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1. INTRODUCTION

The ABO blood group system, first identified by Karl Landsteiner in the early 20" Century, remains a
cornerstone of human genetics and medicine [1]. While its Mendelian principles are well established,
accurately modeling its inheritance is challenging due to the complexities introduced by multiple alleles,
environmental influences, and transitions across generations [2]. These challenges require advanced
computational tools, such as Hidden Markov Models (HMMs) to infer hidden genotypic states from
observable phenotypic data.

HMMs provide a robust framework for modeling systems with hidden states, making them particularly
suitable for genetic inheritance studies [3]. Their capability to handle uncertainty and infer hidden parameters
from observed data has proven valuable in various bioinformatics applications, from sequence analysis to
gene mapping [4], [5], [6], [7], |8]. Previous research has demonstrated the versatility of HMMs in genetics.
Beyond human genetics, Hayati et al. applied Discrete Hidden Markov Models (DHMMs) to analyze crosses
in diploid and tetraploid plants [4], [9]. In blood group prediction, Giollo et al. developed BOOGIE, an HMM-
based method that uses high-throughput sequencing data to predict blood groups from genomic data [10].
However, while these studies showcase HMMs for static genotype-phenotype prediction, their application to
model the temporal dynamics of blood type inheritance across multiple generations remains unexplored. Our
study directly addresses this gap by developing a DHMM framework specifically designed to trace and
analyze the evolution of inheritance patterns over time, moving beyond single-generation analysis to provide
a longitudinal perspective.

The ABO blood group system presents a unique challenge due to its complexity, involving multiple
alleles and their interactions [11]. DHMMSs are particularly well-suited for this task, as they can accurately
model discrete transitions between genotypes and their corresponding categorical phenotypic manifestations.
Additionally, HMMs can handle uncertainty and incomplete data, making them ideal for analyzing genetic
datasets that often contain ambiguities or missing data |12]. This is especially relevant in generational studies,
where ancestral genotypes may not always be known or fully observable.

This research aims to explore and develop the application of DHMMs in analyzing ABO blood type
inheritance patterns. By integrating existing genetic knowledge of the ABO system with the computational
power of DHMMs, we aim to deepen our understanding of blood type inheritance dynamics across
populations. Specifically, our study focuses on modeling the transition of genotypes and phenotypes across
generations, providing a framework for predicting genotypes based on phenotypic data and offering new
insights into population genetics and evolutionary patterns. Our work builds upon foundational studies in
genetic modeling, such as that of Hayati et al. (2016), who applied the Jukes-Cantor model to determine the
probability of nitrogen base inheritance in offspring |13]. By extending these approaches, we aim to
contribute to the growing body of research that leverages mathematical and computational tools to unravel
the complexities of genetic inheritance.

2. RESEARCH METHODS

2.1 The ABO Blood Group System

Karl Landsteiner, an Austrian-American scientist, discovered the ABO blood group system in 1900, a
discovery that later earned him the Nobel Prize in Physiology or Medicine in 1930 [14]. This discovery was
revolutionary because it explained why some blood transfusions succeeded while others failed, paving the
way for safe blood transfusions; it became one of the first genetic characteristics studied in humans, providing
valuable insights into genetic inheritance; and it has wide applications in forensic medicine, anthropological
studies, and human evolution research.

The ABO gene is located on the long arm of chromosome 9, specifically at position 9q34.1 to 9q34.2
[15]. This specific location is essential because it enables accurate genetic mapping, helps identify mutations
or genetic variations that may affect blood type expression, and facilitates studies on the relationship between
blood types and certain health conditions linked to nearby genes.

The ABO gene has three main alleles: 14, I8, and i. The characteristics of these alleles are:

1. 1% and I® are codominant, meaning both are expressed when present together.
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2. iisrecessive to I4 and I8, meaning its effect is only seen if no I or I? allele is present.

The combination of these alleles results in six possible genotypes. Although there are six genotypes,
there are only four phenotypes (4, B, AB, 0) due to the codominant nature of 14 and I? and the recessive
nature of i [16].

1. 1414 : homozygous A 4. IBi :heterozygous B
2. I4i  : heterozygous A 5. I8 : heterozygous AB
3. IBI® : homozygous B 6. ii  :homozygous O

The inheritance of ABO blood groups follows Mendelian principles, but with additional complexities.
The presence of three alleles (rather than two as in classical Mendelian genetics) adds variation in possible
offspring genotypes and the codominant nature of 4 and I? results in a mixed phenotype (AB) not seen in
simple dominant-recessive inheritance [17].

2.2 The Hardy-Weinberg Equilibrium (HWE)

The Hardy-Weinberg Equilibrium (HWE) is a fundamental principle in population genetics that
describe how allele and genotype frequencies remain constant from generation to generation in an ideal
population. This principle was first formulated independently by G.H. Hardy and Wilhelm Weinberg in 1908
[18]. Although the principle is often introduced using simple Mendelian traits with two allele, it is also
powerfully applicable to more complex genetic systems.

In the context of the ABO blood group system, which is governed by a multiple allelic system with
three main alleles (I4, 18, and i), the Hardy-Weinberg equilibrium has complex yet important applications.
The ABO blood group system is a classic example of multiple alleles and incomplete dominance in human
genetics. The basic assumptions of Hardy-Weinberg equilibrium include large population size, random
mating, no mutation, no selection, and no gene flow (migration).

For the three alleles governing the ABO system (14,15, and i), genotype frequencies under Hardy-
Weinberg equilibrium are given by the multinomial expansion p? + q% + 1% + 2pq + 2pr + 2qr =1,
where p, g, and r represent the frequencies of alleles 4, IZ, and i, respectively. The corresponding phenotype
frequencies for blood groups 4, B, AB, and O are derived directly from these genotype probabilities.

Although Hardy-Weinberg equilibrium rarely occurs perfectly in real populations, this principle
remains a valuable tool for understanding population genetic dynamics and detecting factors that may
influence allele frequencies, such as selection or gene flow [19].

2.3 The Discrete Hidden Markov Model (DHMM)

The DHMM is a statistical framework used to model stochastic processes with unobservable states that
can be inferred from observable variables [20]. It consists of an unseen Markov chain X = {X;} paired with
an observation process Y = {Y,.} with k € N. In this model, X, ,, influences the Markov chain Xj,, while X
affects the observation Y. Key components of a DHMM include:

1. A transition probability matrix A, which represents the likelihood of moving from one hidden state
to another. Each element is defined as:

ajj = P(X41 = j| X =) fori,j =1,2,-- N

where a;; = 0 and Z?’zl a;j = 1 for all i. In our context of blood type inheritance, this matrix is
constructed based on Mendelian inheritance rules. For example, the probability a;; defines the
chance of an offspring having genotype j given the parental genotype i.

2. An emission probability matrix B, which indicates the probability of observing a particular output
given the current hidden state. Each element is defined as:

b;(j) =P, =j|X, =i)fori=12,,Nandj=12,--,M
where b;(j) = 0 and Z?’Ll b;(j) = 1 for all i. Crucially, in this specific model, the emission

probabilities are deterministic. This means a genotype always produces a single, specific
phenotype with a probability of 1 (e.g., P(Phenotype A|Genotype [4I4) = 1). This choice
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reflects the well-established biological principle that the ABO allele interactions are complete and
predictable for phenotype expression. However, the DHMM framework allows for stochastic
emission to model uncertainty, which is a direction for future work.

An initial state probability vector i, which denotes the likelihood of the system starting in each
hidden state. Each element is defined as:

m; =P(X, =i)fori=12,-,N

where Y, ; = 1. In this study, the initial probabilities were calculated from population allele
frequencies using the HWE principle.

These elements are collectively represented as the parameter set A = (4, B, r).

2.4 Key Algorithms of The Discrete Hidden Markov Model

The DHMM framework addresses three core problems, calculating the probability of an observation
sequence, finding the most probable sequence of hidden states, and learning the model parameters that best
fit the data. A dedicated algorithm exists for each problem.

L.

The Forward-Backward Algorithm

The Forward-Backward algorithm solves the first problem of evaluating the probability of a given
observation sequence O = (04,05,:+,0g) under a model A. The forward algorithm proceeds
chronologically, while the backward algorithm works in reverse. Forward algorithm steps:

a. Initialization: a4 (i) = m;b;(y,) fori =1,2,---,N.

b.  Induction: a4, () = (T4 ak(i)aij)bj(yk+1) forj=12,--,Nandk =1,2,---, K — 1.
c. Termination: P(0|1) = XN, ak (D).

The Viterbi Algorithm

The Viterbi algorithm solves the second problem of finding the single best state sequence Q@ =
(9,92, ,qx) that maximizes P(Q|0, A). Viterbi algorithm steps:

a. Initialization: &, (i) = m;b;(0,) and Y, (i) =@ fori =1,2,---,N.
b. Recursion:

8k () = bi(yx) fgi?zil{a"jgk_l(i)} and Y, (j) = arg fgi?zil{a”&k'l(i)} for k=23, K—1.
c. Termination: P* = lrgia;)]%{c‘)‘,((i)} and xix* = arg fgi%)zil{(s’((i)}'

d. Backtracking: x" = Y1 (Xp41") fork =K —-1,K —2,---,1.
The Baum-Welch Algorithm

The Baum-Welch algorithm is an Expectation-Maximization (EM) procedure that solves the third
problem of re-estimating the parameter A = (A, B, 7). Given variables:

Sk(l']) =

ap(DaiibjVi+1)Br+10)
Z?’:l ar()Br()

and ¥, (i) = Z?’zlfk(i,j) fori=1,2,--,Nandk =1,2,---,K.

IRCL &)

a. A transition probability matrix 4: &;; =
P y RS NG

fori = 1,2,---,N andj =12, ,K.

Th=1styy = VE@
PERTIO)

c. An initial state probability vector 7: #; = y, (i) fori = 1,2,---,N.

b.  An emission probability matrix B: b;(j) =

These algorithms aim to find parameters A that satisfy P (0 |i) > P(0]A), where O is the observation sequence
and A represents the current model parameters [21].
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2.4 Data Source

The study utilized phenotype frequency data for ABO blood types (A4,B,AB, and 0) from the
Indonesian Ministry of Home Affairs’ Directorate General of Population and Civil Registration (Dirjen
Dukcapil). The dataset, updated as of 31 December 2024 [22], compiles civil registration records from 38
Indonesian provinces. Data were compiled from civil registration records across all provinces in Indonesia.
Blood type information was self-reported by individuals during national ID card registration updates [23],
[24]. The dataset reflects blood type distributions across diverse ethnic groups and geographic regions in
Indonesia. This dataset comprised approximately 38.4 million individuals, representing a nationally
aggregated sample.

However, it is important to acknowledge the limitations of this administrative dataset. As the blood
type information was self-reported without subsequent serological verification, the potential for
misclassification bias cannot be ruled out. Furthermore, the data were used in their raw, aggregated form at
the provincial level. No further data cleaning, verification procedures, or specific exclusion criteria were
applied, as the study relied on the pre-processed aggregate statistics provided by Dirjen Dukcapil.

The choice of this dataset was based on:
1. Representativeness

The massive, nationwide sample size provides unparalleled geographic and ethnic coverage,
ensuring statistical robustness for initial allele frequency estimation.

2. Availability

Raw genotype data were unavailable. Therefore, genotype frequencies (1414, 14i, I1B1B IBi, 1415,
and ii) were derived from the observed phenotype frequencies using HWE equations (Section

2.2).
Table 1. Distribution and Proportion of Each Blood Type
Blood Type Individuals Proportion
A 8390 388 0.218
B 8 666 202 0.226
AB 3 341 441 0.087
0 18 021 283 0.469
Total 38 419 314 1

Table 1 presents the absolute counts of individuals in Indonesia across the four ABO blood type
phenotypes (4, B, AB, and 0), as recorded by the Directorate General of Population and Civil Registration
(Dirjen Dukcapil) as of December 31, 2024. Among the total sample 38 419 314 individuals, representing a
subset of Indonesia’s population. Blood type O was the most prevalent with 18.021.283 people (46.9%),
followed by type B (22.6%), type A (21.8%), and type AB (8.7%). This distribution suggests that the recessive
allele i (which determines blood type O) is more common than the 4 and I? alleles, consistent with global
trends where type O is frequently the most widespread. The relatively high frequency of type AB may reflect
genetic diversity or a specific selection factor in Indonesia. This data served as the foundation for calculating
allele frequencies using the HWE for initializing the DHMM parameters.

2.5 Data Analysis Procedure
The analysis followed a structured pipeline to model blood type inheritance using a DHMM:
1. DHMM Initialization

Transition matrix A was constructed based on Mendelian inheritance rules, while emission matrix
B was defined deterministically. Initial probabilities = were calculated using HWE with
Indonesian allele frequencies.

2. Model Training and Validation

First, the forward-backward algorithm was applied to estimate the probability of observed
phenotype sequences (e.g., five generations of type A), while the Viterbi algorithm decoded
hidden genotypes. Model accuracy was improved via one iteration of the Baum-Welch algorithm,
with convergence monitored through log-likelihood values.
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3. RESULTS AND DISCUSSION

3.1 Discrete Hidden Markov Model Initialization

In the context of ABO blood type, hidden states represent possible genotypes. There are six hidden
states: I414, I4i, IBIB IBi, I4I®, and ii. These states are not directly observable and form the basis of the
hidden Markov model. Observations in this model are the blood type phenotypes that can be directly observed
through laboratory test. There are four possible observations: 4, B, AB, and O (Table 2).

Table 2. ABO Blood Type Genotype-Phenotype Frequencies

Genotypic Frequency Genotype Phenotype
p? 1414 A
2pr 14i A
q® 1BIB B
2qr 1Bi B
2pq 1418 AB
r? ii 0

The transition matrix (4) is a 6 X 6 matrix that defines the probability of an offspring having a specific
genotype based on parental genotype, governed by Mendelian inheritance laws. The entries of matrix A are
derived from the probabilities of allele segregation, as illustrated by the Punnett squares in Figure 1.

This figure illustrates how the probabilities in the transition matrix A4 are calculated based on Mendelian
inheritance. Each square shows the potential offspring genotypes resulting from a specific parental genotype
cross. The standard genotype abbreviations are used: 1414 (homozygous A), I4i (heterozygous A), 1818
(homozygous B), I8i (heterozygous B), I41? (heterozygous AB), and ii (homozygous O). The probabilities
of each offspring genotype are calculated from the allele combinations.

JAJA I x | JA]A 1B - 57
1414 100% (18,0 )
14 14 ® i
A X A 18 ]B]B 1Bi
.l 1A < - s i IBi i
L
I 1414 14 1414(0), 14i(0), 112 (3), 171 (), 1412 (0), i (3)
i 14i ii
AjA (LY 14;(1\ BB B; ArB . (1
1414 (3), 141 (3), 1215 0), 171(0), 1417 (0), i (3) - . -
4 8 A B
IBIB | X | ]B]B (I l"r ) (] ,I )
1212 100% 14 T
[ JA[A [A[B
[B ]A[B [B]B
i I X | ii - : 1
ii 100% 1414 (3),141(0), 171 (3), 11(0), 1*1® (3) ,11(0)

Figure 1. Derivation of Genotype Transition Probabilities using Punnett Square

Figure | provides a visual derivation of these probabilities. For example, a homozygous parent (1414)
can only pass the [ allele to its offspring and a heterozygous parent (e.g., 14i) has a 50% probability of
passing either the [4 allele or the i allele to its offspring. Based on the principles shown in Figure 1, the
probabilities for offspring genotype can be calculated. For instance:

1. The probability of two 414 parents producing a homozygous 414 offspring is 1.

2. The probability of two I4i (heterozygous A) parents producing a homozygous 1414 offspring is

0.25.
The probability of them producing another heterozygous 14i offspring is 0.5.
4. The probability of them producing a homozygous ii (O) offspring is 0.25.
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Therefore, the complete transition matrix A is defined as follows:

1 0 0 0 0 O

QajA AjA QAAA;  QuAA BB QAAB; QuAAAB  QAA; 11400 &
Aa;alA QA Ay QA BB QuAg B QA AlB QA 4 2 4
_|aBB a4 QBB a; QBB BB QBB B; QBB AB BB | 0 0 } (1) 0 (1)
aiB;jAfA By Ay By BB QyBy B QB A;B QB 0 0 7 2 0 "
QB AjA  QuABA; QAB BB QABB; QABAB @QAB; 1,191 o

Qji 1A1A i 14 Qi 1B (B Qi 1B Qi 1AIB Qi i 4 4 2
10 0 0 0 0 1

The emission matrix (B) describes the probabilities of a genotype producing a certain phenotype. It is

a 6 X 4 matrix that links hidden states to observations. The matrix reflects the deterministic relationship

between genotypes and phenotypes in the ABO blood type system. The examples of some matrix elements

are genotype 1414 always produces phenotype A, genotype I4i always produce phenotype A, genotype [418

always produces phenotype AB and genotype ii always produces phenotype O.

[D;a,4(A)  bja,a(B)  byaa(AB)  byaa(0)]
b;a;,(A)  b;a;(B)  bya;(AB)  b;a;(0)
b;p;5(A) b;e;5(B) b;s;5(AB) b;5;5(0)
b;s;,(A)  b;s;(B) b;s;(AB)  b;5;(0)
b;a;5(A) b;a;e(B)  byas(AB)  byas(0)

L b;; (4) b;(B) b;;(AB) b;(0) |

SO R PR OO
O R OO OO
o OO oo

SO OO R

The initial probability matrix (7r) describes the initial probability distribution of each genotype in the
populations. The matrix 7 reflects the relative frequencies of each genotype in the studied population and are
typically based on epidemiological or population genetic data.

= [TAiA T TaB T A T

To apply a DHMM in analyzing blood type inheritance patterns, the value of the initial probability
matrix (1r) were determined using the HWE based on an example dataset from Table 1. The step-by-step
procedure is as follows:

1. Step 1: Determine The HWE Equation.
P(A) = p? + 2pr = 0.218
P(B) = q* + 2qr = 0.226
P(AB) = 2pq = 0.087
P(0) =r? = 0.469
2. Step 2: Calculate Allele Frequency.
Solve the Step 1 using a Non-Linear Equation System:
p = 0.2057,q = 0.2114,r = 0.4279
p+q+7r=0.8450

3. Step 3: Normalize to Ensure p + q + 1 = 1.

. _ 0.2057

_0.2114
P = Ssas0

~ 0.8450

04279

= 0.2502,7 =
0.8450

= 0.5064.

= 0.2434,§

Based on the calculation results, the allele frequencies are as follows:
1. Frequency of [4 allele (p) = 0.2434;
2. Frequency of I? allele (q) = 0.2502;
3. Frequency of'i allele () = 0.5064.

These three alleles appear to form a multiple allele system (a system with more than two variants) since
the total sum of the three allele frequencies equals 1. This frequency distribution indicates significant genetic
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diversity in the population, with one dominant allele and two minority alleles. With this data, the initial
probability matrix can be calculated as follows:

1. P(I41%) = p? = (0.2434)%2 = 0.059;
P(I40) = 2pr = 2(0.2434)(0.5064) = 0.247;
P(IBIB) = g% = (0.2502)% = 0.063;
P(IBi) = 2qr = 2(0.2502)(0.5064) = 0.253;
P(I41B) = 2pq = 2(0.2434)(0.2502) = 0.122;

6. P(ii) = 1% = (0.5064)% = 0.256.
Thus, the initial probability matrix becomes:

m=[0.059 0.247 0.063 0.253 0.122 0.256].

Based on these results, it can be determined that genotype ii (blood type O) has the highest probability with
25.6%. Followed by IBi (heterozygous blood type B) with 25.3%. I4i (heterozygous blood type A) has a
probability of 24.7%. Genotype I414 (homozygous blood type B) has the lowest probability (5.9%).

A

These three matrices (4, B, and 1) form the main parameters of the DHMM used to analyze and predict
ABO blood type inheritance pattern. This model allows for prediction of genotypes based on observed
phenotype sequences, analysis of inheritance patterns in family pedigrees, estimation of allele frequencies in
populations, and better understanding of the genetic dynamics of ABO blood types.

3.2 Model Training and Validation

The first problem in a DHMM is to calculate the probability of an observation sequence using the
forward and backward algorithm. For example, let’s calculate the probability of five generations having
phenotype A consecutively using the forward algorithm.

Table 3. Calculation of the Observation Sequence Probability using the Forward Algorithm

t 1 2 3 4 5
a, (1) 0.059 0.121 0.152 0.167 0.175
a,(2) 0.247 0.124 0.062 0.031 0.015
a:(3) 0 0 0 0 0
a,(4) 0 0 0 0 0
. (5) 0 0 0 0 0
a,(6) 0 0 0 0 0

P(0|2) 0.190

Table 3 presents the step-by-step results of the forward algorithm for calculating the probability of
observing phenotype A across five consecutive generations, i.e., P(0 = (4,4,4, A, A)|1). The forward
probability a, (j) represents the probability of the partial observation sequence up to time t and being in state
j at time t, given the model A. The final probability, obtained by summing the forward probabilities at t = 5
for all states emitting phenotype A (I414 and I4i), is 0.190 or 19%.

P(A A A A A = as(I414) + as(141) = as(1) + as(2) = 0.175 + 0.015 = 0.190

This probability is relatively high, considering that phenotype A can be produced by two genotypes
(1414 and I4i). The increasing value of a,(I4I#) and the decreasing value of a;(I4i) from generation to
generation indicate a cumulative effect, where the probability becomes increasingly concentrated in
homozygous 1414 state, which always produces offspring with phenotype A.

The next problem is to find the most likely sequence of hidden states (genotypes) based on the given
sequence of observations (phenotypes) using the Viterbi algorithm. For example, five generations have
phenotype A consecutively.

Table 4. Traceback of the Most Probable Genotype Sequence using Viterbi Algorithm’s Path Pointers
t 1 2 3 4 5
Y. (1) 0 14i 14 14 14
Y. (2) 0 14i 14 14 14i
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t 1 2 3 4 5
¥, (3) 0 0 0 0 0
¥, (4) 0 0 0 0 0
¥,(5) 0 0 0 0 0
¥, (6) 0 0 0 0 0

The Viterbi variable 1, (j) stores the most likely previous state that leads to state j at time ¢, used to
reconstruct the optimal hidden path. Table 4 shows the backtracking values for the observation sequence of
five consecutive phenotype A generations. The most probable genotype sequence, determined by tracing the
1 pointers from the final step, is

x* = {14, I414, I414, 1414, 1414},

The most probable sequence of hidden genotypes, identified by applying the traceback function to the
values in Table 4, is I4i, 1414, 1414, 1414, 1414, This result reveals a critical hidden dynamic, although the
observed phenotype (A) remained constant for five generations, the underlying genotype likely shifted from
heterozygous (I4i) in the first generation to homozygous (I414) for the subsequent four. This transition is
genetically logical, as a cross between two I4i parents have a probability of 0.25 of producing a homozygous
1414 offspring. Once the 414 genotype is established, it will stably produce offspring with the same genotype

and phenotype indefinitely. This finding powerfully illustrates the utility of the DHMM and the Viterbi
algorithm in inferring hidden genetic states that are not directly observable from phenotypic data alone.

The final problem is to re-estimate DHMM parameters to maximize the probability of the observation
sequence. To update the model parameters using the Baum-Welch algorithm, we need to perform several
iterations [4|. However, due to the observation data for five generations with phenotype A, only one iteration
is performed as an example. The updated model:

1. Initial state matrix 7: ;4,4 = 0.31 and 7,4; = 0.69 (the values for other states are 0).

2. Transition matrix A: d;a; a4 = 0.441,and @;4; ;a; = 0.559 (other transitions remain the same as
before).

3. Emission matrix B: unchanged because all observations are A.

Based on the result, the initial probability for genotype 1414 increased from 0.061 to 0.314 and the
initial probability for genotype I4i increased from 0.249 to 0.686. The transition probability from I4i to 414
increased from 0.25 to 0.466, and the transition probability from I4i to I4i increased from 0.5 to 0.534. This
shows an increased tendency to stay in or transition to genotypes that produce phenotype A. The emission
matrix remains unchanged because all observations are phenotype A and the genotype-phenotype relationship
remains deterministic. The new parameters are as follows:

1 0 0 0 0 0 100 0 031
0441 0559 0 0 0 0 100 0 0.69
~ | o 0 1 0 0 0|4 _l0100 _|o
4=1 5 0 025 05 o o250 1 o of®™T=|
025 0 025 0 05 0 0010 0
0 0 o o0 0 1 00 0 1 0

The model generated through one iteration of the Baum-Welch algorithm provides an initial picture of
how DHMM parameters can be optimized to analyze blood type inheritance patterns. However, it is essential
to recognize that these results are just the initial step in a more comprehensive process. In actual
implementation, the Baum-Welch algorithm performs many iterations, continuously updating the model
parameters (initial probabilities, transition matrix, and emission matrix) until convergence is reached or a
predetermined maximum number of iterations is met.

The observation of five consecutive generations with phenotype A used in this study represents an
effective case study to illustrate the application of DHMMs in genetic inheritance analysis. This approach
can be further developed by expanding the dataset to include longer and more diverse sequences of
generations, involving all blood type phenotypes (4, B, AB, 0). This would result in a more robust model
with more accurate parameter estimates, thereby improving the quality of predictions and understanding
regarding the dynamics of blood type inheritance in populations.



1510 Hayati, etal. ~ APPLICATION OF DISCRETE HIDDEN MARKOV MODELS IN ANALYZING BLOOD ...

The re-estimated model can also serve as a starting point for subsequent iterations, where the forward,
backward, Viterbi, and Baum-Welch algorithms are executed again to further refine the model parameters.
This iterative process will result in a model that increasingly converges toward an optimal value. In each
iteration, the parameters obtained from the previous iteration are used as the initial value for the next re-
estimation process.

Table 5. Forward Algorithm Computation for the Observation Sequence after Baum-Welch Re-Estimation

t 1 2 3 4 5
a,(1) 0.310 0.614 0.784 0.880 0.933
a,(2) 0.690 0.386 0.216 0.120 0.067
a;(3) 0 0 0 0 0
a,(4) 0 0 0 0 0
a,(5) 0 0 0 0 0
. (6) 0 0 0 0 0
P(0O[L) 1

The forward variable a;(j) represent the probability of the partial observation sequence until time ¢
and being in state j at time t, given the re-estimated model 1. The final probability P(O |/1) = Y, as(j) for all
states j that emit phenotype A (i.e., I414 and I4i) yields the result of 1.

P(A,A A A A) = as(I414) + as(141) = as(1) + as(2) = 0.933 + 0.067 = 1.

As detailed in Table 5, the forward algorithm was executed using the re-estimated parameters (1)
obtained from the Baum-Welch algorithm. The result shows a perfect probability score, P(O |/1) = 1, for the
observation sequence of five consecutive phenotype A generations. This signifies a 100% probability under
the optimized model, demonstrating a dramatic increase from the initial model’s probability and
unequivocally confirming the effectiveness of the Baum-Welch re-estimation process. Furthermore, the
concentration of probability mass in the as(I414) value (0.933) suggests the optimized model now strongly
favors the homozygous 1414 genotype as the most probable hidden state underlying the sustained phenotypic
observation.

One effective method for evaluating the performance of the DHMM model and monitoring the
convergence process is to use the log likelihood. Comparing the log likelihood results between the initial
model and the re-estimated model provides important insights into the effectiveness of the re-estimation
process. In the case of this blood type inheritance model, the initial model’s log likelihood value was —1.661,
while the model after Baum-Welch re-estimation achieved a value of 0. This increase of 1.640 indicates that
the re-estimated model is significantly better at explaining the observed data.

L(A)=InP(0|1) =InP(A4,4,A,4,A)
1. The initial model’s log likelihood: £L(1) = In(0.194) = —1.661;
2. The re-estimated model’s log likelihood: L(/T) =In(1) = 0.

A log likelihood value of 0 (likelihood = 1) in the re-estimated model suggests that the model provides
maximum probability or absolute certainty in generating a sequence of phenotype A consecutively over five
generations. This perfect log likelihood is direct consequence of the highly specific and deterministic nature
of our experimental setup. It occurs because:

1. The emission probabilities in our model are defined deterministically (e.g., P(A|I414 = 1)). A
genotype always produces its corresponding phenotype.

2. The Baum-Welch algorithm re-estimated the transition matrix to perfectly explain the single,
noiseless observation sequence of five ‘A’s. In essence, it learned a specialized model where the
most probable path perfectly generates the observations.

3. The model was trained on a single, short, and perfectly observed sequence. In real-world
applications, models are trained on large, noisy datasets with diverse sequences, making a perfect
likelihood statistically impossible and indicative of overfitting.

Therefore, while this result demonstrates the algorithm’s ability to achieve perfect convergence on a
constrained problem, it also highlights that our initial model parameters were not optimal for this specific
sequence. For practical applications, techniques such as regularization or using larger dataset would be
necessary to prevent overfitting and ensure generalizability.
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4. CONCLUSION

This research applied a DHMM to analyze the inheritance patterns of ABO blood types. Through the
use of forward-backward, Viterbi, and Baum-Welch algorithms, the model successfully estimated the
probability of phenotype sequences, identified the most likely hidden genotype sequence, and optimized
model parameters. The results demonstrate the model’s capability to adapt to observational data. Specifically,
the probability of observing phenotype A consecutively across five generations was calculated to be 0.190
(19%) under the initial model. A key insight from the Viterbi algorithm was that although phenotype A was
observed consistently, the underlying genotype likely shifted from heterozygous (I4i) in the first generation
to homozygous (I414) in the subsequent generations. This highlights the complexity of genotype-phenotype
relationships and underscores the importance of inferring hidden genetic states. The Baum-Welch re-
estimation process significantly improved the model’s fit to the specific observed sequence. The log
likelihood increased from —1.661 to 0, indicating that the re-estimated parameters yielded a perfect
likelihood for this training sequence. While this demonstrates the algorithm’s effectiveness in parameter
optimization, this specific result of P(0|/T) = 1 is a characteristic of its convergence on a short, noiseless
sequence with deterministic emissions and may indicate overfitting. To build upon this work, future research
should focus on applying the DHMM framework to larger and more diverse datasets, incorporating genomic
sequencing data for validation of predicted genotypes, and extending the analysis to other complex
multiallelic traits. Investigating methods to prevent overfitting, such as regularization or the use of prior
distributions, would also be valuable for enhancing the model’s generalizability to real-world genetic data.
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