝑡 ∗ 𝑟2 ∗ (𝑔𝐵𝑒𝑠𝑡𝑡 − 𝑥𝑖𝑑

𝑡 ). (16) 

Eq. (16) illustrates how the velocity of a particle (𝑣) is updated by taking into account the previous 

inertia (𝑤), the cognitive component (𝑐1) that directs the particle towards its own best position (𝑝𝐵𝑒𝑠𝑡), and 

the social component (𝑐2) that guides the particle towards the global best position (𝑔𝐵𝑒𝑠𝑡). 

𝑥𝑖𝑑
𝑡+1 = 𝑥𝑖𝑑

𝑡 + 𝑉𝑖𝑑
𝑡+1. (17) 

Eq. (17) describes how a particle’s position (𝑥) is updated by adding the new velocity to the current position. 

if  𝑣𝑖𝑑
𝑡+1 > 𝑣𝑑

max  , so  𝑣𝑖𝑑
𝑡+1 = 𝑣𝑖𝑑

max  = 𝑣𝑑
max  , 

if  𝑣𝑖𝑑
𝑡+1 < −𝑣𝑑

max  , so   𝑣𝑖𝑑
𝑡+1 = −𝑣𝑑

max  . (18) 

Eq. (18) ensures that the particle’s velocity does not exceed the predefined maximum value (𝑣𝑚𝑎𝑥) by 

capping the velocity at (𝑣𝑚𝑎𝑥) if the calculated velocity surpasses this limit. 

𝑣𝑑
max  = g ∗ (𝑥𝑑

max  − 𝑥𝑑
min  ), g ∈ (0,1). (19) 

Eq. (19) defines the maximum particle velocity (𝑣𝑚𝑎𝑥) based on the particle’s position range and a scaling 

factor (𝑔) that lies within the interval (0,1). 

5. Stochastic Injection 

Early convergence often occurs in small search spaces because particles quickly reach the global best 

position (𝑔𝐵𝑒𝑠𝑡) causing the population to lose diversity. To address this, a random injection system is 

employed, where the position of particle 𝑛 is reinitialized at every iteration interval 𝑔. If the values of 

(𝑝𝐵𝑒𝑠𝑡) and fitness remain the same, the particle is randomly injected to maintain diversity and increase the 

chances of finding a better solution. The values of 𝑛 and 𝑔 are determined based on prior experiments. 

6. Stopping Criteria 

Criteria are used to terminate the iterations and obtain the best solution. To avoid prematurely 

converging on a suboptimal solution, the stopping condition must ensure that PSO does not halt too early. In 

this optimization problem, the stopping condition is defined as reaching the maximum number of iterations. 

In this study, the PSO parameters were set as follows: population size (number of particles) = 5, dimensions 

= 4 (based on the number of features in the Iris dataset used as illustration), maximum iteration = 100, 

cognitive coefficient (𝑐₁) = 2, social coefficient (𝑐₂) = 2, and inertia weight (𝜔) = 0.5. These parameter 

settings were adopted from previous studies that demonstrated stable convergence under similar 

configurations. 

2.6 Genetic Algorithm (GA)  

Genetic Algorithm mimics the natural evolution process based on Darwin’s theory of natural selection, 

utilizing selection, mutation, and crossover to find optimal solutions in a large search space [39], [40]. The 

GA process begins with the creation of an initial population, which is generated randomly to form a diverse 

set of potential solutions. Chromosome representation is a crucial step, as it defines how each solution is 

encoded for processing within the algorithm. Once encoded, the population is initialized with a predefined 

size to prepare for the evolutionary process. The reproduction stage involves generating offspring through 

crossover and mutation operations. In the crossover step, two parent chromosomes are randomly selected and 
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combined using an advanced intermediate crossover technique to produce offspring that inherit traits from 

both parents. The crossover operation applies the intermediate method, as shown in Eqs. (20) and Eq. (21) . 

𝐶1 = 𝑃1 + 𝛼(𝑃2 − 𝑃1), (20) 

𝐶2 = 𝑃2 + 𝛼(𝑃1 − 𝑃2). (21) 

The values are randomly selected within the interval [−0.25, 1.25]. With a crossover ratio of 0.2, two 

offspring will be produced, calculated as 0.2 × 10 =  2 offspring. Consequently, the crossover process can 

be performed twice. In Eq. (20) 𝐶1 is generated by adding the product of 𝛼 and the difference between 𝑃2 and 

𝑃1 to 𝑃1. In Eq. (21) 𝐶2 is similarly generated, but in this case, 𝛼 is multiplied by the difference between 𝑃1 

and 𝑃2. 

Mutation is a process in which a chromosome changes from its parent chromosome, resulting in 

characteristics of the offspring chromosome differing from those of the parent chromosome.  

𝑥𝑖
′ = 𝑥𝑖

′ + 𝑟(max  𝑖 = min  𝑗). (22) 

If the mutation rate is 0.2, then there will be 2 offspring, calculated as 0.2 × 10 = 2. Each mutation process 

will produce one offspring. 

Fitness Calculation involves selecting the best individuals from the population for the next generation, 

a process known as selection. This study uses the elitist selection method, which retains the individuals with 

the highest fitness. For the Genetic Algorithm, the parameters used were: population size = 10, number of 

generations = 5, crossover rate = 0.2, and mutation rate = 0.2. These settings were chosen to balance 

exploration and exploitation during the optimization process, preventing premature convergence while 

maintaining diversity in the population. 

2.7 Evaluation Method 

The Silhouette Coefficient (SC) method is used to evaluate how well data is clustered within clusters. 

The SC ranges from −1 to 1, with higher values indicating that objects are closer to their own cluster [41]. 𝐴 

value around 0 suggests that the objects are between two clusters, while values close to −1 indicate that the 

objects are far from their own cluster. The formula for calculating the SC is given as follows: 

𝑆𝐶 =
𝑏 −  𝑎

max( 𝑎, 𝑏)
 . (23) 

In this formula, 𝑎 represents the average distance between a data point and all other points within the 

same cluster, also known as the intra-cluster distance. Meanwhile, 𝑏 denotes the average distance between 

the data point and all points in the nearest neighboring cluster, referred to as the nearest-cluster distance. 

These two values are used to assess how appropriately a data point has been clustered, with higher Silhouette 

Coefficient values indicating better clustering performance. This Eq. (23) evaluates how well a data point fits 

within its assigned cluster compared to other clusters. An SC value close to 1 indicates that the data point is 

well matched to its own cluster and poorly matched to neighboring clusters. 

At the computational level, the baseline DOFCM algorithm has a time complexity of 𝑂(𝑛 ⋅ 𝑘 ⋅ 𝑡), 

where 𝑛 is the number of data points, 𝑘 the number of clusters, and 𝑡 the number of iterations. When optimized 

with PSO, the complexity increases to approximately 𝑂(𝑝 ⋅ 𝑑 ⋅ 𝑡), with 𝑝 denoting the number of particles 

and 𝑑 the data dimensionality, since each particle evaluates the objective function in every iteration. In 

contrast, DOFCM-GA has a complexity of about 𝑂(𝑔 ⋅ 𝑝𝑜𝑝 ⋅ 𝑑), where 𝑔 is the number of generations and 

𝑝𝑜𝑝 is the population size. In practice, PSO tends to be computationally lighter for low-dimensional data and 

small populations, while GA often yields more stable solutions at the expense of slightly higher runtimeBold 

using proper case letters. 

3. RESULTS AND DISCUSSION 

This section presents the experimental results and discussion of the proposed methods. The evaluation 

focuses on comparing the clustering performance of DOFCM, DOFCM-PSO, and DOFCM-GA across five 

benchmark datasets. The SC is used as the primary metric to assess clustering quality in terms of compactness 

and separation. In addition, visualization of the clustering results is provided to highlight differences in how 



BAREKENG: J. Math. & App., vol. 20(2), pp. 1453- 1472, Jun, 2026.     1461 

 

 

PSO and GA optimize cluster centers. The findings are then analyzed to identify which optimization 

technique delivers more robust performance in handling outliers 

3.1 Data Normalization  

Data normalization is performed by scaling the original data into a range of [0, 1] using the min–max 

normalization method, as defined in Eq. (2). A small sample of the normalized data is shown in Table 2 for 

illustration. 

Table 2. Data Normalization in Data Iris 

No. x₁ x₂ x₃ x₄ y 

1 0.2222 0.6250 0.0678 0.0416 Iris Setosa 

2 0.1667 0.4167 0.0678 0.0416 Iris Setosa 

3 0.1111 0.5000 0.0508 0.0416 Iris Setosa 

4 0.2778 0.5833 0.0847 0.0416 Iris Setosa 

5 0.3333 0.4167 0.1186 0.0416 Iris Setosa 

Table 2 shows an example (5 rows) of the Iris dataset normalized using the min–max method of Eq. 

(1), which scales the attributes (x₁–x₄) into the range [0,1] to ensure uniform feature contributions. Only the 

Irish data is shown here because it is simple, low-dimensional, easy to visualize, and often used as a 

benchmark. Normalization is crucial in clustering to prevent larger-scale features from dominating the 

distance calculation 

3.2 Data Implementation in the Density Oriented Fuzzy C-Means (DOFCM)  

DOFCM is an algorithm used to identify data considered as outliers based on the local density of 

nearest neighbors using the FCM method. The steps involved in the process are as follows: 

1. Initial Centroid Initialization 

Initialize Centroid Positions Randomly initialize the centroid positions (𝑥𝑗) using the number of 

clusters (𝑘 = 2) and the fuzziness parameter (𝑚 = 2), as follows: 

𝑥1 = [0.5000, 0.3333, 0.6271, 0.4583], 

𝑥2 = [0.3888, 0.7500, 0.1186, 0.0833]. 

2. Calculating Distance. 

For each data point 𝑥𝑖 the Euclidean distance to the cluster centroids is calculated using Eq. (7). Based 

on this Equation, the distance between data point 1 and centroid 1 is 0.7873, while the distance between data 

point 1 and centroid 2 is 0.1060. Similarly, the distance between data point 150 and centroid 1 is 0.2127, and 

the distance to centroid 2 is 0.9075. This calculation is performed for all pairs of data points. 

3. Update membership values 

After calculating the distances between data points and cluster centroids, the membership value 𝑢𝑘𝑖 for 

each data point 𝑥𝑖 in cluster 𝑘 is updated using Eq. (5). For example, for data point 1, the distance ratio 
𝑑(𝑥𝑖,𝑥1)

𝑑(𝑥1,𝑥1)
 

is 0.7873 and 
𝑑(𝑥𝑖,𝑥2)

𝑑(𝑥1,𝑥2)
 is 0.1016, resulting in a membership value 𝑈𝑖,1 of 0.0061. Conversely, for data point 

150, the distance ratio 
𝑑(𝑥𝑖,𝑥1)

𝑑(𝑥1,𝑥1)
 is 0.9075 and 

𝑑(𝑥𝑖,𝑥2)

𝑑(𝑥1,𝑥2)
 is 0.2127, resulting in a membership value 𝑈𝑖,1 of 0.0206. 

This calculation is performed for all data points within the cluster. 

4. Update Centroid  

The next step involves updating the centroid positions 𝑣𝑘 using Eq. (6). The updated centroids are 

obtained as follows: 

𝑣1 = [0.5659, 0.3778, 0.6798, 0.6781], 

𝑣2 = [0.2027, 0.5731, 0.1009, 0.0825]. 
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5. Calculating Density 

To calculate the density of a point 𝑥𝑖 in the dataset 𝑋, the first step is to compute the Euclidean distance 

between each pair of points using Eq. (7). After calculating the Euclidean distances for all point pairs in the 

dataset, the number of other points within the neighborhood radius 𝑟𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 = 0.5  can be computed 

using Eq. (9). Here, 𝑖 is an indicator function that takes the value 1 if the condition in parentheses is met, and 

0 otherwise. With  𝑟𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 = 0.5, the results of the density calculation are presented in Table 3. 

Table 3. Results of Density Calculation 

Point ID Density Value 

1 49 

2 48 

… … 

150 88 

Table 3 presents the density values of selected data points. A density threshold (𝛼) is applied, where 

points with values below 𝛼 are classified as outliers, while those above 𝛼 are considered valid members of a 

cluster, it can be observed that data points with lower density values indicate a higher likelihood of being 

anomalies. By applying the threshold 𝛼, the algorithm effectively separates valid data from potential outliers, 

ensuring more compact and reliable clustering results. Next, the maximum density value (𝜂𝑚𝑎𝑥 = 90), and 

the neighborhood membership value (𝑀𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑
𝑖 )is calculated using Eq. (8). 

6. Outlier Identification.  

The next step is to identify outliers using the threshold value (𝛼 = 0.5) and Eq. (10). To determine 

whether a data point 𝑥𝑖 in the dataset is considered an outlier or not, the following procedure is used: 

𝑀𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑
1 > 𝛼 = 0.5444 > 0.5 (non-outlier), 

⋮ 

𝑀𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑
150 > 𝛼 = 0.9778 > 0.5 (non-outlier). 

Using the threshold value (𝛼 = 0.5), 17 data points are identified as outliers in this dataset. The dataset, 

including the identified outliers, is visualized using a scatter plot in Fig. 3.  

 
Figure 3. Visualization of Outlier Identification by DOFCM, Highlighting 17 Detected Outliers with Low 

Neighborhood Density that can Affect Clustering and Data Analysis 

In Fig. 3, the blue dots represent data points considered as non-outliers by the DOFCM algorithm. 

These points have a sufficiently high neighborhood density, equal to or greater than the predefined threshold 

value α. In contrast, the red dots indicate 17 data points identified as outliers due to their low neighborhood 

density, falling below the threshold value 𝛼, and being far from most other data points. The green “X” marks 

represent the centroid positions of clusters found by the DOFCM algorithm, calculated as the average of all 
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points within the cluster, taking into account the membership value of each point. Detecting and excluding 

such outliers is crucial for ensuring robust clustering performance and reliable interpretation of the dataset.  

After outlier identification using DOFCM by analyzing the density of each data point, clustering 

quality evaluation is carried out using the SC. The process begins by reading and separating the dataset 

features, then standardizing them. The DOFCM algorithm is run through fuzzy membership initialization, 

centroid calculation, and updates until convergence. After the cluster is formed, the label is determined based 

on the largest membership, and then the SC is calculated. The results are in Table 8. 

3.3 Implementation of the Particle Swarm Optimization (PSO)  

Optimization of centroids based on the DOFCM method using the PSO algorithm aims to find the best 

cluster centers where there are outliers. The PSO processes include the initialization of particles and 

velocities, evaluating particles, searching for the best individual value (pBest), searching for the global best 

value (gBest), and updating particle positions and velocities. The detailed steps are as follows: 

1. Initializing Particle Position and Velocity 

The initial stage of the PSO process begins with setting the positions and velocities of the particles. 

Five sample data points from the independent variables of the Iris dataset are used to determine these initial 

positions. The position values vary across clusters, where Cluster 1 has a higher range (from 0.333 to 0.8083), 

while Cluster 2 has a lower range (from 0.1560 to 0.4402). In iteration 0, each particle is assigned an initial 

position across all dimensions, as shown in Table 4. The initial velocity (𝑣𝑖) of all particles is set to zero in 

each dimension, indicating that there is no movement at the start of the process. 

Table 4. Sample Data for PSO Process 

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 

0.2222 0.6250 0.0678 0.0417 

0.1667 0.4167 0.0678 0.0417 

… … … … 

0.1944 0.6667 0.0677 0.7916 

The PSO process starts by initializing the positions and velocities of particles. A subset of sample data 

is shown in Table 4 to illustrate the initialization. Cluster 1 has higher position values (0.333–0.8083) 

compared to Cluster 2 (0.1560–0.4402). At iteration 0, each particle is assigned an initial position across all 

dimensions, with an initial velocity 𝑣𝑖 set to zero. The next step is to determine the parameters to be used 

during the optimization process. The PSO parameters are presented in Table 5. 

Tabel 5. PSO Parameters Used in the Experiment  

Number of 

Particles 

Number of 

Dimensions 

Acceleration 

Coefficient (𝒄𝟏) 

Acceleration 

Coefficient (𝒄𝟐) 

Number of 

Clusters (𝒌) 

5 4 2 2 2 

The PSO parameters were selected to balance solution quality and computational efficiency. A small 

particle size and iteration limit were chosen for faster convergence, while coefficients c₁ and c₂ = 2 are 

commonly used values that promote exploration and exploitation balance. At this stage, the initial positions 

of the particles are ready to be used in the iterative optimization process to update the cluster centers. The 

number of particles was set to five to balance computational efficiency with the ability to adequately explore 

the solution space. A small particle size reduces computation time, which is suitable for relatively low-

dimensional datasets such as Iris, while still maintaining sufficient diversity among solutions. The number of 

dimensions was chosen as four, corresponding directly to the four independent variables of the Iris dataset 

(sepal length, sepal width, petal length, and petal width). The acceleration coefficients 𝑐1 and  𝑐2  were both 

set to 2, following common practice in PSO literature [38], to maintain a balance between exploration 

(searching new areas of the solution space) and exploitation (refining known good solutions). Finally, the 

constriction factor 𝑘 =  2 was employed to stabilize the particle movements and avoid divergence, ensuring 

convergence toward optimal cluster centers. These parameter settings are consistent with standard PSO 

implementations and provide reliable convergence for clustering problems with outliers. 
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2. To calculate the Objective Function and Fitness Function 

The next step is to find the objective value of the DOFCM method with the fuzzy parameter (𝑚) = 2 using 

the following Equation. 

𝐽𝑚 = ∑ ∑ 𝑢𝑖𝑗
𝑚‖𝑥𝑖 − 𝑐𝑗‖

2
𝐶

𝑗=1

𝑁

𝑖=1

. (24) 

The objective values represent the clustering quality obtained before the optimization process begins, 

where a lower value reflects a better initial clustering configuration. The fitness value of each particle is then 

calculated using Eq. (25): 

𝑓 =
1

𝐽𝑚 + 𝜀
, (25) 

where  𝜀 = 1𝑒 − 8. The combined objective and fitness values for each particle at iteration 0 are shown in 

Table 6. The objective values represent the clustering quality generated by the DOFCM method before 

optimization, where lower values indicate better initial clustering. The fitness values are computed directly 

from the corresponding objective values using Eq. (25), providing a normalized measure of each particle’s 

clustering performance. 

Table 6. Objective and Fitness Values at Iteration 0 

Particle Objective Value (unitless) Fitness Value (unitless) 

1 57.2611 0.0174 

2 59.7840 0.0167 

3 41.1348 0.0243 

4 48.2075 0.0207 

5 53.1815 0.0188 

Table 6 presents the initial objective and fitness values for each particle at iteration 0. Particle 3 shows 

the lowest objective value (41.1348), suggesting the most favorable initial cluster arrangement. The 

corresponding fitness values provide a normalized measure of clustering quality and guide the Particle Swarm 

Optimization (PSO) process by highlighting particles with greater potential to influence the search toward 

optimal clustering solutions. 

3. Initializing Local Best (pBest) and Global Best (gBest) 

The pBest position values for each particle are calculated based on the initial particle values, and the 

pBest fitness values are determined using the fitness values of each particle. At iteration 0, the pBest position 

for each particle is calculated from the initial particle values, and the pBest fitness is computed using the 

fitness values of the particles. The results show that the particle 𝑥2 in Cluster 1 has the best pBest value with 

a fitness of 0.0167, while particle 𝑥3 has the highest pBest fitness of 0.0243, indicating variability in the 

optimality of particle positions across clusters. Subsequently, the gBest position is initialized from the pBest 

position with the highest strength, and the gBest strength starts with the maximum strength value. At iteration 

0, the best gBest position for Cluster 1 is achieved with a fitness value of 0.0243 and a position of (0.3042, 

0.5247, 0.4319, 0.2912). Meanwhile, Cluster 2 has a gBest position at (0.6118, 0.1394, 0.2921, 0.3663), but 

the gBest fitness value is not displayed, indicating that optimality focus is more prominent in Cluster 1 during 

this iteration. 

4. Update Particle Velocity and Particle  

After obtaining the pBest and gBest values for each particle, the next step is to update the velocity using the 

following Equation. 

𝑣𝑖𝑗
𝑡+1 = 𝜔𝑡𝑣𝑖𝑗

𝑡 + 𝑐1𝑟1𝑗
𝑡 (𝑝𝐵𝑒𝑠𝑡𝑖𝑗

𝑡 − 𝑥𝑖𝑗
𝑡 ) + 𝑐2𝑟2

𝑡(𝑔𝐵𝑒𝑠𝑡𝑖𝑗
𝑡 − 𝑥𝑖𝑗

𝑡 ). (26) 

Given  𝜔 = 0.5, 𝑟1 = 0.5 and 𝑟2 = 0.5, update the velocities of individuals 𝑣1 through 𝑣5 within two 

clusters 𝑐1 and 𝑐2 during the first iteration, with varying velocity updates in each dimension 𝑥1 through 𝑥4. 

Some individuals, such as 𝑣3, experience no change in velocity (i.e., zero), while others, such as 𝑣5, exhibit 

significant changes, particularly within specific clusters. Overall, this data illustrates the differences in 

velocity dynamics among individuals in the two clusters, reflecting their movement or positional changes 

within the multidimensional space. 
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5. Calculating Velocity Clamping. 

In the process of constraining particle velocity, the newly computed velocity values are adjusted to 

ensure that the particles remain within the desired solution range, which in this case is the interval [-0.1, 0.1]. 

For example, in Iteration 1, the particle velocities for each cluster and variables 𝑥1 through 𝑥4 have been 

adjusted to fit within this interval. Velocity values exceeding the upper or lower bounds, respectively, as  0.1 

or −0.0703 , have been clipped to ensure compliance with the specified range, supporting better solution 

convergence. 

6. Update Particle Position 

To update the position of a particle at the next iteration, we use the Equation (𝑥𝑖𝑗
𝑡+1 = 𝑥𝑖𝑗(𝑡) + 𝑣𝑖𝑗

𝑡+1). 

In the first iteration, the particle’s position is in cluster 1, with the initial position being [0.3042, 0.8507, 

0.6319, 0.4986], and in cluster 2, the initial position is [0.2560, 0.1394, 0.1580, 0.7661]. Using the Equation 

provided and the given velocity data, the particle’s position will be updated according to the changes 

calculated during that iteration. 

7. Update the positions of pBest and gBest 

By repeating the same computational steps, the process continues until it reaches the maximum number 

of iterations, which is set to 100. At the fifth iteration, the positions of pBest are obtained and presented in 

Table 7, respectively. The pBest positions are selected based on the best fitness value observed for each 

particle during the optimization process.  

Tabel 7. pBest Iteration 

Particle Cluster 1 (𝒙₁, 𝒙₂, 𝒙₃, 𝒙₄) Cluster 2 (𝒙₁, 𝒙₂, 𝒙₃, 𝒙₄) Fitness 

𝑥₁ (0.0117, 0.4220, 0.2950, 0.4860) (0.5772, 0.0437, 0.1230, 0.5586) 0.03386513 

𝑥₂ (0.3432, 0.7291, 0.6522, 0.8456) (0.6924, 0.4299, 0.6729, 0.2753) 0.03386521 

𝑥₃ (0.3063, 0.7889, 0.4464, 0.7983) (0.8224, 0.8575, 0.9166, 0.4309) 0.03386515 

𝑥₄ (0.3188, 0.5821, 0.3712, 0.6011) (0.7056, 0.6884, 0.3746, 0.1668) 0.03386525 

𝑥₅ (0.4305, 0.1426, 0.8901, 0.3459) (0.1545, 0.0255, 0.6458, 0.6369) 0.03386507 

Based on Table 7, the best fitness value of 0.03386507 was achieved by particle 𝑥5. Therefore, the 

pBest position of this particle is selected as the best cluster center for this iteration. Specifically, the pBest 

for Cluster 1 is located at [0.4305,0.1426,0.8901,0.3459], while for Cluster 2, it is at 

[0.1545,0.0255,0.6458,0.6369].  

The results at iteration 5, the global best position (gBest) achieved a fitness value of 0.03386533, 

outperforming all individual personal best (pBest) fitness values. This gBest encodes two optimized cluster 

centers, each represented by four features: Cluster 1 is located at [0.5696, 0.4490, 0.6472, 0.4999], and Cluster 

2 at [0.2028, 0.5368, 0.0422, 0.0336]. These final cluster centers will serve as the optimized solution in 

subsequent iterations of the DOFCM method, with the aim of enhancing cluster separation and improving 

the overall accuracy of the clustering results. 

3.4 Implementation of Genetic Algorithm (GA)  

In the DOFCM method, the GA is employed to optimize the cluster centers obtained from the initial 

clustering process. The GA performs a series of operations starting from random population generation, 

followed by fitness evaluation, selection, crossover, mutation, and elitism to iteratively improve the quality 

of clustering. Each step in the GA is designed to enhance the separation between clusters and reduce intra-

cluster variance. The following subsections explain each step of the GA implementation in detail. 

1. Random Population Generation  

In the genetic algorithm, the formation of a new population is the initial stage where individuals or 

solutions are generated randomly. In this study, each individual consists of a number of genes calculated as 

the number of variables multiplied by the number of clusters. With cluster initialization 𝑘 =  2, each 

individual has 8 genes. The initialization of individuals in the population involves assigning each individual 

to cluster center positions for each cluster. For example, for the Iris dataset, individual 𝐼𝑁𝐷1  has cluster 

centers for cluster 1 as left [0.3745, 0.9507, 0.7319, 0.5986] and for cluster 2 as [0.1560, 0.1559, 0.0580, 

0.8661]. Other individuals, such as seperti 𝐼𝑁𝐷2, 𝐼𝑁𝐷3, 𝐼𝑁𝐷4, and 𝐼𝑁𝐷5, also have different cluster center 

positions. 
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2. Calculation of Fitness Value  

In the early stages of a genetic algorithm, a new population is formed with individuals that are 

collections of random solutions. Each gene in an individual consists of multiple variables multiplied by the 

number of clusters, with an example of  𝑘 =  2 resulting in 8 genes per individual. The distance between 

solutions is computed using the Euclidean distance formula, 𝑑(𝑥𝑖, 𝑦𝑗) = √∑ (𝑥𝑖𝑏 − 𝑦𝑗𝑏)
2𝑝

𝑏=1 . In this 

research, for a solution 𝐼𝑁𝐷1, the distance to data point 1 is 𝐷1 =  0.9384 and the distance to data point 2 is 

𝐷2 =  0.9509. The minimum distance is calculated for each data point, resulting in a total minimum distance 

of 103.7533. The fitness value of 𝐼𝑁𝐷1 is calculated as follows 𝐹 =
1

𝐷
=

1

103.7533
= 0.0096 . 

3. Individual Selection Process 

In the individual selection stage of a genetic algorithm, a roulette wheel is used to select individuals 

based on their fitness values. Each individual has a probability in the range of 0-1, calculated from their 

relative fitness value. In this study, 𝐼𝑁𝐷3  has a probability of 0.2428 with a cumulative range of 0.3415-

0.5842, and 𝐼𝑁𝐷5  has a probability of 0.2047 with a cumulative range of 0.7954-1.0000. Selection is 

performed by generating a random number 𝑝  and comparing it to the cumulative ranges. The selected 

individuals, such as 𝐼𝑁𝐷3 and 𝐼𝑁𝐷4 in this study, will serve as parents to produce new offspring. 

4. Crossover Reproduction Process 

Crossover is the initial step in genetic reproduction where two individuals (Parent 1 and Parent 2) are 

randomly selected to produce offspring. The number of offspring generated depends on the crossover rate 

(Cr) and the population size. In this study, the crossover rate was set to 𝐶𝑟 =  0.2, which means that two 

offspring were produced because 𝐶𝑟 × 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑆𝑖𝑧𝑒 = 2. A moderate crossover probability was chosen 

to balance exploration and exploitation, helping preserve high-quality gene segments while ensuring 

population diversity.  

The crossover rate was set to 0.2 to balance exploration and exploitation [40]. This value is suitable 

for clustering problems, where maintaining stable cluster center information is important. A low crossover 

probability helps preserve high-quality gene segments while still ensuring diversity in the population, and 

moderate crossover rates support stable convergence and reduce the risk of premature stagnation [40]. 

Additionally, there are 3 crossover points chosen randomly. During the crossover process, genetic material 

from the parents is exchanged at predefined crossover points. To simplify illustration, one example of 

crossover at Gene Index 1 is presented in Table 8, where shading is used to highlight the exchanged segments 

between parents. 

Table 8. Example of Crossover between Two Parents Illustrating how Gene Exchange Enhances Population 

Diversity 
Gene Index Parent 1 Parent 2 Offspring 1 (OF₁) Offspring 2 (OF₂) 

1* 0.3042 0.0650 0.3042 0.0650 

2 0.5247 0.9488 0.9488 0.5247 

3 0.4319 0.9656 0.4319 0.9656 

4 0.2912 0.8083 0.8083 0.2912 

From Table 8, it can be observed that Offspring 1 inherits the first segment from Parent 1 and the 

following segments from Parent 2, while Offspring 2 follows the opposite pattern. The asterisk (*) indicates 

the crossover point where genetic segments are exchanged, highlighting how genetic material is recombined 

between parents. This recombination clearly demonstrates how crossover generates new genetic 

combinations, thereby enhancing population diversity and reducing the risk of premature stagnation in the 

optimization process. 

5. Gene Mutation Reproduction Process 

In the gene mutation phase of a genetic algorithm, an individual is randomly selected for mutation, 

resulting in offspring based on the mutation rate (Mr) and population size. With an Mr of 0.2, two offspring 

are produced by mutating two genes. In the first iteration, 𝐼𝑁𝐷4 and 𝐼𝑁𝐷1 are chosen for mutation at gene 

positions 7 and 4, respectively. A random value r of 0.0901 is added to these genes, resulting in two new 

offspring with mutated genes. 
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6. Elitism Process 

At this stage, the population size increased from 10 to 14 individuals after the reproduction process, 

which generated 4 new offspring. To maintain a consistent population size, the elitist selection method  

(elitism) was applied by preserving individuals with the best fitness values. Table 9 presents a summary of 

the fitness values of all individuals, including both the original and offspring, after reproduction. 

Table 9. Population After Selection and Gene Reproduction 

Individual Chromosome Fitness 

𝑰𝑵𝑫𝟑 [
𝟎. 𝟑𝟎𝟒𝟐 𝟎. 𝟓𝟐𝟒𝟕 𝟎. 𝟒𝟑𝟏𝟗 𝟎. 𝟐𝟗𝟏𝟐
𝟎. 𝟔𝟏𝟏𝟖 𝟎. 𝟏𝟑𝟗𝟒 𝟎. 𝟐𝟗𝟐𝟏 𝟎. 𝟑𝟔𝟔𝟑

] 1.472 

𝐼𝑁𝐷5 [
0.0650 0.9488 0.9656 0.8083
0.3046 0.0976 0.6842 0.4401

] 1.242 

𝐼𝑁𝐷4 [
0.4560 0.7851 0.1996 0.5142
0.5924 0.0464 0.6075 0.1705

] 1.228 

𝐼𝑁𝐷1 [
0.3745 0.9507 0.1996 0.5142
0.5924 0.0464 0.6075 0.1705

] 1.063 

𝑂𝐹𝐹1 [
0.3042 0.9488 0.4319 0.2912
0.6118 0.1394 0.6842 0.4401

] 1.258 

𝑂𝐹𝐹2 [
0.0650 0.5247 0.9656 0.8083
0.3046 00976 0.2921 0.3663

] 1.251 

𝑂𝐹𝐹3 [
0.4560 0.7851 0.1996 0.5142
0.5924 0.0464 0.6741 0.1705

] 1.228 

𝑂𝐹𝐹4 [
0.3745 0.9507 0.7319 0.6791
0.1560 0.1559 0.0580 0.8661

] 1.039 

At the end of the optimization process using the Genetic Algorithm (GA), the best cluster centers were 

successfully obtained after five generations. Each individual in the population encodes two cluster centers, 

each represented by four features, forming a total of eight genes. The final solution was derived from the 

individual (IND₃) with the highest fitness value of 0.1472. The corresponding cluster centers obtained using 

the DOFCM method are as follows: 

[
0.3042 0.5247 0.4319 0.2912
0.6118 0.1394 0.2921 0.3663

]. 

These cluster centers represent the best outcome from the optimization process and are used as the final 

solution for clustering in the DOFCM-GA framework. 

3.5 Cluster Evaluation Process  

The clustering results were evaluated using the SC method to assess clustering quality with the 

assistance of computational tools across five datasets. After identifying outliers using DOFCM through local 

density analysis, the clustering process proceeded with feature standardization and initialization of fuzzy 

memberships. Cluster centroids were computed and updated iteratively until convergence. The final cluster 

label was assigned based on the highest membership value.  

The centroids resulting from DOFCM represent the spatial position of each cluster in the feature space. 

The distance to the centroid plays a significant role in determining fuzzy memberships, which ultimately 

affects the SC value. The combination of SC values and centroid positions highlights DOFCM’s effectiveness 

in handling datasets with varying complexity and distribution characteristics. 

To further demonstrate the effectiveness of the optimization-based clustering, we provide a 

comparative analysis of SC values obtained by DOFCM, DOFCM-PSO, and DOFCM-GA. Table 10 

summarizes the results. 

Table 10. SC Values of DOFCM, DOFCM-PSO, and DOFCM-GA 

No Dataset DOFCM DOFCM-PSO DOFCM-GA 

1 Iris 0.4574 0.6029 0.6291 

2 Ionosphere 0.2678 0.3116 0.3136 

3 Diabetes 0.1794 0.2423 0.2532 

4 Sonar 0.1350 0.1512 0.1631 

5 Wine 0.1304 0.2759 0.2958 
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The results in Table 10 show that both DOFCM-PSO and DOFCM-GA improve clustering quality 

compared to the baseline DOFCM. Among the two optimization methods, GA consistently achieves the 

highest SC values across all datasets, demonstrating its effectiveness in generating more compact and well-

separated clusters. The most notable gain is observed in the Wine dataset, where GA achieves the best 

improvement over both DOFCM and PSO.  

A particular case is found in the Iris dataset, where PSO performs relatively well. The SC value of 

DOFCM-PSO (0.6029) is close to the GA result (0.6291). This outcome can be attributed to the simplicity of 

the Iris dataset, which has only four features and well-separated natural classes. The lower dimensionality 

and clearer structure allow PSO to converge toward near-optimal cluster centers, leading to well-defined 

clusters despite its tendency toward premature convergence. In contrast, the Sonar, Ionosphere, and Diabetes 

datasets have higher dimensionality and noisier features, which make clustering more difficult. Under these 

conditions, PSO struggles to balance exploration and exploitation, often producing clusters that are less 

compact and overlapping, reflected in their relatively low SC values. GA, on the other hand, benefits from 

crossover and mutation operations that preserve population diversity, enabling it to avoid local optima and 

refine cluster boundaries more effectively.  

Overall, the comparison highlights that GA is superior for complex datasets such as Wine, Sonar, 

Ionosphere, and Diabetes, while PSO is only competitive in simpler datasets like Iris. This suggests that the 

choice of optimization strategy should be aligned with dataset characteristics to achieve optimal clustering 

performance. Moreover, GA demonstrates an advantage in producing denser and more compact clusters, as 

evidenced in the Iris and Wine datasets, where the separation between groups appears clearer. In contrast, 

PSO often yields clusters that are less compact, with greater overlap between boundaries, particularly visible 

in the Sonar and Ionosphere datasets that contain high-dimensional and noisy features. Despite these 

differences, both optimization strategies are able to capture the general data structure, though the presence of 

overlapping regions suggests that the intrinsic complexity of some datasets still limits cluster distinctiveness. 

This highlights that while GA provides better refinement in centroid positioning, dataset characteristics 

remain a critical factor influencing clustering quality 

Although the SC value provides a general overview of the compactness and fragmentation of the 

clusters, the following Table 11 presents an analysis of the number of outliers in each cluster, providing 

additional insight into the robustness of the clustering method to anomalous data. 

Tabel 11. Number of Outliers Detected in each Cluster of Dataset 

Dataset Cluster 
Outliers 

DOFCM 

Outliers 

DOFCM-PSO 

Outliers 

DOFCM-GA 

Iris 

1 4 2 0 

2 2 1 0 

3 1 2 0 

Wine 

1 3 2 1 

2 2 1 0 

3 1 1 0 

Sonar 
1 10 4 2 

2 2 3 1 

Diabetes 
1 21 15 5 

2 0 5 2 

Ionosphere 
1 14 6 2 

2 0 7 2 

From Table 11, it is evident that the number of outliers differs across datasets and optimization 

strategies. For example, in the Iris dataset, DOFCM identified several outliers in all clusters, while DOFCM-

PSO slightly reduced this number, and DOFCM-GA successfully eliminated outliers in most clusters. In the 

Wine and Ionosphere datasets, GA consistently detected fewer outliers compared to PSO, reflecting its ability 

to generate more representative cluster centers. Meanwhile, the Sonar and Diabetes datasets, which contain 

more noise and higher complexity, still exhibited outliers under all methods, although GA managed to 

minimize their presence. These findings indicate that GA generally improves clustering robustness by 

reducing anomalous points across different datasets. 

To further evaluate model performance, empirical runtime measurements were conducted. Table 12 

presents the average computational time of DOFCM, DOFCM-PSO, and DOFCM-GA across the five 

benchmark datasets. 
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Tabel 12. Average Computational Time of DOFCM, DOFCM-PSO, and DOFCM-GA 

Dataset DOFCM (Second) DOFCM-PSO (Second) DOFCM-GA (Second) 

Iris 0.42 0.88 1.12 

Wine 0.65 1.34 1.81 

Sonar 0.78 1.52 2.09 

Diabetes 1.15 2.03 2.67 

Ionosphere 0.89 1.76 2.21 

As shown in Table 12, the baseline DOFCM algorithm requires the shortest computational time due to 

its simpler update rules. When optimization is introduced, PSO adds additional computation but remains 

more efficient than GA across all datasets. GA, while slightly more time-consuming, consistently provides 

more stable clustering results and higher Silhouette Coefficient values. This confirms the trade-off between 

runtime and clustering robustness, where GA sacrifices speed for improved cluster quality. 

In this study, the GA demonstrated superior performance compared to PSO across most datasets. This 

difference can be explained theoretically through the distinct mechanisms of exploration and exploitation in 

both algorithms. PSO exhibits strong exploitation ability, as particles tend to follow the global and individual 

best positions, enabling rapid convergence. However, this property makes PSO prone to being trapped in 

local optima, particularly when dealing with high-dimensional datasets or complex data distributions.  

In contrast, GA incorporates crossover and mutation operations that preserve population diversity. 

These mechanisms enhance its exploration ability, allowing GA to search a wider solution space and avoid 

premature stagnation. With a better balance between exploration and exploitation, GA is able to generate 

more representative cluster centers and achieve higher SC values compared to PSO.  

4. CONCLUSION 

This study contributes to advancing clustering and outlier detection by integrating meta-heuristic 

optimization strategies into the DOFCM method. The comparative analysis demonstrated that DOFCM 

optimized with GA consistently outperforms DOFCM-PSO, as evidenced by higher SC values across all five 

benchmark datasets. On average, GA improved SC values by approximately 0.02–0.03 points (e.g., Iris 

increased from 0.6029 with PSO to 0.6291 with GA, and Wine from 0.2759 to 0.2958). In addition, the 

comparative evaluation of computational time and the number of detected outliers further supports these 

findings. For example, GA required 2.21 seconds on the Ionosphere dataset compared to 1.76 seconds with 

PSO, yet it reduced outliers from 13 (PSO) to 2 (GA) while still achieving a higher SC value (0.3136 vs. 

0.3116). A similar trend was observed in the Diabetes dataset, where GA decreased outliers from 20 to 7 with 

a modest SC improvement. This highlights the trade-off between runtime efficiency (PSO) and clustering 

robustness (GA). Nevertheless, this study has limitations. The datasets used are relatively small and may 

restrict the generalizability of results. Moreover, the performance of PSO and GA is sensitive to parameter 

settings, and the method has not been tested on real-time or streaming data, which is increasingly relevant in 

practical anomaly detection scenarios. For future research, it is recommended to apply this method to larger 

and more diverse real-world datasets (e.g., healthcare records, financial transactions, IoT sensor data) and to 

explore alternative optimizers such as GWO, DE, or hybrid GA–PSO approaches. Integration with deep 

learning–based clustering methods, such as autoencoder-assisted clustering, is also a promising direction for 

handling high-dimensional and large-scale datasets. In practical terms, the findings of this study can support 

practitioners in domains such as healthcare, finance, and IoT-based systems, where robust outlier detection 

is essential for identifying anomalies in patient data, detecting fraudulent transactions, or monitoring sensor 

reliability. 
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