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1. INTRODUCTION

Malaria is an infectious disease transmitted through the bite of female Anopheles mosquitoes [1].
According to the World Malaria Report 2023, there were approximately 263 million malaria cases worldwide
in 2023, with a total of 597,000 deaths, making malaria one of the most significant infectious diseases globally
[2]. In Indonesia, the Ministry of Health recorded an increase in the number of malaria case examinations
nationwide, reaching 3,464,738 individuals, with 418,546 confirmed positive cases in the same year. Papua
Province reported the highest malaria incidence rate (Annual Parasite Incidence/API), at 156.59 per 1,000
population, far exceeding that of other provinces [3]. This condition is consistent with the large number of
districts/cities in Papua that remain categorized as high-endemic areas, indicating that Papua Province
contributes substantially to the national malaria burden.

The rise in malaria cases may be attributed to several factors, including environmental and weather
conditions. One of the climatic factors influencing the increase in malaria incidence is rainfall levels. A study
conducted in Jimma city, Southwest Ethiopia, demonstrated a significant association between climatic
elements such as temperature, humidity, and rainfall with malaria incidence from 2000 to 2009 [4]. Data from
a study by [5] revealed that malaria cases decreased during periods of peak rainfall, while cases increased
during periods of low rainfall. Meanwhile, research by [6] showed that malaria transmission in the highlands
of Kenya exhibited highly heterogeneous spatial patterns, influenced by micro-environmental factors such as
altitude, proximity to water sources, and housing structures. These findings indicate that malaria tends to
exhibit spatial patterns, making spatial approaches more relevant in predicting and modeling malaria cases
based on contributing factors.

One relevant spatial analysis method for examining this phenomenon is Co-Kriging. Co-Kriging is a
geostatistical technique that improves prediction accuracy by combining low- and high-fidelity data. It is
especially efficient in high-dimensional problems due to its reduced computational cost compared to other
Kriging variants [7]. In the field of epidemiology, Co-Kriging has been applied to estimate the spatial
distribution of diseases by incorporating environmental variables as predictors [6]. In this case, Co-Kriging
serves as a multivariate geostatistical technique capable of analyzing and predicting malaria case distributions
by considering supporting variables such as rainfall. Co-Kriging allows the integration of information from
two or more spatially correlated variables, yielding more accurate predictions compared to conventional
single-variable interpolation methods such as ordinary kriging [8]. This has been demonstrated in previous
studies, which found that Co-Kriging provides superior estimation results, particularly when correlated
secondary data are used to strengthen primary data estimations [9], [10]. Thus, spatial analysis using Co-
Kriging can offer a more comprehensive understanding of the relationship between malaria cases and rainfall
in Papua.

The Co-Kriging method has been successfully applied in several studies related to environmental
health. For instance, research by [11] demonstrated the effectiveness of the Co-Kriging method in mapping
mosquito-borne disease risks such as Zika, Dengue, and Chikungunya in Colombia. In addition, a spatial
study on malaria cases conducted by [12] aimed to predict malaria transmission risk in endemic regions of
Iran using the Co-Kriging method. The study’s findings indicated that socio-economic and climatic variables
were significant factors contributing to disease transmission.

Although several studies have employed spatial approaches to examine malaria cases globally, the
specific application of Co-Kriging to malaria cases in Papua Province remains very limited. Considering that
Central Papua Province is a newly established administrative region that was formerly part of Papua Province,
this study justifies the use of spatial data from Papua Province as a reference [13]. Therefore, this study aims
to estimate (extrapolate) the number of malaria cases in districts/cities within Central Papua Province lacking
data (missing values) by utilizing spatial information on malaria cases and rainfall from Papua Province. This
study is expected to contribute to the formulation of malaria prevention strategies that take into account local
climatic conditions and spatial analysis, particularly in Papua Province, which bears the highest malaria
burden in Indonesia. Furthermore, this study aligns with the Sustainable Development Goals (SDGSs),
particularly Goal 3 about Good Health and Well-Being, specifically target 3.3, which focuses on preventive
efforts and the control of communicable and endemic diseases such as malaria, and Goal 13 about Climate
Action.
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2. RESEARCH METHODS

2.1 Data and Data Sources

This study uses secondary data obtained from the official website of the Central Statistics Agency
(BPS) of Papua Province (2025) [14]. The data includes malaria case counts in districts/cities across Papua
Province and rainfall data from meteorological stations in the same region, collected in 2023. The data
processing and statistical analysis were conducted using R statistical software [15] and Python programming
language [16] to perform descriptive analysis, spatial extrapolation, and visualization.

2.2 Research Variables

This study involves two types of variables: primary and secondary. The primary variable is the number
of malaria cases, which are available for all regencies and municipalities (districts/cities) in Papua Province.
However, for spatial analysis, only five regencies/municipalities could be utilized due to the availability of
rainfall data as the secondary variable. Subsequently, this study extrapolates the number of malaria cases in
regencies/municipalities of Central Papua Province, a newly established region separated from Papua
Province, by leveraging spatial information from Papua Province. The definitions of each variable used in
the study are shown in Table 1.

Table 1. Definition of Variables

No. Variable Definition Unit
1 Primary Variable Number Of Malaria Cases Per 1,000 Population Cases Per 1,000 Population
2 Secondary Variable Annual Rainfall Amount Millimeters (mm/Year)

Geographic Coordinates (Longitude and Latitude)

3 Distance Variable Of Each Region

Decimal Degrees (°)

2.3 Auto-Covariance and Cross-Covariance Experimental

The co-kriging method requires the use of a multivariate covariance matrix to delineate the spatial
relationship between multiple variables. Reference by Vargas-Guzmén and Yeh [17], a set of historical data
is denoted by p and a set of contemporary data is denoted by s, with the former located at the location m.
The numerical multivariate covariance matrix for attributes {z, w, ..., q} is given by:

chZp CZpr cee CZpr chZs chWs vee CZst
c Cwpz, Cwow, 7 Cwyq, Cwez; Cwewg " Cwyqg
pp : : . : 1 Uss T : : : )

Capzp Caqpwp 7 Capap Cqszs  Cqsws " Cusqs

Czpzs Czp wg 7T Czp qs

_ przs pr wg cwpqs

Cos=| . .
C‘Ipzs CQpWs o CQst

In this context, C (capitalised) denotes a multivariate covariance matrix. Of the three matrices under
consideration, it is evident that all diagonal elements correspond to auto-covariance matrices, while elements
external to the diagonal correspond to cross-covariance matrices. The formula for the covariance between the
data and the location to be estimated is as follows:

czpzo CZpWO chCIo Czzy  Czowy " Czyqq
Cpo =

¢ ¢ .. ¢ ¢ ¢ ¢
WpZo WpWo WpQo , CSO = CWsZO CWsWO CWSQO .

— — - — — -
Capzo Capwo " Capqo Cqszo  Cqgw, Cqsqo
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2.4 Theoretical Covariance

Theoretical covariance functions define valid multivariate spatial dependencies by ensuring that both
marginal and cross-covariances lead to a nonnegative definite covariance matrix. These functions are
essential for modeling multivariate spatial fields, particularly when incorporating cross-dependence between
variables in co-kriging and simulation models [18]. In the field of co-kriging analysis, there are three
theoretical covariance models that are frequently employed: the spherical model, the exponential model, and
the Gaussian model [19]. The forms of these three models can be defined as follows:

1. Spherical
P+Q ;h=0
3
cw) =4 (P +0Q) 1-1,5(2)-0,5(2)] 0<h<r. 1)
0 ch>r
2. Exponential
h
c(h)y=(P+0Q) [1 —exp exp (— ;) ] . (2)
3. Gaussian
h
C(h)=(P+Q)|1—expexp (— ;) 2 ] : (3)

P (nugget effect) refers to the estimated auto-covariance and cross-covariance values at very small
distances close to zero. Q (sill) represents the highest value attained by the auto-covariance and cross-
covariance. Meanwhile, r (range) indicates the distance at which the covariance reaches this maximum value.

2.5 Co-Kriging Method

Co-kriging is a spatial interpolation method that utilises the spatial dependence between the primary
and secondary variables [20]. Primary variables are defined as the principal variables employed for
interpolation, while secondary variables are designated as covariates. Co-kriging estimates are defined as
linear combinations of primary and secondary variables, as previously defined [21].

n m
0= Z au; + Z.ijjv 4
i=1

i=1

[

when ¥, o; = 1and ¥, B; = 0, and where:

U, : the estimated value of U at location O;

Uq, oo, Uy : secondary variable data at n locations;
Uiy venr U : secondary variable data at m locations;
a; and Bj : co-kriging weighting value.

In ordinary co-kriging, as illustrated in Eq. (4), the function #;, which is linear at points iy, ..., i, IS
also unbiased and minimizes the mean squared error of the estimate. In accordance with the unbiasedness
condition stipulated in Eq. (4), the error estimator is derived in Eq. (5).

n m
Q=Oy—Us =) ay+ ) BV Up (5)
i=1 i=1

The equation given by Eqg. (5) can be converted into matrix form by employing the notation provided in Eq.
(6).
Q=w'Z (6)

The equation for the variance of the error estimator in co-kriging weighting and covariance between random
variables is given in Eq. (7).

Var(Q) = w'C,w @)
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C denotes the covariance matrix of Z. Pursuant to the expansion of Eq. (7), the variance of the error estimate
of the co-kriging weight and the variance between random variables can be expressed in Eq. (8).

n m
ZaiUi +Zﬁ]V]—U0 .
i=1 i=1

1=

Var (Q) = Var (8)

In order to produce weights that minimise error variance and satisfy the unbiasedness condition, it is
necessary to minimise the two constraint functions using the Lagrange multiplier method. Each unbiased
condition is then multiplied by the Lagrange multiplier, and the resultant sum is added to Eq. (8). This process

ultimately results in Eq. (9).
n m
L=w'C;w+ 2y, (Z a; — 1> + 2u, <Z ﬁi). 9)
i=1

=1
Matrix equations can be formed from covariance matrices or from semivariograms y (h), where y(h)
denotes the semivariogram function that quantifies spatial dependence at distance h. When semivariogram

matrices are used, the parameters A,, ..., A,, representing the Lagrange multipliers that enforce unbiasedness
in the Co-Kriging estimator must be optimized according to Eq. (10).

LQ = X"y, (10)

X represents the covariance matrix that captures the relationship between the primary and secondary variables
across different observation locations. Therefore, the matrix equation is equivalent to that given in Eq. (11).

(@1 [Cov(UyUy) - Cov(UyU,)  Cov(UyVy) i Cov(UyVy) 1 07 '[Cov(UyUp)]

an Cov(U,U;) -+ Cov(U,U,) Cov(U,V;) - Cov(U,V,) 1 0 Cov(UyU,)

Pul _|Cov(Uy) - Cov(VU,) Cov(KVy) - Cov(ViVy,) 0 1| | Cov(UgVy) 11)
B Cov(V,,U)) - Cov(V,U)) Cov(V,V,) - Cov(V,V,) 0 1| [Cov(UyUy,)

I 1 1 0 0 0 1 1

L, 1L g 0 1 1 o ol L 0

2.6 Cross-Validation

Cross-validation is a methodological framework for the evaluation of interpolation accuracy, providing
a more reliable approach than a mere analysis of error. Cross-validation can be categorised into three distinct
types: the Holdout Method, K-Fold Cross-Validation, and Leave-One-Out Cross-Validation (LOOCV). In
this study, the difference between the actual data used for modeling and the estimated data will be examined
using the following calculation.

1. The mean-squared error (MSE) is a statistical metric that calculates the mean of the squares of the
deviations between the observed values and the estimated values. The formula for MSE is as
follows.

n

Y — 7(x:))?
MSE =ZZ(xl) Z0G))” (12)

n

i=1
2. The Mean Absolute Percentage Error (MAPE) is a metric used to evaluate forecasting accuracy
by comparing the absolute percentage difference between actual and predicted values. Lower

MAPE values indicate better model performance, with standard interpretive ranges used to assess
prediction quality [22].

100%
n

actual — forecast

MAPE = (13)

n
; actual
i=1

In the context of Co-Kriging, the formula for MAPE is as follows.
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n

MAPE — 100%2 Z(Xi) — Z(Xi)
n ]

Z(x;)

where Z(x;) is the observed value at location (x;); Z(x;) is the Co-Kriging predicted value at
location (x;); n is the number of observation points.

, (14)

2.7 Data Analysis Steps

1.
2.

Displays data on malaria cases and rainfall in Papua Province.

The following study will test the goodness of fit of the Co-Kriging model with spherical
semivariogram on data on the number of malaria cases affected by rainfall in Papua Province. The
objective of this test is to ascertain the extent to which the spherical semivariogram model
successfully represents spatial relationships. The following steps are involved in this process:

a. The formation of a distance matrix between observation locations can be accomplished
through the application of the following equation:

2 2
hij = \/(xi —x5)" +(i—w) (15)
In this study, x and y represent the longitude and latitude coordinates of locations i and j,
respectively.
b. The estimation of the location is to be performed using the following equation:
hio = v/ (xi = %0)% + (i = %0)? (16)

In order to estimate the value of the location, x, and y, are required, which are the
coordinates of the location in this case. These are the regencies/cities in Central Papua
Province.

c. The experimental auto-covariance and cross-covariance between the primary variable
(malaria cases) and secondary variable (rainfall), namely C(h), were calculated.

d. The distance between locations is to be plotted against the experimental covariance value,
and the result is to be adjusted to the spherical semivariogram theoretical model.

The following steps are taken in order to estimate the Co-Kriging model on data on the number
of malaria cases affected by rainfall in Papua Province:

a. The formation of a covariance matrix between locations for primary and secondary variables,
as well as a covariance matrix between estimated locations and observed locations, is
symbolised by C.

b. The inverse of the covariance matrix of the observation locations must be calculated.

¢. Theweight of the Co-Kriging estimation is calculated based on the results of matrix inversion
and the covariance between locations.

d. The estimation of the value of the primary variable (malaria cases) at unobserved locations
is achieved through the implementation of Co-Kriging calculation weights.

e. Model Selection Through Accuracy Evaluation. After estimating the values of the primary
variable (malaria cases) at unobserved locations, follow these steps to evaluate and select the
best model:

i The MAPE is calculated as follows: The MAPE is a metric used to quantify the
discrepancy between estimated and actual values, assuming such data is available for
validation purposes.

ii. Calculate MSE: Compute MSE to measure the average squared error between the
estimated values and the actual values.

iii. Compare MAPE and MSE values: Select the model that yields the smallest MAPE and
MSE values, indicating higher estimation accuracy.
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3. RESULTS AND DISCUSSION

Spatial extrapolation using the Co-Kriging method reveals that regions in Central Papua with higher
levels of rainfall tend to exhibit elevated estimates of malaria incidence. This estimation is based on
observational malaria data from Papua Province combined with rainfall information, allowing for predictions
in data-scarce areas such as Central Papua. The resulting spatial pattern is consistent with previous research
conducted in tropical settings, which demonstrates that increased rainfall facilitates the formation of mosquito
breeding sites and thereby enhances malaria transmission risk [23]-[27]. The integration of rainfall as a
secondary variable in the Co-Kriging framework enhances the accuracy of spatial predictions by capturing
key environmental drivers of disease transmission. These findings provide a robust basis for understanding
malaria distribution patterns in Central Papua and support the use of geostatistical approaches for informing
targeted public health interventions.

3.1 Descriptive Statistics

To provide an overview of the data used in this study, descriptive statistics were applied. These
measures offer an understanding of the central values and the dispersion of the observed variables. The
summary of these statistics is shown in Table 2.

Table 2. Descriptive Statistics

Variable N Min. Max. Mean Staf?da?rd

Deviation

Annual Rainfall (mm/year) 5 1,583.7 2902.6 2,266.76 632.6673

Malaria Cases (per 1000 5 19.45 31729  204.052 132.4924
population)

Based on the descriptive statistical analysis, it is shown that the average annual rainfall in Papua
Province is 2,266.76 mm, with a standard deviation of 632.6673 mm. This indicates that Papua experiences
a high level of rainfall, which is consistent with its tropical climate [28], [29]. High rainfall can create more
stagnant water, which serves as breeding grounds for mosquitoes, potentially increasing the risk of malaria
transmission. Furthermore, the average number of malaria cases per 1,000 population is 204.052, with a
standard deviation of 132.4924. This relatively high number suggests that malaria remains a significant public
health concern in the region.

According to Fig. 1, the spatial distribution of malaria cases in Papua Province exhibits considerable
regional variation. The regencies of Mamberamo Raya and Keerom, located in the central-northern and
northeastern areas, record the highest incidence rates exceeding 500 cases per 1,000 population—represented
by the darkest shades on the map. Sarmi, Jayapura, and Kota Jayapura in the central-eastern region show
slightly lower yet still elevated rates of approximately 300 to 400 per 1,000. In contrast, Waropen in the
southwest displays moderate incidence levels (150-250 per 1,000), while the northern islands, such as
Kepulauan Yapen, Biak Numfor, and Supiori, demonstrate the lowest burden, with fewer than 100 cases per
1,000 population, as indicated by the lightest color. This spatial variability suggests that environmental
factors, such as rainfall patterns and the presence of stagnant water, along with the accessibility and
effectiveness of vector control programs, play a significant role in influencing malaria transmission.

1°N

Per 1000
Population

I 500
400
300

200
100

Latitude

2°8

3°8

4°8

134°E 135°E 136°E 137°E 138°E 139°E 140°E 141°E
Longitude

Figure 1. Spatial Distribution of Malaria Incidence in Papua Province (per 1,000 Population)
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3.2 Experimental Semivariogram

The estimation process for malaria cases begins with utilizing spatial data from various districts across
Papua Province. The first step involves calculating the distance (h) between district centroids within Papua,
as well as the distance between those districts and a target location in Central Papua for which estimates are
to be made. This computation was performed using Python-based geospatial analysis tools. Once the pairwise
distances were obtained, they were grouped into discrete distance classes for semivariogram modeling. In
this study, the distances were divided into four classes. Unlike traditional methods such as Sturges’ rule,
commonly applied to large spatial datasets, this study opted not to use such classical binning techniques. As
argued by Shimazaki and Shinomoto [30], traditional approaches often fall short when dealing with sparse or
spatially irregular data, as they fail to account for fluctuations and local heterogeneity. The resulting
classification produced 25 distance pairs within each class, which served as the basis for constructing the
empirical semivariogram.

Table 3. Distance Class Grouping and Experimental Covariance
Class Interval Distance (h) N  Auto-Covariance U  Auto-Covariance V. Cross-Covariance U-V

0.00000-1.240940 0.62047 11 0.485009 0.292763 0.102132
1.24104-2.482080 1.86156 2 -0.600020 0.194874 -0.391883
2.48208-3.723120 3.10260 4 -326467 -0.108040 -0.283643
3.72312-4.964159 4.34364 8 -0.031779 0.044775 0.099360

Following the acquisition of the experimental auto-covariance and cross-covariance values. The
subsequent step is to identify the most appropriate models by fitting several theoretical covariance structures.
such as the spherical. exponential. and Gaussian functions. As outlined in Egs. (1), (2), and (3), this modeling
procedure necessitates the estimation of three key parameters: P (nugget effect), Q (sill), and r (range). The
parameter values for the auto-covariance function are inferred from the distance versus experimental auto-
covariance plot. while those for the cross-covariance function are derived from the corresponding cross-
covariance plot. Fig. 2 displays the distance-based experimental auto-covariance plot for the first variable,
representing districts or cities within Papua Province.

Auto Variogram U

0.4+

0.2 4

0.0

c(h)

0.6 4 <

0.5 10 15 2.0 2.5 3.0 3.5 4.0 4.5
Median (h)

Figure 2. Plot of Distance Versus Experimental Auto Covariance for the Malaria Variable

As illustrated in Fig. 2, the estimated parameter values for modeling the auto-covariance of the
district/city-level malaria variable are P = 0.485008, Q = 0.48500, and r = 0.620469. Meanwhile, the
plot depicting the relationship between distance and experimental auto-covariance for the second variable
(Station) is provided in Fig. 3 below.

Auto Variogram V

ah)

0.5 10 15 2.0 25 30 35 4.0 45
Median (h}

Figure 3. Plot of Distance Versus Experimental Auto-Covariance for the Rainfall VVariable
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As shown in Fig. 3, the estimated values for the auto-covariance model of the Station variable are P =
0.044774, Q = 0.292763, and r = 0.620469. The following plot in Fig. 4 depicts how the experimental
cross-covariance between the first and second variables changes with distance.

Cross Variogram

014 @ e

0.0

c(h)

0.5 1.0 15 2.0 2.5 3.0 3.5 4.0 4.5
Median (h)

Figure 4. Plot of Distance Versus Experimental Cross-Covariance

Referring to Fig. 4, the estimated values of the parameters used to represent the cross-covariance between the
first and second variables are P = 0.09936, Q = 0.10213, and r = 0.620469.
3.3 Theoretical Semivariogram

Following the estimation of the parameters P, Q, and r from each covariance structure, the spherical model
can be expressed using Eq. (1), as detailed below.

Spherical auto-covariance function for the primary variable (malaria cases):

( (0.48501 + 0.48501), 0=nh;
Cy(h) =4 (0.48501 + 0.48501) ( 1 — Sh h 0<h<0.62047; (17)
A ' 2(0.62047) ' 2(0.62047)2 )"’ = ’
0, h > 0.62047.
Spherical auto-covariance function for the secondary variable (rainfall):
(0.044775 + 0.2927634), 0=h;
3h I
Cy(h) =1 (0.044775 + 0.2927634) [ 1 — + ,  0<h<0.62047; (18)
2(0.62047) =~ 2(0.62047)2
0, h > 0.62047.
Spherical cross-covariance function:
(0.09936 + 0.10213), 0=h;
3h R
Cy(h) = 4(0.09936 + 0.10213) ( 1 — + ,  0<h<062047; (19)
2(0.62047)  2(0.62047)2
0, h > 0.62047.

After determining the values of P, Q, and r, The corresponding exponential model is formulated using Eq.
(2) as follows:

Exponential auto-covariance function for the primary variable (malaria cases):

h
C(h) = (0.48501 + 0.48501 (1 - (— —) ) 20
() = )1 -expexp (~ 5o (20)
Exponential auto-covariance function for the secondary variable (rainfall):
h
C(h) = (0.044775 + 0.2927634 (1 - (— —) ) 21
() = )1 e exp (~ 5o (21)

Exponential cross-covariance function:
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h
C(h) = (0.09936 + 0.10213 (1 - (— —) ) 22
(" = ( ) (1-expewn (- =z (22)

Once the values of P, Q, and r have been obtained, the Gaussian model is applied according to Eqg. (3), as
outlined below:

Gaussian auto-covariance function for the primary variable (malaria cases):

h 2
C(h) = (0.48501 + 0.48501)( 1 — (——) 23
() = ( )( expexp (~ 50 ) (23)
Gaussian auto-covariance function for the secondary variable (rainfall):
h
C(h) = (0.044775 + 0.2927634 (1 - (— —) 2) 24
()= ( )1 ~expexp (~ oz (24)
Gaussian cross-covariance function:
h 2
C(h) = (0.09936 + 0.10213)( 1 — (——) 25
(W) = ( )( expexp (~ 50 ) (25)

3.4 Comparison of Semivariogram Model
1. Spherical Semivariogram Model

In the semivariogram analysis, the spherical semivariogram model was employed to generate
predicted values, which are presented in Table 4 below.

Table 4. Prediction Results of the Spherical Semivariogram Model

No. Location Predicted Data (Z,) Actual Data
1. Jayapura 317.29 317.29
2. Kepulauan Yapen 283.99 283.99
3. Biak Numfor 19.45 19.45
4, Sarmi 291.66 291.66
5. Kota Jayapura 108.87 107.87

Using the spherical semivariogram model, the MSE was found to be 8.985974 x 1018
and the MAPE was 3.666353 x 10, Predictions generated by this model are considered highly
accurate, as indicated by the extremely low MSE and MAPE values, which approach zero. This
suggests that the difference between predicted and actual values is nearly negligible.

However, such exceptionally high accuracy may indicate the presence of overfitting. a
condition in which the model is excessively adapted to the training dataset, which hampers its
ability to generalize to new inputs. This issue has been identified that semivariogram models with
default parameters in kriging interpolation can produce unrealistic spatial patterns, such as
extreme rainfall gradients within a narrow radius, which are characteristic of overfitting [31].

Similarly, research by Arétouyap et al. [32] demonstrated that inappropriate selection of a
semivariogram model can significantly affect prediction outcomes. Therefore, in semivariogram
modeling for co-kriging, it is crucial not only to consider low statistical error values but also to
evaluate the spatial plausibility and model stability to avoid overfitting and ensure good
generalizability.

2. Exponential Semivariogram Model

In the semivariogram analysis, the exponential semivariogram model was used to generate
predicted values, which are presented in Table 5.

Table 5. Prediction Results of the Exponential Semivariogram Model

No. Location Predicted Data (Z,) Actual Data
1. Jayapura 325.554728 317.29
2. Kepulauan Yapen 292.254728 283.99
3. Biak Numfor 27.714728 19.45
4. Sarmi 299.924728 291.66
5. Kota Jayapura 116.134728 107.87
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Using the exponential semivariogram model, the MSE was found to be 68.305723, and the
MAPE was 11.700522%. The predictions generated by this model are considered reliable, as the
MAPE value falls within the acceptable range of 10% to 20%, which indicates good forecasting
accuracy [33]. This indicates that the level of prediction error is still within a tolerable threshold.

3. Gaussian Semivariogram Model

In the semivariogram analysis, the Gaussian semivariogram model was used to obtain prediction
values, as presented in Table 6.

Table 6. Prediction Results of the Gaussian Semivariogram Model

No. Location Predicted Data (Z,) Actual Data
1. Jayapura 320.590758 317.29
2. Kepulauan Yapen 287.290758 283.99
3. Biak Numfor 22.750758 19.45
4. Sarmi 294.960758 291.66
5. Kota Jayapura 111.170758 107.87

Using the Gaussian semivariogram model, the MSE was found to be 10.895003, and the
MAPE was 4.672942%. The predictions produced by this model are considered highly accurate,
as the MAPE value is below 10%. This indicates that the Gaussian semivariogram model has
excellent predictive capability with a low error rate, making it a highly suitable choice for use.

3.5 Selection of the Best Semivariogram Model

The best semivariogram model for co-kriging interpolation is selected based on a comparison of the
MSE and MAPE values derived from the predicted number of malaria cases. The comparison results of the
MSE and MAPE values are presented in Table 7.

Table 7. Comparison of MSE and MAPE Values for Semivariogram Models

Semivariogram Model MSE MAPE
Spherical 8.985974 x 10718 3.666353 X 107%%
Exponential 68.30572 11.70052%
Gaussian 10.89500 4.672942%

Based on Table 7, the spherical semivariogram model indeed shows the lowest MSE and MAPE values.
However, these values are extremely close to zero, indicating a potential overfitting issue, where the model
fits the training data almost perfectly but may generalize poorly to new or unseen data, similar to the
overfitting and overestimation challenges highlighted in landslide susceptibility modeling studies [34]. Such
overfitting can compromise the model’s ability to generalize to unobserved locations, leading to inaccurate
predictions at new points.

On the other hand, the Gaussian model produces relatively low MSE and MAPE values that are more
spatially reasonable. Therefore, the Gaussian semivariogram model is selected as the best model for co-
kriging interpolation in predicting malaria case counts. This is because it yields low error values while
remaining within acceptable limits, and it demonstrates better generalization performance compared to the
other models.

3.6 Extrapolation Using Co-Kriging

Utilizing the best-performing model, specifically the Gaussian semivariogram, a predictive map illustrating
malaria case counts in Central Papua was generated, as depicted in Fig. 5.
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Figure 5. Prediction Map of Malaria Cases in Central Papua

Based on the estimated number of malaria cases in the eight regencies/cities within Central Papua,
using observational data from Papua Province, it is shown that the case numbers do not differ significantly.
The highest number of cases is found in Puncak Jaya Regency, with 219 cases per 1,000 inhabitants, while
the lowest number of cases is in Mimika Regency, with 211 cases per 1,000 inhabitants. The following map
presents the combined malaria case distribution for Papua Province and Central Papua by regency/city.
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Figure 6. Combined Map of Papua Province and Central Papua

The figure shows the spatial distribution of malaria cases in Papua Province per 1,000 population, with
the highest incidence in Mamberamo Raya and Keerom districts (>500 cases) and the lowest in Biak Numfor
and Yapen Islands (<100 cases). These results are consistent with estimation using the rainfall-based Co-
Kriging method, where the Gaussian model was selected as the best model with MSE 10.895 and MAPE
4.67%. This finding is in line with previous studies showing that Co-Kriging is effective in mapping the
distribution of vector-based diseases, as it is able to incorporate environmental variables such as rainfall to
improve the accuracy of spatial predictions [11], [12].

4. CONCLUSION

This study successfully implemented the Co-Kriging method by utilizing malaria case data as the main
variable and rainfall data as a supporting variable to estimate the number of malaria cases in areas that do not
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have data, especially in Central Papua Province. From the evaluation results of three types of semivariogram
models, namely, spherical, exponential, and Gaussian. The Gaussian model was identified as the most
optimal, indicated by a Mean Squared Error (MSE) value of 10.895 and a Mean Absolute Percentage Error
(MAPE) of 4.67%. which reflects excellent predictive performance while remaining realistic. The estimates
indicate that the distribution of malaria cases across districts/municipalities in Central Papua is fairly even,
with the highest rates found in Puncak Jaya district and the lowest in Mimika district. These findings provide
an important initial basis for planning more targeted and spatially-based health interventions.
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