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Article Info ABSTRACT 

Article History: 
This study aims to analyze the factors influencing the survival of patients with chronic 
kidney failure undergoing hemodialysis and to compare the performance of the Cox 

Stratified Model and the Random Survival Forest (RSF) using retrospective data from 

741 patients at Asy-Syifa General Hospital, Indonesia. To ensure model validity, a 

structured methodology was developed. First, continuous clinical variables were 
transformed into categorical or binary formats based on clinical thresholds. The Cox 

model was initially applied, and key assumptions—linearity, multicollinearity, and 

proportional hazards—were tested. Violations in the proportional hazard assumptions 

were addressed by stratifying the Cox model based on hemodialysis frequency and 
hypertension status. Additionally, age was categorized to correct non-linearity. In 

parallel, RSF was trained to capture non-linear patterns and complex interactions 

without relying on such assumptions. The performance of both models was evaluated 

using the Concordance Index (C-Index), yielding 0.66 for the Cox Stratified Model and 
0.6558 for RSF, which are considered to represent moderate performance. Key predictors 

of survival identified in the analysis included patient age, presence of hypertension, 

diabetes status, anemia, and frequency of hemodialysis sessions. Study limitations 

encompass the retrospective design confined to a single center, as well as interpretability 
challenges inherent to the Random Survival Forest (RSF) methodology. The originality 

of this research lies in its methodological rigor and the direct comparison between a 

statistically extended Cox model and a machine learning approach, offering practical 

insights for improving clinical risk stratification in chronic kidney failure management in 
Indonesia. 

Received: 18th June 2025 

Revised: 13th July 2025 

Accepted: 31st August 2025 

Avaialable Online: 26th January 2026 

 

 

Keywords: 

Survival Analysis; 
Cox Stratified Model;  

Random Survival Forest; 

Chronic Kidney Failure; 

Mortality. 

  

This article is an open access article distributed under the terms and 

conditions of the Creative Commons Attribution-ShareAlike 4.0 

International License. 
 

 

 

 

 

 

 
 

 

 

 

 

 
 

How to cite this article: 

A. L. P. Hamid, B. Susetyo and A. Kurnia., “SURVIVAL ANALYSIS OF CHRONIC KIDNEY FAILURE PATIENTS USING THE COX 

STRATIFIED MODEL AND RANDOM SURVIVAL FOREST,” BAREKENG: J. Math. & App., vol. 20, no. 2, pp. 1527-1540, Jun, 2026. 

 

  

 

 

 

Copyright © 2026 Author(s)  

Journal homepage: https://ojs3.unpatti.ac.id/index.php/barekeng/  

Journal e-mail: barekeng.math@yahoo.com; barekeng.journal@mail.unpatti.ac.id  

Research Article  ∙  Open Access 

 

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
mailto:ssyifa.hamid@apps.ipb.ac.id
https://orcid.org/0009-0005-5441-9493
mailto:budisu@apps.ipb.ac.id
https://orcid.org/0000-0001-7772-3897
mailto:nangk@apps.ipb.ac.id
https://orcid.org/0000-0001-9409-2361
https://ojs3.unpatti.ac.id/index.php/barekeng/
mailto:barekeng.math@yahoo.com
mailto:barekeng.journal@mail.unpatti.ac.id


1528 Hamid, et al.     SURVIVAL ANALYSIS OF CHRONIC KIDNEY FAILURE PATIENTS USING THE COX…  

1. INTRODUCTION 

 

Survival analysis is a statistical approach for data analysis to examine the time until an event occurs, 

particularly in medical and reliability studies [1]. This method enables researchers to analyze time-to-event 

data, providing insights into the duration until events such as failure, relapse, or death occur. The approach 

is fundamental in fields where understanding the timing of events is crucial for prognosis and decision-

making. The Cox Proportional Hazards (Cox PH) model remains the most widely applied method. This model 

relies on the assumption of proportional hazards, which means that the effect of covariates on the hazard rate 

is constant over time. However, this assumption is often violated in real-world clinical data, where the 

influence of risk factors may vary at different time points, challenging the model’s applicability and accuracy 

[2]. 

To address this limitation, extensions of the Cox model and machine learning-based survival models 

have emerged [3]. The Cox Stratified Model extends the standard Cox regression by allowing the baseline 

hazard to vary across predefined strata, making it suitable for handling variables that violate the proportional 

hazards assumption and for accounting for subgroup differences in baseline risk [4]. By stratifying variables 

with non-proportional hazards, this model preserves the proportionality assumption for other covariates while 

improving model validity. Meanwhile, machine learning models, such as Random Survival Forest (RSF), 

offer a flexible alternative that does not rely on strict assumptions [5]. RSF employs ensemble learning 

through decision trees to capture complex, non-linear interactions and handle high-dimensional data, making 

it particularly useful for healthcare datasets with mixed variable types and censoring. 

Previous studies have shown varying performances of these models across different domains. For 

instance, [6] found RSF to outperform Survival Support Vector Machine (SSVM) in retail customer survival 

prediction, while Spreafico et al. [7] reported that the Cox model and Machine Learning have similar 

performance, but the extended Cox model gave better performance. Each method offers distinct advantages: 

the Cox Stratified Model retains the interpretability of hazard ratios and is well-suited for clinical decision-

making, especially when proportional hazards assumptions can be met or addressed through stratification. It 

allows the separation of baseline hazards across strata, improving model validity while preserving the ability 

to assess covariate effects. 

On the other hand, RSF offers a flexible, non-parametric approach capable of modelling complex, non-

linear relationships and high-order interactions without relying on assumptions such as proportional hazards. 

It is particularly advantageous in high-dimensional clinical datasets where traditional models may fall short. 

In clinical settings, combining traditional statistical models with machine learning approaches is increasingly 

recommended to improve prediction accuracy and provide deeper insights into risk factors. Christiadi et al. 

[8] demonstrated the utility of Random Survival Forests for dynamic survival prediction in end-stage kidney 

disease, highlighting the method’s flexibility in handling complex risk structures. Similarly, Sim et al. [9] 

compared Cox regression and machine learning approaches in a Malaysian CKD cohort and found that both 

methods produced competitive predictive performance, underscoring the value of combining interpretability 

from Cox models with the predictive strength of RSF. 

This study aims to compare the Cox Stratified Model and RSF using empirical survival data from 

patients with chronic kidney failure at RSUD Asy-Syifa, Indonesia. The novelty of this research lies in its 

dual methodological approach, combining advanced statistical modeling with machine learning to evaluate 

patient survival in a clinical context where both linear assumptions and complex interactions coexist. Unlike 

prior studies that focus solely on either traditional or machine learning models, this study addresses key 

methodological challenges, such as proportional hazards violations and non-linearity by developing a tailored 

stratification strategy in the Cox model and leveraging the flexibility of RSF. Furthermore, the study provides 

one of the first direct comparisons of these methods in an Indonesian hemodialysis population, offering 

localized insights for clinical risk stratification. By examining and validating both models, this research seeks 

to determine significant survival predictors and identify the best-performing model for supporting clinical 

decision-making in managing chronic kidney failure patients. 
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2. RESEARCH METHODS 

Survival analysis is a statistical method used to study the time until an event occurs, accommodating 

censored data where the event has not yet happened for some subjects [1]. A common challenge in survival 

data is handling right-censoring and time-dependent covariates. 

2.1 Fundamental of Survival Analysis 

The survival function 𝑆(𝑡) gives the probability beyond time 𝑡 [10] written as Eq. (1): 

                                                                            𝑆(𝑡) = 𝑃(𝑇 ≥ 𝑡) = 1 − 𝐹(𝑡),                                                           (1)                                                               

where 𝐹(𝑡) is the cumulative distribution function. 

The hazard function ℎ(𝑡) represent the instantaneous risk of the event at time 𝑡 [10] written as Eq. (2): 

                                                       ℎ(𝑡) = lim
∆𝑡→0

𝑃(𝑡 ≤ 𝑇 ≤ 𝑡 + ∆𝑡 | 𝑇 ≥ 𝑡)

∆𝑡
=

𝑓(𝑡)

𝑆(𝑡)
,                                               (2) 

where 𝑓(𝑡) is the probability density function of survival time. The relationship between survival and hazard 

function is [10] written as Eq. (3): 

                                                                             𝑆(𝑡) = 𝑒𝑥𝑝 (− ∫ ℎ(𝑢) 𝑑𝑢
𝑡

0

).                                                           (3) 

2.2 Cox Proportional Hazards Model and Stratified Cox Model 

The Cox Proportional Hazards (Cox PH) model is a semi-parametric model that estimates the effect of 

covariates on survival time without requiring the specification of the baseline hazard function. The Cox 

Proportional Hazards (Cox PH) model is defined as [10] written as Eq. (4): 

                                                                              ℎ(𝑡|𝑋) = ℎ0(𝑡) exp(𝛽𝑇X),                                                              (4) 

where ℎ0(𝑡) is the baseline hazard function, X is the covariate vector, and 𝛽 is the coefficient vector. A key 

assumption of the Cox model is proportional hazards — meaning that the hazard ratios between groups are 

constant over time. This assumption is often violated in clinical datasets, especially when certain risk factors 

have time-varying effects [11]. 

To address this limitation, the Cox Stratified Model offers an extension by allowing the baseline hazard 

function to differ across strata (subgroups), while assuming proportional hazards within each stratum [12]. 

By stratifying on variables that violate the proportional hazards assumption, the Cox Stratified Model avoids 

biased estimates and retains the ability to estimate covariate effects for other variables. The Cox Stratified 

Model modifies the baseline hazard to vary across K strata [4] written as Eq. (5): 

                                                                           ℎ(𝑡|𝑋, 𝑍) = ℎ0𝑘(𝑡) exp(𝛽𝑇𝑋),                                                          (5) 

where ℎ0𝑘(𝑡) is the baseline hazard function specific to stratum 𝑘 (defined by stratification variable Z), and 

the model 𝛽 while allowing each stratum to have its own baseline hazard. The key assumptions of the Cox 

Stratified Model are: 

1. The baseline hazard can vary by stratum but is unspecified (non-parametric). 

2. The proportional hazards assumption still holds within each stratum. 

3. Covariates not used for stratification have multiplicative effects on the hazard function. 

Stratification is particularly useful when it affects the baseline hazard but does not need an explicit 

hazard ratio estimate. This makes the Cox Stratified Model a powerful tool when dealing with time-varying 

risks and non-proportional hazards, which are common in healthcare data [13]. 

2.3 Random Survival Forest 

The Random Survival Forest (RSF) is a machine learning method designed to analyze right-censored 

survival data [14]. RSF is an ensemble method that builds multiple survival trees using bootstrapped samples 

and aggregates their predictions to improve accuracy and robustness. Unlike the Cox model, RSF makes no 

assumptions about the proportionality of hazards or the functional form of covariate effects. RF uses the log-
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rank test to maximize the survival difference. Each tree estimates the Cumulative Hazard Function (CHF) 

using the Nelson-Aalen estimator [15] written as Eq. (6): 

                                                                                           𝐻̂(𝑡) = ∑
𝑑𝑖

𝑟𝑖
,

𝑡𝑖≤𝑡

                                                                      (6) 

where 𝑑𝑖 is the number of events at the time 𝑡𝑖 and 𝑟𝑖 is the number at risk just prior to 𝑡𝑖. The ensemble CHF 

is obtained by averaging over B trees written as Eq. (7): 

                                                                        𝐻̂𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒(𝑡|𝑋) =
1

𝐵
∑ 𝐻̂𝑏(𝑡|𝑋)

𝐵

𝑏=1

.                                                       (7) 

Key advantages of RSF include: 

1. Ability to capture non-linear and high-order interactions among covariates. 

2. Handles both continuous and categorical variables naturally. 

3. Robust to multicollinearity and does not require variable selection. 

4. Provides variable importance measures and predicted cumulative hazard functions. 

The RSF algorithm works by splitting nodes in each tree based on survival differences, often using the 

log-rank statistic. For each individual, the model aggregates the cumulative hazard estimates from all trees. 

It performs well in complex datasets where traditional models struggle due to non-linearities or violations of 

assumptions. However, RSF also has limitations, such as: 

1. Lower interpretability compared to Cox models, since it does not directly provide hazard ratios. 

2. Requires tuning of hyperparameters (e.g., number of trees, number of variables considered at each 

split). 

3. Computationally more intensive, especially with large datasets. 

Recent studies have highlighted RSF's effectiveness in predicting survival in diverse fields, including 

oncology, cardiovascular diseases, and customer churn [16]. RSF is especially useful when the goal is 

prediction rather than inference, and when the proportional hazards assumption cannot be made. 

2.4 Model Evaluation 

Model performance in survival analysis is commonly assessed using the Concordance Index (C-Index), 

which measures the model's discriminative ability [17]. The C-Index represents the proportion of all usable 

patient pairs where the model correctly predicts which patient has a longer survival time. Given N comparable 

pairs of individuals, the C-Index is calculated as [17] written as Eq. (8): 

                                   𝐶 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠 + (0.5 × 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑒𝑑 𝑝𝑎𝑖𝑟𝑠)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑝𝑎𝑟𝑎𝑏𝑙𝑒 𝑝𝑎𝑖𝑟𝑠
.                     (8) 

The C-Index ranges from 0.5 (no better than random chance) to 1.0 (perfect prediction). A higher C-Index 

indicates better concordance between predicted and actual outcomes. 

1. C-Index ≈ 0.5: Poor model (random guess); 

2. C-Index 0.6-0.7: Moderate performance; 

3. C-Index > 0.7: Good predictive discrimination. 

Both Cox-based models and machine learning models like RSF are evaluated using the C-Index to 

ensure comparability. RSF has been shown in some studies to achieve slightly higher C-Index values in 

datasets with complex interactions, while Cox models maintain interpretability and robustness [18]. 

Therefore, C-Index serves as a critical criterion in this study to compare the predictive performance of the 

Cox Stratified Model and Random Survival Forest in chronic kidney failure patients. 
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3. RESULTS AND DISCUSSION 

 

This study utilized empirical survival data from 741 patients with chronic kidney failure undergoing 

hemodialysis at RSUD Asy-Syifa, Sumbawa Barat, recorded between January 2015 and December 2024. The 

dataset was originally collected from medical records and is classified as empirical data, containing both 

continuous and categorical clinical variables. 

Prior to analysis, the raw data underwent a preprocessing step where selected variables were 

transformed into binary formats to facilitate model fitting and interpretation. The outcome variable was 

survival time (T), measured in days from the start of observation until either death or censoring. The event 

indicator (δ) was coded as 1 if death was attributable to chronic kidney failure and 0 if the patient was 

censored (due to other causes or loss to follow-up). A summary of the transformed variables is presented in 

Table 1. 

Table 1. Variables  

No Variable Definition Values 

1. Status (δ) Event indicator  

(death due to CKD) 

1 = Death due to kidney failure, 0 = Death due to 

another reason or censored 

2. Survival Time (T) Time from baseline to event or 

censoring (days) 

Numeric 

3. Gender Patient sex 1 = Male, 0 = Female 

4. Age Patient age (years) Numeric 

5. Hypertension Based on systolic (≥140) or 

diastolic (≥90) pressure 

1 = Yes, 0 = No 

6. Diabetes Mellitus Based on fasting glucose 

(≥126 mg/dL) 

1 = Yes, 0 = No 

7. Hemodialysis 

Frequency 

Number of dialysis sessions per 

week 

1 = ≥3 times/week, 0 = ≤2 times/week 

8. Anemia Based on hemoglobin level 

(≤8 g/dL) 

1 = Yes, 0 = No 

This transformation process ensured that the dataset was suitable for both traditional survival models 

(such as the Cox Stratified Model) and machine learning models (such as Random Survival Forest), which 

require clearly defined covariates for accurate risk estimation. 

3.1 Statistics Descriptive 

Based on the data we used for this study, Table 2 show the statistics descriptive of the data: 

Table 2. Statistics Descriptive of Chronical Kidney Patient in RSUD Asy-Syifa 

Variable Mean Median Std. Dev. Min Max 

Time (Y) 837.8 783 543.5 3 2678 

Status 0.73 - 0.44 0 1 

Age (X1) 56.3 58 14.6 1 88 

Gender (X2) 0.43 - 0.49 0 1 

Systolic (X3) 137.4 134 21.6 90 180 

Dyastolic (X3) 88.3 90 11.4 60 110 

Diabetes Mellitus (X4) 121.7 118 26.8 70 200 

Hemodialysis Frequency (X5) 2.46 3 0.65 1 3 

Anemia (X6) 9.55 9.6 3.97 1 17 

      Data source: Result from the analysis conducted using Python 

Table 2 presents the descriptive statistics of chronic kidney disease patients treated at RSUD Asy-Syifa. The 

average survival time of patients was 837.8 days with a median of 783 days, ranging widely from 3 to 2678 



1532 Hamid, et al.     SURVIVAL ANALYSIS OF CHRONIC KIDNEY FAILURE PATIENTS USING THE COX…  

days, indicating substantial variation in survival duration. Approximately 73% of patients experienced the 

event of interest, while 27% were censored. The mean age of patients was 56.3 years (median 58), with an 

age range from 1 to 88 years, suggesting that most patients were middle-aged to elderly. Gender distribution 

showed that about 43% of the sample were male. The mean systolic blood pressure was 137.4 mmHg and the 

mean diastolic blood pressure was 88.3 mmHg, both values lying close to the standard hypertension 

thresholds, indicating that a considerable proportion of patients were hypertensive. 

The mean fasting blood glucose level was 121.7 mg/dL (median 118), with a maximum value reaching 

200 mg/dL, suggesting that diabetes mellitus was also prevalent in this population. On average, patients 

underwent hemodialysis 2.46 times per week, with a median of 3 sessions, reflecting that many were on an 

intensive treatment regimen. The mean hemoglobin level was 9.55 g/dL, below the normal reference range, 

indicating a high prevalence of anemia among patients, including some severe cases. Overall, these 

descriptive statistics highlight the heterogeneity of the patient population, with most individuals presenting 

comorbid conditions such as hypertension, diabetes, and anemia, alongside the need for frequent 

hemodialysis. 

3.2 Cox Proportional Hazards Model 

The purpose of Cox Proportional Hazards Model is to estimate each variable’s effect on survival time 

using Hazard Ratios (HR). Cox models have hypothesis, where: 

Null Hypothesis 𝐻0: The variable 𝑋 has no significant effect on the hazard rate. 

𝐻0 ∶  𝛽 = 0  

Alternative Hypothesis 𝐻1: The variable 𝑋 significantly affects the hazard rate. 

𝐻1 ∶  𝛽 ≠ 0 

Here’s the result of Cox model shown in Table 3. 

Table 3. Result of Cox Model in Chronic Kidney Disease Patient 

Variabel Coef p-value 
Interpretation 

Coef 

HR 

(exp(coef)) 
Hazard Ratio Interpretation 

Age (X1) 0.04 <0.005 Age significantly 

affects survival 

time. 

1.04 Every additional year of age 

increases the risk of death by 4%. 

Gender (X2) -0.02 0.82 Gender doesn’t 

significantly affect 

survival. 

0.98 Males have a 2% lower risk than 

females, but not significant. 

Hypertension 

(X3) 

0.27 <0.005 Hypertension 

significantly 

affects survival 

time. 

1.31 Patients with hypertension have a 

31% higher risk of death. 

Diabetes (X4) 0.27 <0.005 Diabetes 

significantly 

affects survival 

time. 

1.32 Diabetes increases the risk of 

death by 32%. 

Hemodialysis 

(X5) 

0.44 <0.005 Hemodialysis 

frequency has 

significantly 

affects survival 

time. 

1.55 Hemodialysis frequency ≥ 3 

times increases the risk of death 

by 55%. 

Anemia (X6) 0.24 0.01 Anemia 

significantly 

affects survival 

time. 

1.27 Patients with severe anemia have 

a 27% higher risk of death. 

  Data source: Result from the analysis conducted using Python 
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After fitting the Cox model, we evaluated key assumptions, including linearity, the absence of 

multicollinearity, and the proportional hazards assumption. The PH assumption was tested using Schoenfeld 

residuals. 

3.2.1 Linearity 

Linearity was assessed using Martingale residuals. The result of the linearity test for the continuous 

variable is presented below. If the residuals show a random scatter around zero, the linearity assumption is 

considered to be satisfied [19]. Binary variables are assumed to meet the linearity assumption by default. 

 
Figure 1. Result of Linearity Assumption Model in the Cox Model 

The linearity assumption was assessed using Martingale residuals (Figure 1), which showed deviations 

suggesting non-linearity for age. Residuals tend to cluster around zero for ages roughly 40-80, but there is a 

curved pattern where residuals dip below zero at around age 60. There also appear to be some large negative 

residuals below -2, which might be outliers or suggest non-linearity. Since the Martingale residual plot 

indicated that the continuous variable Age (X1) did not satisfy the linearity assumption, we addressed this by 

transforming Age into a categorical variable [20]. Specifically, Age was divided into six categories: under 40 

years, 40-49 years, 50-59 years, 60-69 years, 70-79 years, and 80 years or older. Due to a violation of the 

linearity assumption for the continuous age variable, Age was categorized into six intervals. The resulting 

categorical variable (Age_cat) was used in the Cox model, revealing a clear trend of increasing hazard with 

advancing age. Each category, compared to individuals younger than 40, demonstrated a statistically 

significant increase in the hazard ratio, with the peak observed in the 80+ group. 

3.2.2 Multicollinearity 

Variance Inflation Factor (VIF) is used to check for multicollinearity among your predictors, including 

categorical variables encoded as numbers. Table 4 shows the results of multicollinearity: 

Table 4. Result of Multicollinearity Assumption Model in the Cox Model 

Variables VIF 

Age (X1) 1.075 

Gender (X2) 1.013 

Hypertension (X3) 1.205 

Diabetes (X4) 1.114 

Hemodialysis (X5) 1.124 

Anemia (X6) 1.080 

                                             Data source: Result from the analysis conducted using Python 

Since the VIF value is below 5, there is no multicollinearity among the independent variables, and the 

assumption is met. 
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3.2.3 Schoenfeld Test for Proportional Hazards 

The PH assumption is tested using Schoenfeld residuals. If all assumptions are satisfied—including 

the PH test—then the model is considered valid for interpretation. PH assumption has a hypothesis, where: 

Null Hypothesis 𝐻0: The hazard ratio for the covariate is proportional over time (i.e., it does not vary with 

time). 

𝐻0:
𝜕

𝜕𝑡
𝛽(𝑡) = 0. 

Alternative Hypothesis 𝐻1: The hazard ratio for the covariate changes over time. 

𝐻1:
𝜕

𝜕𝑡
𝛽(𝑡) = 0. 

Table 5 shows the result of PH test: 

Table 5. Result of Proportional Hazard Assumption Model in the Cox Model 

Variable P-Value Interpretation 

Age (X1) 40-49 yo 0.02 0.02 < 0.05 rejected H0, Violates PH assumption 

50-59 yo 0.06 0.06 > 0.05 accepting H0, PH assumption is hold 

60-69 yo 0.01 0.01 < 0.05 rejected H0, Violates PH assumption 

70-79 yo 0.01 0.01 < 0.05 rejected H0, Violates PH assumption 

>80 yo 0.02 0.02 < 0.05 rejected H0, Violates PH assumption 

Gender (X2) 0.22 0.22 > 0.05 accepting H0, PH assumption is hold 

Hypertension (X3) 0.93 0.93 > 0.05 accepting H0, PH assumption is hold 

Diabetes (X4) 0.26 0.26 > 0.05 accepting H0, PH assumption is hold 

Hemodialysis (X5) 0.01 0.01 < 0.05 rejected H0, Violates PH assumption 

Anemia (X6) 0.1 0.1 > 0.05 accepting H0, PH assumption is hold 

  Data source: Result from the analysis conducted using Python 

The age group 50–59 is the only one where the proportional hazards assumption holds. All other age 

categories violate the PH assumption, suggesting that their effect on survival changes over time. 

Hemodialysis (X5) violates the PH assumption — its impact on survival changes over time. All other 

covariates meet the PH assumption, and their effect on the hazard is stable over time. To resolve the PH 

violation in Hemodialysis, a stratified Cox model was employed using Hemodialysis (X5) as the stratifying 

variable. This allowed for separate baseline hazards among patients who underwent and did not undergo 

hemodialysis. 

3.3 Cox Stratified Model 

The Cox Stratified Model extends the standard Cox regression by allowing the baseline hazard to vary 

across predefined strata, making it particularly suitable for handling variables that violate the proportional 

hazards assumption. In this analysis, we stratified by hemodialysis frequency, since the PH assumption was 

violated for this variable. Stratification allows each hemodialysis group to have its own baseline hazard 

function, while still estimating the effects of other covariates across the entire sample. Table 6 shows the 

result of the Cox stratified model: 

Table 6. Cox Stratified Model Result by Hemodialysis Frequency 

Variabel Coef p-value 
Interpretation 

Coef 

HR 

(exp(coef)) 

Hazard Ratio 

Interpretation 

Age (X1) 40-49 yo 1.14 <0.005 Age significantly 

affects survival 

time. 

3.12 Patients aged 40–49 have 

3.12× higher risk of 

death than those under 

40. 
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Variabel Coef p-value 
Interpretation 

Coef 

HR 

(exp(coef)) 

Hazard Ratio 

Interpretation 

50-59  yo 0.89 <0.005 2.43 Patients aged 50–59 have 

a 2.43× higher risk of 

death. 

60-69 yo 1.65 <0.005 5.21 Patients aged 60–69 have 

a 5.21× higher risk of 

death. 

70-79 yo 2.18 <0.005 8.81 Patients aged 70–79 are 

at 8.81× higher risk of 

death. 

>80 yo 2.73 <0.005 15.3 Patients aged over 80 

have the highest risk, 

with a 15.3× greater 

likelihood of death 

compared to those under 

40. 

Gender (X2) -0.01 0.93 Gender doesn’t 

significantly 

affect survival. 

0.99 Males have a 1% lower 

risk than females, but not 

significant. 

Hypertension (X3) 0.26 0.01 Hypertension 

significantly 

affects survival 

time. 

1.29 Patients with 

hypertension have a 29% 

higher risk of death. 

Diabetes (X4) 0.27 <0.005 Diabetes 

significantly 

affects survival 

time. 

1.31 Diabetes increases the 

risk of death by 31%. 

Anemia (X6) 0.24 0.01 Anemia 

significantly 

affects survival 

time. 

1.27 Patients with severe 

anemia have a 27% 

higher risk of death. 

  Data source: Result from the analysis conducted using Python 

After stratifying the model by hemodialysis frequency, age remained a significant predictor of survival. 

The hazard ratio increased with age, indicating that older patients faced a progressively higher risk of 

mortality. All age groups showed statistically significant results (p < 0.005), reinforcing age as a critical 

determinant of survival in patients with chronic kidney disease.  

After stratifying the Cox model by hemodialysis frequency, we re-tested the Proportional Hazards (PH) 

assumption using the Schoenfeld residual test. This step is crucial to ensure that the remaining covariates in 

the stratified model satisfy the PH assumption. Stratification removes the need to model the baseline hazard 

for the stratified variable (hemodialysis), but it does not automatically guarantee that other variables meet the 

PH assumption. Table 7 shows the result of the PH test: 

Table 7. PH Test Result of Cox Stratified Model  

Variable P-Value Interpretation 

Age (X1) 40-49 yo 0.99 0.99 > 0.05 accepting H0, PH assumption is hold 

50-59 yo 0.87 0.87 > 0.05 accepting H0, PH assumption is hold 

60-69 yo 0.88 0.88 > 0.05 accepting H0, PH assumption is hold 

70-79 yo 0.15 0.15 > 0.05 accepting H0, PH assumption is hold 

>80 yo 0.54 0.54 > 0.05 accepting H0, PH assumption is hold 

Gender (X2) 0.81 0.81 > 0.05 accepting H0, PH assumption is hold 

Hypertension (X3) <0.005 <0.05 rejected H0, violates PH assumption 
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Variable P-Value Interpretation 

Diabetes (X4) 0.94 0.94 > 0.05 accepting H0, PH assumption is hold 

Anemia (X6) 0.46 0.46 > 0.05 accepting H0, PH assumption is hold 

        Data source: Result from the analysis conducted using Python 

All variables except hypertension satisfy the Proportional Hazards (PH) assumption. Since 

Hypertension (X3) violates the PH assumption (p < 0.05), it may require further stratification or modeling 

adjustments (e.g., including time-dependent covariates or interaction terms). To solve these issues, we 

combine both hemodialysis frequency and hypertension variable for stratification. Table 8 shows the final 

result of Cox Stratified Model: 

Table 8. Cox Stratified Model Result by Hemodialysis Frequency and Hypertension 

Variabel Coef p-value 
Interpretation 

Coef 

HR 

(exp(coef)) 

Interpretasi Hazard 

Ratio (HR) 

Age (X1) 40-49 yo 1.10 <0.005 Age significantly 

affects survival 

time. 

3.01 Patients aged 40–49 have 

3.01× higher risk of 

death than those under 

40. 

50-59 yo 0.86 <0.005 2.36 Patients aged 50–59 have 

a 2.36× higher risk of 

death. 

60-69 yo 1.63 <0.005 5.10 Patients aged 60–69 have 

a 5.1× higher risk of 

death. 

70-79 yo 2.20 <0.005 9.05 Patients aged 70–79 are 

at 9.05× higher risk of 

death. 

>80 yo 2.55 <0.005 12.79 Patients aged over 80 

have the highest risk, 

with a 12.79× greater 

likelihood of death 

compared to those under 

40. 

Gender (X2) -0.04 0.64 Gender doesn’t 

significantly 

affect survival. 

0.96 Males have a 4% lower 

risk than females, but not 

significant. 

Diabetes (X4) 0.28 <0.005 Diabetes 

significantly 

affects survival 

time. 

1.32 Diabetes increases the 

risk of death by 32%. 

Anemia (X6) 0.30 <0.005 Anemia 

significantly 

affects survival 

time. 

1.35 Patients with severe 

anemia have a 35% 

higher risk of death. 

 Data source: Result from the analysis conducted using Python 

After stratifying the Cox model by hemodialysis frequency and hypertension, we re-tested the Proportional 

Hazards (PH) assumption using the Schoenfeld residual test, Table 9 shows the result. 
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Table 9. PH Test Result of Cox Stratified Model 

Variable P-Value Interpretasi 

Age (X1) 40-49 yo 0.60 0.60 > 0.05 accepting H0, PH assumption is hold 

50-59 yo 0.24 0.24 > 0.05 accepting H0, PH assumption is hold 

60-69 yo 0.08 0.08 > 0.05 accepting H0, PH assumption is hold 

70-79 yo 0.01 0.01 < 0.05 rejecting H0, PH assumption is slightly violates 

>80 yo 0.24 0.24 > 0.05 accepting H0, PH assumption is hold 

Gender (X2) 0.94 0.94 > 0.05 accepting H0, PH assumption is hold 

Diabetes (X4) 0.18 0.18 > 0.05 accepting H0, PH assumption is hold 

Anemia (X6) 0.32 0.32 > 0.05 accepting H0, PH assumption is hold 

 Data source: Result from the analysis conducted using Python 

All remaining variables passed the PH test, except Age_cat[70–79], which showed a minor violation 

(p = 0.01). This minor violation was considered tolerable given the trade-off between interpretability and 

model complexity [21]. This suggests that the effect of being in the 70–79 age group on the hazard of death 

may change slightly over the follow-up period, rather than remaining constant. In practical terms, this could 

mean that the relative risk associated with this age group either increases or decreases over time due to 

interactions with unmeasured factors such as disease progression rates, comorbidity burden, or treatment 

adherence patterns. 

Although this deviation from the PH assumption is statistically significant, its magnitude is likely small 

given that all other age categories met the assumption and the model's overall fit remained robust. In clinical 

survival analysis, such minor violations are often considered acceptable, especially when the trade-off 

between model complexity and interpretability is taken into account. Alternative approaches, such as 

modeling the age group as a time-dependent covariate, could address this issue but would add complexity 

without necessarily improving predictive accuracy in this dataset. Given the model’s strong performance (C-

Index 0.66) and the interpretability benefits of retaining categorical age variables, the minor violation was 

deemed tolerable for the purposes of this study. 

3.4 Random Survival Forest 

The Random Survival Forest (RSF) model was applied to explore complex, non-linear relationships 

and interactions between covariates without relying on the proportional hazard assumption [22]. The RSF 

was implemented using the RandomSurvivalForest class from the scikit-survival library with the following 

hyperparameters: 100 trees (n_estimators=100), random subset of predictors per split (max_features="sqrt"), 

minimum of 10 samples to split a node (min_samples_split=10), and minimum of 5 samples per leaf 

(min_samples_leaf=5). The number of jobs was set to 1 for consistent execution order, and a fixed random 

seed (random_state=42) ensured reproducibility. Hyperparameter values were chosen based on prior 

literature to balance bias and variance, and no grid search was performed because the study’s focus was 

methodological comparison rather than hyperparameter optimization The model was trained using six 

predictor variables: age, gender, hypertension status, diabetes status, hemodialysis frequency, and anemia 

status. After splitting the dataset into training and testing sets (80:20), the RSF model was fitted using 100 

trees.  

The model's performance was evaluated using the Concordance Index (C-Index), a measure of 

discriminative ability. The resulting C-Index was 0.6558, indicating a moderate predictive performance. 

Although RSF does not provide direct hazard ratios, it is particularly useful for identifying complex patterns 

in survival data, especially when classical assumptions such as proportional hazards are not met. However, 

the limitation in interpretability can be a challenge in clinical practice, where clinicians often prefer models 

that quantify risk in terms of hazard ratios for clear decision-making. To address this, post-hoc explainability 

tools such as variable importance measures, partial dependence plots, or accumulated local effects can be 

applied to RSF results, offering insights into how predictors contribute to survival outcomes without 

compromising predictive flexibility. 

This result supports the use of RSF as a complementary approach to traditional Cox models, especially 

in real-world clinical data where assumptions may be violated. While Cox models remain advantageous for 
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interpretability, integrating of explainable machine learning techniques into RSF provides a pathway to 

making its results more clinically actionable. 

3.5 Comparing Model Evaluation 

Table 10 shows the C-Index comparison from both model: 

Table 10. C-Index Comparison 

Model C-Index 

Random Survival Forest 0.6558 

Cox Stratified Model 0.66 

To evaluate the predictive performance of different survival models, two main approaches were compared: 

the Cox Stratified Model and Random Survival Forest (RSF). The Cox Stratified Model achieved the highest 

Concordance Index (C-index) at 0.66, demonstrating its effectiveness when the proportional hazards 

assumption is appropriately addressed through stratification. This finding aligns with the study by [7], which 

reported that extended versions of the Cox model can outperform machine learning methods when key 

assumptions are met, and interpretability is essential in clinical decision-making. The interpretability of the 

Cox model lies in its ability to express the effects of covariates in terms of hazard ratios, which are easily 

understood in clinical contexts. For instance, in this study, patients aged 50–59 years exhibited a hazard ratio 

of 2.43, indicating that they faced more than twice the risk of death compared to patients under 40 years. 

Such straightforward measures allow clinicians to readily translate statistical results into practical guidance 

for patient management, whereas machine learning approaches, despite their predictive power, often function 

as “black boxes” and provide limited insight into the underlying risk structure. Furthermore, the Cox model 

remains advantageous because it not only estimates survival probabilities but also quantifies the relative 

impact of covariates, thereby offering clinically actionable insights. 

On the other hand, RSF achieved a comparable C-index of 0.6558, indicating competitive predictive 

accuracy. Its strength lies in handling non-linear relationships and complex variable interactions without 

requiring the assumptions inherent in the Cox model. This result is consistent with findings from [6], where 

RSF outperformed other models in settings with non-linear patterns and high-dimensional data. RSF’s 

robustness to assumption violations makes it particularly valuable in real-world clinical datasets, where such 

violations are common. However, it lacks the interpretability provided by hazard ratios, which may limit its 

use in practice-oriented clinical environments. 

The close performance between these two methods in this study suggests that the choice of model 

should depend on the analytical objective: if interpretability and inference are prioritized, especially in 

healthcare contexts, the Cox Stratified Model is preferable. Conversely, when predictive accuracy in complex 

data structures is the main concern, RSF offers a flexible and assumption-free alternative. Thus, this study 

contributes to the growing body of literature that emphasizes the complementary use of traditional statistical 

models and machine learning techniques in survival analysis. 

4. CONCLUSION 

This study evaluated survival among patients with chronic kidney failure using both the Cox Stratified 

Model and Random Survival Forest (RSF). We found that age, hypertension, diabetes, anemia, and frequency 

of hemodialysis were significant predictors of patient survival. We found that age, hypertension, diabetes, 

anemia, and hemodialysis frequency were significant predictors of patient survival. The Cox Proportional 

Hazards model initially provided interpretable results through hazard ratios but violated key assumptions 

such as linearity and proportional hazards for some variables. To address this, we categorized age and 

implemented stratification for hemodialysis and hypertension, which successfully resolved assumption 

violations. The final Cox Stratified Model demonstrated strong interpretability and valid estimates, with a C-

Index of 0.66, indicating good predictive performance. In contrast, the RSF model, which does not rely on 

strict assumptions, captured complex non-linear relationships and produced a comparable C-Index of 0.6558. 

Although RSF lacks direct interpretability, its flexibility makes it valuable in clinical contexts with 

complicated variable interactions. However, this study’s single-center retrospective design may limit the 
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generalizability of its findings. Patient demographics, treatment protocols, and healthcare resources at RSUD 

Asy-Syifa may differ from those in other settings, which could potentially influence survival outcomes. In 

addition, reliance on historical medical records may introduce missing data, documentation inconsistencies, 

and unmeasured confounding. Multicenter validation in more diverse populations is needed to confirm the 

predictive performance of both the Cox Stratified Model and RSF. 

In conclusion, the Cox Stratified Model remains an excellent choice when model assumptions are met 

and interpretability is a priority. Meanwhile, RSF provides a powerful alternative for predictive modeling 

when data complexity or assumption violations pose a challenge. Using both models in tandem can enhance 

decision-making in chronic kidney disease management by balancing statistical rigor and predictive strength. 
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