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Article Info ABSTRACT 

Article History: 
This research investigates the application of a Discrete Hidden Markov Model (DHMM) to 

analyze inheritance patterns of ABO blood types. Leveraging the DHMM’s ability to model 

systems with hidden states, the study aims to improve the understanding of blood type 

inheritance dynamics in populations. The model employs six hidden states representing 

ABO genotypes (IAIA, IAi, IBIB, IBi, IAIB, and ii) and four observable states corresponding to 

blood type phenotypes (A, B, AB, and O). The transition and emission matrices followed 

Mendelian inheritance principles using population allele frequencies, whereas the initial 

probabilities were computed under Hardy-Weinberg Equilibrium (HWE) assumptions, with 

parameters calibrated to Indonesian blood type distributions. As a case study, we calculated 

the likelihood of observing phenotype A across five consecutive generations. Using the 

forward-backward algorithm, the probability of this sequence was calculated as 19%. The 

Viterbi algorithm further identified the most probable sequence of hidden genotypes, 

revealing a transition from the heterozygous IAi to the homozygous IAIA genotype over the 

five generations. One iteration of the Baum-Welch algorithm improved model accuracy, 

increasing log-likelihood from -1.661 to 0. Our results demonstrate the DHMM’s efficacy 

in decoding complex inheritance dynamics and provide a foundation for future population 

genetics research. 
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1. INTRODUCTION 

The ABO blood group system, first identified by Karl Landsteiner in the early 20th Century, remains a 

cornerstone of human genetics and medicine [1]. While its Mendelian principles are well established, 

accurately modeling its inheritance is challenging due to the complexities introduced by multiple alleles, 

environmental influences, and transitions across generations [2]. These challenges require advanced 

computational tools, such as Hidden Markov Models (HMMs) to infer hidden genotypic states from 

observable phenotypic data. 

HMMs provide a robust framework for modeling systems with hidden states, making them particularly 

suitable for genetic inheritance studies [3]. Their capability to handle uncertainty and infer hidden parameters 

from observed data has proven valuable in various bioinformatics applications, from sequence analysis to 

gene mapping [4], [5], [6], [7], [8]. Previous research has demonstrated the versatility of HMMs in genetics. 

Beyond human genetics, Hayati et al. applied Discrete Hidden Markov Models (DHMMs) to analyze crosses 

in diploid and tetraploid plants [4], [9]. In blood group prediction, Giollo et al. developed BOOGIE, an HMM-

based method that uses high-throughput sequencing data to predict blood groups from genomic data [10]. 

However, while these studies showcase HMMs for static genotype-phenotype prediction, their application to 

model the temporal dynamics of blood type inheritance across multiple generations remains unexplored. Our 

study directly addresses this gap by developing a DHMM framework specifically designed to trace and 

analyze the evolution of inheritance patterns over time, moving beyond single-generation analysis to provide 

a longitudinal perspective.  

The ABO blood group system presents a unique challenge due to its complexity, involving multiple 

alleles and their interactions [11]. DHMMs are particularly well-suited for this task, as they can accurately 

model discrete transitions between genotypes and their corresponding categorical phenotypic manifestations. 

Additionally, HMMs can handle uncertainty and incomplete data, making them ideal for analyzing genetic 

datasets that often contain ambiguities or missing data [12]. This is especially relevant in generational studies, 

where ancestral genotypes may not always be known or fully observable. 

This research aims to explore and develop the application of DHMMs in analyzing ABO blood type 

inheritance patterns. By integrating existing genetic knowledge of the ABO system with the computational 

power of DHMMs, we aim to deepen our understanding of blood type inheritance dynamics across 

populations. Specifically, our study focuses on modeling the transition of genotypes and phenotypes across 

generations, providing a framework for predicting genotypes based on phenotypic data and offering new 

insights into population genetics and evolutionary patterns. Our work builds upon foundational studies in 

genetic modeling, such as that of Hayati et al. (2016), who applied the Jukes-Cantor model to determine the 

probability of nitrogen base inheritance in offspring [13]. By extending these approaches, we aim to 

contribute to the growing body of research that leverages mathematical and computational tools to unravel 

the complexities of genetic inheritance. 

2. RESEARCH METHODS 

2.1 The ABO Blood Group System  

Karl Landsteiner, an Austrian-American scientist, discovered the ABO blood group system in 1900, a 

discovery that later earned him the Nobel Prize in Physiology or Medicine in 1930 [14]. This discovery was 

revolutionary because it explained why some blood transfusions succeeded while others failed, paving the 

way for safe blood transfusions; it became one of the first genetic characteristics studied in humans, providing 

valuable insights into genetic inheritance; and it has wide applications in forensic medicine, anthropological 

studies, and human evolution research. 

The ABO gene is located on the long arm of chromosome 9, specifically at position 9q34.1 to 9q34.2 

[15]. This specific location is essential because it enables accurate genetic mapping, helps identify mutations 

or genetic variations that may affect blood type expression, and facilitates studies on the relationship between 

blood types and certain health conditions linked to nearby genes. 

The ABO gene has three main alleles: 𝐼𝐴, 𝐼𝐵, and 𝑖. The characteristics of these alleles are: 

1. 𝐼𝐴 and 𝐼𝐵 are codominant, meaning both are expressed when present together. 
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2. 𝑖 is recessive to 𝐼𝐴 and 𝐼𝐵, meaning its effect is only seen if no 𝐼𝐴 or 𝐼𝐵 allele is present. 

The combination of these alleles results in six possible genotypes. Although there are six genotypes, 

there are only four phenotypes (𝐴, 𝐵, 𝐴𝐵, 𝑂) due to the codominant nature of 𝐼𝐴 and 𝐼𝐵 and the recessive 

nature of 𝑖 [16]. 

1. 𝐼𝐴𝐼𝐴 : homozygous 𝐴 

2. 𝐼𝐴𝑖 : heterozygous 𝐴 

3. 𝐼𝐵𝐼𝐵 : homozygous 𝐵 

4. 𝐼𝐵𝑖 : heterozygous 𝐵 

5. 𝐼𝐴𝐼𝐵 : heterozygous 𝐴𝐵 

6. 𝑖𝑖 : homozygous 𝑂 

The inheritance of ABO blood groups follows Mendelian principles, but with additional complexities. 

The presence of three alleles (rather than two as in classical Mendelian genetics) adds variation in possible 

offspring genotypes and the codominant nature of 𝐼𝐴 and 𝐼𝐵 results in a mixed phenotype (𝐴𝐵) not seen in 

simple dominant-recessive inheritance [17]. 

2.2 The Hardy-Weinberg Equilibrium (HWE)  

The Hardy-Weinberg Equilibrium (HWE) is a fundamental principle in population genetics that 

describe how allele and genotype frequencies remain constant from generation to generation in an ideal 

population. This principle was first formulated independently by G.H. Hardy and Wilhelm Weinberg in 1908 

[18]. Although the principle is often introduced using simple Mendelian traits with two allele, it is also 

powerfully applicable to more complex genetic systems.   

In the context of the ABO blood group system, which is governed by a multiple allelic system with 

three main alleles (𝐼𝐴, 𝐼𝐵, and 𝑖), the Hardy-Weinberg equilibrium has complex yet important applications. 

The ABO blood group system is a classic example of multiple alleles and incomplete dominance in human 

genetics. The basic assumptions of Hardy-Weinberg equilibrium include large population size, random 

mating, no mutation, no selection, and no gene flow (migration). 

For the three alleles governing the ABO system (𝐼𝐴, 𝐼𝐵, and 𝑖), genotype frequencies under Hardy-

Weinberg equilibrium are given by the multinomial expansion 𝑝2 + 𝑞2 + 𝑟2 + 2𝑝𝑞 + 2𝑝𝑟 + 2𝑞𝑟 = 1, 

where 𝑝, 𝑞, and 𝑟 represent the frequencies of alleles 𝐼𝐴, 𝐼𝐵, and 𝑖, respectively. The corresponding phenotype 

frequencies for blood groups 𝐴, 𝐵, 𝐴𝐵, and 𝑂 are derived directly from these genotype probabilities. 

Although Hardy-Weinberg equilibrium rarely occurs perfectly in real populations, this principle 

remains a valuable tool for understanding population genetic dynamics and detecting factors that may 

influence allele frequencies, such as selection or gene flow [19].  

2.3 The Discrete Hidden Markov Model (DHMM)  

The DHMM is a statistical framework used to model stochastic processes with unobservable states that 

can be inferred from observable variables [20]. It consists of an unseen Markov chain 𝑋 = {𝑋𝑘} paired with 

an observation process 𝑌 = {𝑌𝑘} with 𝑘 ∈ 𝑁. In this model, 𝑋𝑘+1 influences the Markov chain 𝑋𝑘, while 𝑋𝑘 

affects the observation 𝑌𝑘. Key components of a DHMM include: 

1. A transition probability matrix 𝑨, which represents the likelihood of moving from one hidden state 

to another. Each element is defined as: 

𝑎𝑖𝑗 = 𝑃(𝑋𝑘+1 = 𝑗|𝑋𝑘 = 𝑖) for 𝑖, 𝑗 = 1,2,⋯ ,𝑁 

where 𝑎𝑖𝑗 ≥ 0 and ∑ 𝑎𝑖𝑗
𝑁
𝑗=1 = 1 for all 𝑖. In our context of blood type inheritance, this matrix is 

constructed based on Mendelian inheritance rules. For example, the probability 𝑎𝑖𝑗 defines the 

chance of an offspring having genotype 𝑗 given the parental genotype 𝑖. 

2. An emission probability matrix 𝑩, which indicates the probability of observing a particular output 

given the current hidden state. Each element is defined as: 

𝑏𝑖(𝑗) = 𝑃(𝑌𝑘 = 𝑗|𝑋𝑘 = 𝑖) for 𝑖 = 1,2,⋯ ,𝑁 and 𝑗 = 1,2,⋯ ,𝑀  

where 𝑏𝑖(𝑗) ≥ 0 and ∑ 𝑏𝑖(𝑗)
𝑀
𝑗=1 = 1 for all 𝑖. Crucially, in this specific model, the emission 

probabilities are deterministic. This means a genotype always produces a single, specific 

phenotype with a probability of 1 (e.g., 𝑃(Phenotype 𝐴|Genotype 𝐼𝐴𝐼𝐴) = 1). This choice 
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reflects the well-established biological principle that the ABO allele interactions are complete and 

predictable for phenotype expression. However, the DHMM framework allows for stochastic 

emission to model uncertainty, which is a direction for future work. 

3. An initial state probability vector 𝝅, which denotes the likelihood of the system starting in each 

hidden state. Each element is defined as: 

𝜋𝑖 = 𝑃(𝑋1 = 𝑖) for 𝑖 = 1,2,⋯ ,𝑁  

where ∑ 𝜋𝑖
𝑁
𝑖=1 = 1. In this study, the initial probabilities were calculated from population allele 

frequencies using the HWE principle. 

These elements are collectively represented as the parameter set 𝜆 = (𝑨,𝑩,𝝅).  

2.4 Key Algorithms of The Discrete Hidden Markov Model  

The DHMM framework addresses three core problems, calculating the probability of an observation 

sequence, finding the most probable sequence of hidden states, and learning the model parameters that best 

fit the data. A dedicated algorithm exists for each problem. 

1. The Forward-Backward Algorithm 

The Forward-Backward algorithm solves the first problem of evaluating the probability of a given 

observation sequence 𝑂 = (𝑜1, 𝑜2,⋯ , 𝑜𝐾) under a model 𝜆. The forward algorithm proceeds 

chronologically, while the backward algorithm works in reverse. Forward algorithm steps: 

a. Initialization:  𝛼1(𝑖) = 𝜋𝑖𝑏𝑖(𝑦1) for 𝑖 = 1,2,⋯ ,𝑁. 

b. Induction: 𝛼𝑘+1(𝑗) = (∑ 𝛼𝑘(𝑖)𝑎𝑖𝑗
𝑁
𝑖=1 )𝑏𝑗(𝑦𝑘+1) for 𝑗 = 1,2,⋯ ,𝑁 and 𝑘 = 1,2,⋯ ,𝐾 − 1. 

c. Termination:  𝑃(𝑂|𝜆) = ∑ 𝛼𝐾(𝑖)𝑁
𝑖=1 . 

2. The Viterbi Algorithm 

The Viterbi algorithm solves the second problem of finding the single best state sequence 𝑄 =
(𝑞, 𝑞2,⋯ , 𝑞𝐾) that maximizes 𝑃(𝑄|𝑂, 𝜆). Viterbi algorithm steps: 

a. Initialization:  𝛿1(𝑖) = 𝜋𝑖𝑏𝑖(𝑜1) and 𝜓1(𝑖) = ∅ for 𝑖 = 1, 2,⋯ ,𝑁. 

b. Recursion:  

𝛿𝑘(𝑗) = 𝑏𝑗(𝑦𝑘) max
1≤𝑖≤𝑁

{𝑎𝑖𝑗𝛿𝑘−1(𝑖)} and 𝜓𝑘(𝑗) = arg max
1≤𝑖≤𝑁

{𝑎𝑖𝑗𝛿𝑘−1(𝑖)} for  𝑘 = 2,3,⋯ ,𝐾 − 1. 

c. Termination:  𝑃∗ = max
1≤𝑖≤𝑁

{𝛿𝐾(𝑖)} and 𝑥𝐾
∗ = arg max

1≤𝑖≤𝑁
{𝛿𝐾(𝑖)}. 

d. Backtracking: 𝑥𝑘
∗ = 𝜓𝑘+1(𝑥𝑘+1

∗) for 𝑘 = 𝐾 − 1,𝐾 − 2,⋯ ,1. 

3. The Baum-Welch Algorithm 

The Baum-Welch algorithm is an Expectation-Maximization (EM) procedure that solves the third 

problem of re-estimating the parameter 𝜆 = (𝑨,𝑩,𝝅). Given variables: 

𝜉𝑘(𝑖, 𝑗) =
𝛼𝑘(𝑖)𝑎𝑖𝑗𝑏𝑗(𝑦𝑘+1)𝛽𝑘+1(𝑗)

∑ 𝛼𝑘(𝑗)𝛽𝑘(𝑗)𝑁
𝑗=1

 and 𝛾𝑘(𝑖) = ∑ 𝜉𝑘(𝑖, 𝑗)𝑁
𝑗=1  for 𝑖 = 1,2,⋯ ,𝑁 and 𝑘 = 1,2,⋯ ,𝐾. 

a. A transition probability matrix 𝑨̂: 𝑎̂𝑖𝑗 =
∑ 𝜉𝑘(𝑖,𝑗)𝐾−1

𝑘=1

∑ 𝛾𝑘(𝑖)𝐾−1
𝑘=1

 for 𝑖 = 1,2,⋯ ,𝑁 and 𝑗 = 1,2,⋯ ,𝐾. 

b. An emission probability matrix 𝑩̂: 𝑏̂𝑖(𝑗) =
∑ 𝛾𝑘(𝑖)𝐾

𝑘=1,s.t𝑦𝑘=𝑗

∑ 𝛾𝑘(𝑖)𝐾
𝑘=1

. 

c. An initial state probability vector 𝝅̂: 𝜋̂𝑖 = 𝛾1(𝑖) for 𝑖 = 1,2,⋯ ,𝑁. 

These algorithms aim to find parameters 𝜆̂ that satisfy 𝑃(𝑂|𝜆̂) ≥ 𝑃(0|𝜆), where 𝑂 is the observation sequence 

and 𝜆 represents the current model parameters [21]. 
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2.4 Data Source  

The study utilized phenotype frequency data for ABO blood types (𝐴, 𝐵, 𝐴𝐵, and 𝑂) from the 

Indonesian Ministry of Home Affairs’ Directorate General of Population and Civil Registration (Dirjen 

Dukcapil). The dataset, updated as of 31 December 2024 [22], compiles civil registration records from 38 

Indonesian provinces. Data were compiled from civil registration records across all provinces in Indonesia. 

Blood type information was self-reported by individuals during national ID card registration updates [23], 

[24]. The dataset reflects blood type distributions across diverse ethnic groups and geographic regions in 

Indonesia. This dataset comprised approximately 38.4 million individuals, representing a nationally 

aggregated sample.  

However, it is important to acknowledge the limitations of this administrative dataset. As the blood 

type information was self-reported without subsequent serological verification, the potential for 

misclassification bias cannot be ruled out. Furthermore, the data were used in their raw, aggregated form at 

the provincial level. No further data cleaning, verification procedures, or specific exclusion criteria were 

applied, as the study relied on the pre-processed aggregate statistics provided by Dirjen Dukcapil. 

The choice of this dataset was based on: 

1. Representativeness 

The massive, nationwide sample size provides unparalleled geographic and ethnic coverage, 

ensuring statistical robustness for initial allele frequency estimation. 

2. Availability 

Raw genotype data were unavailable. Therefore, genotype frequencies (𝐼𝐴𝐼𝐴, 𝐼𝐴𝑖, 𝐼𝐵𝐼𝐵, 𝐼𝐵𝑖, 𝐼𝐴𝐼𝐵, 

and 𝑖𝑖) were derived from the observed phenotype frequencies using HWE equations (Section 

2.2). 

Table 1. Distribution and Proportion of Each Blood Type 

Blood Type Individuals Proportion 

𝐴 8 390 388 0.218 

𝐵 8 666 202 0.226 

𝐴𝐵 3 341 441 0.087 

𝑂 18 021 283 0.469 

Total 38 419 314 1 

Table 1 presents the absolute counts of individuals in Indonesia across the four ABO blood type 

phenotypes (𝐴, 𝐵, 𝐴𝐵, and 𝑂), as recorded by the Directorate General of Population and Civil Registration 

(Dirjen Dukcapil) as of December 31, 2024. Among the total sample 38 419 314 individuals, representing a 

subset of Indonesia’s population. Blood type O was the most prevalent with 18.021.283 people (46.9%), 

followed by type B (22.6%), type A (21.8%), and type AB (8.7%). This distribution suggests that the recessive 

allele 𝑖 (which determines blood type O) is more common than the 𝐼𝐴 and 𝐼𝐵 alleles, consistent with global 

trends where type O is frequently the most widespread. The relatively high frequency of type AB may reflect 

genetic diversity or a specific selection factor in Indonesia. This data served as the foundation for calculating 

allele frequencies using the HWE for initializing the DHMM parameters. 

2.5 Data Analysis Procedure  

The analysis followed a structured pipeline to model blood type inheritance using a DHMM: 

1. DHMM Initialization 

Transition matrix 𝑨 was constructed based on Mendelian inheritance rules, while emission matrix 

𝑩 was defined deterministically. Initial probabilities 𝝅 were calculated using HWE with 

Indonesian allele frequencies.  

2. Model Training and Validation 

First, the forward-backward algorithm was applied to estimate the probability of observed 

phenotype sequences (e.g., five generations of type A), while the Viterbi algorithm decoded 

hidden genotypes. Model accuracy was improved via one iteration of the Baum-Welch algorithm, 

with convergence monitored through log-likelihood values. 
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3. RESULTS AND DISCUSSION 

3.1 Discrete Hidden Markov Model Initialization 

In the context of ABO blood type, hidden states represent possible genotypes. There are six hidden 

states: 𝐼𝐴𝐼𝐴, 𝐼𝐴𝑖, 𝐼𝐵𝐼𝐵, 𝐼𝐵𝑖, 𝐼𝐴𝐼𝐵, and 𝑖𝑖. These states are not directly observable and form the basis of the 

hidden Markov model. Observations in this model are the blood type phenotypes that can be directly observed 

through laboratory test. There are four possible observations: 𝐴, 𝐵, 𝐴𝐵, and 𝑂 (Table 2). 

Table 2. ABO Blood Type Genotype-Phenotype Frequencies 

Genotypic Frequency Genotype Phenotype 

𝑝2 𝐼𝐴𝐼𝐴 𝐴 

2𝑝𝑟 𝐼𝐴𝑖 𝐴 

𝑞2 𝐼𝐵𝐼𝐵 𝐵 

2𝑞𝑟 𝐼𝐵𝑖 𝐵 

2𝑝𝑞 𝐼𝐴𝐼𝐵 𝐴𝐵 

𝑟2 𝑖𝑖 𝑂 

The transition matrix (𝑨) is a 6 × 6 matrix that defines the probability of an offspring having a specific 

genotype based on parental genotype, governed by Mendelian inheritance laws. The entries of matrix 𝑨 are 

derived from the probabilities of allele segregation, as illustrated by the Punnett squares in Figure 1. 

This figure illustrates how the probabilities in the transition matrix 𝑨 are calculated based on Mendelian 

inheritance. Each square shows the potential offspring genotypes resulting from a specific parental genotype 

cross. The standard genotype abbreviations are used: 𝐼𝐴𝐼𝐴 (homozygous A), 𝐼𝐴𝑖 (heterozygous A), 𝐼𝐵𝐼𝐵 

(homozygous B), 𝐼𝐵𝑖 (heterozygous B), 𝐼𝐴𝐼𝐵 (heterozygous AB), and 𝑖𝑖 (homozygous O). The probabilities 

of each offspring genotype are calculated from the allele combinations.   

 
Figure 1. Derivation of Genotype Transition Probabilities using Punnett Square 

Figure 1 provides a visual derivation of these probabilities. For example, a homozygous parent (𝐼𝐴𝐼𝐴) 

can only pass the 𝐼𝐴 allele to its offspring and a heterozygous parent (e.g., 𝐼𝐴𝑖) has a 50% probability of 

passing either the 𝐼𝐴 allele or the 𝑖 allele to its offspring. Based on the principles shown in Figure 1, the 

probabilities for offspring genotype can be calculated. For instance: 

1. The probability of two 𝐼𝐴𝐼𝐴 parents producing a homozygous 𝐼𝐴𝐼𝐴 offspring is 1.  

2. The probability of two 𝐼𝐴𝑖 (heterozygous A) parents producing a homozygous 𝐼𝐴𝐼𝐴 offspring is 

0.25.  

3. The probability of them producing another heterozygous 𝐼𝐴𝑖 offspring is 0.5.  

4. The probability of them producing a homozygous 𝑖𝑖 (O) offspring is 0.25.  
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Therefore, the complete transition matrix 𝑨 is defined as follows: 

𝑨 =

[
 
 
 
 
 
𝑎𝐼𝐴𝐼𝐴,𝐼𝐴𝐼𝐴 𝑎𝐼𝐴𝐼𝐴,𝐼𝐴𝑖 𝑎𝐼𝐴𝐼𝐴,𝐼𝐵𝐼𝐵 𝑎𝐼𝐴𝐼𝐴,𝐼𝐵𝑖 𝑎𝐼𝐴𝐼𝐴,𝐼𝐴𝐼𝐵 𝑎𝐼𝐴𝐼𝐴,𝑖𝑖

𝑎𝐼𝐴𝑖,𝐼𝐴𝐼𝐴 𝑎𝐼𝐴𝑖,𝐼𝐴𝑖 𝑎𝐼𝐴𝑖,𝐼𝐵𝐼𝐵 𝑎𝐼𝐴𝑖,𝐼𝐵𝑖 𝑎𝐼𝐴𝑖,𝐼𝐴𝐼𝐵 𝑎𝐼𝐴𝑖,𝑖𝑖

𝑎𝐼𝐵𝐼𝐵,𝐼𝐴𝐼𝐴 𝑎𝐼𝐵𝐼𝐵,𝐼𝐴𝑖 𝑎𝐼𝐵𝐼𝐵,𝐼𝐵𝐼𝐵 𝑎𝐼𝐵𝐼𝐵,𝐼𝐵𝑖 𝑎𝐼𝐵𝐼𝐵,𝐼𝐴𝐼𝐵 𝑎𝐼𝐵𝐼𝐵,𝑖𝑖

𝑎𝐼𝐵𝑖,𝐼𝐴𝐼𝐴 𝑎𝐼𝐵𝑖,𝐼𝐴𝑖 𝑎𝐼𝐵𝑖,𝐼𝐵𝐼𝐵 𝑎𝐼𝐵𝑖,𝐼𝐵𝑖 𝑎𝐼𝐵𝑖,𝐼𝐴𝐼𝐵 𝑎𝐼𝐵𝑖,𝑖𝑖

𝑎𝐼𝐴𝐼𝐵,𝐼𝐴𝐼𝐴 𝑎𝐼𝐴𝐼𝐵,𝐼𝐴𝑖 𝑎𝐼𝐴𝐼𝐵,𝐼𝐵𝐼𝐵 𝑎𝐼𝐴𝐼𝐵,𝐼𝐵𝑖 𝑎𝐼𝐴𝐼𝐵,𝐼𝐴𝐼𝐵 𝑎𝐼𝐴𝐼𝐵,𝑖𝑖

𝑎𝑖𝑖,𝐼𝐴𝐼𝐴 𝑎𝑖𝑖,𝐼𝐴𝑖 𝑎𝑖𝑖,𝐼𝐵𝐼𝐵 𝑎𝑖𝑖,𝐼𝐵𝑖 𝑎𝑖𝑖,𝐼𝐴𝐼𝐵 𝑎𝑖𝑖,𝑖𝑖 ]
 
 
 
 
 

=

[
 
 
 
 
 
 
1 0 0 0 0 0
1

4

1

2
0 0 0

1

4

0 0 1 0 0 0

0 0
1

4

1

2
0

1

4
1

4
0

1

4
0

1

2
0

0 0 0 0 0 1]
 
 
 
 
 
 

  

The emission matrix (𝑩) describes the probabilities of a genotype producing a certain phenotype. It is 

a 6 × 4 matrix that links hidden states to observations. The matrix reflects the deterministic relationship 

between genotypes and phenotypes in the ABO blood type system. The examples of some matrix elements 

are genotype 𝐼𝐴𝐼𝐴 always produces phenotype 𝐴, genotype 𝐼𝐴𝑖 always produce phenotype 𝐴, genotype 𝐼𝐴𝐼𝐵 

always produces phenotype 𝐴𝐵 and genotype 𝑖𝑖 always produces phenotype 𝑂. 

𝑩 =

[
 
 
 
 
 
 
𝑏𝐼𝐴𝐼𝐴(𝐴) 𝑏𝐼𝐴𝐼𝐴(𝐵) 𝑏𝐼𝐴𝐼𝐴(𝐴𝐵) 𝑏𝐼𝐴𝐼𝐴(𝑂)

𝑏𝐼𝐴𝑖(𝐴) 𝑏𝐼𝐴𝑖(𝐵) 𝑏𝐼𝐴𝑖(𝐴𝐵) 𝑏𝐼𝐴𝑖(𝑂)

𝑏𝐼𝐵𝐼𝐵(𝐴) 𝑏𝐼𝐵𝐼𝐵(𝐵) 𝑏𝐼𝐵𝐼𝐵(𝐴𝐵) 𝑏𝐼𝐵𝐼𝐵(𝑂)

𝑏𝐼𝐵𝑖(𝐴) 𝑏𝐼𝐵𝑖(𝐵) 𝑏𝐼𝐵𝑖(𝐴𝐵) 𝑏𝐼𝐵𝑖(𝑂)

𝑏𝐼𝐴𝐼𝐵(𝐴) 𝑏𝐼𝐴𝐼𝐵(𝐵) 𝑏𝐼𝐴𝐼𝐵(𝐴𝐵) 𝑏𝐼𝐴𝐼𝐵(𝑂)

𝑏𝑖𝑖(𝐴) 𝑏𝑖𝑖(𝐵) 𝑏𝑖𝑖(𝐴𝐵) 𝑏𝑖𝑖(𝑂) ]
 
 
 
 
 
 

=

[
 
 
 
 
 
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1]

 
 
 
 
 

 

The initial probability matrix (𝝅) describes the initial probability distribution of each genotype in the 

populations. The matrix 𝜋 reflects the relative frequencies of each genotype in the studied population and are 

typically based on epidemiological or population genetic data. 

𝝅 = [𝜋𝐼𝐴𝐼𝐴 𝜋𝐼𝐴𝑖 𝜋𝐼𝐴𝐼𝐵 𝜋𝐼𝐵𝑖 𝜋𝐼𝐴𝐼𝐵 𝜋𝑖𝑖] 

To apply a DHMM in analyzing blood type inheritance patterns, the value of the initial probability 

matrix (𝝅) were determined using the HWE based on an example dataset from Table 1. The step-by-step 

procedure is as follows:  

1. Step 1: Determine The HWE Equation. 

𝑃(𝐴) = 𝑝2 + 2𝑝𝑟 = 0.218 

𝑃(𝐵) = 𝑞2 + 2𝑞𝑟 = 0.226 

𝑃(𝐴𝐵) = 2𝑝𝑞 = 0.087 

𝑃(𝑂) = 𝑟2 = 0.469 

2. Step 2: Calculate Allele Frequency. 

Solve the Step 1 using a Non-Linear Equation System: 

𝑝 = 0.2057, 𝑞 = 0.2114, 𝑟 = 0.4279 

𝑝 + 𝑞 + 𝑟 = 0.8450 

3. Step 3: Normalize to Ensure 𝑝 + 𝑞 + 𝑟 = 1. 

𝑝̂ =
0.2057

0.8450
= 0.2434, 𝑞̂ =

0.2114

0.8450
= 0.2502, 𝑟̂ =

0.4279

0.8450
= 0.5064.  

Based on the calculation results, the allele frequencies are as follows: 

1. Frequency of 𝐼𝐴 allele (𝑝) = 0.2434;  

2. Frequency of 𝐼𝐵 allele (𝑞) = 0.2502;  

3. Frequency of 𝑖 allele (𝑟) = 0.5064. 

These three alleles appear to form a multiple allele system (a system with more than two variants) since 

the total sum of the three allele frequencies equals 1. This frequency distribution indicates significant genetic 
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diversity in the population, with one dominant allele and two minority alleles. With this data, the initial 

probability matrix can be calculated as follows: 

1. 𝑃(𝐼𝐴𝐼𝐴) = 𝑝2 = (0.2434)2 = 0.059; 

2. 𝑃(𝐼𝐴𝑖) = 2𝑝𝑟 = 2(0.2434)(0.5064) = 0.247; 

3. 𝑃(𝐼𝐵𝐼𝐵) = 𝑞2 = (0.2502)2 = 0.063; 

4. 𝑃(𝐼𝐵𝑖) = 2𝑞𝑟 = 2(0.2502)(0.5064) = 0.253; 

5. 𝑃(𝐼𝐴𝐼𝐵) = 2𝑝𝑞 = 2(0.2434)(0.2502) = 0.122; 

6. 𝑃(𝑖𝑖) = 𝑟2 = (0.5064)2 = 0.256. 

Thus, the initial probability matrix becomes:  

𝝅 = [0.059 0.247 0.063 0.253 0.122 0.256]. 

Based on these results, it can be determined that genotype 𝑖𝑖 (blood type 𝑂) has the highest probability with 

25.6%. Followed by 𝐼𝐵𝑖 (heterozygous blood type 𝐵) with 25.3%. 𝐼𝐴𝑖 (heterozygous blood type 𝐴) has a 

probability of 24.7%. Genotype 𝐼𝐴𝐼𝐴 (homozygous blood type 𝐵) has the lowest probability (5.9%). 

These three matrices (𝑨,𝑩, and 𝝅) form the main parameters of the DHMM used to analyze and predict 

ABO blood type inheritance pattern. This model allows for prediction of genotypes based on observed 

phenotype sequences, analysis of inheritance patterns in family pedigrees, estimation of allele frequencies in 

populations, and better understanding of the genetic dynamics of ABO blood types. 

3.2 Model Training and Validation 

The first problem in a DHMM is to calculate the probability of an observation sequence using the 

forward and backward algorithm. For example, let’s calculate the probability of five generations having 

phenotype 𝐴 consecutively using the forward algorithm. 

Table 3. Calculation of the Observation Sequence Probability using the Forward Algorithm 

𝒕 1 2 3 4 5 

𝛼𝑡(1) 0.059 0.121 0.152 0.167 0.175 

𝛼𝑡(2) 0.247 0.124 0.062 0.031 0.015 

𝛼𝑡(3) 0 0 0 0 0 

𝛼𝑡(4) 0 0 0 0 0 

𝛼𝑡(5) 0 0 0 0 0 

𝛼𝑡(6) 0 0 0 0 0 

𝑷(𝑶|𝝀) 0.190 

Table 3 presents the step-by-step results of the forward algorithm for calculating the probability of 

observing phenotype A across five consecutive generations, i.e., 𝑃(𝑂 = (𝐴, 𝐴, 𝐴, 𝐴, 𝐴)|𝜆). The forward 

probability 𝛼𝑡(𝑗) represents the probability of the partial observation sequence up to time 𝑡 and being in state 

𝑗 at time 𝑡, given the model 𝜆. The final probability, obtained by summing the forward probabilities at 𝑡 = 5 

for all states emitting phenotype A (𝐼𝐴𝐼𝐴 and 𝐼𝐴𝑖), is 0.190 or 19%.  

𝑃(𝐴, 𝐴, 𝐴, 𝐴, 𝐴) = 𝛼5(𝐼
𝐴𝐼𝐴) + 𝛼5(𝐼

𝐴𝑖) = 𝛼5(1) + 𝛼5(2) = 0.175 + 0.015 = 0.190 

This probability is relatively high, considering that phenotype 𝐴 can be produced by two genotypes 

(𝐼𝐴𝐼𝐴 and 𝐼𝐴𝑖). The increasing value of 𝛼𝑡(𝐼
𝐴𝐼𝐴) and the decreasing value of 𝛼𝑡(𝐼

𝐴𝑖) from generation to 

generation indicate a cumulative effect, where the probability becomes increasingly concentrated in 

homozygous 𝐼𝐴𝐼𝐴 state, which always produces offspring with phenotype 𝐴. 

The next problem is to find the most likely sequence of hidden states (genotypes) based on the given 

sequence of observations (phenotypes) using the Viterbi algorithm. For example, five generations have 

phenotype 𝐴 consecutively. 

Table 4. Traceback of the Most Probable Genotype Sequence using Viterbi Algorithm’s Path Pointers 

𝒕 1 2 3 4 5 

𝜓𝑡(1) 0 𝐼𝐴𝑖 𝐼𝐴𝐼𝐴 𝐼𝐴𝐼𝐴 𝐼𝐴𝐼𝐴 

𝜓𝑡(2) 0 𝐼𝐴𝑖 𝐼𝐴𝑖 𝐼𝐴𝑖 𝐼𝐴𝑖 
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𝒕 1 2 3 4 5 

𝜓𝑡(3) 0 0 0 0 0 

𝜓𝑡(4) 0 0 0 0 0 

𝜓𝑡(5) 0 0 0 0 0 

𝜓𝑡(6) 0 0 0 0 0 

The Viterbi variable 𝜓𝑡(𝑗) stores the most likely previous state that leads to state 𝑗 at time 𝑡, used to 

reconstruct the optimal hidden path. Table 4 shows the backtracking values for the observation sequence of 

five consecutive phenotype A generations. The most probable genotype sequence, determined by tracing the 

𝜓 pointers from the final step, is 

𝑥∗ = {𝐼𝐴𝑖, 𝐼𝐴𝐼𝐴, 𝐼𝐴𝐼𝐴, 𝐼𝐴𝐼𝐴, 𝐼𝐴𝐼𝐴}. 

The most probable sequence of hidden genotypes, identified by applying the traceback function to the 

values in Table 4, is 𝐼𝐴𝑖, 𝐼𝐴𝐼𝐴, 𝐼𝐴𝐼𝐴, 𝐼𝐴𝐼𝐴, 𝐼𝐴𝐼𝐴. This result reveals a critical hidden dynamic, although the 

observed phenotype (A) remained constant for five generations, the underlying genotype likely shifted from 

heterozygous (𝐼𝐴𝑖) in the first generation to homozygous (𝐼𝐴𝐼𝐴) for the subsequent four. This transition is 

genetically logical, as a cross between two 𝐼𝐴𝑖 parents have a probability of 0.25 of producing a homozygous 

𝐼𝐴𝐼𝐴 offspring. Once the 𝐼𝐴𝐼𝐴 genotype is established, it will stably produce offspring with the same genotype 

and phenotype indefinitely. This finding powerfully illustrates the utility of the DHMM and the Viterbi 

algorithm in inferring hidden genetic states that are not directly observable from phenotypic data alone. 

The final problem is to re-estimate DHMM parameters to maximize the probability of the observation 

sequence. To update the model parameters using the Baum-Welch algorithm, we need to perform several 

iterations [4]. However, due to the observation data for five generations with phenotype 𝐴, only one iteration 

is performed as an example. The updated model:   

1. Initial state matrix 𝝅̂: 𝜋̂𝐼𝐴𝐼𝐴 = 0.31 and 𝜋̂𝐼𝐴𝑖 = 0.69 (the values for other states are 0). 

2. Transition matrix 𝑨̂: 𝑎̂𝐼𝐴𝑖,𝐼𝐴𝐼𝐴 = 0.441, and 𝑎̂𝐼𝐴𝑖,𝐼𝐴𝑖 = 0.559 (other transitions remain the same as 

before). 

3. Emission matrix 𝑩̂: unchanged because all observations are 𝐴. 

Based on the result, the initial probability for genotype 𝐼𝐴𝐼𝐴 increased from 0.061 to 0.314 and the 

initial probability for genotype 𝐼𝐴𝑖 increased from 0.249 to 0.686. The transition probability from 𝐼𝐴𝑖 to 𝐼𝐴𝐼𝐴 

increased from 0.25 to 0.466, and the transition probability from 𝐼𝐴𝑖 to 𝐼𝐴𝑖 increased from 0.5 to 0.534. This 

shows an increased tendency to stay in or transition to genotypes that produce phenotype 𝐴. The emission 

matrix remains unchanged because all observations are phenotype 𝐴 and the genotype-phenotype relationship 

remains deterministic. The new parameters are as follows: 

𝑨̂ =

[
 
 
 
 
 

1 0 0 0 0 0
0.441 0.559 0 0 0 0

0 0 1 0 0 0
0 0 0.25 0.5 0 0.25

0.25 0 0.25 0 0.5 0
0 0 0 0 0 1 ]

 
 
 
 
 

, 𝑩̂ =

[
 
 
 
 
 
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1]

 
 
 
 
 

, and 𝝅̂ =

[
 
 
 
 
 
0.31
0.69
0
0
0
0 ]

 
 
 
 
 

. 

The model generated through one iteration of the Baum-Welch algorithm provides an initial picture of 

how DHMM parameters can be optimized to analyze blood type inheritance patterns. However, it is essential 

to recognize that these results are just the initial step in a more comprehensive process. In actual 

implementation, the Baum-Welch algorithm performs many iterations, continuously updating the model 

parameters (initial probabilities, transition matrix, and emission matrix) until convergence is reached or a 

predetermined maximum number of iterations is met. 

The observation of five consecutive generations with phenotype 𝐴 used in this study represents an 

effective case study to illustrate the application of DHMMs in genetic inheritance analysis. This approach 

can be further developed by expanding the dataset to include longer and more diverse sequences of 

generations, involving all blood type phenotypes (𝐴, 𝐵, 𝐴𝐵, 𝑂). This would result in a more robust model 

with more accurate parameter estimates, thereby improving the quality of predictions and understanding 

regarding the dynamics of blood type inheritance in populations. 
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The re-estimated model can also serve as a starting point for subsequent iterations, where the forward, 

backward, Viterbi, and Baum-Welch algorithms are executed again to further refine the model parameters. 

This iterative process will result in a model that increasingly converges toward an optimal value. In each 

iteration, the parameters obtained from the previous iteration are used as the initial value for the next re-

estimation process. 

Table 5. Forward Algorithm Computation for the Observation Sequence after Baum-Welch Re-Estimation 

𝒕 1 2 3 4 5 

𝛼𝑡(1) 0.310 0.614 0.784 0.880 0.933 

𝛼𝑡(2) 0.690 0.386 0.216 0.120 0.067 

𝛼𝑡(3) 0 0 0 0 0 

𝛼𝑡(4) 0 0 0 0 0 

𝛼𝑡(5) 0 0 0 0 0 

𝛼𝑡(6) 0 0 0 0 0 

𝑷(𝑶|𝝀) 1 

The forward variable 𝛼𝑡(𝑗) represent the probability of the partial observation sequence until time 𝑡 

and being in state 𝑗 at time 𝑡, given the re-estimated model 𝜆̂. The final probability 𝑃(𝑂|𝜆̂) = ∑𝛼5(𝑗) for all 

states 𝑗 that emit phenotype A (i.e., 𝐼𝐴𝐼𝐴 and 𝐼𝐴𝑖) yields the result of 1. 

𝑃(𝐴, 𝐴, 𝐴, 𝐴, 𝐴) = 𝛼5(𝐼
𝐴𝐼𝐴) + 𝛼5(𝐼

𝐴𝑖) = 𝛼5(1) + 𝛼5(2) = 0.933 + 0.067 = 1. 

As detailed in Table 5, the forward algorithm was executed using the re-estimated parameters (𝜆̂) 

obtained from the Baum-Welch algorithm. The result shows a perfect probability score, 𝑃(𝑂|𝜆̂) = 1, for the 

observation sequence of five consecutive phenotype A generations. This signifies a 100% probability under 

the optimized model, demonstrating a dramatic increase from the initial model’s probability and 

unequivocally confirming the effectiveness of the Baum-Welch re-estimation process. Furthermore, the 

concentration of probability mass in the 𝛼5(𝐼
𝐴𝐼𝐴) value (0.933) suggests the optimized model now strongly 

favors the homozygous 𝐼𝐴𝐼𝐴 genotype as the most probable hidden state underlying the sustained phenotypic 

observation. 

One effective method for evaluating the performance of the DHMM model and monitoring the 

convergence process is to use the log likelihood. Comparing the log likelihood results between the initial 

model and the re-estimated model provides important insights into the effectiveness of the re-estimation 

process. In the case of this blood type inheritance model, the initial model’s log likelihood value was −1.661, 

while the model after Baum-Welch re-estimation achieved a value of 0. This increase of  1.640 indicates that 

the re-estimated model is significantly better at explaining the observed data. 

ℒ(𝜆) = ln 𝑃(𝑂|𝜆) = ln 𝑃(𝐴, 𝐴, 𝐴, 𝐴, 𝐴) 

1. The initial model’s log likelihood: ℒ(𝜆) = ln(0.194) = −1.661; 

2. The re-estimated model’s log likelihood: ℒ(𝜆̂) = ln(1) = 0. 

A log likelihood value of 0 (likelihood = 1) in the re-estimated model suggests that the model provides 

maximum probability or absolute certainty in generating a sequence of phenotype 𝐴 consecutively over five 

generations. This perfect log likelihood is direct consequence of the highly specific and deterministic nature 

of our experimental setup. It occurs because: 

1. The emission probabilities in our model are defined deterministically (e.g., 𝑃(𝐴|𝐼𝐴𝐼𝐴 = 1)). A 

genotype always produces its corresponding phenotype. 

2. The Baum-Welch algorithm re-estimated the transition matrix to perfectly explain the single, 

noiseless observation sequence of five ‘A’s. In essence, it learned a specialized model where the 

most probable path perfectly generates the observations. 

3. The model was trained on a single, short, and perfectly observed sequence. In real-world 

applications, models are trained on large, noisy datasets with diverse sequences, making a perfect 

likelihood statistically impossible and indicative of overfitting. 

Therefore, while this result demonstrates the algorithm’s ability to achieve perfect convergence on a 

constrained problem, it also highlights that our initial model parameters were not optimal for this specific 

sequence. For practical applications, techniques such as regularization or using larger dataset would be 

necessary to prevent overfitting and ensure generalizability. 
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4. CONCLUSION 

This research applied a DHMM to analyze the inheritance patterns of ABO blood types. Through the 

use of forward-backward, Viterbi, and Baum-Welch algorithms, the model successfully estimated the 

probability of phenotype sequences, identified the most likely hidden genotype sequence, and optimized 

model parameters. The results demonstrate the model’s capability to adapt to observational data. Specifically, 

the probability of observing phenotype A consecutively across five generations was calculated to be 0.190 

(19%) under the initial model. A key insight from the Viterbi algorithm was that although phenotype A was 

observed consistently, the underlying genotype likely shifted from heterozygous (𝐼𝐴𝑖) in the first generation 

to homozygous (𝐼𝐴𝐼𝐴) in the subsequent generations. This highlights the complexity of genotype-phenotype 

relationships and underscores the importance of inferring hidden genetic states. The Baum-Welch re-

estimation process significantly improved the model’s fit to the specific observed sequence. The log 

likelihood increased from −1.661 to 0, indicating that the re-estimated parameters yielded a perfect 

likelihood for this training sequence. While this demonstrates the algorithm’s effectiveness in parameter 

optimization, this specific result of 𝑃(𝑂|𝜆̂) = 1 is a characteristic of its convergence on a short, noiseless 

sequence with deterministic emissions and may indicate overfitting. To build upon this work, future research 

should focus on applying the DHMM framework to larger and more diverse datasets, incorporating genomic 

sequencing data for validation of predicted genotypes, and extending the analysis to other complex 

multiallelic traits. Investigating methods to prevent overfitting, such as regularization or the use of prior 

distributions, would also be valuable for enhancing the model’s generalizability to real-world genetic data. 
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