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Abstraks 

Regresi kuantil sebagai metode regresi robust dapat digunakan untuk mengatasi dampak kasus yang tidak 

biasa pada estimasi regresi seperti keberadaan pencilan (outlier) pada data. Tujuan dari penelitian ini 

adalah untuk mengevaluasi efektivitas regresi kuantil untuk menangani pencilan potensial dalam regresi 

linear berganda dibandingkan dengan metode kuadrat terkecil (MKT). Penelitian ini menggunakan data 

simulasi pada model regresi berganda dengan jumlah variabel independen (p=3) pada ukuran sampel yang 

berbeda (n = 20, 40, 60, 100, 200) dan  𝛽0 = 0 and 𝛽1 = 𝛽2 = 𝛽3 = 1 diulang 1000 kali. Efektivitas 

metode regresi kuantil dan MKT dalam pendugaan parameter β diukur dengan Mean Square Error (MSE) 

dan model terbaik dipilih berdasarkan nilai Akaike Information Criterion (AIC) terkecil. Hasil penelitian 

menunjukkan bahwa berbeda dengan OLS, regresi kuantil mampu menangani potensial pencilan (outlier) 

dan memberikan estimator yang lebih baik dengan nilai MSE yang lebih kecil. Dibandingkan dengan 

MKT dan kuantil lainnya, studi ini juga memberikan hasil yang cukup untuk memastikan bahwa kuantil 

0,5 memberikan estimasi parameter terbaik dan model terbaik berdasarkan nilai MSE dan AIC terkecil.  

Kata Kunci : AIC, MSE, pencilan, regresi kuantil 

 

Abstract 

Quantile regression as a robust regression method can be used to overcome the impact of unusual cases 

on regression estimates such as the presence of potential outliers in the data. The purpose of this study 

was to evaluate the effectiveness of quantile regression in dealing with potential outliers in multiple linear 

regression compared to ordinary least square (OLS). This study used simulation data in multiple 

regression model with the number of independent variables (p=3) for different sample sizes (n = 20, 40, 

60, 100, 200) and  𝛽0 = 0 and 𝛽1 = 𝛽2 = 𝛽3 = 1 repeated 1000 times. The effectiveness of the quantile 

regression method and OLS in estimating β   parameters was measured by Mean square error (MSE) and 

the best model is chosen based on the smallest Akaike Information Criterion (AIC) value. The results 

showed that in contrast to OLS, quantile regression was able to deal with potential outliers and provided 

a better estimator with a smaller mean mean square error. Compared to OLS and other quantiles, this 

study also provides sufficient results that quantile 0.5 provides the best parameter estimate and the best 

model based on the smallest MSE and AIC values. 
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1. INTRODUCTION  

Classical linear regression estimates the mean response of the dependent variable dependent on the 

independent variables.  The method usually use to estimates in classical linear regression is ordinary least 

square [1, 2, 3].  However, it is a parametric model and relies on assumptions of certain distribution in 

residuals that are often not met. There are many cases that the conditional mean behavior fails to entirely 

capture the patterns in the data when the data is skewed, multimodal, or contains outliers. In this condition, 

the residual distribution assumptions in the classical linear model will not be met, especially the normality 

distribution assumption. For this type of data is better estimated using methods that do not require any residual 

distribution. One such method is quantile regression. 

Quantile regression has been used in many studies [4, 5, 6].  Quantile regression method propose a 

technique for estimating models for the conditional median function and the full range of other conditional 

quantile function. Just like the least squares regression, quantile regression is interested in studying the linear 

relationship between a response variable and one or more independent or explanatory variables.  However, 

the main purpose of the least squares regression is to determine the conditional mean of the response variable 

Y while the quantile regression models is related to the conditional  τ (0,1) with τ is quantile level of Y . In 

addition, quantile regression allows multiple quantiles to be modelled.  Quantile regression is offering more 

comprehensive analysis of the data to be carried out compared to OLS where only the mean is considered.  

Quantile regression makes no assumptions about the distribution of the residuals [7, 8, 9]. It also lets you 

explore different aspects of the relationship between the dependent variable and the independent variables.  

The study of handling outliers has been done by many researches [10, 11, 12, 13].  In this study we 

will investigate the behavior of quantile regression in handling outliers compare to OLS using simulated data 

based on MSE and AIC. 

 

 

2. RESEARCH METHOD  

The quantile regression is an extension of ordinary quantiles ideas. Classical linear regression method 

is based on minimizing the sum of squared residuals to model the conditional mean of the target variable 

against the covariates. On the other hand, quantile regression provides estimates of a range of conditional 

quantiles to model conditional percentiles of the target variable against the covariates.  It is a useful tool for 

estimating not only upper or lower tail but also the center of the conditional distribution of interest [4, 8, 9, 

14, 15]. 

Consider a general regression function with y is the response variable and 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑝)
𝜏is a set 

of predictors.  To obtain the sample mean, least square regression model solve  

min
𝜇∈ℜ

∑ (𝑦𝑖 − 𝜇)2𝑛
𝑖=1        (1) 

as an estimate of the unconditional population mean, EY.  By replacing the scalar µ with a parametric function 

µ (x, β), we can solve 

min
𝛽∈ℜ𝑝

∑ (𝑦𝑖 − 𝜇(𝑥𝑖 , 𝛽))
2𝑛

𝑖=1     (2) 

to find the estimate of the conditional expectation function 𝐸(𝑌|𝑥). The least square estimate for (2) is given 

by �̂� = (𝑋′𝑋)−1𝑋′𝑌 [16]. 

In term of quantile regression, consider a continuous real valued random variable Y characterized by the 

following distribution function in the ordinary quantile 

𝐹𝑌(𝑦) = 𝑃(𝑌 ≤ 𝑦)     (3) 

The 𝜏-th quantile of Y for any 𝜏 ∈ (0,1) is defined as 

𝑄(𝜏) = inf(𝑦: 𝐹𝑌(𝑦) ≥ 𝜏)    (4) 

When Q(1/2), it is equal to median [17, 18].  Just like the distribution function F, the quantiles function 

provides a complete characterization of the random variable Y [8]. When estimating quantiles, the value of y 

in the sample data corresponding to a given probability 𝜏 has to be determined.   The 𝜏𝑡ℎ quantile in a sample 

of data refers to the probability of 𝜏 for a value y, such that 𝐹𝑌(𝑦𝜏) = 𝜏.  It can also write as 𝑦𝜏 = 𝐹𝑌
−1(𝜏)where 

𝑦𝜏 is such that an inverse of the function 𝐹𝑌(𝜏) for a probability 𝜏. 

The 100𝜏% quantile (say 𝜏 =0.5) of the conditional distribution of the response (y) given covariates 

(x) based on independent observations (𝒙𝑖, 𝑦𝑖)𝑖=1
𝑛 , the conditional 𝜏-quantile is estimated by minimizing 
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∑ 𝜌𝜏(𝑦𝑖 − 𝛽0 − 𝒙𝑖
𝑇𝛽)𝑛

𝑖=1     (5) 

Where 𝜌𝜏(𝑡) = 𝜏𝑡+ + (1 − 𝜏)𝑡_ is the check function with subscript s ‘+’ and ‘-‘ stand for the positive and 

negative parts, respectively [9]. The estimation of selected significant predictors in quantile regression use 

𝐿1 [8].  The  𝐿1 quantile regression model is estimated by 

 �̂�(𝐿1𝑛𝑜𝑟𝑚) = argmin
𝛽0𝛽

∑ 𝜌𝜏(𝑦𝑖 − 𝛽0 − 𝒙𝑖
𝑇𝜷) + 𝜆‖𝜷‖1

𝑛
𝑖=1   (6) 

where ‖𝜷‖1 = ∑ |𝛽𝑗|
𝑝
𝑗=1  is the 𝐿1-norm penalty (or lasso penalty) on 𝜷.  When 𝜆 is chosen appropriately, 

some components of �̂� will be shrunk to exact zero.  Since the check loss function is piecewise linear, the 

quantile regression estimator is inherently robust in handling extreme value point and outliers. 

To get a measure of how close the regression line was to a set of points, the Mean Square Error 

(MSE) of the regression coefficient �̂�  was examined. The MSE is defined by  𝑀𝑆𝐸(�̂�) =
1

𝑛
∑ ‖�̂�(𝑙) − 𝜷‖

2𝑚
𝑙=1  where �̂�(𝑙)is the estimated parameter in the l-th simulation. The slope and intercept 

are correctly estimated when MSE approaches to zero. To determine the performance of the 

proposed estimate, the Akaike Information Criterion (AIC) was used.  AIC can be written as  𝐴𝐼𝐶𝐶 =

2𝑘 − 2ln(�̂�)  where �̂� = 𝑝(𝑥|𝜃,𝑀), 𝜃 is the value that maximize the likelihood function, n = sample 

size, and  k = the number of parameters [19, 20]. A good estimation model was indicated by the 

lowest AIC value. 

Simulated data was carried out in this study with five different sample sizes (n=20, 40, 60, 100, 200) 

for three independent variables (p=3) using a package for quantile regression developed by [21]. Dependent 

variable (𝒀) for each 𝑝 independent variables was from 𝒀 = 𝑿𝜷 + 𝜺 with xi~N(0, 1) and ε~N(0, 1) 

contaminated with various number of outliers (10%, 15%, 20%).  β parameters were chosen with β0=0, and 

β1, β2, β3=1.  After simulating each data, we fitted the OLS and quantile regression and measured the 

efficiency of both methods in estimating the regression coefficient and determined the best estimation model 

using AIC.   

 

 

3. RESULTS AND DISCUSSION 

The simulation results for identifying the effectiveness of quantile regression presented in Table 1 in 

terms of standard error of parameter estimates.  It shows that for n=20, 40, 60, 100, 200 with 10% outliers, 

standard error of estimates using quantile regression was lower than OLS. Similar results were obtained for 

n= 20, 40, 60, 100, 200 with 20% and 30% outliers. It indicates that quantile regression provides better 

parameter estimates than OLS for all sample sizes and various number of outliers being studied.  We can also 

see that quantile 0.5 gives the lowest standard error of parameter estimates compare to quantile 0.25 and 

quantile 0.75 for n=20, 40, 60, 100, 200  with various number of outliers. It proves that the quantile 0.5 is the 

most accurate parameter estimates than quantile 0.25 and quantile 0.75. 

Table 1.  �̂� and SE (�̂�𝒊) for different sample sizes and various number of outliers 

Sample 

size 
Method 

10% outliers 20% outliers 30% outliers 

SE 

(�̂�1) 

SE 

(�̂�2) 

SE 

(�̂�3) 

SE 

(�̂�1) 

SE 

(�̂�2) 

SE 

(�̂�3) 

SE 

(�̂�1) 

SE (�̂�2) SE (�̂�3) 

n=20 OLS 2.8046 2.3233 2.4495 2.3998 3.3882 4.0557 4.8388 2.8077 4.2070 

QR 0.25 2.1241 2.1766 2.0195 3.1991 3.1465 3.1412 3.6997 3.7711 3.8961 

QR 0.50 2.0933 2.1944 2.0252 3.1989 3.1462 3.1402 3.6990 3.7710 3.8961 

QR 0.75 2.1241 2.1766 2.0195 3.3116 3.3660 3.3260 3.9607 3.7982 4.0457 

           

n=40 OLS 1.9844 1.2343 1.8596 2.3226 2.4937 2.9881 3.0259 3.2395 2.0931 

QR 0.25 1.6162 1.6174 1.6894 2.2147 2.2566 2.2404 2.7026 2.7457 2.7248 

QR 0.50 1.6160 1.6170 1.6894 2.2140 2.2489 2.2400 2.7020 2.7455 2.7240 

QR 0.75 1.7222 1.7072 1.7262 2.2405 2.2566 2.2610 2.7287 2.7476 2.7589 

           

n=60 OLS 1.3450 1.2208 1.1639 1.7725 1.8507 1.77421 2.3037 2.3443 1.9384 

QR 0.25 1.2146 1.2215 1.1880 1.7267 1.7341 1.7091 2.0941 2.1605 2.0852 

QR 0.50 1.2144 1.2210 1.1880 1.7266 1.7339 1.7081 2.0931 2.1600 2.0850 

QR 0.75 1.2387 1.2343 1.2070 1.7623 1.7585 1.7591 2.1920 2.2037 2.1573 

           

n=100 OLS 1.0329 1.0482 

 

1.1334 

 

1.2240 1.4546 1.3552 1.6024 1.7452 1.7047 

QR 0.25 1.0125 1.0382 1.0609 1.3018 1.3199 1.3123 1.6564 1.6474 1.6322 

QR 0.50 1.0125 1.0272 1.0125 1.3011 1.3189 1.3120 1.6562 1.6470 1.6321 

QR 0.75 1.0382 1.0480 1.0468 1.3314 1.3636 1.3405 1.6763 1.6894 1.6728 
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n=200 OLS 0.6429 0.7979 0.6867 0.9394 0.9394 0.9394 1.1853 1.3932 1.1794 

QR 0.25 0.6835 0.6978 0.6921 0.9826 0.9826 0.9826 1.1404 1.1552 1.1425 

QR 0.50 0.6825 0.6970 0.6911 0.9394 0.9394 0.9394 1.1400 1.1542 1.1422 

QR 0.75 0.7075 0.7111 0.7156 0.9826 0.9826 0.9826 1.1799 1.1748 1.1776 

 
The results of analyzing the effectiveness of quantile regression compares to OLS in estimating 

parameter β using simulated data for n=20, 40, 60, 100, 200 and contaminated by 10%, 20%, 30% outliers 

repeated 1000 times in terms of MSE are given in Table 2.   

 
Table 2. MSE of OLS and QR for different sample sizes and various 

number of outliers 

Sample 

size 
Method 

MSE 

10% outliers 20% outliers 30% outliers 

n-20 

 

 

 

n=40 

 

 

 

n=60 

 

 

 

n=100 

 

 

 

n=200 

OLS 

QR 0.25 

QR 0.50 

QR 0.75 

OLS 

QR 0.25 

QR 0.50 

QR 0.75 

OLS 

QR 0.25 

QR 0.50 

QR 0.75 

OLS 

QR 0.25 

QR 0.50 

QR 0.75 

OLS 

QR 0.25 

QR 0.50 

QR 0.75 

0.1531 

0.0738 

0.0067 

0.0103 

0.5280 

0.0042 

0.0005 

0.0309 

0.0288 

0.0088 

0.0032 

0.0123 

0.0850 

0.0019 

0.0006 

0.0145 

0.1095 

0.0153 

0.0005 

0.0012 

0.5307 

0.0153 

0.0061 

0.0133 

0.1199 

0.0052 

0.0008 

0.0034 

0.0191 

0.0085 

0.0008 

0.0108 

0.0603 

0.0245 

0.0022 

0.0034 

0.1366 

0.0157 

0.0001 

0.0013 

0.5175 

0.0086 

0.0067 

0.0142 

0.4259 

0.0052 

0.0015 

0.0048 

0.0731 

0.0422 

0.0004 

0.0150 

0.0167 

0.0063 

0.0001 

0.0046 

0.2466 

0.0336 

0.0008 

0.0047 

 
It can be seen from Table 2 that for 10 % outliers, OLS gives MSE =0.1531 for n=20, MSE= 0.5280, 

for n=40, MSE= 0.0288, for n=60, MSE= 0.0850, for n=100 and MSE= 0.1095, for n=200, respectively. 

These values are much higher than the MSE of quantile 0.25, 0.50, and 0.75.  Similarly, when there is 20% 

and 30% outliers in the data, the MSE of OLS all sample sizes being studied is much higher than MSE of 

quantile regression. The MSE of OLS appears to be increasing due to the increasing of the outliers in smaller 

sample sizes (n=20, 40, 60).  However, it reverse for larger sample sizes (n=100, 200).  Whereas MSE of 

quantile 0.25, 0.5 and 0.75 decreased as the number of samples increased. When there are potential outliers, 

quantile regression does not appear to be affected. This phenomenon occurs in all number of outliers studied. 

Among all quantiles, the MSE value for quantile 0.5 is the smallest compared to MSE for quantile 0.25 and 

quantile 0.75 for all sample sizes and various number of outliers. As it shows in Table 2, for 10% outliers, 

quantile 0.5 has MSE =0.0067 for n=20, MSE= 0.0005, for n=40, MSE= 0.0032, for n=60, MSE= 0.0006, 

for n=100 and MSE= 0.0005, for n=200, respectively. The MSE values at quantile 0.5 are also the smallest 

in all sample sizes containing 20% and 30% outliers compared to quantile 0.25 and quantile 0.75 as shown 

in Table 2. To present a more comprehensive result, the MSE values of both methods and each quantile are 

displayed in Figure 1-5. 
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Figure 1. MSE for n=20 contain various number of outliers 

 

 

 

 
Figure 2. MSE for n=40 contain various number of outliers 

 

 

 
Figure  3. MSE for n=60 contain various number of outliers 
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Figure 4. MSE for n=100 contain various number of outliers 

 

 

 
Figure 5.  MSE for n=200 contain various number of outliers 

 
In the clear view of Figure 1-5, we can see that the MSE of quantile regression 0.25, 0.5, and 0.75 are 

significantly lower than OLS for all sample sizes (n=20, 40, 60, 100, 200) and various number of outliers 

(10%, 20%, 30%).  It is clear that MSE of quantile regression does not to be affected by outliers.  This 

indicates that quantile regression is able to handle potential outliers very well and robust to potential outliers 

up to 30% of the data.  

Moreover, if we compare the quantiles it becomes clear that the quantile 0.5 gives the lowest MSE 

value compared to the quantile 0.25 and quantile 0.75. This provides evidence that quantile 0.5 gives better 

parameter estimates than quantile 0.25 and quantile 0.75. 

To find the best estimation model, the AIC value for OLS and quantile regression in each number of 

sample sizes contaminated by outliers was measured. Table 3 shows the AIC values for n = 20, 40, 60, 100, 

200 and were contaminated by 10%, 20%, 30% outliers which were repeated 1000 times. 

 
Table 3. AIC of OLS and QR contain various number of potential outliers 

Sample 

size 
Method 

AIC 

10% outliers 20% outliers 30% outliers 

n=20 

 

 

 

n=40 

 

 

 

n=60 

 

 

 

OLS 

QR 0.25 

QR 0.50 

QR 0.75 

OLS 

QR 0.25 

QR 0.50 

QR 0.75 

OLS 

QR 0.25 

QR 0.50 

QR 0.75 

-1.5767 

-2.3064 

-4.7075 

-4.2701 

-0.4884 

-5.3203 

-7.3308 

-3.3266 

-3.4450 

-4.6247 

-5.6176 

-4.2980 

-0.3334 

-3.8767 

-4.7910 

-4.0184 

-1.9706 

-5.0946 

-6.9583 

-5.5247 

-3.8574 

-4.6674 

-7.0122 

-4.4191 

-0.3586 

-4.4456 

-4.7027 

-3.9476 

-0.7035 

-5.0946 

-6.2911 

-5.1728 

-2.5154 

-3.0630 

-7.5020 

-4.0996 
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n=100 

 

 

 

n=200 

 

 

 

OLS 

QR 0.25 

QR 0.50 

QR 0.75 

OLS 

QR 0.25 

QR 0.50 

QR 0.75 

-2.4040 

-6.1631 

-7.3252 

-4.1727 

-2.1814 

-4.1446 

-9.8145 

-4.3161 

-2.7482 

-3.6482 

-6.0498 

-5.6019 

-1.9603 

-4.1241 

-10.8246 

-4.2661 

-4.0269 

-4.9946 

-8.7135 

-5.3185 

-1.3696 

-3.3624 

-7.0512 

-5.3121 

 

From Table 3 it is visible that there is a significant difference between OLS and quantile regression in 

the AIC value.   Quantile regression produces AIC value much lower than OLS in all sample sizes and number 

of outliers. That is, compared to OLS, quantile regression provides a better regression model if there are 

potential outliers. It proves that quantile regression model is robust to potential outliers than OLS. The study 

also shows that quantile regression 0.5 gives the best estimates than other quantiles. That is one of the 

advantages of using quantile regression where one can estimate parameters using different quantiles which 

are not provided in OLS. In this study, quantile 0.5  provided the best parameter estimate and the best model 

compared to OLS and the other quantiles for all sample sizes and various number of outliers. 

 

 

4. CONCLUSION 

The study showed that quantile regression performanced far better than OLS based on MSE and 

AIC for n=20, 40, 60, 100, 200 and number of potential outliers 10%, 20%, 30%. We concluded that 

in contrast to OLS, quantile regression model was more effective in dealing with potential outliers for 

different sample sizes and various number of potential outliers. In addition, quantile 0.5 gives the best 

parameter estimate and the best model based on the smallest MSE and AIC values compared to quantile 

0.25 and quantile 0.75 for all sample sizes and number of outliers studied. 
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