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1. INTRODUCTION

Survival analysis is a statistical approach for data analysis to examine the time until an event occurs,
particularly in medical and reliability studies [1]. This method enables researchers to analyze time-to-event
data, providing insights into the duration until events such as failure, relapse, or death occur. The approach
is fundamental in fields where understanding the timing of events is crucial for prognosis and decision-
making. The Cox Proportional Hazards (Cox PH) model remains the most widely applied method. This model
relies on the assumption of proportional hazards, which means that the effect of covariates on the hazard rate
is constant over time. However, this assumption is often violated in real-world clinical data, where the
influence of risk factors may vary at different time points, challenging the model’s applicability and accuracy

[2].

To address this limitation, extensions of the Cox model and machine learning-based survival models
have emerged [3]. The Cox Stratified Model extends the standard Cox regression by allowing the baseline
hazard to vary across predefined strata, making it suitable for handling variables that violate the proportional
hazards assumption and for accounting for subgroup differences in baseline risk [4]. By stratifying variables
with non-proportional hazards, this model preserves the proportionality assumption for other covariates while
improving model validity. Meanwhile, machine learning models, such as Random Survival Forest (RSF),
offer a flexible alternative that does not rely on strict assumptions [5]. RSF employs ensemble learning
through decision trees to capture complex, non-linear interactions and handle high-dimensional data, making
it particularly useful for healthcare datasets with mixed variable types and censoring.

Previous studies have shown varying performances of these models across different domains. For
instance, [6] found RSF to outperform Survival Support Vector Machine (SSVM) in retail customer survival
prediction, while Spreafico et al. [7] reported that the Cox model and Machine Learning have similar
performance, but the extended Cox model gave better performance. Each method offers distinct advantages:
the Cox Stratified Model retains the interpretability of hazard ratios and is well-suited for clinical decision-
making, especially when proportional hazards assumptions can be met or addressed through stratification. It
allows the separation of baseline hazards across strata, improving model validity while preserving the ability
to assess covariate effects.

On the other hand, RSF offers a flexible, non-parametric approach capable of modelling complex, non-
linear relationships and high-order interactions without relying on assumptions such as proportional hazards.
It is particularly advantageous in high-dimensional clinical datasets where traditional models may fall short.
In clinical settings, combining traditional statistical models with machine learning approaches is increasingly
recommended to improve prediction accuracy and provide deeper insights into risk factors. Christiadi et al.
[8] demonstrated the utility of Random Survival Forests for dynamic survival prediction in end-stage kidney
disease, highlighting the method’s flexibility in handling complex risk structures. Similarly, Sim et al. [9]
compared Cox regression and machine learning approaches in a Malaysian CKD cohort and found that both
methods produced competitive predictive performance, underscoring the value of combining interpretability
from Cox models with the predictive strength of RSF.

This study aims to compare the Cox Stratified Model and RSF using empirical survival data from
patients with chronic kidney failure at RSUD Asy-Syifa, Indonesia. The novelty of this research lies in its
dual methodological approach, combining advanced statistical modeling with machine learning to evaluate
patient survival in a clinical context where both linear assumptions and complex interactions coexist. Unlike
prior studies that focus solely on either traditional or machine learning models, this study addresses key
methodological challenges, such as proportional hazards violations and non-linearity by developing a tailored
stratification strategy in the Cox model and leveraging the flexibility of RSF. Furthermore, the study provides
one of the first direct comparisons of these methods in an Indonesian hemodialysis population, offering
localized insights for clinical risk stratification. By examining and validating both models, this research seeks
to determine significant survival predictors and identify the best-performing model for supporting clinical
decision-making in managing chronic kidney failure patients.
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2. RESEARCH METHODS

Survival analysis is a statistical method used to study the time until an event occurs, accommodating
censored data where the event has not yet happened for some subjects [1]. A common challenge in survival
data is handling right-censoring and time-dependent covariates.

2.1 Fundamental of Survival Analysis
The survival function S(t) gives the probability beyond time t [10] written as Eq. (1):
S =P(T=t)=1-F(t), (D)
where F (t) is the cumulative distribution function.
The hazard function h(t) represent the instantaneous risk of the event at time ¢ [10] written as Eq. (2):
PE<T<t+At|T=>t t
P 720 _f®)
At—0 At S(t)

(2)

where f(t) is the probability density function of survival time. The relationship between survival and hazard
function is [10] written as Eq. (3):

S(t) =exp (— fth(u) du). 3
0

2.2 Cox Proportional Hazards Model and Stratified Cox Model

The Cox Proportional Hazards (Cox PH) model is a semi-parametric model that estimates the effect of
covariates on survival time without requiring the specification of the baseline hazard function. The Cox
Proportional Hazards (Cox PH) model is defined as [10] written as Eq. (4):

h(t1X) = ho(t) exp(B7X), (4)

where hg(t) is the baseline hazard function, X is the covariate vector, and S is the coefficient vector. A key
assumption of the Cox model is proportional hazards — meaning that the hazard ratios between groups are
constant over time. This assumption is often violated in clinical datasets, especially when certain risk factors
have time-varying effects [11].

To address this limitation, the Cox Stratified Model offers an extension by allowing the baseline hazard
function to differ across strata (subgroups), while assuming proportional hazards within each stratum [12].
By stratifying on variables that violate the proportional hazards assumption, the Cox Stratified Model avoids
biased estimates and retains the ability to estimate covariate effects for other variables. The Cox Stratified
Model modifies the baseline hazard to vary across K strata [4] written as Eq. (5):

h(t|X,Z) = hor(t) exp(BTX), (5)

where hg (t) is the baseline hazard function specific to stratum k (defined by stratification variable Z), and
the model § while allowing each stratum to have its own baseline hazard. The key assumptions of the Cox
Stratified Model are:

1. The baseline hazard can vary by stratum but is unspecified (non-parametric).
2. The proportional hazards assumption still holds within each stratum.
3. Covariates not used for stratification have multiplicative effects on the hazard function.

Stratification is particularly useful when it affects the baseline hazard but does not need an explicit
hazard ratio estimate. This makes the Cox Stratified Model a powerful tool when dealing with time-varying
risks and non-proportional hazards, which are common in healthcare data [13].

2.3 Random Survival Forest

The Random Survival Forest (RSF) is a machine learning method designed to analyze right-censored
survival data [ 14]. RSF is an ensemble method that builds multiple survival trees using bootstrapped samples
and aggregates their predictions to improve accuracy and robustness. Unlike the Cox model, RSF makes no
assumptions about the proportionality of hazards or the functional form of covariate effects. RF uses the log-
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rank test to maximize the survival difference. Each tree estimates the Cumulative Hazard Function (CHF)
using the Nelson-Aalen estimator [ 15] written as Eq. (6):

R d;
A=) ©)
tist t

where d; is the number of events at the time t; and 7; is the number at risk just prior to t;. The ensemble CHF
is obtained by averaging over B trees written as Eq. (7):

B
— 1 ~
Hensemble(tlx) = Ez Hb(tlx)- (7)
b=1

Key advantages of RSF include:
1. Ability to capture non-linear and high-order interactions among covariates.
2. Handles both continuous and categorical variables naturally.
3. Robust to multicollinearity and does not require variable selection.
4. Provides variable importance measures and predicted cumulative hazard functions.

The RSF algorithm works by splitting nodes in each tree based on survival differences, often using the
log-rank statistic. For each individual, the model aggregates the cumulative hazard estimates from all trees.
It performs well in complex datasets where traditional models struggle due to non-linearities or violations of
assumptions. However, RSF also has limitations, such as:

1. Lower interpretability compared to Cox models, since it does not directly provide hazard ratios.

2. Requires tuning of hyperparameters (e.g., number of trees, number of variables considered at each
split).

3. Computationally more intensive, especially with large datasets.

Recent studies have highlighted RSF's effectiveness in predicting survival in diverse fields, including

oncology, cardiovascular diseases, and customer churn [16]. RSF is especially useful when the goal is
prediction rather than inference, and when the proportional hazards assumption cannot be made.

2.4 Model Evaluation

Model performance in survival analysis is commonly assessed using the Concordance Index (C-Index),
which measures the model's discriminative ability [17]. The C-Index represents the proportion of all usable
patient pairs where the model correctly predicts which patient has a longer survival time. Given N comparable
pairs of individuals, the C-Index is calculated as [17] written as Eq. (8):

_ Number of concordant pairs + (0.5 X Number of tied pairs)

C= : 8

Number of comparable pairs

The C-Index ranges from 0.5 (no better than random chance) to 1.0 (perfect prediction). A higher C-Index
indicates better concordance between predicted and actual outcomes.

1. C-Index = 0.5: Poor model (random guess);
2. C-Index 0.6-0.7: Moderate performance;
3. C-Index > 0.7: Good predictive discrimination.

Both Cox-based models and machine learning models like RSF are evaluated using the C-Index to
ensure comparability. RSF has been shown in some studies to achieve slightly higher C-Index values in
datasets with complex interactions, while Cox models maintain interpretability and robustness [18].
Therefore, C-Index serves as a critical criterion in this study to compare the predictive performance of the
Cox Stratified Model and Random Survival Forest in chronic kidney failure patients.
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3. RESULTS AND DISCUSSION

This study utilized empirical survival data from 741 patients with chronic kidney failure undergoing
hemodialysis at RSUD Asy-Syifa, Sumbawa Barat, recorded between January 2015 and December 2024. The
dataset was originally collected from medical records and is classified as empirical data, containing both
continuous and categorical clinical variables.

Prior to analysis, the raw data underwent a preprocessing step where selected variables were
transformed into binary formats to facilitate model fitting and interpretation. The outcome variable was
survival time (T), measured in days from the start of observation until either death or censoring. The event
indicator (3) was coded as 1 if death was attributable to chronic kidney failure and 0 if the patient was
censored (due to other causes or loss to follow-up). A summary of the transformed variables is presented in
Table 1.

Table 1. Variables

No Variable Definition Values
1. Status (8) Event indicator 1 = Death due to kidney failure, 0 = Death due to
(death due to CKD) another reason or censored
2. Survival Time (T) Time from baseline to event or Numeric
censoring (days)

3. Gender Patient sex 1 =Male, 0 = Female

4. Age Patient age (years) Numeric

5. Hypertension Based on systolic (>140) or 1=Yes, 0=No

diastolic (>90) pressure
6. Diabetes Mellitus Based on fasting glucose 1=Yes, 0=No
(>126 mg/dL)
7. Hemodialysis Number of dialysis sessions per 1 = >3 times/week, 0 = <2 times/week
Frequency week
8. Anemia Based on hemoglobin level 1=Yes, 0=No
(<8 g/dL)

This transformation process ensured that the dataset was suitable for both traditional survival models
(such as the Cox Stratified Model) and machine learning models (such as Random Survival Forest), which
require clearly defined covariates for accurate risk estimation.
3.1 Statistics Descriptive

Based on the data we used for this study, Table 2 show the statistics descriptive of the data:

Table 2. Statistics Descriptive of Chronical Kidney Patient in RSUD Asy-Syifa

Variable Mean Median Std. Dev. Min Max
Time (Y) 837.8 783 543.5 3 2678

Status 0.73 - 0.44 0 1

Age (X1) 56.3 58 14.6 1 88

Gender (X2) 0.43 - 0.49 0 1

Systolic (X3) 137.4 134 21.6 90 180
Dyastolic (X3) 88.3 90 11.4 60 110
Diabetes Mellitus (X4) 121.7 118 26.8 70 200

Hemodialysis Frequency (X5) 2.46 3 0.65 1 3

Anemia (X6) 9.55 9.6 3.97 1 17

Data source: Result from the analysis conducted using Python

Table 2 presents the descriptive statistics of chronic kidney disease patients treated at RSUD Asy-Syifa. The
average survival time of patients was 837.8 days with a median of 783 days, ranging widely from 3 to 2678
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days, indicating substantial variation in survival duration. Approximately 73% of patients experienced the
event of interest, while 27% were censored. The mean age of patients was 56.3 years (median 58), with an
age range from 1 to 88 years, suggesting that most patients were middle-aged to elderly. Gender distribution
showed that about 43% of the sample were male. The mean systolic blood pressure was 137.4 mmHg and the
mean diastolic blood pressure was 88.3 mmHg, both values lying close to the standard hypertension
thresholds, indicating that a considerable proportion of patients were hypertensive.

The mean fasting blood glucose level was 121.7 mg/dL (median 118), with a maximum value reaching
200 mg/dL, suggesting that diabetes mellitus was also prevalent in this population. On average, patients
underwent hemodialysis 2.46 times per week, with a median of 3 sessions, reflecting that many were on an
intensive treatment regimen. The mean hemoglobin level was 9.55 g/dL, below the normal reference range,
indicating a high prevalence of anemia among patients, including some severe cases. Overall, these
descriptive statistics highlight the heterogeneity of the patient population, with most individuals presenting
comorbid conditions such as hypertension, diabetes, and anemia, alongside the need for frequent
hemodialysis.

3.2 Cox Proportional Hazards Model

The purpose of Cox Proportional Hazards Model is to estimate each variable’s effect on survival time
using Hazard Ratios (HR). Cox models have hypothesis, where:

Null Hypothesis Hy: The variable X has no significant effect on the hazard rate.

HO : ﬂ =0
Alternative Hypothesis H;: The variable X significantly affects the hazard rate.
Hy: B#0

Here’s the result of Cox model shown in Table 3.

Table 3. Result of Cox Model in Chronic Kidney Disease Patient

Variabel Coef  p-value Intergze;tfatlon (ex;-(lclfyef)) Hazard Ratio Interpretation
Age (X1) 0.04 <0.005 Age significantly 1.04 Every additional year of age
affects survival increases the risk of death by 4%.
time.
Gender (X2) -0.02 0.82 Gender doesn’t 0.98 Males have a 2% lower risk than
significantly affect females, but not significant.
survival.
Hypertension 0.27 <0.005 Hypertension 1.31 Patients with hypertension have a
(X3) significantly 31% higher risk of death.
affects survival
time.
Diabetes (X4) 0.27 <0.005 Diabetes 1.32 Diabetes increases the risk of
significantly death by 32%.
affects survival
time.
Hemodialysis 0.44 <0.005 Hemodialysis 1.55 Hemodialysis frequency > 3
(X5) frequency has times increases the risk of death
significantly by 55%.
affects survival
time.
Anemia (X6) 0.24 0.01 Anemia 1.27 Patients with severe anemia have
significantly a 27% higher risk of death.
affects survival
time.

Data source: Result from the analysis conducted using Python
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After fitting the Cox model, we evaluated key assumptions, including linearity, the absence of
multicollinearity, and the proportional hazards assumption. The PH assumption was tested using Schoenfeld
residuals.

3.2.1 Linearity

Linearity was assessed using Martingale residuals. The result of the linearity test for the continuous
variable is presented below. If the residuals show a random scatter around zero, the linearity assumption is
considered to be satisfied [19]. Binary variables are assumed to meet the linearity assumption by default.

1

Martingale Residuals

® Martingale Residuals
—— LOWESS Trend L]

) 20 a0 50 80
Age (years)

Figure 1. Result of Linearity Assumption Model in the Cox Model

The linearity assumption was assessed using Martingale residuals (Figure 1), which showed deviations
suggesting non-linearity for age. Residuals tend to cluster around zero for ages roughly 40-80, but there is a
curved pattern where residuals dip below zero at around age 60. There also appear to be some large negative
residuals below -2, which might be outliers or suggest non-linearity. Since the Martingale residual plot
indicated that the continuous variable Age (X1) did not satisfy the linearity assumption, we addressed this by
transforming Age into a categorical variable [20]. Specifically, Age was divided into six categories: under 40
years, 40-49 years, 50-59 years, 60-69 years, 70-79 years, and 80 years or older. Due to a violation of the
linearity assumption for the continuous age variable, Age was categorized into six intervals. The resulting
categorical variable (Age cat) was used in the Cox model, revealing a clear trend of increasing hazard with
advancing age. Each category, compared to individuals younger than 40, demonstrated a statistically
significant increase in the hazard ratio, with the peak observed in the 80+ group.

3.2.2 Multicollinearity

Variance Inflation Factor (VIF) is used to check for multicollinearity among your predictors, including
categorical variables encoded as numbers. Table 4 shows the results of multicollinearity:

Table 4. Result of Multicollinearity Assumption Model in the Cox Model

Variables VIF
Age (X1) 1.075
Gender (X2) 1.013
Hypertension (X3) 1.205
Diabetes (X4) 1.114
Hemodialysis (X5) 1.124
Anemia (X6) 1.080

Data source: Result from the analysis conducted using Python

Since the VIF value is below 5, there is no multicollinearity among the independent variables, and the
assumption is met.
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3.2.3 Schoenfeld Test for Proportional Hazards

The PH assumption is tested using Schoenfeld residuals. If all assumptions are satisfied—including
the PH test—then the model is considered valid for interpretation. PH assumption has a hypothesis, where:

Null Hypothesis Hy: The hazard ratio for the covariate is proportional over time (i.e., it does not vary with
time).

0
t
Alternative Hypothesis H;: The hazard ratio for the covariate changes over time.
d
Hl: a_ ﬁ(t) =0.
t
Table 5 shows the result of PH test:

Table 5. Result of Proportional Hazard Assumption Model in the Cox Model

Variable P-Value Interpretation
Age (X1) 40-49 yo 0.02 0.02 < 0.05 rejected HO, Violates PH assumption
50-59 yo 0.06 0.06 > 0.05 accepting HO, PH assumption is hold
60-69 yo 0.01 0.01 < 0.05 rejected HO, Violates PH assumption
70-79 yo 0.01 0.01 < 0.05 rejected HO, Violates PH assumption
>80 yo 0.02 0.02 < 0.05 rejected HO, Violates PH assumption
Gender (X2) 0.22 0.22 > 0.05 accepting HO, PH assumption is hold
Hypertension (X3) 0.93 0.93 > 0.05 accepting HO, PH assumption is hold
Diabetes (X4) 0.26 0.26 > 0.05 accepting HO, PH assumption is hold
Hemodialysis (X5) 0.01 0.01 < 0.05 rejected HO, Violates PH assumption
Anemia (X6) 0.1 0.1 > 0.05 accepting HO, PH assumption is hold

Data source: Result from the analysis conducted usihg Python

The age group 50-59 is the only one where the proportional hazards assumption holds. All other age
categories violate the PH assumption, suggesting that their effect on survival changes over time.
Hemodialysis (X5) violates the PH assumption — its impact on survival changes over time. All other
covariates meet the PH assumption, and their effect on the hazard is stable over time. To resolve the PH
violation in Hemodialysis, a stratified Cox model was employed using Hemodialysis (X5) as the stratifying
variable. This allowed for separate baseline hazards among patients who underwent and did not undergo
hemodialysis.

3.3 Cox Stratified Model

The Cox Stratified Model extends the standard Cox regression by allowing the baseline hazard to vary
across predefined strata, making it particularly suitable for handling variables that violate the proportional
hazards assumption. In this analysis, we stratified by hemodialysis frequency, since the PH assumption was
violated for this variable. Stratification allows each hemodialysis group to have its own baseline hazard
function, while still estimating the effects of other covariates across the entire sample. Table 6 shows the
result of the Cox stratified model:

Table 6. Cox Stratified Model Result by Hemodialysis Frequency

. Interpretation HR Hazard Ratio
Variabel Coef  p-value Coef (exp(coef)) Interpretation
Age (X1) 40-49 yo 1.14 <0.005  Age significantly 3.12 Patients aged 40—49 have
affects survival 3.12x higher risk of
time. death than those under

40.
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. Interpretation HR Hazard Ratio
Variabel Coef  p-value Coef (exp(coef)) Interpretation
50-59 yo 0.89 <0.005 2.43 Patients aged 50—59 have
a 2.43x higher risk of
death.
60-69 yo 1.65 <0.005 5.21 Patients aged 60—69 have
a 5.21x higher risk of
death.
70-79 yo 2.18 <0.005 8.81 Patients aged 70-79 are
at 8.81x higher risk of
death.
>80 yo 2.73 <0.005 15.3 Patients aged over 80
have the highest risk,
with a 15.3% greater
likelihood of death
compared to those under
40.
Gender (X2) -0.01 0.93 Gender doesn’t 0.99 Males have a 1% lower
significantly risk than females, but not
affect survival. significant.
Hypertension (X3) 0.26 0.01 Hypertension 1.29 Patients with
significantly hypertension have a 29%
affects survival higher risk of death.
time.
Diabetes (X4) 0.27  <0.005 Diabetes 1.31 Diabetes increases the
significantly risk of death by 31%.
affects survival
time.
Anemia (X6) 0.24 0.01 Anemia 1.27 Patients with severe
significantly anemia have a 27%
affects survival higher risk of death.
time.

Data source: Result from the analysis conducted using Python

After stratifying the model by hemodialysis frequency, age remained a significant predictor of survival.
The hazard ratio increased with age, indicating that older patients faced a progressively higher risk of
mortality. All age groups showed statistically significant results (p < 0.005), reinforcing age as a critical
determinant of survival in patients with chronic kidney disease.

After stratifying the Cox model by hemodialysis frequency, we re-tested the Proportional Hazards (PH)
assumption using the Schoenfeld residual test. This step is crucial to ensure that the remaining covariates in
the stratified model satisfy the PH assumption. Stratification removes the need to model the baseline hazard
for the stratified variable (hemodialysis), but it does not automatically guarantee that other variables meet the
PH assumption. Table 7 shows the result of the PH test:

Table 7. PH Test Result of Cox Stratified Model

Variable

Age (X1)

40-49 yo
50-59 yo
60-69 yo
70-79 yo
>80 yo

Gender (X2)
Hypertension (X3)

P-Value

0.99
0.87
0.88
0.15
0.54
0.81

<0.005

Interpretation
0.99 > 0.05 accepting HO, PH assumption is hold

0.87 > 0.05 accepting HO, PH assumption is hold

0.88 > 0.05 accepting HO, PH assumption is hold

0.15> 0.05 accepting HO, PH assumption is hold

0.54 > 0.05 accepting HO, PH assumption is hold

0.81 > 0.05 accepting HO, PH assumption is hold

<0.05 rejected HO, violates PH assumption
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Variable P-Value Interpretation
Diabetes (X4) 0.94 0.94 > 0.05 accepting HO, PH assumption is hold
Anemia (X6) 0.46 0.46 > 0.05 accepting HO, PH assumption is hold

Data source: Result from the analysis conducted using Python

All variables except hypertension satisfy the Proportional Hazards (PH) assumption. Since
Hypertension (X3) violates the PH assumption (p < 0.05), it may require further stratification or modeling
adjustments (e.g., including time-dependent covariates or interaction terms). To solve these issues, we
combine both hemodialysis frequency and hypertension variable for stratification. Table 8 shows the final
result of Cox Stratified Model:

Table 8. Cox Stratified Model Result by Hemodialysis Frequency and Hypertension

. Interpretation HR Interpretasi Hazard
Variabel Coef  p-value Coef (exp(coef)) Ratio (HR)
Age (X1) 40-49 yo 1.10 <0.005  Age significantly 3.01 Patients aged 40—49 have
affects survival 3.01x% higher risk of
time. death than those under
40.
50-59 yo 0.86 <0.005 2.36 Patients aged 50-59 have
a 2.36x higher risk of
death.
60-69 yo 1.63 <0.005 5.10 Patients aged 60—69 have
a 5.1x higher risk of
death.
70-79 yo 220  <0.005 9.05 Patients aged 70-79 are
at 9.05x higher risk of
death.
>80 yo 2.55 <0.005 12.79 Patients aged over 80
have the highest risk,
with a 12.79x greater
likelihood of death
compared to those under
40.
Gender (X2) -0.04 0.64 Gender doesn’t 0.96 Males have a 4% lower
significantly risk than females, but not
affect survival. significant.
Diabetes (X4) 0.28 <0.005 Diabetes 1.32 Diabetes increases the
significantly risk of death by 32%.
affects survival
time.
Anemia (X6) 0.30 <0.005 Anemia 1.35 Patients with severe
significantly anemia have a 35%
affects survival higher risk of death.
time.

Data source: Result from the a‘nalysis conducted u&ing Python

After stratifying the Cox model by hemodialysis frequency and hypertension, we re-tested the Proportional
Hazards (PH) assumption using the Schoenfeld residual test, Table 9 shows the result.
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Table 9. PH Test Result of Cox Stratified Model

Variable P-Value Interpretasi
Age (X1) 40-49 yo 0.60 0.60 > 0.05 accepting HO, PH assumption is hold
50-59 yo 0.24 0.24 > 0.05 accepting HO, PH assumption is hold
60-69 yo 0.08 0.08 > 0.05 accepting HO, PH assumption is hold
70-79 yo 0.01 0.01 < 0.05 rejecting HO, PH assumption is slightly violates
>80 yo 0.24 0.24 > 0.05 accepting HO, PH assumption is hold
Gender (X2) 0.94 0.94 > 0.05 accepting HO, PH assumption is hold
Diabetes (X4) 0.18 0.18 > 0.05 accepting HO, PH assumption is hold
Anemia (X6) 0.32 0.32 > 0.05 accepting HO, PH assumption is hold

Data source: Result from the analysis conducted using Python

All remaining variables passed the PH test, except Age cat[70—79], which showed a minor violation
(p = 0.01). This minor violation was considered tolerable given the trade-off between interpretability and
model complexity [21]. This suggests that the effect of being in the 70—79 age group on the hazard of death
may change slightly over the follow-up period, rather than remaining constant. In practical terms, this could
mean that the relative risk associated with this age group either increases or decreases over time due to
interactions with unmeasured factors such as disease progression rates, comorbidity burden, or treatment
adherence patterns.

Although this deviation from the PH assumption is statistically significant, its magnitude is likely small
given that all other age categories met the assumption and the model's overall fit remained robust. In clinical
survival analysis, such minor violations are often considered acceptable, especially when the trade-off
between model complexity and interpretability is taken into account. Alternative approaches, such as
modeling the age group as a time-dependent covariate, could address this issue but would add complexity
without necessarily improving predictive accuracy in this dataset. Given the model’s strong performance (C-
Index 0.66) and the interpretability benefits of retaining categorical age variables, the minor violation was
deemed tolerable for the purposes of this study.

3.4 Random Survival Forest

The Random Survival Forest (RSF) model was applied to explore complex, non-linear relationships
and interactions between covariates without relying on the proportional hazard assumption [22]. The RSF
was implemented using the RandomSurvivalForest class from the scikit-survival library with the following
hyperparameters: 100 trees (n_estimators=100), random subset of predictors per split (max_features="sqrt"),
minimum of 10 samples to split a node (min_samples_split=10), and minimum of 5 samples per leaf
(min_samples_leaf=5). The number of jobs was set to 1 for consistent execution order, and a fixed random
seed (random_state=42) ensured reproducibility. Hyperparameter values were chosen based on prior
literature to balance bias and variance, and no grid search was performed because the study’s focus was
methodological comparison rather than hyperparameter optimization The model was trained using six
predictor variables: age, gender, hypertension status, diabetes status, hemodialysis frequency, and anemia
status. After splitting the dataset into training and testing sets (80:20), the RSF model was fitted using 100
trees.

The model's performance was evaluated using the Concordance Index (C-Index), a measure of
discriminative ability. The resulting C-Index was 0.6558, indicating a moderate predictive performance.
Although RSF does not provide direct hazard ratios, it is particularly useful for identifying complex patterns
in survival data, especially when classical assumptions such as proportional hazards are not met. However,
the limitation in interpretability can be a challenge in clinical practice, where clinicians often prefer models
that quantify risk in terms of hazard ratios for clear decision-making. To address this, post-hoc explainability
tools such as variable importance measures, partial dependence plots, or accumulated local effects can be
applied to RSF results, offering insights into how predictors contribute to survival outcomes without
compromising predictive flexibility.

This result supports the use of RSF as a complementary approach to traditional Cox models, especially
in real-world clinical data where assumptions may be violated. While Cox models remain advantageous for
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interpretability, integrating of explainable machine learning techniques into RSF provides a pathway to
making its results more clinically actionable.

3.5 Comparing Model Evaluation
Table 10 shows the C-Index comparison from both model:

Table 10. C-Index Comparison

Model C-Index
Random Survival Forest 0.6558
Cox Stratified Model 0.66

To evaluate the predictive performance of different survival models, two main approaches were compared:
the Cox Stratified Model and Random Survival Forest (RSF). The Cox Stratified Model achieved the highest
Concordance Index (C-index) at 0.66, demonstrating its effectiveness when the proportional hazards
assumption is appropriately addressed through stratification. This finding aligns with the study by [7], which
reported that extended versions of the Cox model can outperform machine learning methods when key
assumptions are met, and interpretability is essential in clinical decision-making. The interpretability of the
Cox model lies in its ability to express the effects of covariates in terms of hazard ratios, which are easily
understood in clinical contexts. For instance, in this study, patients aged 50—59 years exhibited a hazard ratio
of 2.43, indicating that they faced more than twice the risk of death compared to patients under 40 years.
Such straightforward measures allow clinicians to readily translate statistical results into practical guidance
for patient management, whereas machine learning approaches, despite their predictive power, often function
as “black boxes” and provide limited insight into the underlying risk structure. Furthermore, the Cox model
remains advantageous because it not only estimates survival probabilities but also quantifies the relative
impact of covariates, thereby offering clinically actionable insights.

On the other hand, RSF achieved a comparable C-index of 0.6558, indicating competitive predictive
accuracy. Its strength lies in handling non-linear relationships and complex variable interactions without
requiring the assumptions inherent in the Cox model. This result is consistent with findings from [6], where
RSF outperformed other models in settings with non-linear patterns and high-dimensional data. RSF’s
robustness to assumption violations makes it particularly valuable in real-world clinical datasets, where such
violations are common. However, it lacks the interpretability provided by hazard ratios, which may limit its
use in practice-oriented clinical environments.

The close performance between these two methods in this study suggests that the choice of model
should depend on the analytical objective: if interpretability and inference are prioritized, especially in
healthcare contexts, the Cox Stratified Model is preferable. Conversely, when predictive accuracy in complex
data structures is the main concern, RSF offers a flexible and assumption-free alternative. Thus, this study
contributes to the growing body of literature that emphasizes the complementary use of traditional statistical
models and machine learning techniques in survival analysis.

4. CONCLUSION

This study evaluated survival among patients with chronic kidney failure using both the Cox Stratified
Model and Random Survival Forest (RSF). We found that age, hypertension, diabetes, anemia, and frequency
of hemodialysis were significant predictors of patient survival. We found that age, hypertension, diabetes,
anemia, and hemodialysis frequency were significant predictors of patient survival. The Cox Proportional
Hazards model initially provided interpretable results through hazard ratios but violated key assumptions
such as linearity and proportional hazards for some variables. To address this, we categorized age and
implemented stratification for hemodialysis and hypertension, which successfully resolved assumption
violations. The final Cox Stratified Model demonstrated strong interpretability and valid estimates, with a C-
Index of 0.66, indicating good predictive performance. In contrast, the RSF model, which does not rely on
strict assumptions, captured complex non-linear relationships and produced a comparable C-Index of 0.6558.
Although RSF lacks direct interpretability, its flexibility makes it valuable in clinical contexts with
complicated variable interactions. However, this study’s single-center retrospective design may limit the
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generalizability of its findings. Patient demographics, treatment protocols, and healthcare resources at RSUD
Asy-Syifa may differ from those in other settings, which could potentially influence survival outcomes. In
addition, reliance on historical medical records may introduce missing data, documentation inconsistencies,
and unmeasured confounding. Multicenter validation in more diverse populations is needed to confirm the
predictive performance of both the Cox Stratified Model and RSF.

In conclusion, the Cox Stratified Model remains an excellent choice when model assumptions are met
and interpretability is a priority. Meanwhile, RSF provides a powerful alternative for predictive modeling
when data complexity or assumption violations pose a challenge. Using both models in tandem can enhance
decision-making in chronic kidney disease management by balancing statistical rigor and predictive strength.
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