BAREKENG: Journal of Mathematics and Its Applications
l June 2026  Volume 20 Issue 2 Page 1557—1568
are @ng P-ISSN: 1978-7227 E-ISSN: 2615-3017

n
Jurnal iimu matematika dan terapan d https://d01.0rg/10.30598/barekengv_

WAVELET-BASED COMPUTATIONAL FRAMEWORK FOR
THE SOLOW-SWAN ECONOMIC MODEL

Jay Kishore Sahani><®!, Pankaj Sharma®®2, Nikhil Khanna<®**, Ajay Kumar=® *

!Department of Mathematics, D.A.V. PG College
Shanti Nagar, Siwan,Bihar, 841226, India.

’Department of Mathematics, Pondicherry University
R.V. Nagar, Kalapet, Puducherry - 605014, India

3Department of Mathematics, College of Science, Sultan Qaboos University
P. O. Box 36, Al-Khoud 123, Muscat, Sultanate of Oman

‘Department of Science and Computation, Shri Vishwakarma Skill University
Dudhola, Palwal, Haryana, 121102, India

Corresponding author’s e-mail: * n.khanna@squ.edu.om

Article Info ABSTRACT

In this paper, we introduce an innovative numerical technique for addressing the classical

Article History: Solow-Swan economic growth model through the application of the Haar wavelet
Received: 22" June 2025 approach. The Solow-Swan model, a cornerstone of neoclassical economics, elucidates
Revised: 31°' July 2025 long-run economic growth influenced by capital accumulation, labor, and technological
Accepted: 24™ September 2025 advancements. Although various computational methods have been utilized to study its

Available Online: 26" January 2026 behavior, the use of wavelet-based techniques, specifically Haar wavelets, has been largely
overlooked. The Haar wavelet method provides distinct benefits, such as computational
simplicity and adaptability to piecewise continuous functions. By transforming the Solow-

Keywords: Swan model into a set of algebraic equations using Haar wavelet expansion, we showcase
Approximate solutions; the method’s ability to accurately capture growth dynamics. We present numerical results
Economic growth: to substantiate the efficacy of this approach and compare it with conventional numerical
Haar Wavelets: techniques, underscoring the advantages of wavelet-based solutions. This study offers a
Numerical Methods: fresh perspective on economic modeling, emphasizing the potential of wavelet theory in the
Solow-Swan Model. numerical analysis of growth equations.

This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution-ShareAlike 4.0
International License.

How to cite this article:

J. K. Sahani, P. Sharma, N. Khanna and A. Kumar., “WAVELET-BASED COMPUTATIONAL FRAMEWORK FOR THE SOLOW-SWAN
ECONOMIC MODEL”, BAREKENG: J. Math. & App., vol. 20, no. 2, pp. 1557-1568, Jun, 2026.

Copyright © 2026 Author(s)
Journal homepage: https://ojs3.unpatti.ac.id/index.php/barekeng/
Journal e-mail: barekeng.math@yahoo.com; barekeng.journal@mail.unpatti.ac.id

Research Article - Open Access

1557



https://ojs3.unpatti.ac.id/index.php/barekeng/
mailto:barekeng.math@yahoo.com
mailto:barekeng.journal@mail.unpatti.ac.id
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
mailto:jay15delhi@gmail.com
https://orcid.org/0009-0008-3405-4871
mailto:pankajsharma@pondiuni.ac.in
https://orcid.org/0009-0007-7839-3544
mailto:n.khanna@squ.edu.om
https://orcid.org/0000-0001-8973-469X
mailto:ajay.kumar@svsu.ac.in
https://orcid.org/0000-0001-8250-7785

1558 Sahani, etal. ~ WAVELET-BASED COMPUTATIONAL FRAMEWORK FOR THE SOLOW-SWAN ...

1. INTRODUCTION

Developed independently in 1956 by Robert Solow and Trevor Swan [1], [2], the Solow-Swan model
forms a key pillar of neoclassical economics. It investigates sustained economic growth by focusing on the
interactions among capital accumulation, labor, and technological advancements. The model underscores
how these components drive an economy toward a steady-state equilibrium, assuming diminishing returns to
both capital and labor, with technological progress treated as an exogenous factor. This framework remains
vital for analyzing economic development and growth trends in various settings.

The model has been explored, utilized, and elucidated across various scholarly works by numerous
researchers [3], [4],[5], [6], [7],[8], [9], [10]. Numerous researchers have addressed the Solow-Swan model
using a variety of analytical and numerical approaches. Gonzalez-Parra et al. [11] employed an explicit finite
difference scheme to compute the numerical solution of the spatial Solow model, applying it to smuggling
issues observed in Venezuela. Bohner et al. [12] examined the model within the framework of time scales,
analyzing its stability properties. Cangiotti and Sensi [13]| explored an analytical solution for the Solow-
Swan model with non-constant returns to scale and provided numerical simulations to illustrate their findings.
Brunner et al. [14] utilized an optimization technique, specifically the simulated annealing method, to
estimate the model’s parameters. Urefia and Vargas [15] investigated the numerical solution of the Solow
model incorporating spatial diffusion, using a generalized finite difference method, and evaluated the
scheme’s convergence. Later in [16], they developed numerical solutions for the Solow-Swan model with
spatial diffusion by applying the finite difference method and analyzing the convergence properties of the
approach. To our knowledge, prior studies have not utilized the Haar wavelet method to derive numerical
solutions for the Solow-Swan model.

Beyond the mathematical formulation, the Haar wavelet approach also provides meaningful economic
insights into long-run growth dynamics. Unlike conventional numerical methods that often smooth out local
variations, Haar wavelets are well-suited for capturing discontinuities and localized shocks in the Solow—
Swan framework. This feature allows the model to reflect how sudden policy interventions, changes in
savings rates, or technological disruptions influence convergence toward the steady state, thereby enriching
the interpretation of resilience and adjustment in growth paths. Moreover, our contribution is situated within
a growing body of work that applies wavelet-based techniques in economics and applied differential
equations. For instance, Chen and Hsiao [17] established an early Haar-wavelet framework for lumped and
distributed parameter systems, providing a methodological foundation for wavelet-based dynamics; more
recent applications span nonlinear differential equations, e.g., solutions of Bessel equation of zero order using
Wilson wavelets [18] and non-linear Liénard-type equations using Haar wavelets [ 19]—as well as linear
Fredholm integral equation systems treated with Legendre multi-wavelets [20].

In this work, we propose and apply the Haar wavelet method as an innovative numerical technique to
address the Solow-Swan economic growth model, showcasing its precision and effectiveness in capturing the
model’s dynamic behavior.

2. RESEARCH METHODS

The present study is entirely focused on deriving numerical solutions for the model through
mathematical techniques. Here, we assume the production function exhibits either increasing or decreasing
returns to scale. Consequently, the model is formulated as a first-order non-autonomous differential equation,
for which we seek an approximate solution.

Let F: R? - R represent a family of twice continuously differentiable functions. Consider a production
function F (x4, x,) that adheres to the Inada conditions (refer to [21], [22], [23], [24], [25]). Denote x; and
x, as K and L, respectively. If the rate of change of K is proportional to F, and the labor force grows
exponentially, then

dL

dK—FKL =yL 1
dt_s(')’dt_y’ @

where, s,y > 0 are scalars. Now, let k = % be the capital-labour ratio and let f(k) = F(k, 1), the classic
Solow-Swan model is written as:
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dk
= = sf0 — vk @

Drawing from [7], the Solow-Swan model can be expressed as

dk
- = sf (0 — (5 +v®)k ©)

where s is the fraction of output, which is saved, § is the depreciation rate, f is a production function, and
. . dL . )
y(t) is the ratio . /L. Further, from [4], the above equation can be written as

dk _
== sLODem-Dytpa _ 4)

where0<a<10<f <landa+f =n.

2.1 Haar Wavelets

Wavelets are a collection of functions derived from a single mother wavelet through processes of
dilation and translation. For continuous parameters a (translation) and b (dilation), the family of continuous
wavelets, as described in [26], is defined as

1o/x—b
bar(0 = lal 2 (=) a b eRa =0,

For discrete values of the parameters a and b, defined as a = ag™, b = nbyay™, with ag, by > 1, and n,m
being natural numbers, the family of discrete wavelets is expressed as

P () = lao T (alx — nby),

where 1, , serves as a basis (or wavelet basis) of L*(R). When ay = 2 and b, = 1, the functions ), n, (x)
constitute an orthonormal basis.

Alfred Haar first introduced the Haar function in 1910. The Haar wavelet family defined over the
interval [0,1) comprises the following functions:

1,0<x<1
ho(x) = {0, otherwise, ®)
and
1, % <x< k03
hG) =1y ks e (6)
m m

0, otherwise,

where m = 2/, =0,1,2,3,...],k = 0,1,2,..m — 1,i = m + k + 1. Here m is the dilation parameter, k is
the shift parameter and | is the level of resolution. The function hy(x) is referred to as the scaling function,
while hy (x) serves as the mother wavelet of the Haar wavelet family. A few Haar wavelets are given below:

1, 0<x<05

1, 0<x<1
= ’ - ={— <
ho (x) 0, otherwise’ hi(x) 0 L %tshe_r\:/cisj 1
(1 0< <0'5 (1 1< <1'5
’ =Xs7 2755
ha =9 05 LhtO=y_ 15
o2 2 o2 7

0, otherwise 0, otherwise
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ha(x) = 5

he(x) = <

0,

The first integral of Haar family function [6] is defined as

= [ e =
0

0 < <0.5 1 1< <1.5
=XsT eSS
0.5< <1,h5(x)=< 1 1.5< <2
4 =X r g =F 5%
otherwise 0, otherwise
2< <2.5 1 3< <3.5
4=%57 )
25< <3,h7(x)=< 1 3.5< <1
4 =%%% r g =7
otherwise 0, otherwise
k k k+0.5
x——, —<x<
m m m
k+1 k+ 0.5 k+1.
—_— X, <x<—
m m m
0, otherwise

The first integral of a few Haar wavelets is given below:

X
pro = f ho(0)dx =
0

p

. x—0,

p1,2 = -[ hz(x)dx =1 1
0 5%

2

\0,
X x—0,

p1,4 == f h.4_(x)dx =4 1
0 - X

4

\0,
( 2
x x- 4’

p1,6 - J h6(x)dx = A 3
0 Z - X,

L0,

x, 0<x<1
0, otherwise

x—0, 0<x<05

,pll—f hl(x)dx—{ —-x, 05<x<1

0, otherwise
0 ( 1 1 x< 1.5
sx<5 » X=3 7SX<7
05 1, P13 = f h3(x)dx =4 1. 5
—< — ’ — —<
5 S x < 5 0 1—x, 5 S x <1
otherwise 0, otherwise
0<yx< 0.5 1 1 x< 1.5
=rs Ty =ty
0. 5 1, p1s = hs(x)dx =< 2 1.5 2
_ ’ —— < —
7 S%<g 0 2% T sX<g
otherwise \0, otherwise
2 < 2.5 3 3 cx< 3.5
2=%<7 x Ty 3=rS
2. 5 3, p17 = -[ h7(x)dx = 35 .
—< - — —<
7 S x < ) 0 X, 7 S x<1
otherwise 0, otherwise

Every continuous function f(x) € L?(R) defined on [0,1) can be expressed as:

F6) =) cihio),

i=0

()

(8)

where, ¢; = (Zj _1) fol u(x)h;(x)dx are unknown coefficients and h; are Haar basis functions. If Eq. (8) is

truncated, then it can be expressed as:

2]-1

FE) =) cihio),

i=0

where C and h;(x) are 261 x 1 matrices given by:

T
C = [CIO' C11) oo Clj—l' Co0y w+e) C2j—1' ey C29—10, ey C29—1]-_1] )

h(x) = |h1o (), hyy (@), .,

h1j—1(x), hao (%), ..

T
iy (6) s Byjig (), hgom ), ()]

)
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For further insights into wavelets and Haar wavelets, refer to [17], [18], [19], [20], [27], [28], [29], [30],

[31].

3. RESULTS AND DISCUSSION

3.1 Methodology with Numerical Simulations
Consider the Solow-Swan model k’(t) = sLI"™ De=D¥tg(£)® — yk(t) with initial value: k(0) =
k(0). Let
2)-1
KO =) @), (10)
i=0
where c; are unknown coefficients and h;(t) are Haar wavelet basis. Integrating the above equation with limit
from 0 to t, we get

2/-1
KO = D cpri®) +k(0). (11
i=0
Therefore, Eq. (4) becomes
a
2]_1 2]—1 2]—1
D (@ = sLTTVe I N ep @ +K(O) | 4y ) apu@ + kO =0 (12)
i=0 i=0 i=0

Now, for the collocation points 2/71,j = 1,2, ..., N, we get a set of 2/ 1 algebraic equations with 2/~
unknown coefficients c;. Solving these equations using Newton-Raphson method in MATLAB, we can get
the value of the unknown coefficients c;. Finally, substitute these values of c; into Eq. (12), we can obtain
the Haar wavelet approximate solution for the given problem.

Problem 1. Consider the Solow-Swan model k' (t) — s Lg"'l)e(n—l)yt k(£)% + yk(t) = 0 with initial values:
k(0O)=1,Ly=1,n=085a=02andf=n—a,y =0.7.

The analytical solution of this model is given by
1

eVBt _ T-a
k(t) = <e(“‘1)yt [5(1 — Ly —5 (k(O))l‘“D . (13)
Let
! J-1
k (t) = le=0 Cihi(t). (14)
Integrating the above equation with respect to 't' with limit from 0 to t, we have
2/-1
KO = ) cpri®) +k(0). (15)
i=0

Therefore, the Eq. (4) reduces to the following form:

2/-1 2/-1 o6 2/-1
Z cihy(£) — 0.4¢053 Z cipri(t) + k() | +0.7 Z cipri(t) + k(0) | = 0. (16)
i=0 i=0 i=0

Now, we apply the suggested method for i = 4. Therefore, we get a set of 4 nonlinear equations.
Solving these equations by Newton-Raphson method, we get the unknown coefficients c¢;. The approximate
solution of Problem 1 obtained by the suggested method and analytical solution are compared in Table 1.
Also, the solution plots and their error estimates are given in Fig. 1 and Fig. 2.
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Table 1. Approximate Solutions and Error Estimation of Problem 1

t Exact Solution @ RK45 HWSatN =16 |Exact-RK45| |Exact-HWS|
0.0313 0.9907 1.0000 0.9908 0.93e — 02 0.6812e — 04
0.0938 0.9725 0.9814 0.9726 0.90e — 02 0.6389e — 04
0.1563 0.9548 0.9634 0.9549 0.86e — 02 0.5988e — 04
0.2188 0.9377 0.9460 0.9377 0.83e — 02 0.5608e — 04
0.2813 0.9210 0.9290 0.9211 0.80e — 02 0.5249 ¢ - 04
0.3438 0.9048 0.9125 0.9049 0.77e — 02 0.4910 ¢ - 04
0.4063 0.8891 0.8965 0.8892 0.74e — 02 0.4589e — 04
0.4688 0.8738 0.8809 0.8739 0.71e — 02 0.4286 ¢ - 04
0.5313 0.8590 0.8658 0.8590 0.68e — 02 0.3999e — 04
0.5938 0.8445 0.8511 0.8446 0.66e — 02 0.3729 ¢ - 04
0.6563 0.8305 0.8368 0.8305 0.63e — 02 0.3473e — 04
0.7188 0.8168 0.8229 0.8169 0.61e — 02 0.3231e — 04
0.7813 0.8035 0.8094 0.8036 0.59e — 02 0.3003e — 04
0.8438 0.7906 0.7963 0.7906 0.56e — 02 0.2787e — 04
0.9063 0.7780 0.7835 0.7780 0.54e — 02 0.2584e — 04
0.9688 0.7658 0.7710 0.7658 0.52e — 02 0.2392e — 04

; J=3,2M=16
A O WHM
LN Exact
gios b \&\\ RK45
=
0.9 \E\
= ) \&
0.85 N
N
08} RS
\\s\ﬁ
0 0.2 04 0.6 0.8 1
Figure 1. Haar Wavelet Solution for Problem 1
[ WHM RK(45) Between RK(45) and WHM |
Absolute Error: max |yuumeric — Yanaiytic|
0.01
0.008 |
_;_,E 0.006
é 0.004 |
:,1

0.002

0

0

0.2

0.4
r

0.6

0.8

1

Figure 2. Error Analysis of Haar Wavelet Solution for Problem 1
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Problem 2. Suppose that the Eq. (4) is of the form:
k' (t) — sLT Ve m=Drt ()@ 4 yk(t) = 0,
where k(0) =1,Lo =1,n=15a=06andf =n—a,y =0.7.

We solve Eq. (4) by the suggested method for i = 4 as discussed in Problem 1. The approximate
solution of the Solow-Swan model by the suggested method is compared with the analytical solution. The

subsequent Table 2 shows the outcomes. Also, the solution plots and their error estimates are given in Fig. 3
and Fig. 4.

Table 2. Approximate Solutions and Error Estimation of Problem 2

t exact Solution = RK45 HWS atN =16  |exact - RK45| |exact - HWS]
0.0313 0.9908 1.0000 0.9909 0.92e — 02 0.1325e — 03
0.0938 0.9737 0.9821 0.9732 0.90e — 02 0.1262e — 03
0.1563 0.9564 0.9652 0.9566 0.87e — 02 0.1203e — 03
0.2188 0.9408 0.9493 0.9409 0.85e — 02 0.1148e — 03
0.2813 0.9261 0.9344 0.9263 0.83e — 02 0.1097e — 03
0.3438 0.9124 0.9205 0.9125 0.81e — 02 0.1049e — 03
0.4063 0.8997 0.9075 0.8998 0.78e — 02 0.1004e — 03
0.4688 0.8878 0.8955 0.8879 0.77e — 02 0.0962e — 03
0.5313 0.8768 0.8843 0.8769 0.75e — 02 0.0923e — 03
0.5938 0.8667 0.8740 0.8668 0.73e — 02 0.0887e — 03
0.6563 0.8575 0.8646 0.8576 0.71e — 02 0.0854e — 03
0.7188 0.8491 0.8560 0.8491 0.69e — 02 0.0823e — 03
0.7813 0.8415 0.8483 0.8416 0.68e — 02 0.0794e — 03
0.8438 0.8347 0.8413 0.8348 0.66e — 02 0.0768e — 03
0.9063 0.8287 0.8352 0.8288 0.65e — 02 0.0745e — 03
0.9688 0.8235 0.8299 0.8236 0.64e — 02 0.0723e — 03

: J=3,2M =16
098 | e
0oc | \ RK45
0.94 1
0.92 \\
= ool O
0.88 \\\
0.86 | \g\s
0.84 \G\B\S\
0.82 i

0

0.2

0.4 0.6
xIr

0.8

Figure 3. Haar wavelet solution for the Problem 2
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[ WHM RK(45) Between RK(45) and WHM|
Absolute Error: max |Ynumeric — Yanatytic|
0.01 T - T -
—
—
0.008 | e
\\K
= et
& 0.006 |
=
Z 0.004 |
-
0.002
0 - =
0 0.2 0.4 0.6 0.8 1

xr
Figure 4. Error Analysis of Haar wavelet solution for Problem 2
3.2 Normalization Process for General Solution of Solow-Swan Model within [0, 1]

Given the Haar function is defined on [0,1], we need a transformation which maps the domain [A4, B]
to [0,1]. For this purpose, we consider the solution of the Solow-Swan differential equation as k(t) defined

over the interval [4, B], subject to the initial condition k(4) = 1. We then introduce a new variable t; = %‘
The corresponding differential equation, expressed in terms of this new variable, is formulated as
dk  dk dt, 1 dk
= —= 17)

dt  dt, dt  (B—A)dt;,

The Solow-Swan equation, along with its initial conditions, will now be converted into a new equation
based on the new variable t; in the domain [0,1]. By implementing the technique outlined in Subsection 3.1
on this new equation, we can determine the unknown coefficients c;. After calculating these coefficients, we
transform the new variable into the original variable t. Subsequently, we apply this procedure to the Solow-
Swan model over the domain [0,10]. This transformation simplifies the application of Haar wavelets by
aligning the solution domain with the wavelet basis defined on [0, 1].

Problem 3. Consider the model k' (t) — SL%n_l)e("_l)Vtk(t)“ + yk(t) = 0 with initial values:
k(0)=1,Lp=1,n=085a=02andf =n—a,y =0.7,t € [0,10].
Consider the new variable t; = 1—t0. Then the new equation becomes:

1 dk
—— — 0.4exp (—0.105 * t;)k(t,)%% + 0.7k(t;) = 0 (18)

10dt,
By applying the suggested method to solve Eq. (18), we obtain an approximate solution for Problem 3
within the interval [0,1]. Additionally, by converting the new variable back to the original one, we derive the
approximate solution for the model across the domain [0,10]. Fig. 5 illustrates the solution of the model for

both the [0,1] and [0,10] intervals.
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Haar solution Exact solution
¥
104
03-\
L \\
06} N\
l \\_\
04} \.._
| \‘*m..ﬁ_
2 4 6 8 10
(@)
Haar solution Exact solution
Y
10k
08+
061
04}
02 o4 06 08 TR
(b)

Figure 5. Comparison between the Haar Wavelet Approximate Solution (“Haar”) and the Analytical Solution
(“Exact”) for Problem 3 in Two Domains: (a) [0, 1] and (b) [0, 10]

4. CONCLUSION

The wavelet-based approach presented here demonstrates superior accuracy compared to traditional
numerical techniques, as confirmed by benchmark test cases and comparisons with analytical solutions.
Notably, this method proves highly effective in approximating the Solow-Swan growth model, achieving
reliable results even with a minimal number of grid points, thereby reducing computational requirements
while preserving accuracy. Nevertheless, to further improve the precision of the solution, it is advisable to
increase the number of collocation points, which enhances the accuracy and robustness of the model's
dynamic representation.
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