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Article Info ABSTRACT 

Article History: 
Varicella is a highly contagious disease with strong potential to persist endemically if not 

adequately controlled. This study develops an SVEITR (Susceptible–Vaccinated–Exposed–

Infected–Treated–Recovered) model by extending the SVEIR and SEITR frameworks with 

a treatment compartment to represent individuals receiving medical care. A mathematical 

modeling approach was applied through differential equation formulation, equilibrium 

stability analysis, and computation of the basic reproduction number 𝑅0 using the Next 

Generation Matrix method. The results show that 𝑅0 = 2.89, confirming a high 

transmission potential. Numerical simulations indicate that vaccination and treatment 

reduce disease spread, yet waning immunity sustains a pool of susceptible individuals. 

These findings highlight the importance of continuous control strategies. The inclusion of 

a treatment compartment represents a methodological advancement, providing a more 

comprehensive framework for evaluating the effects of interventions on varicella 

transmission. 
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1. INTRODUCTION 

Communicable diseases, such as varicella (chickenpox), have the potential to significantly impact the 

stability of society and the economy. The spread of communicable diseases such as varicella (chickenpox) 

poses a significant public health challenge, as they can disrupt social stability, economic productivity, and 

overall community well-being. In specific settings, including military environments, outbreaks can further 

impact operational readiness and erode the physical and mental resilience of defense personnel, particularly 

in high-density areas such as dormitories, border outposts, and guard posts. These risks highlight the 

importance of scientific approaches to understanding infectious disease dynamics. One such approach is the 

development of mathematical epidemiological models, which support data-driven decision-making for health 

risk mitigation strategies in both general public health and specific defense-related contexts, thereby 

strengthening preparedness and resilience ([1], [2], [3]). 

Varicella is a highly contagious disease caused by the varicella-zoster virus (VZV), a member of the 

herpesviridae family. It commonly affects children, though adults who have not been infected or vaccinated 

remain vulnerable [4]. Transmission occurs through direct contact with vesicular fluid or airborne droplets 

from infected individuals [5]. Once inhaled, the virus replicates in the nasopharynx and spreads through the 

lymphatic and circulatory systems, infecting the skin and mucosal tissues, and resulting in fluid-filled 

vesicular rashes [6]. After the primary infection resolves, the virus may persist latently in nerve ganglia and 

reactivate as herpes zoster, especially in immunocompromised individuals [7]. Vulnerable populations 

include infants, pregnant women, the elderly, and those with weakened immune systems, such as cancer 

patients or people living with HIV [8]. In Indonesia, varicella cases are still frequently reported, particularly 

among unvaccinated children. Although varicella vaccines are available, their coverage remains limited, 

especially in densely populated areas [5]. Expanding vaccination programs and public education is crucial to 

reduce the incidence and preventing complications [9]. 

Mathematical modeling is a valuable quantitative tool for studying the spread of infectious diseases. 

The foundational SIR model, developed by Kermack and McKendrick in 1927, divides the population into 

Susceptible, Infected, and Recovered compartments and models disease dynamics through systems of 

differential equations [10]. Various extensions of the SIR model have been developed to accommodate more 

complex epidemiological phenomena. For example, the SEIR model incorporates an Exposed compartment 

to account for disease incubation periods [11], [12], [13], while the SVEIR model adds a Vaccinated 

compartment to reflect immunization efforts and waning immunity [14]. These models have been widely 

used to simulate different intervention strategies, including vaccination and quarantine, to evaluate their long-

term impact on controlling disease spread [15], [16]. 

Another widely used model is the SEITR (Susceptible–Exposed–Infected–Treated–Recovered) model, 

which introduces a compartment for individuals undergoing medical treatment. This model is beneficial in 

evaluating the impact of clinical interventions such as hospitalization, antiviral therapy, or structured isolation 

[17], [18]. However, the SEITR model typically lacks accurate data regarding vaccine coverage and efficacy, 

while the SVEIR model omits treatment, making it less effective for depicting the complete progression of 

varicella, especially in environments with variable access to healthcare services [19]. 

The mathematical framework underlying these models is rooted in systems of ordinary differential 

equations. These equations describe continuous changes in populations over time and space, enabling 

prediction and simulation of epidemic behavior. The equilibrium and stability analysis of these models, based 

on the Jacobian matrix and eigenvalue computation, is essential for determining whether a disease will persist 

or die out in a population [20], [21], [22]. A central metric in this analysis is the basic reproduction number 

(𝑅0), defined as the average number of secondary infections generated by one infected individual in a fully 

susceptible population. When  𝑅0> 1, an outbreak is likely to spread; when 𝑅0 < 1, it tends to subside [23], 

[24]. The Next Generation Matrix (NGM) approach is commonly used to compute R₀, particularly in multi-

compartment models [25]. Several prior studies have explored the use of these models in the context of 

varicella and other diseases. Jose et al. in [18] applied the SVEIR model in Phuket and showed that increasing 

preventive measures could reduce 𝑅0 to 0.06, significantly curbing disease spread. Musarifa et al. in [17] 

used the SEITR model to identify disease-free and endemic equilibrium points for varicella, showing that 

𝑅0> 1 leads to endemicity, while 𝑅0< 1 indicates elimination.  

This study proposes a unified SVEITR model (Susceptible–Vaccinated–Exposed–Infected–Treated–

Recovered) to overcome the limitations of earlier frameworks, such as the SVEIR model, which neglects 

treatment effects, and the SEITR model, which does not incorporate vaccination dynamics. By integrating 
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both vaccination and treatment into a single framework, the SVEITR model provides a more comprehensive 

representation of varicella transmission and control strategies, especially in populations with variable access 

to healthcare and immunization programs. By integrating vaccination and treatment within a single 

mathematical structure, the model explicitly represents two key intervention strategies for varicella control. 

Vaccination is assumed to reduce the number of susceptible individuals by moving them into the vaccinated 

class, while accounting for waning immunity and possible vaccine failure. Treatment is represented as the 

transition of infected individuals into the treated compartment, which reflects clinical interventions such as 

antiviral therapy, hospitalization, or structured isolation aimed at accelerating recovery and reducing onward 

transmission. This unified framework enables analysis of how both vaccination coverage and treatment access 

influence disease dynamics, the basic reproduction number, and long-term control outcomes. The model aims 

to analyze the stability of disease transmission, compute the reproduction number, perform sensitivity 

analysis, and simulate the dynamics under different scenarios. The findings are expected to guide more 

accurate and effective strategies for varicella control, particularly in defense-related and high-density 

populations. 

2. RESEARCH METHODS 

2.1 Research Design 

This study employed a quantitative-experimental research design, constructing and simulating a 

mathematical model to investigate the dynamics of varicella (chickenpox) transmission in Indonesia. The 

research expanded the SEITR (Susceptible–Exposed–Infected–Treated–Recovered) model by incorporating 

a vaccination compartment, resulting in the SVEITR (Susceptible–Vaccinated–Exposed–Infected–Treated–

Recovered) model. Subsequent analysis included the calculation of the basic reproduction number (R0) using 

the Next Generation Matrix (NGM) approach and numerical simulations to explore disease behavior under 

various intervention scenarios. 

Secondary data were utilized, gathered from literature reviews and open-access epidemiological 

databases, which included parameters such as transmission rate, incubation period, vaccination coverage, 

treatment success rates, recovery duration, and overall population exposure to varicella. 

2.2 Research Timeline and Location 

The methodological framework of this study consists of four main stages: (1) formulation of the 

SVEITR model as a system of differential equations; (2) derivation of the basic reproduction number (R₀) 

using the Next Generation Matrix (NGM) method; (3) equilibrium and stability analysis through Jacobian 

and eigenvalue computation; and (4) numerical simulations to evaluate the effects of vaccination and 

treatment strategies on varicella transmission dynamics. 

2.3 Tools and Materials 

Relevant parameter values were obtained from published epidemiological studies and official reports, 

as summarized in Table 1. These included infection incidence rates, transmission coefficients, vaccination 

coverage, and treatment outcomes, primarily sourced from Jose et al. [18] and San Martín [26]. Modeling 

and simulations were performed using Python.  

2.4 Variables and Parameters 

The model involves several key variables and parameters, categorized as follows: 

Independent variable: 

𝑡: time (days). 

Dependent variables 

𝑆(𝑡) : susceptible individuals (persons/day); 

𝑉(𝑡) : vaccinated individuals (persons/day); 

𝐸(𝑡) : exposed individuals (persons/day); 
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𝐼(𝑡) : infected individuals (persons/day); 

𝑇(𝑡) : treated individuals (persons/day); 

𝑅(𝑡) : recovered individuals (persons/day). 

Model parameters: 

𝐴 : requirement rate; 

𝛼 : vaccination rate from susceptible to vaccinated; 

𝛿 : infection rate among vaccinated individuals; 

𝛽 : transmission rate from infected to susceptible; 

𝛾 : transition rate from exposed to infected; 

𝜓 : treatment initiation rate for infected individuals; 

𝜀1 : recovery rate from treatment; 

𝜀2 : natural recovery rate without treatment; 

𝜂 : immunity waning rate (recovered to susceptible); 

𝜇 : natural mortality rate. 

2.5 Research Procedure 

The research process began with a literature review to identify previous studies, models, and gaps 

related to varicella transmission. Initial models considered were SEIR, SVEIR, and SEITR, each addressing 

different aspects of the disease dynamics. The proposed SVEITR model integrates vaccination and treatment, 

overcoming the limitations of earlier models, which considered only one of these interventions. 

The core steps were: 

1. Model development based on differential equations representing the transitions among 

compartments. 

2. Calculation of the basic reproduction number (𝑅0) using the Next Generation Matrix method to 

assess the outbreak potential. 

3. Stability analysis of equilibrium points via the Jacobian matrix and eigenvalue analysis. 

4. Numerical simulation to evaluate system behavior under different parameter settings. 

5. Sensitivity analysis to identify critical parameters influencing R0 and inform policy interventions. 

2.6 Analytical Methods 

2.6.1 Equilibrium Stability Analysis 

The SVEITR model is represented as a system of nonlinear ordinary differential equations describing 

the transitions among the six compartments (S, V, E, I, T, R). The system can be expressed in the general 

form: 

𝑑𝑥𝑖
𝑑𝑡
  =  𝑓𝑖(𝑥1, 𝑥2, … , 𝑥6), for 𝑖 =  1, … , 6, 

where 𝑓𝑖 corresponds to the rate of change for each compartment. 

Equilibrium points are determined by solving the system under steady-state conditions: 

𝑑𝑥𝑖

𝑑𝑡
 =  0 for all compartments 𝑥𝑖 . 

To analyze stability, the Jacobian matrix 𝐽 is constructed as: 

𝐽𝑖𝑗 =
𝜕𝑓𝑖
𝜕𝑥𝑗
                                                                                     (1) 
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evaluated at the equilibrium point. The eigenvalues of J determine stability: if all Re(λ) < 0, the equilibrium 

is locally asymptotically stable; if at least one eigenvalue has a positive fundamental part, the equilibrium is 

unstable. 

2.6.2 Basic Reproduction Number (𝑹𝟎) 

The basic reproduction number was calculated using the Next Generation Matrix (NGM) approach, 

which separates infection dynamics into two components: 

𝐹 : the rate of appearance of new infections in the exposed and infected compartments; 

𝑉 : the rate of transfer into and out of these compartments (progression, recovery, natural death). 

The next generation matrix is given by 𝐹𝑉−1, and the basic reproduction number is defined as: 

𝑅0  =  𝜌(𝐹𝑉
−1)                                                                           (2) 

where 𝜌 denotes the spectral radius (dominant eigenvalue). 

In the SVEITR framework, 𝑅0 reflects the combined effects of the transmission rate (β), progression 

from exposed to infected (γ), treatment initiation (τ), recovery rates, and natural mortality (μ). The condition 

𝑅0  >  1 indicates that the infection can spread and become endemic, while 𝑅0  <  1 suggests that the disease 

will eventually die out. 

2.6.3 Sensitivity Analysis 

Sensitivity analysis was conducted to identify the most influential parameters on the value of 𝑅0. This 

step is crucial for informing public health strategies, as it highlights which interventions, such as increasing 

vaccination coverage or improving treatment initiation, would have the most significant effect in reducing 

transmission. 

The normalized forward sensitivity index, also known as elasticity, is defined as: 

𝐸𝑆𝑝
𝑅0  =  (

𝜕𝑅0
𝜕𝑝
) ∗  (

𝑝

𝑅0
)                                                                  (3) 

where 𝑝 is a parameter of interest. We have two possibilities for elasticity which are a positive elasticity 

means that increasing 𝑝 raises 𝑅0, and a negative elasticity means that increasing 𝑝 reduces 𝑅0. 

3. RESULTS AND DISCUSSION 

3.1 Model Assumptions and Construction 

The SVEITR model developed in this study divides the total population into six mutually exclusive 

compartments: Susceptible (𝑆), Vaccinated (𝑉), Exposed (𝐸), Infected (𝐼), Treated (𝑇), and Recovered (𝑅). 

These compartments reflect the key stages of varicella progression and control within a population. The 

model is constructed under the following assumptions: (1) the characteristics of varicella are consistent across 

countries, irrespective of climate differences [27]; (2) the disease has a defined incubation period during 

which exposed individuals do not transmit the virus; (3) both vaccinated and recovered individuals may lose 

immunity and return to the susceptible class; and (4) natural birth and death rates are constant across 

compartments. 

Based on these assumptions, a system of ordinary differential equations describes the temporal 

dynamics of each compartment. The flow diagram of transmission becomes the following model equations: 

𝑑𝑆

𝑑𝑡
= 𝐴 + 𝛿𝑉 + 𝜂𝑇 − 𝛼𝑆 − 𝛽𝑆𝐼 − 𝜇𝑆, (4) 

𝑑𝑉

𝑑𝑡
= 𝛼𝑆 − (1 − 𝛿)𝛽𝑉𝐼 − 𝛿𝑉 − 𝜇𝑉, (5) 

𝑑𝐸

𝑑𝑡
= 𝛽𝑆𝐼 + (1 − 𝛿)𝛽𝑉𝐼 − 𝛾𝐸 − 𝜇𝐸, (6) 
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𝑑𝐼

𝑑𝑡
= 𝛾𝐸 − 𝜓𝐼 − 𝜀2𝐼 − 𝜇𝐼, (7) 

𝑑𝑇

𝑑𝑡
= 𝜓𝐼 − 𝜀1𝑇 − 𝜇𝑇, (8) 

𝑑𝑅

𝑑𝑡
= 𝜀2𝐼 + 𝜀1𝑇 − 𝜂𝑅 − 𝜇𝑅. (9) 

These equations account for susceptible, vaccinated, exposed, infected, treated, and naturally recovered. 

3.2 Equilibrium Analysis 

Two equilibrium points are considered: the Disease-Free Equilibrium (DFE) and the Endemic 

Equilibrium (EE). The DFE is determined by setting 𝐸 = 𝐼 = 𝑇 = 𝑅 = 0, indicating no infection within the 

population. Solving the equilibrium equations yields: 

𝑆∗ =
𝐴(𝛿 + 𝜇)

𝜇(𝛼 + 𝛿 + 𝜇)
, 𝑉∗ =

𝐴𝛼

𝜇(𝛼 + 𝛿 + 𝜇)
. (10) 

Thus, the DFE point is: 

(𝑆∗, 𝑉∗, 0,0,0,0). 

The endemic equilibrium (EE), which reflects persistent disease in the population, occurs when 

𝐸∗, 𝐼∗, 𝑇∗, 𝑅∗ > 0. To obtain the EE, the system of differential equations is set equal to zero 

(
𝑑𝑆

𝑑𝑡
 =

𝑑𝑉

𝑑𝑡
 =

𝑑𝐸

𝑑𝑡
 =

𝑑𝐼

𝑑𝑡
 =

𝑑𝑇

𝑑𝑡
 =

𝑑𝑅

𝑑𝑡
=  0). This results in a system of nonlinear algebraic equations that links 

the steady-state values of each compartment. Specifically, the balance equations are solved sequentially: the 

susceptible equilibrium 𝑆∗ is obtained by equating the inflow (births and loss of immunity) with the outflow 

(infection, vaccination, and natural death); the vaccinated equilibrium 𝑉∗ follows from the transition from 

susceptible to vaccinated; the exposed equilibrium 𝐸∗ is expressed in terms of 𝑆∗, 𝑉∗, and 𝐼∗; the infected 

equilibrium 𝐼∗ is derived from the progression of exposed individuals; and finally the treated equilibrium 𝑇∗ 
is determined by the treatment initiation rate. Although the exact closed-form solutions are algebraically 

complex, the resulting system can be summarized as: 

𝑆∗ =
𝐴 + 𝛿𝑉∗ + 𝜂𝑅∗

𝛼 + 𝛽𝐼∗ + 𝜇
, (11) 

𝑉∗ =
𝛼𝑆∗

(1 − 𝛿)𝛽 + 𝛿 + 𝜇
, (12) 

𝐸∗ = 
𝛽𝑆∗𝐼∗ + (1 − 𝛿)𝛽𝑉∗

𝛾 + 𝜇
, (13) 

𝐼∗ =
𝛾𝐸∗

1 + 𝜇
, (14) 

𝑇∗ =
(1 − 𝜓)𝐼∗

𝜀 + 𝜇
, (15) 

𝑅∗ =
𝜓𝐼∗ + 𝜀𝑇∗

𝜂 + 𝜇
. (16) 

These equations provide the endemic equilibrium values in terms of the model parameters. While no 

single formula describes them, the models can be solved numerically to investigate varicella persistence 

across various intervention strategies. 

3.3 Stability Analysis 

To determine the local stability of the DFE, the Jacobian matrix was constructed and evaluated at the 

equilibrium point. The value of the Jacobian matrix can be obtained from:  
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𝐽 =

(

 
 
 

−𝛼 − 𝜇 𝛿 0 −𝛽𝑆∗ 0 𝜂
𝛼 −𝛿 − 𝜇 0 −(1 − 𝛿)𝛽𝑉∗ 0 0

0 0 −𝛾 − 𝜇 𝛽𝑆∗ + (1 − 𝛿)𝛽𝑉∗ 0 0
0 0 𝛾 −𝜇 − 𝜓 − 𝜀2 0 0
0 0 0 𝜓 −𝜀1 − 𝜇 0
0 0 0 𝜀2 𝜀1 −𝜂 − 𝜇)

 
 
 

. 

The characteristic eigenvalues obtained were: 

𝜆1  =  −𝛼 − 𝛿 − 𝜇 = −0.03928694; 

𝜆2  =  −𝜀1  − 𝜇 = − 0.03701694; 

𝜆3  =  −𝜂 − 𝜇 = −0.00044594; 

𝜆4  =  −𝜇 =  − 0.00001694; 

𝜆5,6  = −
𝛾 + 2𝜓 + 𝜀2 + 2𝜇

2
±
1

2
√(𝛾 − (𝜓 + 𝜀2))

2
+ 4𝛾𝜅; 

𝜆5 = −0.32155402965; 

𝜆6 = −0.02093373035; 

Since all eigenvalues have negative real parts, the DFE is locally asymptotically stable, confirming that the 

infection dies out in the long run when 𝑅0  <  1. 

Table 1. Parameter Value  

Variabel Value Source 

𝐴 9 [18] 

𝛼 0.00504 [18] 

𝛿 0.03423 [18] 

𝛽 0.000010778 [18] 

𝛾 0.00242 [18] 

𝜓 0.075 [18] 

𝜀1 0.037 [18] 

𝜀2 0,04 [18] 

𝜂 0.000429 [18] 

𝜇 0.00001694 [18] 

3.4 Basic Reproduction Number 𝑹𝟎 

Using the Next Generation Matrix (NGM) method, the basic reproduction number was derived by 

decomposing the infection matrix F and the transition matrix V that are 

𝐹 = (
0 𝛽𝑆 + (1 − 𝛿)𝛽𝑉 0
0 0 0
0 0 0

) , (17) 

and  

𝑉 = (

𝛾 + 𝜇 0 0
−𝛾 𝜇 + 𝜓 + 𝜀2 0
0 −𝜓 𝜇 + 𝜀1

). 

The final analytical expression for 𝑅0 is: 

𝑅0 =
𝛾𝛽𝐴[(𝛿 + 𝜇) + (1 − 𝛿)𝛼]

𝜇(𝛼 + 𝛿 + 𝜇)(𝛾 + 𝜇)(𝜓 + 𝜀2 + 𝜇)
. (18) 

Substituting the parameter values yields: 
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𝑅0  =  2.89. (19) 

This value, significantly greater than 1, indicates that varicella has a strong potential to spread within the 

population, confirming that the disease remains endemic under current conditions. 

3.5 Sensitivity Analysis 

Sensitivity analysis was carried out to assess how changes in the main parameters affect 𝑅0according 

to the steps in (3) so that the values obtained are as in Table 2: 

Table 2. Sensitivity analysis parameters against 𝑹𝟎 value 

Parameter Description 
Elasticity 

𝑬𝑺𝒑
{𝑹𝟎} 

Interpretation 

A Recruitment/birth rate +1.000 A 1% increase in AA leads to a 1% increase in 𝑅0. 

β Transmission rate +1.000 A 1% increase in β leads to a 1% increase in 𝑅0. 

γ Progression rate (E → I) +0.007 Very small effect; almost no change in 𝑅0  . 

α Vaccination rate −0.004 Slightly reduces 𝑅0 when α increases. 

δ Vaccine failure rate −0.001 Negligible effect on 𝑅0. 

ψ Treatment initiation rate −0.652 Substantially reduces 𝑅0; higher ψ leads to stronger 

control. 

ε₂ Natural recovery rate (from 

I) 

−0.348 Moderate reduction of 𝑅0 as ε₂ increases. 

μ Natural death rate −1.010 A 1% increase in μ reduces 𝑅0 by ≈1%. 

In this sensitivity analysis, the author only simulates numerically the 𝛼, 𝛽, 𝛿, and ψ parameters 

numerically because their significant influence on the Ro value can be seen in the following simulation figure: 

 
(a) 

 
(b) 

 

 

(c) 

 

(d) 

Figure 1. Basic Reproduction Number Against Parameters (a). 𝜶 (b). 𝜷 (c). 𝜹 and (d). 𝝍 
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The simulation results Fig. 1 show that: 

1. Increasing the vaccination rate 𝛼decreases 𝑅0 steadily. 

2. Increasing the transmission rate 𝛽 increases 𝑅0 linearly. 

3. Increasing the vaccine failure rate 𝛿 decreases 𝑅0, though with diminishing returns. 

4. Increasing the treatment rate 𝜓 also leads to a reduction in 𝑅0. 

These results highlight the importance of increasing vaccination coverage and improving treatment 

access to control the spread of varicella. 

3.6 Numerical Simulation 

The numerical simulation shown below is the change in each compartment against time starting from 

susceptible, vaccinated, exposed, infected, treated, and recovered in a 10,000-day period using the initial 

condition: 

𝑆(0) = 463.129, 𝑉(0) = 68.157, 𝐸(0) = 10, 𝐼(0) = 5, 𝑇(0) = 0,𝑅(0) = 0. (20) 

 

 

Figure 2. Population Dynamics of Varicella Disease Spread Over Time 

The simulation results Fig. 2 show that: 

1. The susceptible population decreases sharply at the beginning due to both infection and vaccination, 

and later stabilizes at a lower level as transitions with other compartments balance out. 

2. The vaccinated population rises significantly in the early phase, reflecting intensive vaccination, but 

then drops as immunity wanes and some individuals move to the exposed or other compartments. 

3. The exposed population shows an early spike (around day 200–300), capturing the initial rapid 

spread of varicella, and then gradually declines to near zero. 

4. The infected and treated populations remain at relatively low levels compared to other 

compartments, indicating that although infection persists, it is controlled through treatment and 

recovery. 

5. The recovered population increases consistently and becomes the dominant group in the long run, 

signifying that most individuals eventually gain immunity after infection or treatment. 

3.6.1 Susceptible Compartment 

Fig. 3 illustrates the effect of parameters 𝛼, 𝛽, 𝛿, and 𝜂 on the dynamics of the susceptible population 

𝑆(𝑡) in the SVEITR varicella model. An increase in the vaccination rate (𝛼) and transmission rate (𝛽) 

significantly accelerates the decline of 𝑆(𝑡), due to more individuals being vaccinated and infected, 

respectively. In contrast, changes in the vaccine failure rate (𝛿) and immunity loss rate (𝜂) have minimal 

impact on the susceptible curve, indicating their relatively minor influence over the simulation period. 
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(d) 

Figure 3. Susceptible Compartment Simulation against Parameters (a). 𝜶 (b). 𝜷 (c). 𝜹 (d). 𝜼 

3.6.2 Vaccinated Compartment 

 

 

(a) 

 

(b) 

 

(c) 

Figure 4. Vaccinated Compartment Simulation against Parameters (a). 𝜶 (b). 𝜷 (c). 𝜹 

Fig. 4 illustrates the dynamics of the vaccinated population 𝑉(𝑡) in response to variations in parameters 

𝛼, 𝛽, and 𝛿 within the 𝑆𝑉𝐸𝐼𝑇𝑅 model. Subfigure (a) demonstrates that a higher vaccination rate (𝛼) 

significantly increases the number of vaccinated individuals over time, reflecting broader immunization 

coverage. Subfigure (b) reveals that a higher transmission rate (𝛽) reduces 𝑉(𝑡), as vaccinated individuals 

become exposed more quickly due to increased infection risk. In subfigure (c), an increase in vaccine failure 

rate (𝛿) leads to a long-term decline in the vaccinated population, as more individuals lose vaccine-conferred 

protection. 

  



BAREKENG: J. Math. & App., vol. 20(2), pp. 1613- 1626, June, 2026.     1623 

 

 

3.6.3 Exposed Compartment 
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(b) 

 

(c) 

Figure 5. Exposed Compartment Simulation against Parameters (a). 𝜷 (b). 𝜹 (c). 𝜸 

Fig. 5 illustrates the dynamics of the exposed population 𝐸(𝑡) under variations in parameters 𝛽, 𝛿, and 

𝛾 in the 𝑆𝑉𝐸𝐼𝑇𝑅 model. In subfigure (a), a higher transmission rate (𝛽) significantly increases the number of 

exposed individuals, indicating greater infection risk. Subfigure (b) shows that increased vaccine 

effectiveness (higher 𝛿) drastically reduces the exposed population, demonstrating the vaccine's role in 

lowering exposure. In subfigure (c), a higher transition rate to the infectious class (𝛾) decreases 𝐸(𝑡), as 

individuals move more quickly from the exposed to the infectious stage, shortening their time in the 𝐸 

compartment. 

3.6.4 Infected Compartment 

 

(a) 

 

(b) 

 

(c) 

Figure 6. Infected Compartment Simulation against Parameters (a). 𝜸 (b). 𝝍 (c). 𝜺𝟐 

Fig. 6 displays the dynamics of the infectious compartment 𝐼(𝑡) in response to variations in parameters 

𝛾, 𝜓, and 𝜀2. An increase in the transition rate γ from exposed to infectious accelerates the initial rise of the 

contagious population, indicating 𝛾's influence on how quickly individuals become infectious, although it 

does not significantly alter the final value. Subfigure (b) shows that changes in 𝜓 (treatment initiation rate) 

have minimal impact on the final size of 𝐼(𝑡), as all curves quickly converge to a very low level. Likewise, 

variations in 𝜀2 (natural recovery rate) exert little influence on 𝐼(𝑡), suggesting that transitions occurring after 

infection do not substantially affect the infectious population. 

3.6.5 Treated Compartment 

 
(a) 

 
(b) 

Figure 7. Treated Compartment Simulation against Parameters (a). 𝝍 (b). 𝜺𝟏 
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Fig. 7 illustrates the simulation of the treated compartment 𝑇(𝑡) in response to variations in parameters 

𝜓 and 𝜀1. In subfigure (a), increasing the treatment rate 𝜓 leads to a decline in 𝑇(𝑡), which is reasonable since 

more individuals recover directly without entering the treatment phase, thus reducing the burden on this 

compartment. Conversely, in subfigure (b), a higher value of 𝜀1 significantly increases the treated population, 

as more individuals transition from the infectious compartment to treatment, resulting in greater accumulation 

within 𝑇(𝑡). 

Some conclusions can be drawn from these additional simulations. These simulations revealed: 

1. 𝛼 and 𝛽 significantly affect susceptible and vaccinated populations. 

2. 𝛿, 𝛾 and 𝜓 strongly influence the dynamics of exposed and infected compartments. 

3. Treatment dynamics are sensitive to 𝜓 and 𝜀1, which regulate flow into and out of the treated 

class. 

Overall, the model confirms that improving vaccination coverage and accelerating treatment response are 

effective strategies for reducing the spread of varicella and lowering the basic reproduction number. 

4. CONCLUSION 

This study successfully developed a mathematical epidemiological model of varicella transmission by 

integrating and extending two previous models—𝑆𝑉𝐸𝐼𝑅 and 𝑆𝐸𝐼𝑇𝑅—into a comprehensive 𝑆𝑉𝐸𝐼𝑇𝑅 

framework. The model incorporates six compartments: Susceptible (𝑆), Vaccinated (𝑉), Exposed (𝐸), 

Infected (𝐼), Treated (𝑇), and Recovered (𝑅). The resulting system of differential equations captures the 

essential dynamics of varicella transmission under vaccination and treatment interventions. The analysis 

shows that: 

1. The basic reproduction number 𝑅0 was computed numerically and found to be 2.89, indicating a 

high level of contagiousness. This value implies that, in a completely susceptible population, each 

infected individual can transmit the disease to nearly three others, suggesting that varicella remains 

endemic under current conditions.  

2. The numerical simulations further revealed the trajectory of disease spread over a 10,000-day 

period, demonstrating that interventions such as vaccination and medical treatment substantially 

reduce the number of infections and accelerate population recovery. 

3. Sensitivity analysis emphasized the critical role of the vaccination rate (𝛼) and vaccine failure rate 

(𝛿) in modulating the value of 𝑅0. Increasing 𝛼 and improving vaccine effectiveness (i.e., reducing 

𝛿) significantly reduced disease transmission, validating the importance of robust immunization 

programs. 

However, this study has several limitations. The model assumes homogeneous population mixing and 

constant parameter values, so it may not fully reflect the complexity of real-world transmission dynamics. 

Furthermore, demographic heterogeneity, spatial mobility, stochastic effects, and variations in vaccine 

effectiveness have not been considered. These factors have the potential to impact the accuracy of the model's 

predictions. 
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