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1. INTRODUCTION

Communicable diseases, such as varicella (chickenpox), have the potential to significantly impact the
stability of society and the economy. The spread of communicable diseases such as varicella (chickenpox)
poses a significant public health challenge, as they can disrupt social stability, economic productivity, and
overall community well-being. In specific settings, including military environments, outbreaks can further
impact operational readiness and erode the physical and mental resilience of defense personnel, particularly
in high-density areas such as dormitories, border outposts, and guard posts. These risks highlight the
importance of scientific approaches to understanding infectious disease dynamics. One such approach is the
development of mathematical epidemiological models, which support data-driven decision-making for health
risk mitigation strategies in both general public health and specific defense-related contexts, thereby
strengthening preparedness and resilience ([ 1], [2], [3]).

Varicella is a highly contagious disease caused by the varicella-zoster virus (VZV), a member of the
herpesviridae family. It commonly affects children, though adults who have not been infected or vaccinated
remain vulnerable [4]. Transmission occurs through direct contact with vesicular fluid or airborne droplets
from infected individuals [5]. Once inhaled, the virus replicates in the nasopharynx and spreads through the
lymphatic and circulatory systems, infecting the skin and mucosal tissues, and resulting in fluid-filled
vesicular rashes [6]. After the primary infection resolves, the virus may persist latently in nerve ganglia and
reactivate as herpes zoster, especially in immunocompromised individuals [7]. Vulnerable populations
include infants, pregnant women, the elderly, and those with weakened immune systems, such as cancer
patients or people living with HIV [§]. In Indonesia, varicella cases are still frequently reported, particularly
among unvaccinated children. Although varicella vaccines are available, their coverage remains limited,
especially in densely populated areas [5]. Expanding vaccination programs and public education is crucial to
reduce the incidence and preventing complications [9].

Mathematical modeling is a valuable quantitative tool for studying the spread of infectious diseases.
The foundational SIR model, developed by Kermack and McKendrick in 1927, divides the population into
Susceptible, Infected, and Recovered compartments and models disease dynamics through systems of
differential equations | 10]. Various extensions of the SIR model have been developed to accommodate more
complex epidemiological phenomena. For example, the SEIR model incorporates an Exposed compartment
to account for disease incubation periods [11], [12], [13], while the SVEIR model adds a Vaccinated
compartment to reflect immunization efforts and waning immunity [14]. These models have been widely
used to simulate different intervention strategies, including vaccination and quarantine, to evaluate their long-
term impact on controlling disease spread [15], [16].

Another widely used model is the SEITR (Susceptible-Exposed—Infected—Treated—Recovered) model,
which introduces a compartment for individuals undergoing medical treatment. This model is beneficial in
evaluating the impact of clinical interventions such as hospitalization, antiviral therapy, or structured isolation
[17],[18]. However, the SEITR model typically lacks accurate data regarding vaccine coverage and efficacy,
while the SVEIR model omits treatment, making it less effective for depicting the complete progression of
varicella, especially in environments with variable access to healthcare services [ 19].

The mathematical framework underlying these models is rooted in systems of ordinary differential
equations. These equations describe continuous changes in populations over time and space, enabling
prediction and simulation of epidemic behavior. The equilibrium and stability analysis of these models, based
on the Jacobian matrix and eigenvalue computation, is essential for determining whether a disease will persist
or die out in a population [20], [21], [22]. A central metric in this analysis is the basic reproduction number
(Ry), defined as the average number of secondary infections generated by one infected individual in a fully
susceptible population. When Ry> 1, an outbreak is likely to spread; when R, < 1, it tends to subside [23],
[24]. The Next Generation Matrix (NGM) approach is commonly used to compute Ro, particularly in multi-
compartment models [25]. Several prior studies have explored the use of these models in the context of
varicella and other diseases. Jose et al. in [ 18] applied the SVEIR model in Phuket and showed that increasing
preventive measures could reduce R, to 0.06, significantly curbing disease spread. Musarifa et al. in [17]
used the SEITR model to identify disease-free and endemic equilibrium points for varicella, showing that
Ry> 1 leads to endemicity, while Ry< 1 indicates elimination.

This study proposes a unified SVEITR model (Susceptible—Vaccinated—Exposed—Infected—Treated—
Recovered) to overcome the limitations of earlier frameworks, such as the SVEIR model, which neglects
treatment effects, and the SEITR model, which does not incorporate vaccination dynamics. By integrating
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both vaccination and treatment into a single framework, the SVEITR model provides a more comprehensive
representation of varicella transmission and control strategies, especially in populations with variable access
to healthcare and immunization programs. By integrating vaccination and treatment within a single
mathematical structure, the model explicitly represents two key intervention strategies for varicella control.
Vaccination is assumed to reduce the number of susceptible individuals by moving them into the vaccinated
class, while accounting for waning immunity and possible vaccine failure. Treatment is represented as the
transition of infected individuals into the treated compartment, which reflects clinical interventions such as
antiviral therapy, hospitalization, or structured isolation aimed at accelerating recovery and reducing onward
transmission. This unified framework enables analysis of how both vaccination coverage and treatment access
influence disease dynamics, the basic reproduction number, and long-term control outcomes. The model aims
to analyze the stability of disease transmission, compute the reproduction number, perform sensitivity
analysis, and simulate the dynamics under different scenarios. The findings are expected to guide more
accurate and effective strategies for varicella control, particularly in defense-related and high-density
populations.

2. RESEARCH METHODS

2.1 Research Design

This study employed a quantitative-experimental research design, constructing and simulating a
mathematical model to investigate the dynamics of varicella (chickenpox) transmission in Indonesia. The
research expanded the SEITR (Susceptible-Exposed—Infected—Treated—Recovered) model by incorporating
a vaccination compartment, resulting in the SVEITR (Susceptible—Vaccinated—Exposed-Infected—Treated—
Recovered) model. Subsequent analysis included the calculation of the basic reproduction number (R0) using
the Next Generation Matrix (NGM) approach and numerical simulations to explore disease behavior under
various intervention scenarios.

Secondary data were utilized, gathered from literature reviews and open-access epidemiological
databases, which included parameters such as transmission rate, incubation period, vaccination coverage,
treatment success rates, recovery duration, and overall population exposure to varicella.

2.2 Research Timeline and Location

The methodological framework of this study consists of four main stages: (1) formulation of the
SVEITR model as a system of differential equations; (2) derivation of the basic reproduction number (Ro)
using the Next Generation Matrix (NGM) method; (3) equilibrium and stability analysis through Jacobian
and eigenvalue computation; and (4) numerical simulations to evaluate the effects of vaccination and
treatment strategies on varicella transmission dynamics.

2.3 Tools and Materials

Relevant parameter values were obtained from published epidemiological studies and official reports,
as summarized in Table 1. These included infection incidence rates, transmission coefficients, vaccination
coverage, and treatment outcomes, primarily sourced from Jose et al. [ 18] and San Martin [26]. Modeling
and simulations were performed using Python.

2.4 Variables and Parameters
The model involves several key variables and parameters, categorized as follows:
Independent variable:
t: time (days).
Dependent variables
S(t) : susceptible individuals (persons/day);
V(t) : vaccinated individuals (persons/day);

E(t) : exposed individuals (persons/day);
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I(t) : infected individuals (persons/day);

T(t) : treated individuals (persons/day);

R(t) : recovered individuals (persons/day).
Model parameters:

requirement rate;

a vaccination rate from susceptible to vaccinated;
) infection rate among vaccinated individuals;

B transmission rate from infected to susceptible;

y transition rate from exposed to infected;

P treatment initiation rate for infected individuals;
& : recovery rate from treatment;

& : natural recovery rate without treatment;

n : immunity waning rate (recovered to susceptible);
u : natural mortality rate.

2.5 Research Procedure

The research process began with a literature review to identify previous studies, models, and gaps
related to varicella transmission. Initial models considered were SEIR, SVEIR, and SEITR, each addressing
different aspects of the disease dynamics. The proposed SVEITR model integrates vaccination and treatment,
overcoming the limitations of earlier models, which considered only one of these interventions.

The core steps were:

1. Model development based on differential equations representing the transitions among
compartments.

2. Calculation of the basic reproduction number (R) using the Next Generation Matrix method to
assess the outbreak potential.

Stability analysis of equilibrium points via the Jacobian matrix and eigenvalue analysis.
4. Numerical simulation to evaluate system behavior under different parameter settings.

5. Sensitivity analysis to identify critical parameters influencing Ry and inform policy interventions.
2.6 Analytical Methods

2.6.1 Equilibrium Stability Analysis

The SVEITR model is represented as a system of nonlinear ordinary differential equations describing
the transitions among the six compartments (S, V, E, I, T, R). The system can be expressed in the general
form:

dxi
dt

where f; corresponds to the rate of change for each compartment.

= fi(x1,%3, ..., x¢), fori = 1,...,6,

Equilibrium points are determined by solving the system under steady-state conditions:
dx;

pral 0 for all compartments x; .

To analyze stability, the Jacobian matrix J is constructed as:

. 0f;
Ji = a—x] €Y)
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evaluated at the equilibrium point. The eigenvalues of J determine stability: if all Re(A) < 0, the equilibrium
is locally asymptotically stable; if at least one eigenvalue has a positive fundamental part, the equilibrium is
unstable.

2.6.2 Basic Reproduction Number (Rg)

The basic reproduction number was calculated using the Next Generation Matrix (NGM) approach,
which separates infection dynamics into two components:

F : the rate of appearance of new infections in the exposed and infected compartments;
V' : the rate of transfer into and out of these compartments (progression, recovery, natural death).
The next generation matrix is given by FV ™1, and the basic reproduction number is defined as:
Ry = p(FV™1) )
where p denotes the spectral radius (dominant eigenvalue).

In the SVEITR framework, R reflects the combined effects of the transmission rate (J3), progression
from exposed to infected (y), treatment initiation (), recovery rates, and natural mortality (u). The condition
Ry > 1 indicates that the infection can spread and become endemic, while R; < 1 suggests that the disease
will eventually die out.

2.6.3 Sensitivity Analysis

Sensitivity analysis was conducted to identify the most influential parameters on the value of R,. This
step is crucial for informing public health strategies, as it highlights which interventions, such as increasing
vaccination coverage or improving treatment initiation, would have the most significant effect in reducing
transmission.

The normalized forward sensitivity index, also known as elasticity, is defined as:

OR p

R 0

e = (5) (%) :
where p is a parameter of interest. We have two possibilities for elasticity which are a positive elasticity
means that increasing p raises R, and a negative elasticity means that increasing p reduces R,.

3. RESULTS AND DISCUSSION

3.1 Model Assumptions and Construction

The SVEITR model developed in this study divides the total population into six mutually exclusive
compartments: Susceptible (S), Vaccinated (V), Exposed (E), Infected (1), Treated (T), and Recovered (R).
These compartments reflect the key stages of varicella progression and control within a population. The
model is constructed under the following assumptions: (1) the characteristics of varicella are consistent across
countries, irrespective of climate differences [27]; (2) the disease has a defined incubation period during
which exposed individuals do not transmit the virus; (3) both vaccinated and recovered individuals may lose
immunity and return to the susceptible class; and (4) natural birth and death rates are constant across
compartments.

Based on these assumptions, a system of ordinary differential equations describes the temporal
dynamics of each compartment. The flow diagram of transmission becomes the following model equations:

S
E=A+6V+nT—aS—ﬁSI—,uS, “4)
av

yri asS —(1—8)BVI— 8V —uV, (5)
dE

— =BSI+ (1 -6)BVI —yE — UE, (6)

dt
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dl
azyE—t/)I—szl—yl, @)
daT
i Wl — & T —uT, (®)
dR
i &l + T —nR — uR. )

These equations account for susceptible, vaccinated, exposed, infected, treated, and naturally recovered.

3.2 Equilibrium Analysis

Two equilibrium points are considered: the Disease-Free Equilibrium (DFE) and the Endemic
Equilibrium (EE). The DFE is determined by setting E = [ = T = R = 0, indicating no infection within the
population. Solving the equilibrium equations yields:

A6+ 1) Aa

Cpla+ s+ V*:u(a+6+u)' (10)

O

Thus, the DFE point is:
(5%,v%,0,0,0,0).

The endemic equilibrium (EE), which reflects persistent disease in the population, occurs when

E*,I",T*,R* > 0. To obtain the EE, the system of differential equations is set equal to zero
dS _dav _dE _dl _dT _ dR _

(=% % =@-@=a=0
the steady-state values of each compartment. Specifically, the balance equations are solved sequentially: the
susceptible equilibrium S™ is obtained by equating the inflow (births and loss of immunity) with the outflow
(infection, vaccination, and natural death); the vaccinated equilibrium V* follows from the transition from
susceptible to vaccinated; the exposed equilibrium E* is expressed in terms of S*,V*, and I*; the infected
equilibrium I* is derived from the progression of exposed individuals; and finally the treated equilibrium T*
is determined by the treatment initiation rate. Although the exact closed-form solutions are algebraically
complex, the resulting system can be summarized as:

. _A+8V +R*

). This results in a system of nonlinear algebraic equations that links

11
a+pl*+u’ an
aS*
V= , 12
1-6)p+6+u (12)
S*I*+ (1 -868€pr*
E*:'B ( )B ' (13)
Yy +u
YE”
I* = , 14
1+ (14)
a-yr
T = —", 15
ft (15)
I" + eT*
LY el (16)
n+u

These equations provide the endemic equilibrium values in terms of the model parameters. While no
single formula describes them, the models can be solved numerically to investigate varicella persistence
across various intervention strategies.

3.3 Stability Analysis

To determine the local stability of the DFE, the Jacobian matrix was constructed and evaluated at the
equilibrium point. The value of the Jacobian matrix can be obtained from:
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—a—u 1) 0 —fS* 0 n

« —5-u 0 —(1-8)BV* 0 0

| o 0 —y—u BS*+(1-8BV* 0 0

/= 0 0 y —u—P—s 0 0
\ 0 0 0 " —e—p 0 /
0 0 0 & & -n—Uu

The characteristic eigenvalues obtained were:
M = —a —§ —u=—0.03928694;
Ay = —& —u=—0.03701694;
Az = —n —u = —0.00044594;
Ay = —pu= —0.00001694;

y+2Y+e+2u 1 2
- 5 o (r =@ +e2)" + 4y

As = —0.32155402965;
A¢ = —0.02093373035;

Since all eigenvalues have negative real parts, the DFE is locally asymptotically stable, confirming that the
infection dies out in the long run when Ry < 1.

/15,6 =

Table 1. Parameter Value

Variabel Value Source
A 9 [18]
a 0.00504 [18]
6 0.03423 [18]
B 0.000010778  [18]
y 0.00242 [18]
Y 0.075 [18]
& 0.037 [18]
& 0,04 [18]
n 0.000429 [18]
U 0.00001694 [18]

3.4 Basic Reproduction Number R

Using the Next Generation Matrix (NGM) method, the basic reproduction number was derived by
decomposing the infection matrix F and the transition matrix V that are

0 BS+(@-=8pV O
F=1o0 0 0], 17)
0 0 0
and
Y+ u 0 0
V:(—y utyp+e 0 >
0 — ut &
The final analytical expression for Ry is:
YBAI(6 + 1) + (1 — 8)al
0 (18)

Tp@+ oA+ e +n)

Substituting the parameter values yields:
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R, = 2.89. (19)

This value, significantly greater than 1, indicates that varicella has a strong potential to spread within the
population, confirming that the disease remains endemic under current conditions.

3.5 Sensitivity Analysis

Sensitivity analysis was carried out to assess how changes in the main parameters affect Ryaccording
to the steps in (3) so that the values obtained are as in Table 2:

Table 2. Sensitivity analysis parameters against R, value

Elasticity
Parameter Description E S;R"} Interpretation
A Recruitment/birth rate +1.000 A 1% increase in AA leads to a 1% increase in Ry.
B Transmission rate +1.000 A 1% increase in 3 leads to a 1% increase in R,,.
Y Progression rate (E — 1) +0.007 Very small effect; almost no change in R .
a Vaccination rate —0.004 Slightly reduces R, when a increases.
1) Vaccine failure rate —0.001 Negligible effect on R,,.
W Treatment initiation rate —0.652 Substantially reduces R,; higher y leads to stronger
control.
€ Natural recovery rate (from —0.348 Moderate reduction of R, as €2 increases.
D)
1 Natural death rate —-1.010 A 1% increase in p reduces Ry by ~1%.

In this sensitivity analysis, the author only simulates numerically the «,f,d, and y parameters
numerically because their significant influence on the Ro value can be seen in the following simulation figure:

The Effect of a on the Ro Value The Effect of p on the Ro Value
90
7.191 501
704
7.184 0
504
Ro 7.174 Ro
404
7.167 30
204
7.154 10
0 T
] ' 2
0 0,002 0004 0006 0005 0010 0 0.000005 0.00;010 0.000015  0.000020
o
b
@) (®)
The Effect of & on the Ro Value The Effect of y on Ro Value
140
7.1951
120
7.190
100+
7.185
80
R
Ro 7,180 *
60
7.175
40
7.170
201
7.165
! 2
0 002 004 006 008 010 0 0.2 0.4 06 0.8 L
v
3
(© (d)

Figure 1. Basic Reproduction Number Against Parameters (a). a (b). 8 (¢). 6 and (d). ¢
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The simulation results Fig. | show that:

1. Increasing the vaccination rate adecreases R steadily.

2. Increasing the transmission rate f§ increases R linearly.

3. Increasing the vaccine failure rate § decreases Ry, though with diminishing returns.

4. Increasing the treatment rate 1 also leads to a reduction in Ry.

These results highlight the importance of increasing vaccination coverage and improving treatment
access to control the spread of varicella.

3.6 Numerical Simulation

The numerical simulation shown below is the change in each compartment against time starting from
susceptible, vaccinated, exposed, infected, treated, and recovered in a 10,000-day period using the initial
condition:

S(0) = 463.129,V(0) = 68.157,E(0) = 10,1(0) = 5,T(0) = 0,R(0) = 0. (20)

SVEITR Model Simulation of Varicella Transmission

— S(t) - Susceptible
— V(t) - Vaccinated
— E(t) - Exposed
400000 — I(t) - Infected
— T(t) - Treated
— R(t) - Recovered

300000

Population

200000

100000

[ 2000 4000 6000 8000 10000
Time (days)

Figure 2. Population Dynamics of Varicella Disease Spread Over Time

The simulation results Fig. 2 show that:

1.

The susceptible population decreases sharply at the beginning due to both infection and vaccination,
and later stabilizes at a lower level as transitions with other compartments balance out.

The vaccinated population rises significantly in the early phase, reflecting intensive vaccination, but
then drops as immunity wanes and some individuals move to the exposed or other compartments.

The exposed population shows an early spike (around day 200-300), capturing the initial rapid
spread of varicella, and then gradually declines to near zero.

. The infected and treated populations remain at relatively low levels compared to other

compartments, indicating that although infection persists, it is controlled through treatment and
recovery.

. The recovered population increases consistently and becomes the dominant group in the long run,

signifying that most individuals eventually gain immunity after infection or treatment.

3.6.1 Susceptible Compartment

Fig. 3 illustrates the effect of parameters «, 5, §, and 1 on the dynamics of the susceptible population
S(t) in the SVEITR varicella model. An increase in the vaccination rate (a) and transmission rate ()
significantly accelerates the decline of S(t), due to more individuals being vaccinated and infected,
respectively. In contrast, changes in the vaccine failure rate (6) and immunity loss rate (17) have minimal
impact on the susceptible curve, indicating their relatively minor influence over the simulation period.
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9k 10 S-Cnm_parlment Simulation for \I.'arlnus Valu_es of g
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0 200 400 600 800 1000
Time (day)

(b)

g2 10° S-Compartment Simulation for Various Values of 7
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1] 200 400 600 800 1000
Time (day)

@

Figure 3. Susceptible Compartment Simulation against Parameters (a). a (b). § (¢). 6 (d). n

3.6.2 Vaccinated Compartment

for Various Values of o

Population Vi)
o @
g 8

a 200 400 600 800 1000
Time (day)

(@)

Population V{t)

600

V-Compartment Sii

ion for Various Values of 3 V-G

for Various Values of 4

18000

16000

14000 -

12000 -
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(b)

1000 o 200 400 600
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(©

Figure 4. Vaccinated Compartment Simulation against Parameters (a). a (b). B (¢). §

Fig. 4 illustrates the dynamics of the vaccinated population V (t) in response to variations in parameters
a,f, and § within the SVEITR model. Subfigure (a) demonstrates that a higher vaccination rate (@)
significantly increases the number of vaccinated individuals over time, reflecting broader immunization
coverage. Subfigure (b) reveals that a higher transmission rate (f) reduces V(t), as vaccinated individuals
become exposed more quickly due to increased infection risk. In subfigure (c), an increase in vaccine failure
rate (6) leads to a long-term decline in the vaccinated population, as more individuals lose vaccine-conferred

protection.

800
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3.6.3 Exposed Compartment

E-Compartment Simulation for Various Values of 3 " 10* E-Compartment Simulation for Various Values of 4 a5 10" E-Compartment Simulation for Various Values of -

Population E{t)
Population E{t)
Population E(t)
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—— 5= 0.000010

( 7= 0.000015
500 ——— 7= 0.000020

7 = 0.000025

0 200 400 600 800 1000 [ 200 400 600 800 1000 o 200 400 600 800 1000
Time (day) Time (day) Time (day)

(@ (b) (©
Figure 5. Exposed Compartment Simulation against Parameters (a). 8 (b). 6 (c). ¥y

Fig. 5 illustrates the dynamics of the exposed population E (t) under variations in parameters 3, §, and
y in the SVEITR model. In subfigure (a), a higher transmission rate () significantly increases the number of
exposed individuals, indicating greater infection risk. Subfigure (b) shows that increased vaccine
effectiveness (higher §) drastically reduces the exposed population, demonstrating the vaccine's role in
lowering exposure. In subfigure (c), a higher transition rate to the infectious class (y) decreases E(t), as
individuals move more quickly from the exposed to the infectious stage, shortening their time in the E
compartment.

3.6.4 Infected Compartment

= I-Compartment Simulation for Various Values of 5 I-Compartment for Various Values ofy e I-Compartmant Simulation for Various Values of ¢,
) [

_'=UU’J|\JU.
e ——+=0.00200, . [——TTT
£y= 0025
f— £, =0040,
=005 |

—— =007

~ = 0.00242

+ = 0.00300
= 0.00400

250

200

Populatian I(t)
Population I}
Population Ity

0 0
0 200 400 600 800 1000 f 200 400 800 800 1000 0 200 400 800 800 1000
Time (day)

Time (day) Time (day)

(a) (b) ()

Figure 6. Infected Compartment Simulation against Parameters (a). ¥ (b). P (¢). &;

Fig. 6 displays the dynamics of the infectious compartment I(t) in response to variations in parameters
y,, and &,. An increase in the transition rate y from exposed to infectious accelerates the initial rise of the
contagious population, indicating y's influence on how quickly individuals become infectious, although it
does not significantly alter the final value. Subfigure (b) shows that changes in ¥ (treatment initiation rate)
have minimal impact on the final size of I(t), as all curves quickly converge to a very low level. Likewise,
variations in &, (natural recovery rate) exert little influence on I(t), suggesting that transitions occurring after
infection do not substantially affect the infectious population.

3.6.5 Treated Compartment

w000 T-Compartment Simulation for Various Values ofi ) 104 T-Compartment Simulation for Various Values of €

8000

7000

6000

—:=0.100
5000 — = 0,300

v =0.500

¢ =0.750
v =0.900

4000
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0 200 400 600 800 1000 400 600 800 1000
Time (day) Time (day)

(@) (b)

Figure 7. Treated Compartment Simulation against Parameters (a). ¥ (b). &1
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Fig. 7 illustrates the simulation of the treated compartment T (t) in response to variations in parameters
Y and g,. In subfigure (a), increasing the treatment rate ¥ leads to a decline in T'(t), which is reasonable since
more individuals recover directly without entering the treatment phase, thus reducing the burden on this
compartment. Conversely, in subfigure (b), a higher value of &; significantly increases the treated population,
as more individuals transition from the infectious compartment to treatment, resulting in greater accumulation
within T'(t).

Some conclusions can be drawn from these additional simulations. These simulations revealed:
1. a and B significantly affect susceptible and vaccinated populations.
2. &,y and ¢ strongly influence the dynamics of exposed and infected compartments.

3. Treatment dynamics are sensitive to 1 and &, which regulate flow into and out of the treated
class.

Overall, the model confirms that improving vaccination coverage and accelerating treatment response are
effective strategies for reducing the spread of varicella and lowering the basic reproduction number.

4. CONCLUSION

This study successfully developed a mathematical epidemiological model of varicella transmission by
integrating and extending two previous models—SVEIR and SEITR—into a comprehensive SVEITR
framework. The model incorporates six compartments: Susceptible (S), Vaccinated (V), Exposed (E),
Infected (1), Treated (T'), and Recovered (R). The resulting system of differential equations captures the
essential dynamics of varicella transmission under vaccination and treatment interventions. The analysis
shows that:

1. The basic reproduction number R, was computed numerically and found to be 2.89, indicating a
high level of contagiousness. This value implies that, in a completely susceptible population, each
infected individual can transmit the disease to nearly three others, suggesting that varicella remains
endemic under current conditions.

2. The numerical simulations further revealed the trajectory of disease spread over a 10,000-day
period, demonstrating that interventions such as vaccination and medical treatment substantially
reduce the number of infections and accelerate population recovery.

3. Sensitivity analysis emphasized the critical role of the vaccination rate (@) and vaccine failure rate
(6) in modulating the value of Ry. Increasing @ and improving vaccine effectiveness (i.e., reducing
§) significantly reduced disease transmission, validating the importance of robust immunization
programs.

However, this study has several limitations. The model assumes homogeneous population mixing and
constant parameter values, so it may not fully reflect the complexity of real-world transmission dynamics.
Furthermore, demographic heterogeneity, spatial mobility, stochastic effects, and variations in vaccine
effectiveness have not been considered. These factors have the potential to impact the accuracy of the model's
predictions.
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