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Article Info ABSTRACT 

Article History: 
In this paper, we introduce an innovative numerical technique for addressing the classical 

Solow-Swan economic growth model through the application of the Haar wavelet 

approach. The Solow-Swan model, a cornerstone of neoclassical economics, elucidates 

long-run economic growth influenced by capital accumulation, labor, and technological 

advancements. Although various computational methods have been utilized to study its 

behavior, the use of wavelet-based techniques, specifically Haar wavelets, has been largely 

overlooked. The Haar wavelet method provides distinct benefits, such as computational 

simplicity and adaptability to piecewise continuous functions. By transforming the Solow-

Swan model into a set of algebraic equations using Haar wavelet expansion, we showcase 

the method’s ability to accurately capture growth dynamics. We present numerical results 

to substantiate the efficacy of this approach and compare it with conventional numerical 

techniques, underscoring the advantages of wavelet-based solutions. This study offers a 

fresh perspective on economic modeling, emphasizing the potential of wavelet theory in the 

numerical analysis of growth equations. 
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1. INTRODUCTION 

Developed independently in 1956 by Robert Solow and Trevor Swan  [1],  [2], the Solow-Swan model 

forms a key pillar of neoclassical economics. It investigates sustained economic growth by focusing on the 

interactions among capital accumulation, labor, and technological advancements. The model underscores 

how these components drive an economy toward a steady-state equilibrium, assuming diminishing returns to 

both capital and labor, with technological progress treated as an exogenous factor. This framework remains 

vital for analyzing economic development and growth trends in various settings. 

The model has been explored, utilized, and elucidated across various scholarly works by numerous 

researchers  [3], [4], [5], [6], [7], [8],  [9], [10]. Numerous researchers have addressed the Solow-Swan model 

using a variety of analytical and numerical approaches. González-Parra et al.  [11] employed an explicit finite 

difference scheme to compute the numerical solution of the spatial Solow model, applying it to smuggling 

issues observed in Venezuela. Bohner et al. [12] examined the model within the framework of time scales, 

analyzing its stability properties. Cangiotti and Sensi [13]  explored an analytical solution for the Solow-

Swan model with non-constant returns to scale and provided numerical simulations to illustrate their findings. 

Brunner et al. [14] utilized an optimization technique, specifically the simulated annealing method, to 

estimate the model’s parameters. Ureña and Vargas  [15] investigated the numerical solution of the Solow 

model incorporating spatial diffusion, using a generalized finite difference method, and evaluated the 

scheme’s convergence. Later in [16], they developed numerical solutions for the Solow-Swan model with 

spatial diffusion by applying the finite difference method and analyzing the convergence properties of the 

approach. To our knowledge, prior studies have not utilized the Haar wavelet method to derive numerical 

solutions for the Solow-Swan model.  

Beyond the mathematical formulation, the Haar wavelet approach also provides meaningful economic 

insights into long-run growth dynamics. Unlike conventional numerical methods that often smooth out local 

variations, Haar wavelets are well-suited for capturing discontinuities and localized shocks in the Solow–

Swan framework. This feature allows the model to reflect how sudden policy interventions, changes in 

savings rates, or technological disruptions influence convergence toward the steady state, thereby enriching 

the interpretation of resilience and adjustment in growth paths. Moreover, our contribution is situated within 

a growing body of work that applies wavelet-based techniques in economics and applied differential 

equations. For instance, Chen and Hsiao [17] established an early Haar-wavelet framework for lumped and 

distributed parameter systems, providing a methodological foundation for wavelet-based dynamics; more 

recent applications span nonlinear differential equations, e.g., solutions of Bessel equation of zero order using 

Wilson wavelets  [18] and non-linear Liénard-type equations using Haar wavelets [19]—as well as linear 

Fredholm integral equation systems treated with Legendre multi-wavelets [20]. 

In this work, we propose and apply the Haar wavelet method as an innovative numerical technique to 

address the Solow-Swan economic growth model, showcasing its precision and effectiveness in capturing the 

model’s dynamic behavior. 

2. RESEARCH METHODS 

The present study is entirely focused on deriving numerical solutions for the model through 

mathematical techniques. Here, we assume the production function exhibits either increasing or decreasing 

returns to scale. Consequently, the model is formulated as a first-order non-autonomous differential equation, 

for which we seek an approximate solution. 

Let 𝐹:ℝ2 → ℝ represent a family of twice continuously differentiable functions. Consider a production 

function 𝐹(𝑥1, 𝑥2) that adheres to the Inada conditions (refer to [21], [22], [23], [24], [25]). Denote 𝑥1 and 

𝑥2 as 𝐾 and 𝐿, respectively. If the rate of change of 𝐾 is proportional to 𝐹, and the labor force grows 

exponentially, then 

𝑑𝐾

𝑑𝑡
= 𝑠𝐹(𝐾, 𝐿),

𝑑𝐿

𝑑𝑡
= 𝛾𝐿, (1) 

where, 𝑠, 𝛾 > 0 are scalars. Now, let 𝑘 =
𝐾

𝐿
 be the capital-labour ratio and let 𝑓(𝑘) = 𝐹(𝑘, 1), the classic 

Solow-Swan model is written as: 
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𝑑𝑘

𝑑𝑡
= 𝑠𝑓(𝑘) − 𝛾𝑘. (2) 

Drawing from [7], the Solow-Swan model can be expressed as 

𝑑𝑘

𝑑𝑡
= 𝑠𝑓(𝑘) − (𝛿 + 𝛾(𝑡))𝑘, (3) 

where 𝑠 is the fraction of output, which is saved, 𝛿 is the depreciation rate, 𝑓 is a production function, and 

𝛾(𝑡) is the ratio 
𝑑𝐿

𝑑𝑡
/𝐿. Further, from [4], the above equation can be written as 

𝑑𝑘

𝑑𝑡
= 𝑠𝐿0

(𝑛−1)
𝑒(𝑛−1)𝛾𝑡𝑘𝛼 − 𝛾𝑘, (4) 

where 0 < 𝛼 ≤ 1 0 < 𝛽 ≤ 1 and 𝛼 + 𝛽 = 𝑛. 

2.1 Haar Wavelets  

Wavelets are a collection of functions derived from a single mother wavelet through processes of 

dilation and translation. For continuous parameters 𝑎 (translation) and 𝑏 (dilation), the family of continuous 

wavelets, as described in [26], is defined as 

𝜓𝑎,𝑏(𝑥) = |𝑎|
−
1
2𝜓(

𝑥 − 𝑏

𝑎
) , 𝑎, 𝑏 ∈ ℝ, 𝑎 ≠ 0. 

For discrete values of the parameters 𝑎 and 𝑏, defined as 𝑎 = 𝑎0
−𝑚, 𝑏 = 𝑛𝑏0𝑎0

−𝑚,  with 𝑎0, b0 > 1, and 𝑛,𝑚 

being natural numbers, the family of discrete wavelets is expressed as 

𝜓𝑛,𝑚(𝑥) = |𝑎0|
𝑚
2𝜓(𝑎0

𝑚𝑥 − 𝑛𝑏0), 

where 𝜓𝑛,𝑚 serves as a basis (or wavelet basis) of 𝐿2(ℝ). When 𝑎0 = 2 and 𝑏0 = 1, the functions 𝜓𝑛,𝑚(𝑥) 
constitute an orthonormal basis.  

Alfred Haar first introduced the Haar function in 1910. The Haar wavelet family defined over the 

interval [0,1) comprises the following functions: 

ℎ0(𝑥) = {
1, 0 ≤ 𝑥 < 1
0,  otherwise, 

(5) 

and 

ℎ𝑖(𝑥) = {

1,
𝑘

𝑚
≤ 𝑥 <

𝑘+0.5

𝑚

−1,
𝑘+0.5

𝑚
≤ 𝑥 <

𝑘+1

𝑚

0,  otherwise, 

(6) 

where 𝑚 = 2𝑗, 𝑗 = 0,1,2,3,… 𝐽, 𝑘 = 0,1,2,…𝑚 − 1, 𝑖 = 𝑚 + 𝑘 + 1. Here 𝑚 is the dilation parameter, 𝑘 is 

the shift parameter and 𝐽 is the level of resolution. The function ℎ0(𝑥) is referred to as the scaling function, 

while ℎ1(𝑥) serves as the mother wavelet of the Haar wavelet family. A few Haar wavelets are given below: 

ℎ0(𝑥) = {
1, 0 ≤ 𝑥 < 1
0,  otherwise 

,  ℎ1(𝑥) = {
1, 0 ≤ 𝑥 < 0.5
−1, 0.5 ≤ 𝑥 < 1
0,  otherwise 

 

ℎ2(𝑥) =

{
 
 

 
 1, 0 ≤ 𝑥 <

0.5

2

−1,
0.5

2
≤ 𝑥 <

1

2
0,  otherwise 

, ℎ3(𝑥) =

{
 
 

 
 1,

1

2
≤ 𝑥 <

1.5

2

−1,
1.5

2
≤ 𝑥 < 1

0,  otherwise 
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ℎ4(𝑥) =

{
 
 

 
 1, 0 ≤ 𝑥 <

0.5

4

−1,
0.5

4
≤ 𝑥 <

1

4
0,  otherwise 

, ℎ5(𝑥) =

{
 
 

 
 1,

1

4
≤ 𝑥 <

1.5

4

−1,
1.5

4
≤ 𝑥 <

2

4
0,  otherwise 

ℎ6(𝑥) =

{
 
 

 
 1,

2

4
≤ 𝑥 <

2.5

4

−1,
2.5

4
≤ 𝑥 <

3

4
0,  otherwise 

, ℎ7(𝑥) =

{
 
 

 
 1,

3

4
≤ 𝑥 <

3.5

4

−1,
3.5

4
≤ 𝑥 < 1

0,  otherwise 

.

 

The first integral of Haar family function [6] is defined as 

𝑝1,𝑖 = ∫  
𝑥

0

 ℎ𝑖(𝑡)𝑑𝑡 =

{
 
 

 
 𝑥 −

𝑘

𝑚
,

𝑘

𝑚
≤ 𝑥 <

𝑘 + 0.5

𝑚
𝑘 + 1

𝑚
− 𝑥,

𝑘 + 0.5

𝑚
≤ 𝑥 <

𝑘 + 1

𝑚
0,  otherwise 

. (7) 

The first integral of a few Haar wavelets is given below: 

𝑝1,0 = ∫  
𝑥

0

 ℎ0(𝑥)𝑑𝑥 = {
𝑥, 0 ≤ 𝑥 ≤ 1
0,  otherwise 

,   𝑝1,1 = ∫  
𝑥

0

 ℎ1(𝑥)𝑑𝑥 = {
𝑥 − 0, 0 ≤ 𝑥 < 0.5
1 − 𝑥, 0.5 ≤ 𝑥 < 1
0,  otherwise 

𝑝1,2 = ∫  
𝑥

0

 ℎ2(𝑥)𝑑𝑥 =

{
 
 

 
 𝑥 − 0, 0 ≤ 𝑥 <

0.5

2
1

2
− 𝑥,

0.5

2
≤ 𝑥 <

1

2
0,  otherwise 

,   𝑝1,3 = ∫  
𝑥

0

 ℎ3(𝑥)𝑑𝑥 =

{
 
 

 
 𝑥 −

1

2
,
1

2
≤ 𝑥 <

1.5

2

1 − 𝑥,
1.5

2
≤ 𝑥 < 1

0,  otherwise 

𝑝1,4 = ∫  
𝑥

0

 ℎ4(𝑥)𝑑𝑥 =

{
 
 

 
 𝑥 − 0, 0 ≤ 𝑥 <

0.5

4
1

4
− 𝑥,

0.5

4
≤ 𝑥 <

1

4
0,  otherwise 

,   𝑝1,5 = ∫  
𝑥

0

 ℎ5(𝑥)𝑑𝑥 =

{
 
 

 
 𝑥 −

1

4
,
1

4
≤ 𝑥 <

1.5

4
2

4
− 𝑥,

1.5

4
≤ 𝑥 <

2

4
0,  otherwise 

𝑝1,6 = ∫  
𝑥

0

 ℎ6(𝑥)𝑑𝑥 =

{
 
 

 
 𝑥 −

2

4
,
2

4
≤ 𝑥 <

2.5

4
3

4
− 𝑥,

2.5

4
≤ 𝑥 <

3

4
0,  otherwise 

, 𝑝1,7 = ∫  
𝑥

0

 ℎ7(𝑥)𝑑𝑥 =

{
 
 

 
 𝑥 −

3

4
,
3

4
≤ 𝑥 <

3.5

4

1 − 𝑥,
3.5

4
≤ 𝑥 < 1

0,  otherwise 

.

 

Every continuous function 𝑓(𝑥) ∈ 𝐿2(ℝ) defined on [0,1) can be expressed as: 

𝑓(𝑥) =∑ 

∞

𝑖=0

  𝑐𝑖ℎ𝑖(𝑥), (8) 

where, 𝑐𝑖 = (2
𝑗−1) ∫  

1

0
𝑢(𝑥)ℎ𝑖(𝑥)𝑑𝑥 are unknown coefficients and ℎ𝑖 are Haar basis functions. If Eq. (8) is 

truncated, then it can be expressed as: 

𝑓(𝑥) = ∑  

2𝐽−1

𝑖=0

  𝑐𝑖ℎ𝑖(𝑥), (9) 

where 𝐶 and ℎ𝑖(𝑥) are 2𝜃−1 × 1 matrices given by: 

𝐶 = [𝑐10, 𝑐11, … 𝑐1𝑗−1, 𝑐20, … , 𝑐2𝑗−1, … , 𝑐2𝜃−10, … , 𝑐2𝜃−1𝑗−1]
𝑇
,

ℎ(𝑥) = [ℎ10(𝑥), ℎ11(𝑥),… , ℎ1𝑗−1(𝑥), ℎ20(𝑥),… , ℎ2𝑗−1(𝑥)… , ℎ2𝑗−10(𝑥),… , ℎ2𝜃−1𝑗−1(𝑥)]
𝑇
.
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For further insights into wavelets and Haar wavelets, refer to [17], [18], [19], [20], [27], [28],  [29], [30],  

[31]. 

3. RESULTS AND DISCUSSION 

3.1 Methodology with Numerical Simulations 

Consider the Solow-Swan model 𝑘′(𝑡) = 𝑠𝐿0
(𝑛−1)

𝑒(𝑛−1)𝛾𝑡𝑘(𝑡)𝛼 − 𝛾𝑘(𝑡) with initial value: 𝑘(0) =
𝑘(0). Let 

𝑘′(𝑡) = ∑  

2𝐽−1

𝑖=0

  𝑐𝑖ℎ𝑖(𝑡), (10) 

where 𝑐𝑖 are unknown coefficients and ℎ𝑖(𝑡) are Haar wavelet basis. Integrating the above equation with limit 

from 0 to 𝑡, we get 

𝑘(𝑡) = ∑  

2𝐽−1

𝑖=0

  𝑐𝑖𝑝1,𝑖(𝑡) + 𝑘(0). (11) 

Therefore, Eq. (4) becomes 

∑  

2𝐽−1

𝑖=0

  𝑐𝑖ℎ𝑖(𝑡) − 𝑠𝐿0
(𝑛−1)𝑒(𝑛−1)𝛾𝑡(∑  

2𝐽−1

𝑖=0

 𝑐𝑖𝑝1,𝑖(𝑡) + 𝑘(0))

𝛼

+ 𝛾 ∑  

2𝐽−1

𝑖=0

  𝑐𝑖𝑝1,𝑖(𝑡) + 𝑘(0) = 0. (12) 

Now, for the collocation points 2𝑗−1, 𝑗 = 1,2,… ,𝑁, we get a set of 2𝑗−1 algebraic equations with 2𝑗−1 

unknown coefficients 𝑐𝑖. Solving these equations using Newton-Raphson method in MATLAB, we can get 

the value of the unknown coefficients 𝑐𝑖. Finally, substitute these values of 𝑐𝑖 into Eq. (12), we can obtain 

the Haar wavelet approximate solution for the given problem. 

Problem 1. Consider the Solow-Swan model 𝑘′(𝑡) − 𝑠𝐿0
(𝑛−1)

𝑒(𝑛−1)𝛾𝑡𝑘(𝑡)𝛼 + 𝛾𝑘(𝑡) = 0 with initial values: 

𝑘(0) = 1, 𝐿0 = 1, 𝑛 = 0.85, 𝛼 = 0.2 and 𝛽 = 𝑛 − 𝛼, 𝛾 = 0.7. 

The analytical solution of this model is given by 

𝑘(𝑡) = (𝑒(𝛼−1)𝛾𝑡 [𝑠(1 − 𝛼)𝐿0
(𝑛−1) 𝑒

𝛾𝛽𝑡 − 1

𝛾𝛽
+ (𝑘(0))1−𝛼])

1
1−𝛼

. (13) 

Let

𝑘′(𝑡) = ∑  2𝐽−1

𝑖=0   𝑐𝑖ℎ𝑖(𝑡). (14) 

Integrating the above equation with respect to '𝑡' with limit from 0 to 𝑡, we have 

𝑘(𝑡) = ∑  

2𝐽−1

𝑖=0

  𝑐𝑖𝑝1,𝑖(𝑡) + 𝑘(0). (15) 

Therefore, the Eq. (4) reduces to the following form: 

∑  

2𝐽−1

𝑖=0

 𝑐𝑖ℎ𝑖(𝑡) − 0.4𝑒
0.53𝑡(∑  

2𝐽−1

𝑖=0

 𝑐𝑖𝑝1,𝑖(𝑡) + 𝑘(0))

0.6

+ 0.7(∑  

2𝐽−1

𝑖=0

  𝑐𝑖𝑝1,𝑖(𝑡) + 𝑘(0)) = 0. (16) 

Now, we apply the suggested method for 𝑖 = 4. Therefore, we get a set of 4 nonlinear equations. 

Solving these equations by Newton-Raphson method, we get the unknown coefficients 𝑐𝑖. The approximate 

solution of Problem 1 obtained by the suggested method and analytical solution are compared in Table 1. 

Also, the solution plots and their error estimates are given in Fig. 1 and Fig. 2. 
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Table 1. Approximate Solutions and Error Estimation of Problem 1 

t Exact Solution RK45 HWS at 𝑵 = 𝟏𝟔 |Exact - RK45| |Exact-HWS| 

0.0313 0.9907 1.0000 0.9908 0.93e − 02 0.6812e − 04 

0.0938 0.9725 0.9814 0.9726 0.90e − 02 0.6389e − 04 

0.1563 0.9548 0.9634 0.9549 0.86e − 02 0.5988e − 04 

0.2188 0.9377 0.9460 0.9377 0.83e − 02 0.5608e − 04 

0.2813 0.9210 0.9290 0.9211 0.80e − 02 0.5249 e - 04 

0.3438 0.9048 0.9125 0.9049 0.77e − 02 0.4910 e - 04 

0.4063 0.8891 0.8965 0.8892 0.74e − 02 0.4589e − 04 

0.4688 0.8738 0.8809 0.8739 0.71e − 02 0.4286 e - 04 

0.5313 0.8590 0.8658 0.8590 0.68e − 02 0.3999e − 04 

0.5938 0.8445 0.8511 0.8446 0.66e − 02 0.3729 e - 04 

0.6563 0.8305 0.8368 0.8305 0.63e − 02 0.3473e − 04 

0.7188 0.8168 0.8229 0.8169 0.61e − 02 0.3231e − 04 

0.7813 0.8035 0.8094 0.8036 0.59e − 02 0.3003e − 04 

0.8438 0.7906 0.7963 0.7906 0.56e − 02 0.2787e − 04 

0.9063 0.7780 0.7835 0.7780 0.54e − 02 0.2584e − 04 

0.9688 0.7658 0.7710 0.7658 0.52e − 02 0.2392e − 04 

 

 
           Figure 1. Haar Wavelet Solution for Problem 1 

 
Figure 2. Error Analysis of Haar Wavelet Solution for Problem 1 
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Problem 2. Suppose that the Eq. (4) is of the form: 

𝑘′(𝑡) − 𝑠𝐿0
(𝑛−1)𝑒(𝑛−1)𝛾𝑡𝑘(𝑡)𝛼 + 𝛾𝑘(𝑡) = 0, 

where 𝑘(0) = 1, 𝐿0 = 1, 𝑛 = 1.5, 𝛼 = 0.6 and 𝛽 = 𝑛 − 𝛼, 𝛾 = 0.7. 

We solve Eq. (4) by the suggested method for 𝑖 = 4 as discussed in Problem 1. The approximate 

solution of the Solow-Swan model by the suggested method is compared with the analytical solution. The 

subsequent Table 2 shows the outcomes. Also, the solution plots and their error estimates are given in Fig. 3 

and Fig. 4. 

Table 2. Approximate Solutions and Error Estimation of Problem 2 

t exact Solution RK45 HWS at 𝑵 = 𝟏𝟔 |exact - RK45| |exact - HWS| 

0.0313 0.9908 1.0000 0.9909 0.92e − 02 0.1325e − 03 

0.0938 0.9737 0.9821 0.9732 0.90e − 02 0.1262e − 03 

0.1563 0.9564 0.9652 0.9566 0.87e − 02 0.1203e − 03 

0.2188 0.9408 0.9493 0.9409 0.85e − 02 0.1148e − 03 

0.2813 0.9261 0.9344 0.9263 0.83e − 02 0.1097e − 03 

0.3438 0.9124 0.9205 0.9125 0.81e − 02 0.1049e − 03 

0.4063 0.8997 0.9075 0.8998 0.78e − 02 0.1004e − 03 

0.4688 0.8878 0.8955 0.8879 0.77e − 02 0.0962e − 03 

0.5313 0.8768 0.8843 0.8769 0.75e − 02 0.0923e − 03 

0.5938 0.8667 0.8740 0.8668 0.73e − 02 0.0887e − 03 

0.6563 0.8575 0.8646 0.8576 0.71e − 02 0.0854e − 03 

0.7188 0.8491 0.8560 0.8491 0.69e − 02 0.0823e −  03 

0.7813 0.8415 0.8483 0.8416 0.68e − 02 0.0794e − 03 

0.8438 0.8347 0.8413 0.8348 0.66e − 02 0.0768e − 03 

0.9063 0.8287 0.8352 0.8288 0.65e − 02 0.0745e −  03 

0.9688 0.8235 0.8299 0.8236 0.64e − 02 0.0723e − 03 

 

 
Figure 3. Haar wavelet solution for the Problem 2 
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           Figure 4. Error Analysis of Haar wavelet solution for Problem 2 

3.2 Normalization Process for General Solution of Solow-Swan Model within [𝟎, 𝟏] 

Given the Haar function is defined on [0,1], we need a transformation which maps the domain [𝐴, 𝐵] 
to [0,1]. For this purpose, we consider the solution of the Solow-Swan differential equation as 𝑘(𝑡) defined 

over the interval [𝐴, 𝐵], subject to the initial condition 𝑘(𝐴) = 1. We then introduce a new variable 𝑡1 =
𝑡−𝐴

𝐵−𝐴
. 

The corresponding differential equation, expressed in terms of this new variable, is formulated as 

𝑑𝑘

𝑑𝑡
=
𝑑𝑘

𝑑𝑡1

𝑑𝑡1
𝑑𝑡

=
1

(𝐵 − 𝐴)

𝑑𝑘

𝑑𝑡1
. (17) 

The Solow-Swan equation, along with its initial conditions, will now be converted into a new equation 

based on the new variable 𝑡1 in the domain [0,1]. By implementing the technique outlined in Subsection 3.1 

on this new equation, we can determine the unknown coefficients 𝑐𝑖. After calculating these coefficients, we 

transform the new variable into the original variable 𝑡. Subsequently, we apply this procedure to the Solow-

Swan model over the domain [0,10]. This transformation simplifies the application of Haar wavelets by 

aligning the solution domain with the wavelet basis defined on [0, 1]. 

Problem 3. Consider the model 𝑘′(𝑡) − 𝑠𝐿0
(𝑛−1)

𝑒(𝑛−1)𝛾𝑡𝑘(𝑡)𝛼 + 𝛾𝑘(𝑡) = 0 with initial values: 

𝑘(0) = 1, 𝐿0 = 1, 𝑛 = 0.85, 𝛼 = 0.2 and 𝛽 = 𝑛 − 𝛼, 𝛾 = 0.7, 𝑡 ∈ [0,10]. 

Consider the new variable 𝑡1 =
𝑡

10
. Then the new equation becomes: 

1

10

𝑑𝑘

𝑑𝑡1
− 0.4exp (−0.105 ∗ 𝑡1)𝑘(𝑡1)

0.2 + 0.7𝑘(𝑡1) = 0 (18) 

By applying the suggested method to solve Eq. (18), we obtain an approximate solution for Problem 3 

within the interval [0,1]. Additionally, by converting the new variable back to the original one, we derive the 

approximate solution for the model across the domain [0,10]. Fig. 5 illustrates the solution of the model for 

both the [0,1] and [0,10] intervals. 
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Figure 5. Comparison between the Haar Wavelet Approximate Solution (“Haar”) and the Analytical Solution 

(“Exact”) for Problem 3 in Two Domains: (a) [𝟎, 𝟏] and (b) [𝟎, 𝟏𝟎] 

4. CONCLUSION 

The wavelet-based approach presented here demonstrates superior accuracy compared to traditional 

numerical techniques, as confirmed by benchmark test cases and comparisons with analytical solutions. 

Notably, this method proves highly effective in approximating the Solow-Swan growth model, achieving 

reliable results even with a minimal number of grid points, thereby reducing computational requirements 

while preserving accuracy. Nevertheless, to further improve the precision of the solution, it is advisable to 

increase the number of collocation points, which enhances the accuracy and robustness of the model's 

dynamic representation. 
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