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Article Info ABSTRACT 

Article History: 
Ensuring the consistent quality of drinking water remains a major challenge in Indonesia, 

particularly due to natural variability and operational limitations in regional water 

companies (PDAMs). Statistical quality control methods such as the Multivariate 

Exponentially Weighted Moving Average (MEWMA) chart, are widely applied for 

monitoring; however, their assumption of independent and identically distributed 

observations reduces their effectiveness when applied to autocorrelated time-series data. 

This study proposes a Vector Autoregressive (VAR)-based MEWMA control chart for 

monitoring water quality parameters, turbidity, and residual chlorine at PDAM Tirta. Daily 

observations from 2023 (n = 365) were analyzed. The VAR(3) model was selected using the 

Akaike Information Criterion (AIC), and residuals were validated to be free from 

autocorrelation. These residuals were then incorporated into the MEWMA framework with 

a smoothing parameter λ = 0.03. A comparative analysis was conducted between the 

standard MEWMA and the VAR-based MEWMA through Monte Carlo simulations (5,000 

replications) across three shift scenarios. Results showed that both methods achieved 

comparable ARL₀ values (≈3), confirming stability under in-control conditions. However, 

the VAR-based MEWMA consistently demonstrated lower ARL₁ values in detecting small 

shifts, especially in turbidity, with improvements of up to 22% compared to the standard 

MEWMA. These findings highlight the VAR-based MEWMA as a more sensitive and reliable 

monitoring tool, offering water utilities an early-warning system that enables timely 

corrective actions and ensures compliance with drinking water quality standards. 

Received: 16th June 2025 

Revised: 18th July 2025 

Accepted: 6th October 2025 

Available online:26th January 2026 

 

 

Keywords: 

Control Chart; 

False Alarm; 

MEWMA; 

VAR-Based MEWMA; 

Water Quality. 

  

This article is an open access article distributed under the terms and 

conditions of the Creative Commons Attribution-ShareAlike 4.0 

International License. 

 

 
 

  

https://ojs3.unpatti.ac.id/index.php/barekeng/
mailto:barekeng.math@yahoo.com
mailto:barekeng.journal@mail.unpatti.ac.id
mailto:herdiani.erna@unhas.ac.id
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
mailto:takagung@gmail.com
https://orcid.org/0009-0005-8177-0860
mailto:herdiani.erna@unhas.ac.id
https://orcid.org/0009-0005-8177-0860
mailto:nurtitisunusi@unhas.ac.id
https://orcid.org/0009-0005-8177-0860


1514 Takdir, et al.    RESIDUAL-BASED MEWMA CONTROL CHART FOR DRINKING WATER QUALITY MONITORING …  

1. INTRODUCTION 

Clean water plays a vital role in sustaining ecosystems and safeguarding public health. The availability 

of water that meets quality standards is a fundamental necessity for daily life as well as for the continuity of 

various human activities [1]. To ensure this, the Indonesian government has established drinking water quality 

requirements through the Minister of Health Regulation Number 492/KEMENKES/PER/IV/2010 [2], which 

must be met by all water service providers, including regional water companies (PDAM). However, natural 

conditions and infrastructure limitations remain significant challenges in many regions [3]. The Indonesian 

Ministry of Public Works and Public Housing [4] reported that only about 72% of PDAMs nationwide 

consistently meet drinking water quality standards, with turbidity and residual chlorine being among the most 

frequently problematic parameters. In South Sulawesi, seasonal rainfall often causes spikes in turbidity 

beyond acceptable limits, while residual chlorine levels fluctuate due to dosing and operational challenges, 

highlighting the urgent need for more reliable monitoring systems [4]. 

Systematic water quality control is essential to ensure that distributed water consistently meets health 

requirements [5]. Statistical quality control methods are widely applied to monitor process stability and detect 

deviations that require corrective action [6]. One of the most common tools in this framework is the control 

chart, which enables the detection of shifts [7]. However, conventional charts such as the Shewhart chart are 

effective for detecting large, sudden shifts, while Hotelling’s T² charts, though widely used for multivariate 

monitoring, are less sensitive to small or gradual changes [8]. To address these limitations, the Multivariate 

Exponentially Weighted Moving Average (MEWMA) chart has become increasingly relevant for monitoring 

multiple quality parameters simultaneously [9]. Unlike traditional charts, MEWMA accumulates historical 

information through exponential weighting, thereby enhancing sensitivity to small shifts in the process mean 

while remaining robust when handling data that deviates from perfect normality [10][11]. 

Several studies have applied MEWMA control charts in the context of water quality monitoring. 

Maharani et al. [1] implemented MEWMA and MEWMV charts to monitor water treatment quality at PDAM 

Tirta Moedal, Semarang. Abubakar [4] employed MEWMA charts for water quality monitoring and 

demonstrated their effectiveness in detecting multivariate shifts in quality parameters. Similarly, Angelita 

and Pratama [12] applied MEWMA charts to monitor clean water usage at Perumda Tirta Manuntung, 

Balikpapan. These studies confirm the practical relevance of MEWMA in water-related applications. 

However, a fundamental limitation of the MEWMA framework lies in its underlying assumption of 

independent and identically distributed (i.i.d.) observations. In reality, water quality data are collected as time 

series and often exhibit strong autocorrelation across successive observations. Ignoring this temporal 

dependence can lead to inflated false alarm rates or failure to detect actual process shifts, thereby reducing 

the reliability of monitoring outcomes [13][14].  

To address this limitation, time series models such as the Vector Autoregressive (VAR) model are 

widely used because they capture dynamic interdependencies among variables and produce residuals free 

from autocorrelation. Incorporating these residuals into the MEWMA framework enhances sensitivity to 

small shifts while minimizing false alarms, thus strengthening the robustness of water quality monitoring 

systems [13]. Pan and Jarrett [15] demonstrated that incorporating VAR residuals into Hotelling’s T² charts 

improved detection reliability by reducing bias caused by serial correlation. Similarly, Khusna [13] developed 

a VAR-based Max-MCUSUM chart for the white crystal sugar industry and found it more sensitive to small 

shifts than conventional charts. Building on these findings, the present study proposes a novel approach by 

integrating VAR residuals into the MEWMA framework for water quality monitoring. Unlike earlier research 

that primarily focused on T² charts or Max-MCUSUM, this study leverages MEWMA’s unique advantage in 

detecting small shifts, thereby enabling earlier identification of process deviations while simultaneously 

reducing the likelihood of false alarms. 

The main objective of this research is to design and implement a VAR-based MEWMA control chart 

for monitoring water quality at PDAM Tirta Jeneberang, Gowa Regency. By using autocorrelation-free VAR 

residuals as inputs, this approach is expected to provide a more accurate representation of multivariate water 

quality dynamics, allow earlier detection of subtle process shifts, and improve both the reliability and 

efficiency of monitoring systems. The expected outcome is a monitoring framework that ensures timely and 

accurate detection of process changes while reducing false alarms. Furthermore, this method can serve as a 

model for other regional water service providers and contribute to the development of multivariate quality 

control methodologies based on time series analysis, ensuring the sustainable provision of safe and clean 

drinking water. 
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2. RESEARCH METHODS 

2.1 Vector Autoregressive (VAR) 

The Vector Autoregressive (VAR) model is a widely used method in multivariate time series analysis, 

designed to capture and model autocorrelation relationships among variables within a system. This model is 

particularly effective in addressing autocorrelation problems that frequently arise in multivariate data [16]. 

In general, the VAR(p) model can be expressed as follows in Eq.(1): 

𝑿𝒕 = 𝚽𝟏𝑿𝒕−𝟏 + 𝚽𝟐𝑿𝒕−𝟐 + ⋯+ 𝚽𝒑𝑿𝒕−𝒑 + 𝜺𝒕, (1)  

where 𝑿𝒕 is a 𝑘 × 1 vector of variables at time 𝑡, 𝚽𝒋 = 𝚽𝟏, 𝚽𝟐, … ,𝚽𝒏 are 𝑘 × 𝑘 vector of VAR coefficient 

matrices, and 𝜺𝒕 is a residual vector assumed to follow 𝜺𝒕~𝑁(𝟎, 𝚺). Determining the optimal lag length is a 

critical step in VAR modeling to ensure reliable parameter estimation and accurate forecasting. In this study, 

the lag length is determined using the Akaike Information Criterion (AIC), where the model with the smallest 

AIC value is selected as the most appropriate specification [17][18]. The estimated residuals 𝜺̂𝒕 are 

subsequently incorporated into the MEWMA statistic for further monitoring analysis. 

2.2 VAR-Based Multivariate Exponentially Weighted Moving Average (MEWMA) Control Chart 

The Multivariate Exponentially Weighted Moving Average (MEWMA) control chart is an effective 

statistical method for detecting small shifts in the mean of multivariate processes [19]. By incorporating 

historical information from previous observations, MEWMA is more sensitive to gradual or subtle changes 

that may not be immediately apparent [20]. In multivariate systems with temporal dependence, the VAR 

model is commonly applied to capture dynamic relationships and lagged effects among variables. Once the 

VAR model is estimated, the residuals (𝜺̂𝒕) are obtained, representing deviations between observed and 

predicted values. These residuals serve as critical inputs for the MEWMA procedure [15]. 

The MEWMA chart then monitors the internal dynamics of the system by accumulating deviations 

over time, providing early detection of shifts or instability that might be missed by traditional methods [7]. 

By applying residuals from the VAR model, the MEWMA method accounts for temporal interdependencies 

while enhancing sensitivity to structural changes. The recursive VAR-Based MEWMA statistic at any time 

𝑡 is defined as Eq. (2): 

 𝒁𝒕 = 𝚲𝜺̂𝒕 + (𝑰 − 𝚲)𝒁𝒕−𝟏, 𝒁𝟎 = 𝟎, (2) 

where 𝚲 = diag(𝜆1, 𝜆2, … , 𝜆𝑝) is a diagonal matrix of smoothing parameters. The general vector 

representation of 𝒁𝒕 is shown in Eq. (3): 

𝒁𝒕 =

[
 
 
 
𝒁𝟏𝟏 𝒁𝟏𝟐

𝒁𝟐𝟏 𝒁𝟐𝟐

⋯ 𝒁𝟏𝒑

⋯ 𝒁𝟐𝒑

⋮ ⋮
𝒁𝒏𝟏 𝒁𝒏𝟐

⋱ ⋮
⋯ 𝒁𝒏𝒑]

 
 
 

. (3) 

In general, the MEWMA observation vector can be expressed as Eq. (4): 

𝒁𝒕 = 𝚲∑(𝑰 − 𝚲)𝒋𝜺̂𝒕−𝒋.

𝑡−1

𝑗=0

(4) 

Process monitoring is based on Hotelling’s statistic in Eq. (5): 

𝑇𝑡
2 = 𝒁𝒕

′𝚺𝒁𝒕

−𝟏𝒁𝒕, (5) 

where 𝚺𝒁𝒕
 is the covariance matrix of 𝒁𝒕. The variance of 𝒁𝒕 is given by Eq. (6): 

𝚺𝒁𝒕
= 𝚲(∑(𝑰 − 𝚲)2𝑗

𝑡−1

𝑗=0

)𝚺𝚲. (6) 

Using the geometric series expansion, as 𝑡 → ∞, this converges to Eq. (7): 

𝚺̂𝒁𝒕
= 𝚲(2𝐈 − 𝚲)−1𝚺̂𝚲. (7) 
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The residual covariance 𝚺̂ is estimated by Maximum Likelihood Estimation (MLE) as in Eq. (8): 

𝚺̂ =
1

𝑇 − 𝑝
∑ 𝜺̂𝒕𝜺̂𝒕′

𝑇

𝑡=𝑝+1

. (8) 

Under the in-control condition, the test statistic 𝑇𝑡
2 asymptotically follows a chi-square distribution with 𝑘 

degrees of freedom. Thus, the control limits are defined as Eq. (9): 

𝐿𝐶𝐿 = 0, 𝑈𝐶𝐿 = 𝜒𝑘,𝛼
2 , (9) 

where 𝛼 is the chosen significance level. If 𝑇𝑡
2 > 𝑈𝐶𝐿, the process is signaled as out-of-control, indicating a 

potential deviation or shift in the process mean. Such signals imply significant changes in the system that 

may require corrective action to restore stability. The ability of the VAR-based MEWMA approach to provide 

early detection of such changes is crucial for maintaining process quality and preventing adverse outcomes. 

2.3 Analysis Method 

The analytical procedure in this study was carried out through several structured steps. First, 

descriptive statistics were applied to the 2023 daily dataset, which consisted of 365 observations of turbidity 

(NTU) and residual chlorine (mg/L) to identify patterns, fluctuations, and potential outliers. Next, a VAR 

model was constructed, with the optimal lag order determined using the AIC. The model parameters were 

then estimated using the OLS method and validated through a residual autocorrelation test (Portmanteau test) 

and causality tests (Granger and instantaneous causality) to evaluate the interrelationships between variables. 

The VAR residuals, calculated as the difference between actual and predicted values, were subsequently used 

as inputs for the Residual-based MEWMA control chart. To ensure that the fundamental assumptions of 

MEWMA were satisfied, a multivariate normality test was conducted using the Mahalanobis distance 

compared against the Chi-Square distribution. The smoothing parameter (𝜆) was evaluated over a range of 

0.01 to 0.9 based on three criteria: the number of out-of-control points, the smallest difference between the 

maximum 𝑇𝑡
2 value and UCL, and the minimum average distance of 𝑇𝑡

2 values to UCL. Finally, the standard 

MEWMA chart and the VAR-based MEWMA chart were compared to assess their relative effectiveness in 

detecting changes in water quality. All stages of data processing, model estimation, and simulation were 

performed using the software R. 

3. RESULTS AND DISCUSSION 

The application of the VAR-based MEWMA control chart for water quality monitoring in this study 

focuses on two key parameters that PDAM must continuously supervise: turbidity and residual chlorine. 

According to drinking water standards, turbidity should not exceed 5 NTU to prevent the presence of particles 

that may carry microorganisms or contaminants, while residual chlorine (Cl₂) should remain below 0.5 mg/L 

to ensure effective disinfection without excessive chlorination. Monitoring these parameters is therefore 

essential to guarantee that the supplied water remains safe and compliant with public health regulations. The 

dataset used in this study consists of 365 daily observations collected from January 1 to December 31, 2023, 

providing a comprehensive picture of the annual dynamics of water quality. Descriptive statistics and 

graphical summaries for turbidity (NTU) and residual chlorine (mg/L) are presented in Figure 1, which 

illustrates the temporal distribution of both variables. 

 
(a) 

 
(b) 

Figure 1. (a) Turbidity Data Distribution (NTU), (b) Residual Chlorine Data Distribution (mg/L) 
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The descriptive statistical analysis of water quality data for 2023, as shown in Figure 1, highlights 

noticeable fluctuations in turbidity and residual chlorine throughout the year. The highest average turbidity 

level was recorded in December at 2.60 NTU, while the lowest occurred in September at 0.88 NTU. For 

residual chlorine, the highest monthly average was observed in January at 0.52 mg/L, whereas the lowest 

averages were found in September and December, each at 0.31 mg/L. Fluctuations in these parameters, 

particularly the significant increases in December (turbidity) and January (residual chlorine), suggest 

instability in water quality. These variations are likely caused by seasonal factors such as increased rainfall 

and operational challenges in the water treatment system during these months, which can affect the 

effectiveness of water purification processes and contribute to changes in water quality. 

Beyond these monthly variations, the graphs also reveal the presence of extreme values (outliers) that 

deviate significantly from the general data pattern. In the turbidity graph, several points in December 

approach or even exceed 5 NTU, which is the maximum allowable threshold for drinking water quality. This 

indicates specific events that caused sudden increases in suspended particles, most likely due to heavy rainfall 

or disruptions in the filtration process. Meanwhile, in the residual chlorine graph, several extreme points are 

observed in early 2023 (January–February), with concentrations exceeding 1.0 mg/L, clearly above the 

recommended limit of 0.5 mg/L. These spikes may indicate periods of over-chlorination, possibly undertaken 

as a response to increased microbial loads in the raw water. 

The presence of these outliers is important from an operational perspective, as they do not merely 

reflect natural variability but may also signal process disturbances or extreme environmental conditions that 

threaten the stability of the PDAM treatment system. This underlines the need for monitoring tools that can 

detect such abnormal behavior at an early stage. In this context, the VAR-based MEWMA control chart 

complements conventional descriptive analysis by offering higher sensitivity to abnormal changes and 

providing a structured framework for distinguishing random fluctuations from potential process shifts. 

3.1 Determination of The Optimal VAR Lag 

Determining the optimal lag order in a VAR model is a crucial step for achieving an appropriate model 

specification, as lag selection directly affects both the accuracy and stability of the resulting model. An 

insufficient lag order may fail to capture the underlying dynamics, whereas an excessively large lag order can 

lead to overparameterization and loss of efficiency. In this study, the optimal lag length is determined using 

the Akaike Information Criterion (AIC), which balances goodness of fit against model complexity. 

Table 1. Optimal Lag Selection for The VAR Model 

Lag AIC 

1 - 4.355 

2 - 4.428 

3 - 4.478 

4 - 4.475 

5 - 4.469 

Table 1 shows that the lowest AIC value is obtained at lag 3, with a score of –4.478. Based on the AIC 

criterion, the model with the smallest value is considered optimal, as it provides the best trade-off between 

goodness of fit and model parsimony. Accordingly, lag 3 was selected as the optimal lag for the VAR model 

to ensure more reliable and accurate parameter estimation. Therefore, all subsequent analyses in this study 

are carried out using the VAR(3) model. 

3.2 Parameters Estimation of The VAR Model  

 Once the optimal lag order has been determined, the next step is to estimate the parameters of the VAR 

model. Parameter estimation is essential for quantifying the dynamic interactions among variables and 

assessing the statistical significance of lagged effects. In this study, the parameters of the VAR model are 

estimated using the Ordinary Least Squares (OLS) method, which provides consistent and unbiased 

estimators for each equation in the system when the lag order is correctly specified. The analysis focuses on 

the joint dynamics of two main water quality indicators, turbidity and residual chlorine, modeled within the 

VAR(3) framework. As shown in Table 1, the optimal lag length was determined to be lag 3 based on the 

lowest AIC value.  
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Table 2. Estimation of VAR(3) Model Parameters for the Residual Turbidity Variable 

Variable Estimate Std. Error T-Value P-Value 

Constant 0.334 0.120 2.787 0.006 

Turbidity Lag 1 0.354 0.052 6.860 0.000* 

Residual Chlorine Lag 1 0.038 0.173 0.219 0.827 

Turbidity Lag 2 0.172 0.055 3.146 0.002* 

Residual Chlorine Lag 2 0.080 0.182 0.440 0.661 

Turbidity Lag 3 0.250 0.052 4.824 0.000* 

Residual Chlorine Lag 3 0.008 0.173 0.047 0.963 

Based on the estimation results in Table 2, the VAR(3) model for the turbidity variable can be expressed as: 

𝑥1,𝑡 = 0.334 + 0.354𝑥1,𝑡−1 + 0.038𝑥2,𝑡−1 + 0.172𝑥1,𝑡−2 + 0.080𝑥2,𝑡−2 + 0.250𝑥1,𝑡−3 + 0.008𝑥2,𝑡−3. 

The coefficients of turbidity at lags 1, 2, and 3 are all statistically significant at the 5% level (p-value 

< 0.05), indicating that turbidity from the previous three periods exerts a strong and persistent influence on 

current turbidity levels. In contrast, the coefficients of residual chlorine at lags 1, 2, and 3 are not statistically 

significant (p-value > 0.05), suggesting that residual chlorine does not have a meaningful lagged impact on 

turbidity in this model. Overall, these results highlight that turbidity dynamics are primarily driven by their 

own past values, rather than by lagged effects of chlorine residual. This implies that the temporal persistence 

of turbidity is the dominant factor in explaining its current fluctuations. 

Table 3. Estimation of VAR(3) Model Parameters for the Residual Chlorine Variable 

Variable Estimate Std. Error T-Value P-Value 

Constant 0.250 0.037 6.789 0.000* 

Turbidity Lag 1 -0.024 0.016 -1.517 0.130 

Residual Chlorine Lag 1 0.341 0.053 6.401 0.000* 

Turbidity Lag 2 0.014 0.017 0.858 0.391 

Residual Chlorine Lag 2 0.138 0.056 2.481 0.014* 

Turbidity Lag 3 -0.002 0.016 -0.096 0.924 

Residual Chlorine Lag 3 -0.068 0.053 -1.283 0.200 

Based on the estimation results in Table 3, the VAR(3) model for residual chlorine can be expressed as: 

𝑥2,𝑡 = 0.250 − 0.024𝑥1,𝑡−1 + 0.341𝑥2,𝑡−1 + 0.014𝑥1,𝑡−2 + 0.138𝑥2,𝑡−2 − 0.002𝑥1,𝑡−3 −  0.068𝑥2,𝑡−3. 

The constant term is highly significant (p-value = 0.000), indicating its strong contribution to the 

model. Residual chlorine at lag 1 is also highly significant (p-value = 0.000), showing that current residual 

chlorine levels are strongly influenced by the previous day’s value. Residual chlorine at lag 2 is significant 

at the 5% level (p-value = 0.014), suggesting a continued effect from two days earlier. By contrast, neither 

turbidity lag nor residual chlorine at lag 3 is statistically significant (p-value > 0.05), indicating that turbidity 

does not play a significant lagged role in determining residual chlorine dynamics in this specification. These 

findings imply that residual chlorine behavior is mainly driven by its own past values, particularly at lags 1 

and 2, whereas turbidity has no substantial lagged effect on the chlorine equation. 

3.3 Residual Autocorrelation Test for The VAR Model 

 The residual autocorrelation test is essential to ensure that the residuals from the VAR model are not 

correlated with their own past values or with the residuals of other variables. The presence of autocorrelation 

would indicate that the model has not fully captured the underlying dynamics of the data, potentially 

undermining the validity of the parameter estimates. To examine this, the Portmanteau test was employed, as 

it can detect residual autocorrelation simultaneously across multiple lags. In this study, the test was conducted 

using daily data for one year, and the lag length was extended up to lag 30 to capture potential short- and 

medium-term autocorrelation patterns, including weekly or monthly cycles that may exist in the data. 
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Table 4. Results of the Residual Autocorrelation Test (Portmanteau Test) 

Chi-Square Degrees of Freedom (df) P-Value 

113.360 108 0.055 

Based on Table 4, the results show that the Portmanteau test statistic is 113.360 with 108 degrees of 

freedom and a p-value of 0.055. Since the p-value is greater than the 5% significance level, this indicates that 

there is no significant residual autocorrelation up to lag 30. Hence, the VAR model satisfies the no-

autocorrelation assumption, and the parameter estimates can be considered valid. 

3.4 Causality Test for The VAR Model 

 Causality testing was then conducted to examine the directional relationships between turbidity and 

residual chlorine within the VAR framework. Two approaches were applied: Granger causality, which 

evaluates whether past values of one variable can statistically predict another, and instantaneous causality, 

which tests for contemporaneous causal relationships occurring at the same time. 

Table 5. Results of Causality Tests Between Turbidity and Residual Chlorine 

Causal Direction Test Type Test Statistic P-Value 

Turbidity → Residual Chlorine Granger Causality F = 2.314 0.025 

Residual Chlorine → Turbidity Granger Causality F = 1.024 0.413 

Turbidity ↔ Residual Chlorine Instantaneous Causality 𝜒² = 6.420 0.011 

The results in Table 5 indicate that turbidity has a causal effect on residual chlorine according to the 

Granger causality test, with a p-value of 0.025 (< 0.05). Thus, there is evidence of a one-way causal 

relationship from turbidity to residual chlorine. In contrast, the reverse direction (residual chlorine → 

turbidity) is not statistically significant (p-value = 0.413 > 0.05), suggesting that residual chlorine does not 

help predict changes in turbidity. Furthermore, the instantaneous causality test yields a significant result with 

a p-value of 0.011, indicating the presence of a direct and simultaneous causal relationship between turbidity 

and residual chlorine. This suggests that fluctuations in the two variables may occur concurrently, reflecting 

systemic interdependence in the water treatment process. 

3.5 Formation of Residuals from The VAR Model 

 After determining the optimal VAR order based on the AIC criterion, the model parameters for 

turbidity and residual chlorine were estimated. The residuals were then calculated as the difference between 

the actual observed values 𝑿𝒕 and the predicted values 𝑿̂𝒕 from the VAR model at each time point, as 

expressed in Eq. (10). 

𝜺̂𝒕 = 𝑿𝒕 − 𝑿̂𝒕. (𝟏𝟎) 

These residuals represent the random components of the process after accounting for temporal dependencies 

among the variables. They are used as inputs to the MEWMA control chart, since residuals are assumed to 

be relatively free from autocorrelation, thereby better satisfying the independence assumption. 

Table 6. Residuals from The VAR Model for Turbidity and Residual Chlorine  

Time (𝒕) Turbidity (𝜀1𝑡) Residual Chlorine (𝜀2𝑡) 

1 0.095 0.038 

2 -0.228 -0.117 

3 -0.409 -0.161 

4 -0.047 -0.133 

5 -0.215 0.097 

⋮ ⋮ ⋮ 

360 -0.784 -0.091 

361 -0.528 -0.130 

362 0.637 0.058 
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The results in Table 6 show that both turbidity and chlorine residuals fluctuate between positive and 

negative values. Positive residuals imply that the VAR model underestimated the actual value, while negative 

residuals indicate overestimation. For instance, at time 𝑡 = 3, the turbidity residual of -0.409 suggests that 

the model prediction was higher than the observed value. The extreme value may serve as an early warning 

indicator of potential out-of-control conditions in the MEWMA chart.  

Overall, turbidity residuals exhibit higher variability and more frequent fluctuations compared to 

residual chlorine, which remains relatively stable and mostly below 1 throughout the observation period. 

Significant spikes in turbidity residuals are particularly evident in early August 2023 and become more 

pronounced from October to December 2023, with several values exceeding 4. This pattern suggests 

anomalies or operational disturbances in the water treatment process that were not fully captured by the VAR 

model. In contrast, residual chlorine appears more stable, although small spikes are occasionally observed. 

The period from October to December 2023 can therefore be considered critical, as consistent increases in 

turbidity residuals indicate potential deterioration in treatment performance. These spike points will be of 

particular concern when constructing the MEWMA control chart, as they are likely to exceed the upper 

control limit and generate out-of-control signals. 

3.6 Multivariate Normality Test for MEWMA Control Chart 

 The multivariate normality test was conducted to verify whether the variables used in the model jointly 

follow a multivariate normal distribution. This assumption is one of the key requirements for the application 

of the VAR-based MEWMA control chart. In this study, the Mahalanobis distance approach was applied and 

compared with the Chi-Square distribution. The dataset consists of two variables observed over one year, 

namely the residuals of turbidity and residual chlorine, with dimensionality 𝒑 = 𝟐 and a total of 𝑻 = 𝟑𝟔𝟐 

observations. The Mahalanobis distance for each observation was calculated using Eq. (11). These values 

were then compared with the Chi-Square quantiles at 𝒅𝒇 = 𝟐. The comparison results are presented in Table 

7. 

𝒅𝒕
𝟐 = (𝜺𝒕 − 𝜺̅)′𝚺̂−𝟏(𝜺𝒕 − 𝜺̅). (𝟏𝟏) 

Table 7. Results of Multivariate Normality Test 

Time (𝒕) 𝒅𝒕
𝟐 𝝌𝟐 Description 

1 0.000 0.003 𝑑1
2 ≤ 𝜒2 

2 0.000 0.008 𝑑2
2 ≤ 𝜒2 

3 0.000 0.014 𝑑3
2 ≤ 𝜒2 

4 0.000 0.019 𝑑4
2 ≤ 𝜒2 

5 0.000 0.025 𝑑5
2 ≤ 𝜒2 

⋮ ⋮ ⋮  

360 16.600 9.967 𝑑360
2 > 𝜒2 

361 18.669 10.989 𝑑361
2 > 𝜒2 

362 19.765 13.186 𝑑362
2 > 𝜒2 

The results in Table 7 show that 338 out of 362 observations (approximately 93.4%) satisfy the 

criterion 𝒅𝒕
𝟐 ≤ 𝝌𝟐. Since this proportion is well above 50%, it can be concluded that the water quality 

characteristics of PDAM Tirta Jeneberang reasonably follow a multivariate normal distribution. This finding 

is further illustrated in the Mahalanobis distance versus Chi-Square quantile plot shown in Figure 2. Most 

points lie close to the diagonal line, indicating good agreement with the multivariate normal distribution, 

although a few points deviate in the tail region, suggesting the presence of some extreme observations. With 

the multivariate normality assumption reasonably satisfied, the MEWMA analysis can be applied more 

reliably, and the resulting control charts can be interpreted with greater confidence. 
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Figure 2. Mahalanobis Distance vs Chi-Square Quantile Plot 

3.7 Determination of Smoothing Parameter for MEWMA Control Chart 

 The selection of the smoothing parameter (λ) is a critical step in constructing the MEWMA control 

chart, as it directly affects the sensitivity and stability of the system in detecting process shifts. A very small 

value of λ may result in slow responses to disturbances, while an excessively large value can make the chart 

overly sensitive to natural variation (noise), thereby increasing the likelihood of false alarms. In this study, 

ten different values of λ ranging from 0.01 to 0.9 were evaluated. Each value was selected based on: 

1. Number of out-of-control points, calculated as the number of observations that exceed the UCL 

for each smoothing parameter. A higher count indicates greater sensitivity of the system to small 

process shifts. 

2. Smallest difference between the maximum 𝑻𝒕
𝟐 value and the UCL, which reflects how close the 

largest deviation is to the control limit. A smaller difference suggests better stability in detecting 

process changes. 

3. Minimum average distance of 𝑻𝒕
𝟐 values to the UCL, representing the overall consistency of the 

monitoring system. A lower average distance indicates a more stable and reliable detection 

mechanism. 

Table 8. Evaluation of Smoothing Parameter in MEWMA Control Chart 

Smoothing 

Parameter 

(𝝀)  

Maximum 𝑻𝟐 

Value 
UCL 

Out of 

Control 

Point 

Difference 

(𝐌𝐚𝐱 𝑻𝟐 – UCL) 

Average 

Distance to 

UCL 

0.01 6.030 5.991 2 0.039 3.910 

0.02 8.791 5.991 33 2.799 3.699 

0.03 11.295 5.991 41 5.304 3.835 

0.05 15.074 5.991 39 9.083 4.103 

0.08 16.526 5.991 28 10.535 4.757 

0.1 16.582 5.991 26 10.591 4.446 

0.2 24.649 5.991 24 18.658 4.655 

0.3 30.156 5.991 21 24.165 4.714 

0.5 32.436 5.991 20 26.445 4.763 

0.9 28.233 5.991 19 22.242 4.728 

Table 8 shows that when 𝝀 = 𝟎. 𝟎𝟏, only 2 out-of-control points were detected, indicating that the 

system was too slow to respond to small process changes. Conversely, at 𝝀 = 𝟎. 𝟎𝟑, the number of out-of-

control points reached the highest value of 41, suggesting that this setting is highly sensitive to small 

deviations. The maximum deviation at 𝝀 = 𝟎. 𝟎𝟑 (5.304) remains within a reasonable range, and the average 

distance to the UCL (3.835) is relatively stable compared to other values. At higher values of 𝝀 (e.g., 0.30 

and 0.50), although the difference between the maximum 𝑻𝒕
𝟐 and the UCL is larger (24.165–26.445), the 

number of out-of-control points decreases significantly (20–21 points). This indicates that the system loses 

sensitivity to smaller shifts despite detecting large deviations. Considering the balance between detection 

sensitivity and monitoring stability, 𝝀 = 𝟎. 𝟎𝟑 is selected as the most optimal smoothing parameter. This 
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value effectively detects small process changes without generating excessive false alarms, making it well-

suited for the application of the VAR-based MEWMA control chart in monitoring the water quality of PDAM 

Tirta Jeneberang. 

3.8 Monitoring of VAR-Based MEWMA and MEWMA Standard Control Charts 

After determining the optimal smoothing parameter at 𝝀 = 𝟎. 𝟎𝟑, monitoring of water quality at 

PDAM Tirta Jeneberang was carried out using the VAR-based MEWMA control chart. The monitoring 

results are presented in Figure 3. 

 
Figure 3. VAR-Based MEWMA Control Chart 

The UCL was set at 5.991 based on the Chi-Square distribution with two degrees of freedom at the 5% 

significance level (𝜒2,0.05
2 = 5.991), while the LCL was fixed at 0 because the 𝑇𝑡

2 statistic cannot take 

negative values. The results indicate substantial fluctuations of 𝑇𝑡
2 throughout 2023, with several spikes 

exceeding the UCL. These occurred primarily in early February, mid-year (June–September), and reached 

their peak during November–December, suggesting that the final quarter of the year represents a critical 

period for process stability.  

A total of 41 out-of-control points were identified. Some of these signals are likely associated with 

actual water quality issues, such as increased turbidity due to heavy rainfall or disturbances in the disinfection 

process, particularly during the end of the year (December). Nevertheless, without direct verification against 

PDAM’s operational records, the practical significance of these detections cannot be fully ascertained. The 

observed deviations may be attributed to seasonal effects, plant maintenance activities, or operational errors 

such as inaccuracies in chemical dosing. In addition, some of the points may represent false positives caused 

by random fluctuations or model limitations, while others constitute true signals of quality violations. 

Therefore, integrating statistical monitoring results with operational data is essential to more accurately 

distinguish between valid signals and false alarms, thereby ensuring that the monitoring outcomes provide 

optimal support for decision-making. 

 
Figure 4. Standard MEWMA Control Chart 
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To evaluate the effectiveness of the proposed approach, a comparison was conducted with the standard 

MEWMA control chart, as presented in Figure 4. The standard MEWMA chart, which was constructed 

directly from raw turbidity and residual chlorine data without accounting for temporal dependence, exhibited 

a relatively smoother and more stable pattern. Throughout the observation period, all 𝑇𝑡
2 values remained 

below the UCL, suggesting that the process appeared to be under control. However, this finding also 

highlights a key limitation of the standard MEWMA, namely its lack of sensitivity in detecting small shifts 

or hidden anomalies within the system. In contrast, the VAR-based MEWMA control chart demonstrated 

greater responsiveness in capturing process variability. By utilizing the residuals from the VAR model, which 

incorporate temporal dynamics and interdependencies between variables, the control chart was able to detect 

deviations that were not visible in the standard MEWMA chart. The out-of-control points identified in Figure 

3 revealed significant process instabilities and shifts, particularly during the latter months of 2023, which 

went undetected by the conventional approach. 

Overall, the comparison confirms that the VAR-based MEWMA control chart offers superior 

sensitivity in detecting both small and large process shifts, while also uncovering hidden anomalies that the 

standard MEWMA fails to identify. These findings emphasize that the VAR-based MEWMA provides a 

more reliable and suitable monitoring tool for the multivariate and dynamic characteristics of water quality 

processes at PDAM Tirta Jeneberang. From a practical perspective, the integration of the VAR-based 

MEWMA chart can serve as an early warning system, enabling PDAM to undertake timely operational 

interventions to prevent water quality deterioration that may pose risks to public health. 

3.9 Comparison of Average Run Length (ARL)  

The Average Run Length (ARL) is a key metric for evaluating the performance of control charts, 

defined as the average number of observations until the first signal occurs. The ARL0 (in-control) represents 

the chart’s stability under normal conditions, where larger ARL0 values indicate fewer false alarms. 

Conversely, ARL1 (out-of-control) measures detection speed when a mean shift occurs, with smaller ARL1 

values reflecting faster signaling. In this study, we compare the performance of the standard MEWMA chart 

and the VAR-based MEWMA chart, using parameters 𝝀 = 𝟎. 𝟎𝟑 and UCL = 5.991. The standard MEWMA 

chart was constructed using the covariance of raw data, while the VAR-based MEWMA utilized residuals 

from the VAR(3) model, which are free from autocorrelation. Monte Carlo simulations with 5,000 

replications were conducted across three scenarios: S1 (shift in turbidity), S2 (shift in residual chlorine), and 

S3 (simultaneous shift in both), with shift magnitudes 𝜹 ∈ {𝟎. 𝟐𝟓, 𝟎. 𝟓, 𝟎. 𝟕𝟓,… , 𝟐. 𝟎}.  

Table 9. Comparison of ARL between MEWMA Standard vs VAR-based MEWMA  

Scenario 

Shift 

Magnitudes 

(𝜹) 

ARL0 ARL1 

MEWMA 

Standard 

VAR Based 

MEWMA 

MEWMA 

Standard 

VAR Based 

MEWMA 

S1: shift 

Turbidity 

0.25 3.026 3.006 2.828 2.732 

0.50 3.026 3.006 2.550 2.136 

0.75 3.026 3.006 2.179 1.738 

1.00 3.026 3.006 1.866 1.447 

1.25 3.026 3.006 1.639 1.267 

1.50 3.026 3.006 1.480 1.138 

1.75 3.026 3.006 1.334 1.057 

2.00 3.026 3.006 1.231 1.023 

S2: shift 

Residual 

Chlorine 

0.25 3.016 3.003 1.738 1.640 

0.50 3.016 3.003 1.137 1.091 

0.75 3.016 3.003 1.009 1.004 

1.00 3.016 3.003 1.000 1.000 

1.25 3.016 3.003 1.000 1.000 

1.50 3.016 3.003 1.000 1.000 

1.75 3.016 3.003 1.000 1.000 

2.00 3.016 3.003 1.000 1.000 
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Scenario 

Shift 

Magnitudes 

(𝜹) 

ARL0 ARL1 

MEWMA 

Standard 

VAR Based 

MEWMA 

MEWMA 

Standard 

VAR Based 

MEWMA 

S3: shift 

Turbidity and 

Residual 

Chlorine 

0.25 3.009 2.983 1.719 1.634 

0.50 3.009 2.983 1.124 1.089 

0.75 3.009 2.983 1.008 1.002 

1.00 3.009 2.983 1.000 1.000 

1.25 3.009 2.983 1.000 1.000 

1.50 3.009 2.983 1.000 1.000 

1.75 3.009 2.983 1.000 1.000 

2.00 3.009 2.983 1.000 1.000 

The results in Table 9 show that both methods yield comparable ARL₀ values (approximately 3) across 

all scenarios, indicating that the use of VAR residuals does not increase the false alarm frequency under in-

control conditions. Clear differences, however, emerge in ARL₁, particularly in Scenario S1 involving shifts 

in turbidity. For all δ values, the VAR-based MEWMA consistently produces smaller ARL₁ values than the 

standard MEWMA, indicating faster detection of process shifts. For example, at δ = 1.0, ARL₁ decreases 

from 1.866 (standard MEWMA) to 1.447 (VAR-based MEWMA), corresponding to an improvement of 

roughly 22%. This advantage reflects the higher volatility and strong autocorrelation structure of turbidity, 

for which the VAR adjustment is especially effective. By contrast, in Scenarios S2 (chlorine) and S3 (turbidity 

and chlorine), the differences between the two methods are relatively minor and vanish for δ ≥ 0.75, as larger 

shifts are naturally easier to detect regardless of the charting method. Overall, these findings demonstrate that 

the VAR-based MEWMA achieves more efficient detection of small shifts without compromising ARL₀ 

stability, particularly for turbidity, a critical parameter in ensuring drinking water quality. This enhanced 

sensitivity positions the VAR-based MEWMA as a valuable early-warning tool, enabling water utilities to 

initiate corrective actions more promptly before water quality deteriorates beyond regulatory standards. 

4. CONCLUSION 

This study developed and applied a VAR-based MEWMA control chart for monitoring turbidity and 

residual chlorine in drinking water at PDAM Tirta Jeneberang. By incorporating autocorrelation-free 

residuals from a VAR(3) model into the MEWMA framework with λ = 0.03, the proposed approach 

successfully addressed the temporal dependence inherent in daily water quality data. The empirical results 

showed that both the standard and VAR-based MEWMA charts produced similar ARL₀ values 

(approximately 3), confirming that the use of VAR residuals does not degrade in-control stability or increase 

the frequency of false alarms. However, the VAR-based MEWMA consistently achieved lower ARL₁ values, 

particularly in scenarios involving shifts in turbidity, with improvements of up to 22% compared with the 

standard MEWMA. These findings indicate that the VAR-based approach is more sensitive to small and 

gradual process shifts, while still minimizing false alarms. 

Overall, the study demonstrates that the VAR-based MEWMA provides a more robust and reliable 

monitoring tool than the conventional MEWMA chart for autocorrelated multivariate water quality data. It 

enhances the early detection of subtle deviations, particularly in turbidity, which is a critical parameter for 

maintaining drinking water safety and can therefore serve as an effective early-warning system to support 

PDAM operations. Beyond the specific case of PDAM Tirta Jeneberang, the proposed methodology has 

strong potential for adoption by other regional water utilities and for broader application in time-series-based 

multivariate quality control, contributing to more proactive and data-driven water supply management. 
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