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Article Info ABSTRACT ‘

HIV (Human Immunodeficiency Virus) is a virus that infects cells in the body and weakens
the human immune system, making it more susceptible to various diseases. Meanwhile,
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1. INTRODUCTION

HIV continues to spread globally. HIV (Human Immunodeficiency Virus) is a type of virus that infects
white blood cells and also weakens the human immune system [1]. HIV/AIDS has been added to the list of
deadly infectious diseases, but until today, health researchers and practitioners still have not found a medicine
or vaccine [2]. The World Health Organization (WHO) predicts that 36.7 million people across the globe are
living with HIV/AIDS at the end of 2016 [3]. In Asia and the Pacific, 30% of new HIV infections occurred
among MSM in 2018. Eastern Europe and Central Asia have been the regions with the highest incidence rates
of new HIV cases over the previous decade, with 100,000 new HIV infections in 2019 [4]. In 2020, the new
number of HIV infections reached 1.5 million globally, with a total of 79.3 million active cases [5]. High HIV
prevalence among MSM was found in four countries, namely Thailand, Indonesia, Malaysia, and Vietnam [6].

Indonesia is one of the countries in the world with a significant improvement in HIV/AIDS cases.
HIV/AIDS becomes the top program priority for prevention [7]. DKI Jakarta becomes the province with the
highest number of HIV (Human Immunodeficiency Virus) with a number of 55,099 cases, followed by East
Java with 43,399, West Java with 31,293, Papua with 30,699, and the last is Central Java with 24.757 [8]. Since
2010, several provinces in Indonesia have been working with the Social Ministry of Indonesia to eliminate
prostitution to reduce the number of HIV infections [9]. HIV/AIDS is contracted through contact or ingestion
of infected bodily fluids. Bodily fluids that can mediate HIV transmission include [10]. Therefore, serious
attention is needed as a response to tackle them in order not to impact a healthy society. One of the most
important challenges for effective control of HIV and AIDS transmission is stigma and discrimination [11].

Forecasting epidemics like HIV and modelling their outcomes greatly implicates health systems and
policymakers [12], in this case, especially for the East Java province government, and also for specific health
organizations to design preventive and strategic solutions. Currently, the use of machine learning technology to
forecast HIV cases has been widely used. Machine learning entails the utilization of computational and
statistical algorithms to determine hidden associations of data that might increase prediction through relaxation
of the modelling postulates advanced by standard approaches. Among the latest advances in prediction
approaches and identification methods in HIV statistical data, machine learning offers greater capability in
processing large amounts of data [13].

In this study, the authors applied the Kalman Filter, Recurrent Neural Network (RNN), and Decision
Tree methods to compare the accuracy level of each method. The Kalman Filter is a popular filter method that
is used to study multivariable systems, highly volatile data, and time-varying systems [14] from a dynamic
stochastic linear discrete system. The Kalman Filter is an algorithm used to update the prediction of a variable
that is not directly measured from observation data [15]. RNNs are the most widely used NN architecture for
sequence prediction issues [16]. RNNs are a very promising method due to the internal memory that can
remember the important features of the input sequential data, which allows them to accurately predict the future
[17]. RNN belongs to the domain of Deep Learning (DL). The recurrent connection to the same neurons in the
prior time step, along with their internal state (memory), makes RNNs well-suited for modeling temporal
behavior [18]. The last algorithm used in this study is the Decision Tree. Decision Tree belongs to the tree-
based method that handles multi-output cases with little data preparation [19]. Decision Tree (DT) method,
belonging to the supervised learning class algorithm, is mostly preferred for completing classification cases, but
either way, it can be used in classifying as well as in regressing cases [20]. In the Decision Tree method, very
large data samples will be represented as smaller orders [21].

2. RESEARCH METHODS

2.1 Literature Review

The findings and their resources for the literature review are shown in Table 1 below.

Table 1. Literature Review

Source Title Key Findings
Herlambang et al. Comparison of H-Infinity Both methods, even the Ensemble
and Ensemble Kalman Filter ~ Kalman Filter and the H-Infinity,
for Estimating Motion of have accuracy above 98%

Middle Finger [22].




BAREKENG: J. Math. & App., vol. 20(2), pp. 1473- 1484, Jun, 2026. 1475
Source Title Key Findings
Katias et al. Unscented Kalman Filter Unscented Kalman Filter reached
and H-Infinity for Travel good prediction with an accuracy
Company Stock Price error of less than 2.4%
Estimation [23]
Anshori et al. Profitability estimation of The Ensemble Kalman Filter has
XYZ company using H- better accuracy than H-Infinity with
infinity and Ensemble an error of about 5-8%.
Kalman Filter [24].
Xu et al. System Bias Correction of The result is Kalman Filter
Short-Term Hub-Height successfully approaches 72-h
Wind Forecasts Using the forecasts, has decreased RMSE by
Kalman Filter [25] 16% from 3.58 to 3.01 ms™, MAE
by 14% from 2.71 to 2.34 ms™, bias
from 0.22 to 0.19 ms™, and
improved correlation from 0.58 to
0.66.
Qin, etal. Trajectory Prediction Based  Better prediction using a
on Long Short-Term combination of LSTM-KF than
Memory Network and improved LSTM and simple
Kalman Filter Using LSTM.
Hurricanes as an Example
[26].
Arora et al. Prediction And Analysis Of  The result is an RNN with a bi-
COVID-19 Positive Cases directional LSTM model that
Using Deep Learning produced better predictions than a
Models: A Descriptive Case  convolutional-LSTM.
Study of India [27].
Karya et al. Estimation Of Crude Oil This study resulted in an Unscented

Price Using Unscented
Kalman Filter [28].

Kalman Filter reaching the best
error rate of 2% and a Kalman
Filter 8%.

2.2 Data Acquisition

The time-series data used in this study was obtained from the BPS East Java province
(https://jatim.bps.go.id), having 3 columns and 114 rows with a time span of January 02, 2018, to December
18, 2020, which describes about condition of HIVV/AIDS cases in East Java province. Before in-depth analysis,
the data was cleaned of missing values, outliers, and other noise. This is all to simplify comprehension and
improve the quality of the data to be tested, and to ease the decision of the machine learning model used. An
overview of the research data and flowchart can be seen in Table 2 and Fig. 1 below.

Table 2. HIV Cases Dataset

Year Name Of Regency/City HIV Cases
02/01/2018 Pacitan 20
11/01/2018 Ponorogo 102
25/01/2018 Trenggalek 88
02/02/2018 Tulungagung 464
11/02/2018 Blitar 183
25/02/2018 Kediri 227
02/03/2018 Malang 382
11/03/2018 Lumajang 476
21/03/2018  Jember 792
29/03/2018 Banyuwangi 643
02/04/2018 Bondowoso 119
18/12/2020 Batu 153
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After obtaining and exploring the data, the next step is to carry out the stages of the research flowchart one by

one, as shown in Fig. 1 below.

Identifying Problems
Modeling
Data Acquisition
é Model Training
! i
[
- l
- Sg
Data Preprocessing 2%
& Cleaning E
2 Model Testing
Feature Selection
Model Evaluation

|

Data Visualization

Figure 1. Research Flowchart

2.3 Exploratory Data Analysis

This research presents a case study on the prediction of HIVV/AIDS cases in East Java using the data
from BPS East Java Province. Based on the data obtained, there are three main variables, namely Date,
Regency/City, and HIV cases. Variable HIV cases were used as the target variable/dependent. Below in Fig.
2 is the condition of the data based on the original source, and Table 3 is the table of central tendency.

Actual HIV/AIDS Case in East Java Period 2018 - 2020
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Figure 2. Plot of HIV AIDS Case from January 02, 2018, to December 18, 2020
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Table 3. Measure of Central Tendency

HIV
CASES
mean 449.21
min 0
max 2615
std 537.55

After that, the data is refined by normalizing the values. The function of this normalization is to equalize
the range of values between 0-1. Below in Eq. (1) is the function to normalize data, namely the Min Max Scaler.
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P x — min(x)
max(x) — min(x) ’
description:
x' : new values;
X : original values;

min(x) : minimum values;
max(x) : maximum values.

2.4 Kalman Filter Model

1477

(1)

Kalman Filter, which was proposed by Rudolf Emil Kalman to complete the linear filtering problem in
the field of aircraft and aviation, is one of the most significant and popular estimation methods [29]. The Kalman
Filter is known as the optimal estimator that minimizes the mean squared error when the state and measurement
dynamics are modeled as linear, and the process/measurement noise processed are modeled as white Gaussian

[30]. Below in Egs. (2)-(11) is the Kalman Filter algorithm.
System Model and Measurement
X = Fxg_q + Bug_1 + Wy,
z, = Hxy + vy,
xo~N (X0, Px,); wi~N(0,Q,); vi~N(0, Ry).

Initialization
Xo = Xy,
Po = Px,-
Prediction stage
Estimation
p?k|k_1 = F,?k_llk_l + Buy_4.

Error covariance
Pjk—1 = FPy_q 31 F" + Q.
Update stage
Kalman Gain
-1
Ky = Prjg—1H"(HPye—1H" +R) .
Estimation
Rije = Riepe—1 + Kie(zx — HiRiejre—1)-
Error covariance
Py = [I = KicH] Pyejge—1.-

description:

X : state vector at time k;

F : state transition matrix;

ug_1 : control input vector;

B : control input matrix;

Wi_1 : process noise (Q);

Zy : measurement vector;

H : observation matrix;

Vg : measurement noise (R);
Rkjk-1 : a priori state estimate at step k;

Rkik : a posteriori state estimate at step k;

(2)
(3)
“4)

5)
(6)

()

©))

€))

(10)

(11)



1478 Nurwijayanti, et al. IMPLEMENTATION OF KALMAN FILTER, RECURRENT NEURAL NETWORK AND DECISION TREE METHOD...

Piik-1 : a priori error covariance matrix;
Py : a posteriori error covariance matrix;
Pyjk : Kalman gain;

z — Hy Xy k-1 - measurement innovation/residual.

2.5 Recurrent Neural Network Model (RNN)

A Recurrent Neural Network (RNN) is an improved form of neural networks that has internal memory,
which makes RNN capable of handling long sequences [31]. In this study, the RNN type used is Simple RNN.
Below in Eq. (12) is the function of the Recurrent Neural Network (RNN).

hk :O'k(Uhk_1+WSk+b),k =01..,N. (12)
description:
k - discrete time index;
N - final finite horizon time;
Sk : m — d vector input sequence;
ok : general nonlinear function (sigmoid/tanh).

2.6 Decision Tree (DT)

DT is a flow chart-like structure that uses a branching technique to define each possibility of results
decisions [32]. Below in Eq. (13) are functions of the Decision Tree.

1. Estimate the entropy E (S) value of the DS as written in Eq. (14)

m
E©) = ) —pilog:p (13)
i=1

where E(S) = entropy of a collection of DS, m represents the number of classes in the system and
p; represents the number of instances that belong to class i.

2. Calculate the information gain for an attribute K, in a collection S, as expressed in Eq. (14), where E(S)
represents the entropy of the entire collection and S,, expressed the set of instances that have value u for
attribute K.

Su
G(S,K) = E(S) — Z B (14)

u€evalues(K)

2.7 Evaluation Metrics

At the evaluation stage, the model trained and tested is calculated for accuracy based on the resulting
error value. This study uses the Root Mean Square Error (RMSE) method to calculate the error value generated
by the model. One of the main advantages of using RMSE is to provide higher weightage (as it contains a
square) to larger errors [33] also MAE and MSE. The function of the Root Mean Square Error (RMSE) and the
other methods are in Eqgs. (15)-(17) as follows:

n

1 "
MAE=—Z|1Q—1Q|, (15)
ni=1
1 n
MSE =;Z(Yi - %)%, (16)
i=1

RMSE = fw (17)
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description:

n : number of predictions;
Y; : Observed value;
Y; : Predicted value.

3. RESULTS AND DISCUSSION

3.1 Hyperparameter Tuning and Data Splitting

The following Table 4 is a description of data splitting, and Table 5 - Table 7 are descriptions of
parameter adjustments of the Kalman Filter, the Recurrent Neural Network, and the Decision Tree used to
build a prediction model. In this study tried to implement accuracy testing from each method by a percentage
of splitting data 80 of 20, also using static parameters to consider the limited amount of data. The variable to
be used as the dependent variable is HIV cases.

Table 4. Data Splitting

Splitting Percentage Number of Data Number of Data
P g g Training Testing
80% : 20% 91 23

Table 5. Kalman Filter Model Hyperparameter

Parameter Value
R value 0.03
Q value 0.03
Table 6. RNN Model Hyperparameter
Parameter Value
Learning Rate 0.001
Stopping Condition 100
Table 7. Decision Tree Model Hyperparameter
Parameter Value
Max depth 6
Min samples split 5

3.2 Result of Simulation

From the testing simulation conducted with the proportion of training data and testing data, the following
results can be seen in Figs. 3 - 5.
Comparison of Actual & Prediction HIV/AIDS Case in East Java Period 2018 - 2020

Actual Value
------ Prediction using Kalman Filter
------ Projection for Next 2 Years

2500

2000

1500

Value

1000

500

AD
0 '1'0
¢€ W™

S0 ®

& 9 ) o
ot ot b or
o°"q' 03 2 WU o

oo
e g ¢ ‘

0 N A 7
(A o A o
o T Do\fl e)ofl o N

A A
oL N2
5 o "L OG\.\Q’

UL
» S

< < = ¢

Date
Figure 3. Simulation Plot of Kalman Filter using Q and R Value of 0.03
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Fig. 3 shows the results of prediction using the Kalman Filter. The results achieved by this method are
quite satisfactory. In the plot above, the predicted values are shown by the black line, which closely
approximates the actual values. The green line represents the results of the Kalman Filter prediction projection
for a period of 2 years. The prediction projection is done by taking the last 24 data points for training, which are
then predicted again with the same hyperparameters. The results of the Kalman Filter method projection appear
to be quite dynamic. In this simulation, the Kalman Filter method obtained an MAE value of 0.056, then an
MSE value of 0.0078, and an RMSE of 0.0885, respectively.

Comparison of Actual & Prediction HIV/AIDS Case in East Java Period 2018 - 2020
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Figure 4. Simulation Plot of Recurrent Neural Network

Fig. 4 shows the results of prediction using a Recurrent Neural Network (RNN). The results achieved
by this method are not quite satisfactory. In the plot above, the predicted values are shown by the blue line,
which closely approximates the actual values. The green line represents the results of this method’s prediction
projection for a period of 2 years. The prediction projection is done by taking the last 24 data points for training,
which are then predicted again with the same hyperparameters. The results of the RNN method projection
appear to be quite flat. In this simulation, the RNN method obtained an MAE value of 0.123, then MSE value
is 0.0395, and RMSE value of 0.198, respectively.

Comparison of Actual & Prediction HIV/AIDS Case in East Java Period 2018 - 2020
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Figure 5. Simulation Plot of Decision Tree

0@0 .

Fig. 5 is the result of prediction using a Decision Tree. The results achieved by this method are quite
satisfactory. In the plot above, the predicted values are shown by the green line, which closely approximates
the actual values. The blue line represents the results of this method’s prediction projection for a period of 2
years. The prediction projection is done by taking the last 24 data points for training, which are then predicted
again with the same hyperparameters. The results of the Decision Tree method projection appear to be quite
dynamic and able to follow the previous trend. In this simulation, the Decision Tree method obtained an MAE
value of 0.0155, an MSE value of 0.0008, and an RMSE of 0.0287, respectively.
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Based on the simulation results above, a recapitulation of the simulation results of the Kalman, Recurrent Neural
Network (RNN), and Decision Tree can be seen in Table 8 below.

Table 8. Model Evaluation

Method MAE MSE RMSE
Kalman Filter 0.056 0.0078 0.0885
RNN 0.123 0.0395 0.198
Decision Tree 0.0155 0.0008 0.0287

From Table 8, it can be shown that the Kalman Filter, the Recurrent Neural Network, and the Decision
Tree produce satisfactory model evaluation values. By all simulations, the Decision Tree method successfully
achieved the best evaluation with an MAE value of 0.0155, then the MSE value is 0.0008, and the RMSE is
0.0287.

4. CONCLUSION

Based on the results of the simulations conducted, it can be concluded that the results are as follows:

1. The Decision Tree method successfully achieved the best evaluation with an MAE value of 0.0155,
then the MSE value is 0.0008, and the RMSE is 0.0287, respectively. This method can also capture
fluctuating data conditions well, even when using a univariate basis.

2. The Kalman Filter method also achieved a satisfactory prediction result, which obtained an MAE
value of 0.056, an MSE value of 0.0078, and an RMSE of 0.0885, respectively. As another note, in
the simulation process, this method also has the advantage of shorter computational time than the
other two methods, and also captures fluctuating data conditions well even when using a univariate
basis.

3. In the current study, the results of implementing the RNN prediction method were not very
satisfactory. The factor that concerns us is the lack of sufficient data, and it will be improved for the
next study.

These results prove that Decision Tree and Kalman Filter methods provide good and consistent prediction
results, also has fulfilled the objective of this research. Both methods can be used by health stakeholders to assist
in planning and decision-making. In future studies, we recommend using other classical methods such as
ARIMA or LSTM, which are subsets of deep learning methods and ensemble trees.
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