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Article Info ABSTRACT 

Article History: 
Indonesia, as a tropical country, is characterized by two primary seasons: the rainy season 

and the dry season. It is evident that meteorological shifts can exert considerable influence 

on the agricultural sector, a notable example being the cultivation of palm oil. 

Consequently, the ability to predict rainfall has emerged as a pivotal element in the broader 

endeavor to mitigate the adverse effects of climate change. This study employs statistical 

downscaling using the Principal Component Regression (PCR) approach to model rainfall 

predictions. The issue of multicollinearity, a common occurrence in Global Circulation 

Model (GCM) data, is addressed through the use of Principal Component Regression 

(PCR). This method has been demonstrated to stabilize the model structure and reduce 

variance in the regression coefficients. The data utilized encompass observed rainfall from 

LIBO Estate, which is owned by PT SMART Tbk (SMART Research Institute), for the period 

from 2013 to 2022. This data serves as the response variable, while the CMIP6 GCM 

simulation output data functions as the predictor variable. The findings indicated that the 

initial PCR model exhibited an RMSE value ranging from 97.06 to 131.69, along with an 

R² value ranging from 14.25% to 20.49%. The incorporation of dummy variables into the 

model resulted in a substantial enhancement in its performance, as evidenced by a decline 

in RMSE to 24.46–35.83 and an increase in R² to 89.02%–90.24%. The findings indicate 

that the use of PCR with dummy variables is an effective approach for enhancing the 

accuracy of rainfall modeling through statistical downscaling. 
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1. INTRODUCTION 

Indonesia is an agrarian country, with its economy heavily reliant on the agricultural sector, including 

oil palm plantations. Climate change has increasingly affected agricultural productivity worldwide, with 

shifts in rainfall patterns posing significant challenges to crop management and yield stability [1]. Among 

various agricultural commodities, oil palm cultivation serves as a critical case study due to its economic 

significance and vulnerability to climatic variability [2]. Climate variability has been shown to reduce fresh 

fruit bunch (FFB) yield, disrupt flowering cycles, and increase susceptibility to pests and diseases [3], making 

oil palm a particularly vulnerable crop in the face of ongoing climate change [4]. As a pivotal national 

commodity, oil palm production exhibits heightened sensitivity to meteorological conditions, particularly the 

accessibility of water from precipitation [5]. Consequently, seasonal fluctuations in rainfall can disrupt 

productivity [6], especially during periods of drought [7].  

Rainfall is a key climatic factor influencing the growth of oil palm. It is imperative to ensure sufficient 

water availability from rainfall to maintain optimal soil moisture levels in the root zone, as oil palms exhibit 

substantial water demands [8].  The selection of oil palm as the focus of this study is particularly relevant 

given Indonesia's position as the world's largest palm oil producer, contributing approximately 58% of global 

production, making the sector's climate resilience crucial for both national economic stability and global 

supply chain [6]. Conversely, water deficits resulting from low rainfall can adversely affect yield and disrupt 

the physiological development of the crop [9].  

To anticipate the impacts of climate change and ensure the sustainability of the agricultural sector, it 

is essential to utilize an accurate weather prediction system. A prevalent approach involves the use of Global 

Circulation Model (GCM) data for rainfall modeling, a technique that provides large-scale numerical climate 

forecasts [10]. GCMs are widely recognized as essential tools for projecting future rainfall patterns under 

various climate scenarios [11], though their coarse resolution often necessitates statistical downscaling to 

enhance their applicability at the local level [12]. However, due to their limited spatial and temporal 

resolution, GCM outputs necessitate downscaling to the regional level, which is typically accomplished 

through statistical downscaling (SD) methods [13]. 

Statistical downscaling is a process that links global climate data (predictors) with local data 

(responses) through statistical approaches such as linear regression. This technique addresses a critical 

limitation of GCMs, which operate at coarse spatial resolutions (typically 100-300 km) that are insufficient 

to capture local climate variability and site-specific precipitation patterns. The downscaling process involves 

three key steps: (1) identifying relevant large-scale atmospheric predictors from GCM outputs, (2) 

establishing statistical relationships between these predictors and observed local climate variables using 

historical data, and (3) applying these relationships to generate local-scale climate predictions. Furthermore, 

this approach facilitates the investigation of relationships between global-scale data and local-scale data over 

a designated time period [14]. By transforming coarse-resolution GCM data into high-resolution local 

estimates, downscaling enables more accurate and actionable climate predictions for agricultural planning 

and water resource management at regional scales. 

However, a notable challenge in implementing SD is the issue of multicollinearity, which arises due to 

the high correlation among numerous predictor variables [15]. This can result in high variance in estimated 

parameters and reduce model accuracy. The decline in precision inherent to statistical downscaling 

methodologies can adversely affect the reliability of climate estimations at particular locations, thereby 

necessitating the mitigation of multicollinearity to ensure optimal outcomes. 

A prevalent methodology for addressing multicollinearity is Principal Component Regression (PCR). 

This approach integrates Principal Component Analysis (PCA) with linear regression, a technique that has 

been employed to reduce dimensionality and eliminate correlations among predictor variables [16]. Principal 

component analysis (PCA) is a statistical technique that transforms a set of correlated predictors into a new 

set of uncorrelated principal components (PCs). These PCs are then incorporated into a regression model to 

assess their influence on the response variable [17]. 

Research on statistical downscaling using Principal Component Regression (PCR) for rainfall 

forecasting has previously been conducted by [7]. The study incorporated dummy variables to enhance the 

accuracy of rainfall prediction models in Indramayu. The utilization of GCM data, arranged in a 6×4 grid 

spanning the period 1979–2007, The utilization of GCM data, arranged in a 6×4 grid spanning the period 

1979–2007, revealed multicollinearity issues among the predictors. The findings demonstrated that the 
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combination of PCR with dummy variables yielded more accurate rainfall estimates compared to models 

devoid of dummy variables. The incorporation of dummy variables addresses a key limitation of standard 

PCR models, which assume a linear relationship between predictors and response variables across all 

observations. However, rainfall patterns often exhibit distinct regimes or clusters that may respond differently 

to the same atmospheric predictors. Dummy variables, generated through K-means clustering based on 

rainfall intensity groupings, enable the model to capture these non-linear regime-dependent relationships by 

allowing different intercepts for each rainfall cluster while maintaining the same slope coefficients from 

principal components. This approach effectively partitions the data into homogeneous groups with similar 

rainfall characteristics, thereby improving model fit and prediction accuracy without violating the 

multicollinearity assumptions already addressed by PCR. 

The optimal model employed a single principal component, achieving a high correlation value (0.99) 

and a Root Mean Square Error of Prediction (RMSEP) of 28.84 millimeters. Furthermore, [18] employed 

dummy variables generated through K-means clustering in combination with Liu-Ridge Regression (LLR) to 

address multicollinearity. The study's findings indicated that incorporating dummy variables led to a 

substantial enhancement in the model's accuracy, with an observed improvement of up to 15%. 

Another study was conducted by [14]. The present study applied the PCR in the Statistical Downscaling 

(PPSD) method to predict daily rainfall in Kupang City, including the handling of missing values. The most 

optimal outcomes indicated that the model comprising 11 primary components from the 6x6 grid domain 

(with cumulative variance of 94.01%) yielded high precision, exhibiting a mean absolute percentage error 

(MAPE) of 2.81% and a root mean square error (RMSE) of 10.81 millimeters. [19] also employed the use of 

SD and PCR to assess climate change in the Cauvery River basin, India. The present study sought to compare 

the projected results of various CMIP5 GCMs in terms of rainfall and temperature with observational data 

that has undergone validation at local stations. The PCR model demonstrated satisfactory performance, with 

determination coefficients (R²) ranging from 70% to 83% across various GCM satellite scenarios. 

The present study aims to develop a local-scale rainfall prediction model using statistical downscaling 

and principal component regression (PCR) methods. The model is based on GCM data from CMIP6 (MPI-

ESM1-2-HR) with a spatial resolution of 100 km. The model is based on GCM data from CMIP6 (MPI-

ESM1-2-HR) with a spatial resolution of 100 km. This research makes a significant methodological 

contribution to the field of climate modeling by integrating K-means clustering-derived dummy variables 

into the PCR framework, effectively addressing both multicollinearity and non-linear regime-dependent 

rainfall patterns simultaneously, a combination that has received limited attention in existing downscaling 

literature. Model performance is evaluated using multiple metrics: the coefficient of determination (R²) and 

Root Mean Squared Error (RMSE). It is anticipated that the resulting model, particularly the PCR-dummy 

variable approach, will contribute to mitigating risks associated with climate change in oil palm agriculture 

and support more effective water resource management in the future. 

The novelty of this research lies in the incorporation of dummy variables derived from k-means 

clustering of rainfall data to enhance model accuracy, demonstrating a hybrid approach that combines 

dimensionality reduction with categorical partitioning to improve predictive performance. While this study 

focuses on oil palm cultivation in Siak Regency, the proposed methodology is generalizable and can be 

adapted to other agricultural systems, hydrological applications, and climate-sensitive sectors across various 

geographical regions where accurate local-scale rainfall prediction is crucial for informed decision-making. 

It is anticipated that the resulting model will contribute to mitigating risks associated with climate change in 

oil palm agriculture and support more effective water resource management in the future. 

2. RESEARCH METHODS 

2.1 Data Sources 

The observational data utilized in this study encompasses daily rainfall data, which is subsequently 

aggregated into monthly rainfall data (in units of millimeters per month). The rainfall variable was employed 

as the response variable in the modeling. The data was obtained from the Automated Weather Station (AWS) 

owned by PT SMART Tbk, SMART Research Institute Division, located at LIBO Estate, for the period from 

2013 to 2022. LIBO Estate operates three distinct AWS locations: The geographical locations in question 
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correspond to the following divisions: Division 2 (latitude 0.9543°; longitude 101.2167°), Division 3 (latitude 

0.9471°; longitude 101.1832°), and Division 7 (latitude 0.9264°; longitude 101.2061°). 

The predictor variables are derived from precipitation data from the Global Circulation Model (GCM) 

based on CMIP6 simulations, obtained from the website https://aims2.llnl.gov/search/cmip6 [20]. The GCM 

data utilized in this study possesses a nominal spatial resolution of 100 km (0.9375° × 0.9349°). These data 

are derived from the MPI-ESM1-2-HR satellite model. Subsequently, the global data underwent a series of 

processing stages, including interpolation and clipping, to obtain data relevant to the study area, specifically 

Siak Regency. In this process, an 8 × 8 grid was formed with a resolution of 0.1° × 0.1° per grid, resulting in 

64 grid points as predictor variables. Each grid encompasses 120 monthly observation data points, which will 

be utilized in the statistical modeling process. 

2.2 Analysis Method 

 The present study employs statistical downscaling, a statistical method that describes the relationship 

between global-scale data and local-scale data within a specified time period. This relationship can be 

expressed as follows [21]:    

𝑦(𝑡×1) = 𝑓(𝑋𝑡×𝑔), (1) 

with 𝑦(𝑡×1) is the local climate variable (response variable), 𝑋𝑡×𝑔 is the GCM output variable (predictor 

variable), 𝑡 is the time period (monthly), and 𝑔 is the number of GCM output grid domains. [21] shows that 

the 8×8 domain is better than the other domains of sizes 10×10, 12×12, 14×14, and 16×16. An illustration of 

the statistical downscaling process is presented as follows [22]: 

 
Figure 1. Illustration of Statistical Downscaling  

Source: [22] 

The primary objective of the present study was to employ the Principal Component Regression (PCR) 

method to reduce the dimensions of monthly rainfall observation data from 2013 to 2022 through statistical 

downscaling. Prior to PCR modeling, multicollinearity among the 64 continuous GCM predictor variables 

was assessed using the Variance Inflation Factor (VIF), a widely used diagnostic tool for identifying 

collinearity in regression analysis [23]. Multicollinearity occurs when two or more independent variables in 

a regression model are highly correlated, resulting in inflated coefficients and unstable parameter estimates. 

The application of VIF in this study serves to detect and quantify such multicollinearity, which justifies the 

use of PCR as a dimension reduction technique capable of transforming correlated predictors into orthogonal 

principal components. Dummy variables representing rainfall categories were added to the final model; these 

do not introduce multicollinearity concerns since the principal components are orthogonal by construction, 
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and the categorical variables serve to capture nonlinear rainfall effects without overlapping with the 

continuous predictors [24]. The Variance Inflation Factor (VIF) method is a statistical technique used to 

identify multicollinearity. 

VIF𝑗 =
1

1 − 𝑅𝑗
2, 

(2) 

with 𝑅𝑗
2 is the coefficient of determination−𝑗. 

Then, Principal Component Analysis (PCA) was performed to reduce the dimension of predictor 

variables by selecting principal components based on eigenvalue values greater than one, as indicated by the 

elbow plot analysis. Principal Component Analysis (PCA) is a statistical method used to reduce variables in 

a case into important features of the principal components. The formation of principal components using a 

correlation matrix begins with transforming the original variable X into a standard form Z or standardizing 

the variable [25]: 

𝑍𝑖𝑗 =
𝑋𝑖𝑗 − 𝜇𝑗

√𝜎𝑗
2

, 
(3) 

with 𝑍𝑖𝑗 a is the standardized 𝑗 variable in 𝑖 −row, 𝑋𝑖𝑗 the original value of variable 𝑗  in row 𝑖, 𝜇𝑗 is the mean 

of variable-𝑗, 𝜎𝑗
2 is the standard deviation of variable -𝑗. The eigenvalue (λ) of the correlation matrix 𝜌 is 

calculated with the condition: 

|𝜌 −  𝜆I| = 0, (4) 

while the value of eigenvector 𝒆𝒋
′ = [𝑒1𝑗, 𝑒2𝑗, … , 𝑒𝑗𝑝]  is calculated using the following formula: 

(𝜌 −  𝜆I)𝐞𝐣 = 0. (5) 

The-𝑗 principal component is formed based on the variable 𝐙′ =  [𝑧1, 𝑧2, … , 𝑧𝑝] determined using the 

eigenvector: 

𝐰𝐣 = 𝐞𝐣
′𝐙 = 𝑒𝑗1𝑧1 + 𝑒𝑗2𝑧2 + ⋯ + 𝑒𝑗𝑝𝑧𝑝, (6) 

with 𝑤𝑗 is the 𝑗-th principal component, 𝑒𝑗 is the 𝑗-th eigenvector to 𝑗, and 𝑧𝑗 is the 𝑗-th standardized variable 

value. 

Two approaches are employed in the modeling process: The first approach involves the utilization of 

a select array of principal components in the PCR model. The second approach incorporates dummy 

variables, which function as supplementary predictors within the PCR framework. The PCR equation, when 

reduced to m components, can be expressed as follows: 

𝑌 = 𝛼0 + 𝛼1𝑤1 + ⋯ + 𝛼𝑚𝑤𝑚 + 𝜀,     (7) 

where 𝛼0 is the principal component regression constant, 𝛼1, 𝛼2, … , 𝛼𝑚 are the principal component 

regression parameters, and  𝑤1, 𝑤2, … 𝑤𝑚 are the principal components used.  

To enhance the accuracy of the model and address issues of multicollinearity, dummy variables were 

constructed using k-means clustering based on rainfall groupings. K-means clustering was selected for several 

reasons: (1) it effectively captures natural groupings in rainfall patterns; (2) it provides an objective, data-

driven approach to categorize observations rather than arbitrary threshold selection, and (3) it has been 

successfully applied in previous statistical downscaling studies to improve model performance by 

incorporating seasonal or magnitude-based variations. By converting continuous rainfall data into categorical 

dummy variables, the model can better account for non-linear relationships and regime-specific behaviors 

that may not be adequately captured by principal components alone. 

Dummy variables serve as analytical tools that facilitate the categorization of data into distinct groups 

based on specific characteristics or attributes [26]. K-means clustering is a non-hierarchical method that 

groups data according to similarity by predefining the number of clusters and initial centroid values. The 

algorithmic process involves the iterative updating of centroids until optimal clustering is achieved [27]. This 

approach has proven effective for rainfall classification. The assessment of cluster quality is facilitated by the 

utilization of the silhouette coefficient, a metric that quantifies the extent to which each data point aligns with 
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its designated cluster. The optimal number of clusters (k) is determined by identifying the peak value on the 

silhouette plot [28], [29]. Subsequent to the establishment of the clusters, dummy variables are generated to 

represent each identified rainfall group. The model's performance is then evaluated using the coefficient of 

determination (R²), the RMSE, and the correlation between predicted and observed rainfall values. 

The statistical downscaling methodology employed in this study involves multiple sequential stages, 

each with distinct objectives and computational procedures. To provide a concise overview of the complete 

analytical framework, Fig. 2 presents a comprehensive flowchart illustrating the workflow from data 

collection through model validation. 

 

Figure 2. Statistical Downscaling Analysis Workflow 

3. RESULTS AND DISCUSSION 

3.1 Data Exploration 

The rainfall patterns presented in Fig. 3 demonstrate analogous trends across all three weather stations, 

with the highest average monthly rainfall consistently recorded in November. This consistent seasonal pattern 

indicates that November typically marks the peak of the rainy season in the study area. The highest average 

monthly rainfall during the observation period ranged from 153.35 to 172.43 mm, with the maximum monthly 

rainfall was 587 mm in November 2015. This consistency in rainfall distribution can be attributed to various 

factors such as wind patterns, topography, and the geographical location of each weather station. The high 

rainfall in November may also reflect the influence of the La Niña phenomenon, which is often associated 

with increased rainfall intensity in tropical regions, including Indonesia. 

Studies have shown that La Niña tends to increase rainfall over the Maritime Continent, particularly in 

Southeast Asia and Indonesia, due to enhanced moisture transport and strengthened Walker circulation. For 

instance, central Pacific La Niña events can trigger severe flooding across Southeast Asia, including parts of 
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Indonesia, during the September–November period [30]. Another study showed that La Niña events 

contribute to positive precipitation anomalies across the Maritime Continent, driven by increased humidity 

and local sea surface temperature gradients [31]. This regional linkage confirms that the intense rainfall 

observed in November may indeed be influenced by La Niña dynamics. 

 

 LIBO Estate 2  LIBO Estate 3  LIBO Estate 7  Average 

 

Figure 3. Rainfall patterns at Each Weather Station in LIBO Estate 

Based on the data shown in Table 1, rainfall in LIBO Estate 7 exhibits relatively similar observation 

values to those of weather stations in other divisions. This similarity is due to the location of the weather 

stations, which are still within the same plantation area and have relatively close coordinates. During the 

observation period, the highest monthly rainfall recorded was 587 mm in November 2015. Meanwhile, the 

average monthly rainfall across the entire division ranged from 153.35 to 172.43 mm. 

Table 1. Summary of Rainfall Statistics for Each Weather Station 

Statistics LIBO Estate 1 LIBO Estate 3 LIBO Estate 7 

Minimum  0 0 0 

Median  151.5 147.5 156 

Average  172.43 153.35 171.9 

Maximum  581 481 587 

3.2 Precipitation Data from GCM Data  

The global data used in this study comes from the output of the Global Climate Model (GCM) based 

on the CMIP6 (Coupled Model Intercomparison Project Phase 6) projections. Several institutions provide 

GCM data, including MPI-M (Max Planck Institute for Meteorology), which provides global data projections 

for each sub-experiment conducted over a decadal range. In this study, GCM data with a nominal spatial 

resolution of 100 km were used, selected because the observation location is in a fairly specific local area. 

The GCM data was downloaded in NetCDF (Network Common Data Form) format, which contains several 

data dimensions, such as longitude, latitude, time, and pressure level. 

GCM data with a resolution of 100 km has a grid size of 0.937° × 0.934°. On a global scale, this grid 

size is quite fine and capable of providing detailed data representation. However, problems arise when this 

global data is cropped for use in smaller or local areas. At this coarse resolution, the study area is represented 

by only three grid cells (Figure 3a), where large portions are assigned identical precipitation values, making 

it inadequate for capturing local climate variations. In such cases, spatial interpolation, specifically bilinear 

interpolation, is required to generate a more varied and appropriate grid distribution at the local scale. This 

interpolation transforms the original three-grid configuration into a finer 0.1° × 0.1° resolution grid, 

dramatically increasing the number of data points available for analysis.  For example, GCM data for 

precipitation variables for the Siak Regency, as of January 1, 2013, are shown in Fig. 4. 
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(a) (b) 

Figure 4. GCM Data (a) Before Interpolated and  (b) After Interpolation 

Source: Processed using RStudio 4.3.2 

Fig. 4 shows that without interpolation, GCM data tends to be less diverse, with only three data grids 

available for use. This is because areas within a single grid are considered to have the same precipitation 

value. To overcome this limitation, spatial interpolation is performed to increase data diversity at the local 

scale. By applying a grid resolution of 0.1° × 0.1° to the Siak Regency area, a grid domain of 9 × 22 is 

obtained. After the global data is scaled down to the local level according to the research location, the next 

step is to determine the main grid domain to be used in the analysis. The main domain is set at 8 × 8 grids, 

with the observation weather station located at the center of the grid area used. The selected grid will function 

as a predictor variable; therefore, the 8 × 8 grid configuration yields a total of 64 predictor variables. The 

visualization of the grid distribution in the Siak Regency area is presented in Fig. 5. 

 

Figure 5. (a) GCM Grid Data, (b) Point Data at Each Grid, (c) Addition of Siak Map and Weather Station 

Locations, (d) Main Grid to be Used 

Source: Processed using RStudio 4.3.2 

Fig. 5 presents a visualization of the stages of GCM output data usage. In part (a), a global grid of 

GCM data covering the research location is displayed. Each grid has different precipitation values, depending 

on the time of observation. The data on each grid is then represented as data points, as shown in part (b). 

Next, in part (c), the administrative map of Siak Regency is added along with the location of the weather 

observation station. From the entire grid available, a main domain measuring 8 × 8 grids is selected, as shown 

in part (d). This grid will be used as the basis for analysis in the next stage. 

3.3 Detection of Multicollinearity 

Multicollinearity assessment using Variance Inflation Factor (VIF) analysis as shown in Table 2 

revealed that all 64 GCM predictor variables exhibited excessively high VIF values, ranging from 

4.17 × 1013 to  4.17 × 1013, substantially exceeding the standard threshold of VIF > 10. This severe 

multicollinearity, typical of gridded climate model data due to high spatial-temporal correlation among 

neighboring grid points, would produce inflated coefficients and unstable estimates in conventional OLS 

regression. Principal Component Regression (PCR) was therefore employed to eliminate multicollinearity by 
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transforming correlated predictors into uncorrelated principal components while preserving predictor 

information.  

Table 2. Variance Inflation Factor (VIF) Values 

No Variable VIF No Variable VIF 

1 V1 1.801 × 1015 33 V33 4.5 × 1014 

2 V2 4.504 × 1015 34 V34 7.51 × 1014 

3 V3 2.252 × 1015 35 V35 5.63 × 1014 

4 V4 9.007 × 1014 36 V36 3 × 1014 

5 V5 6.005 × 1014 37 V37 1.67 × 1014 

6 V6 9.007 × 1015 38 V38 3.46 × 1014 

7 V7 5.004 × 1014 39 V39 9.01 × 1014 

8 V8 1.365 × 1014 40 V40 7.51 × 1014 

9 V9 3.002 × 1015 41 V41 2.81 × 1014 

10 V10 4.504 × 1015 42 V42 5.3 × 1014 

11 V11 3.002 × 1015 43 V43 3.6 × 1014 

12 V12 1.501 × 1015 44 V44 1.67 × 1014 

13 V13 1.287 × 1015 45 V45 9.19 × 1013 

14 V14 9.007 × 1015 46 V46 2.2 × 1014 

15 V15 9.007 × 1014 47 V47 4.29 × 1014 

16 V16 3.217 × 1014 48 V48 2.31 × 1014 

17 V17 1.801 × 1015 49 V49 1.84 × 1014 

18 V18 3.002 × 1015 50 V50 3.34 × 1014 

19 V19 1.801 × 1015 51 V51 2 × 1014 

20 V20 1.287 × 1015 52 V52 1.11 × 1014 

21 V21 7.506 × 1014 53 V53 5.93 × 1013 

22 V22 2.252 × 1015 54 V54 1.5 × 1014 

23 V23 2.252 × 1015 55 V55 2.57 × 1014 

24 V24 1.001 × 1015 56 V56 1.13 × 1014 

25 V25 6.929 × 1014 57 V57 1.27 × 1014 

26 V26 1.801 × 1015 58 V58 2.31 × 1014 

27 V27 1.001 × 1015 59 V59 1.58 × 1014 

28 V28 5.629 × 1014 60 V60 7.32 × 1013 

29 V29 3.106 × 1014 61 V61 4.17 × 1013 

30 V30 6.929 × 1014 62 V62 1.02 × 10𝟏𝟒 

31 V31 2.252 × 1015 63 V63 1.61 × 1014 

32 V32 1.501 × 1015 64 V64 6.53 × 1013 

3.4 Data Model Division and Validation  

           The data was partitioned for the purpose of evaluating the performance of the regression model 

in predicting rainfall. This evaluation was conducted by comparing the predicted results with actual 

observations. Data quality inspection confirmed that both the observed rainfall data from the three LIBO 

Estate weather stations and the GCM precipitation data were complete, with no missing values, for the study 

period (2013-2022), allowing for the direct application of the statistical downscaling procedure without 

requiring imputation methods. The dataset was segmented into two subsets: a training set comprising monthly 

data from 2013 to 2021 (108 observations) and a validation set comprising monthly data from 2022 (12 

observations). The objective of this division was to evaluate the model's capacity for out-of-sample 

prediction, thereby ensuring its ability to generalize effectively to data not utilized during the training phase.  

3.5 Statistical Downscaling Modeling with PCR 

Prior to applying the model, the predictor variables underwent standardization. The objective of this 

standardization is to ensure that all variables are measured on a uniform scale, thereby facilitating more 

consistent analysis and more accurate interpretation. Following standardization, Principal Component 

Analysis (PCA) is used to derive the principal components that will be incorporated into the regression model. 

These principal components are subsequently employed as input variables in regression modeling to perform 

statistical downscaling of rainfall. The PCA commences with the calculation of the eigenvalues based on the 

correlation matrix between the predictor variables. The value of the eigenvector is employed in the estimation 

of the number of principal components utilized in the modeling process. 
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Table 3. Eigenvalue Analysis 

 𝒘𝟏 𝒘𝟐 𝒘𝟑 𝒘𝟒 𝒘𝟓 𝒘𝟔 

Eigenvalue 63.4116 0.3187 0.213 0.0491 0.0054 0.00175 

Cumulative proportion   0.9908 0.99579 0.99912 0.99989 0.99997 1.00000 

As illustrated in Table 3, the eigenvalues undergo a precipitous decline following the first and second 

principal components. The first principal component (w1) accounts for 99.08% of the total variance, while 

the combination of the first and second components (w1 and w2) explains 99.57% of the total variance in the 

predictor data. The selection of these two principal components is further substantiated by visual analysis 

employing the elbow plot and silhouette plot depicted in Fig. 6. As illustrated in Fig. 6 (a), the elbow plot 

manifests a discernible "elbow" following the second component, thereby suggesting that two components 

(k = 2) are optimal. Conversely, Fig. 6 (b) demonstrates that clustering based on two principal components 

yields the most stable and well-separated results, as evidenced by the Silhouette Plot. 

 

  
(a) (b) 

Figure 6. (a) Elbow Plot and (b) Silhouette Plot 

Source: Processed using RStudio 4.3.2 

The results of the selected principal components will subsequently be utilized to calculate the principal 

component scores 𝑤𝑗 ,thereby forming the PCR equation. The component scores for each selected principal 

component are enumerated in Table 4. These values indicate the contribution of each variable to the formation 

of the principal components. 

Table 4. Principal Component Score Values 

Variable 𝒘𝟏 𝒘𝟐 

𝒁𝟏 0.1245 -0.1460 

𝒁𝟐 0.1247 -0.1640 

𝒁𝟑 0.1248 -0.1806 

𝒁𝟒 0.1247 -0.1959 

𝒁𝟓 0.1246 -0.2100 

𝒁𝟔 0.1247 -0.2039 

𝒁𝟕 0.1246 -0.1973 

𝒁𝟖 0.1243 -0.1902 

𝒁𝟗 0.1248 -0.1013 

⋮ ⋮ ⋮ 
𝒁𝟔𝟒 0.1242 0.1707 

The principal component formation equation can then be written as follows: 

𝑤1 =  0.1245 𝑍1 + 0.1247 𝑍2 + 0.1248 𝑍3 + ⋯ + 0.1242 𝑍64, 

𝑤2 =  −0.1460 𝑍1 − 0.1640 𝑍2 − 0.1806𝑍3 + ⋯ + 0.1707 𝑍64. 

These principal components will be continued as the PCR equation.  

The principal component values 𝑤1 and 𝑤2 are subsequently employed as predictor variables in 

regression analysis with the response variable Y, which represents rainfall at each weather station in Libo 

Estate. The initial PCR model, excluding dummy variables, is delineated in Table 5. 
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Table 5. PCR Model  
Location Model 

LIBO Estate 2 𝑌 = 168.102 + 3.862 𝑤1 + 27.224 𝑤2 

LIBO Estate 3 𝑌 = 154.329 + 3.020 𝑤1 + 25.812 𝑤2 

LIBO Estate 7 𝑌 = 170.583 + 3.569 𝑤1 + 4.210 𝑤2 

PCR modeling at each weather station uses two main components. The results obtained show that PCR 

modeling is still inadequate in describing rainfall variability based on the coefficient of determination (R²) 

values ranging from 6.97 to 10.62% and RMSE values ranging from 83.136 to 115.427, as shown in Table 

5. To improve the accuracy of the model, dummy variables were applied to the PCR modeling at each weather 

station. 

3.6 Statistical Downscaling Modeling with PCR and Dummy Variables 

To enhance the accuracy of the principal component regression (PCR) model, dummy variables based 

on rainfall groupings were introduced. The generation of these dummy variables was achieved through the 

implementation of the K-means clustering technique, which was applied to the monthly rainfall data from 

each weather station. The determination of the optimal number of clusters was achieved through the 

implementation of silhouette analysis, as depicted in Fig. 7 for the LIBE station across Divisions 2, 3, and 7. 

The generation of these dummy variables was achieved through the implementation of the K-means 

clustering technique, which was applied to the monthly rainfall data from each weather station. The 

determination of the optimal number of clusters was achieved through the implementation of silhouette 

analysis, as depicted in Fig. 7 for the LIBE station across Divisions 2, 3, and 7. 

 

   
(a) (b) (c) 

Figure 7. Silhouette plots for LIBE (a) Division 2 (b) Division 3 (c) Division 7 

Source: Processed using RStudio 4.3.2 

The optimal clustering results vary between stations. LIBO Estate 2 is comprised of two clusters, 

Division 3 consists of three clusters, and Division 7 is divided into eight clusters (see Fig. 6 and Table 6). 

Each cluster reflects the range of monthly rainfall (in millimeters per month) based on observation data from 

the 2013–2022 period. This discrepancy in the number of clusters has a direct impact on the number of 

dummy variables generated for each station. The variation in cluster numbers across stations indicates 

differences in rainfall variability: LIBO Estate 2 exhibits homogeneous patterns (low and high rainfall), 

whereas LIBO Estate 7 demonstrates greater complexity with multiple intermediate rainfall regimes. 

Table 6. Summary of K-Means Clustering Results  

Group 
LIBO Estate 2 LIBO Estate 3 LIBO Estate 7 

Range Total Range Total  Range Total 

1 000 - 200 79 000 - 120 48 000 - 38 9 

2 205 - 581 41 123 - 241 55 047 - 86 15 

3 - - 254 - 481 17 090 - 128 21 

4 - - - - 134 - 172 26 

5 - - - - 181 - 222 14 

6 - - - - 224 - 276 22 

7 - - - - 299 - 365 10 

8 - - - - 564 - 587 3 

Total observation 120  120  120 
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For instance, in LIBO Estate 2, two distinct rainfall groups are identified: the first cluster (0–200 mm, 

79 observations) represents low rainfall and the second cluster (205–581 mm, 41 observations) representing 

high rainfall. A single dummy variable D₁ is used, coded as 0 for the first cluster and 1 for the second cluster, 

enabling the model to distinguish between two distinct rainfall regimes. or LIBO Estate 3, which comprises 

three clusters, two dummy variables (D₁ and D₂) are employed. The coding scheme is: cluster 1 (0–120 mm) 

= D₁:0, D₂:0; cluster 2 (123–241 mm) = D₁:1, D₂:0; cluster 3 (254–481 mm) = D₁:0, D₂:1. This uniquely 

represents each rainfall category. The same approach is applied to LIBO Estate 7, which comprises eight 

clusters requiring seven dummy variables (D₁–D₇). The eight rainfall categories range from 0–38 mm (very 

low) to 564–587 mm (extreme, only 3 observations), indicating highly variable rainfall patterns that require 

fine-grained categorization. 

Table 7. Group Results With K-Means Clustering and Dummy Variables 

Time LIBE Divisi 2 Group D1 

Jan-13 283 2 1 

Feb-13 220 2 1 

Mar-13 60 1 0 

Apr-13 97 1 0 

May-13 132 1 0 

⋮ ⋮ ⋮ ⋮ 
Sept-22 1 0 1 

Oct-22 331 2 1 

Nov-22 301 2 1 

Dec-22 330 2 1 

An exemplar of dummy implementation for LIBO Estate 2 is presented in Table 7, wherein each 

rainfall value is linked to the cluster group and the corresponding D1 value. These dummy variables are 

subsequently employed as supplementary predictors in a polymerase chain reaction (PCR) analysis for each 

station within the Libo Estate region. The ensuing discussion will elaborate on the modeling results that 

incorporate dummy variables, as delineated in Table 8. 

Table 8.  PCR Model with Dummy Variables 
Location Model 

LIBE Estate 2 𝑌 = 113.146 + 1.3825 𝑤1 − 8.8584 𝑤2 + 174.567 𝐷1 

LIBE Estate 3 𝑌 =  320.032 + 0.774 𝑤1 − 6.713 𝑤2 − 250.124 𝐷1 − 145.727 𝐷2 

LIBE Estate 7 𝑌 = 573.109 + 0.187 𝑤1 + 0.437 𝑤2 − 557.272 𝐷1 − 504.614 𝐷2 − 462.129 𝐷3 − 418.280 𝐷4

− 370.131 𝐷5 − 327.464 𝐷6 − 253.476 𝐷7 

The incorporation of dummy variables has been demonstrated to markedly enhance model 

performance, as evidenced by an augmentation in the R² value and a diminution in the RMSE value, as 

illustrated in Table 8. As indicated by the findings presented in Table 9, the incorporation of dummy variables 

within the PCR model results in a substantial enhancement of model performance. The coefficient of 

determination (R²) exhibited an increase from 6.97–10.62% to 63.00–98.50%. The RMSE declined from 

83.136–115.427 mm to 17.638–45.177 mm, representing a genuine improvement, not merely a numerical 

change. For LIBO Estate 7, the RMSE decreased by 78.7% (from 48.4% to 10.3% of the average monthly 

rainfall), demonstrating that prediction errors now fall within acceptable ranges for agricultural applications. 

The concurrent improvement in correlation (0.235 to 0.924) validates that the model now captures rainfall 

dynamics accurately. 

Table 9. Coefficient of Determination and RMSE Values for The PCR And PCR with Dummy  
Model Station Predictor Variables 𝑹𝟐 RMSE Correlation 

PCR LIBE Estate 2 

𝑤1, 𝑤2 

10.62% 115.427 0.235 

LIBE Estate 3 8.90% 92.767 0.186 

LIBE Estate 7 6.97% 83.136 0.343 

PCR - 

dummy 

LIBE Estate 2 𝑤1, 𝑤2, 𝐷1 63.0% 45.177 0.924 

LIBE Estate 3 𝑤1, 𝑤2, 𝐷1, 𝐷2 82.04% 33.320 0.944 

LIBE Estate 7 𝑤1, 𝑤2, 𝐷1, 𝐷2, 𝐷3, 𝐷4, 𝐷5, 𝐷6, 𝐷7 98.50% 17.683 0.984 

Table 9 also shows that the correlation between the predicted results and the observed rainfall data for 

2022 for the initial PCR model is relatively low (<0.4), indicating weaknesses in the model that does not 
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include the dummy variable. After adding the dummy variable, the correlation value increased significantly 

to 0.984. This indicates a very strong relationship between predictions and observations. Additionally, the 

PCR–Dummy model for LIBO Estate 7 performs the best, with an R² value of 98.50% and an RMSE of 

17.683, indicating that this model can explain nearly all variation in the rainfall data with very low prediction 

error.  

   
(a) (b) (c) 

Description:     Actual       PCR with dummmy variables         PCR  

 

Figure 8. Plot of Observed Rainfall and Estimated Rainfall Using PCR and Dummy Variables for 2022:        

  (a) LIBO Estate 2; (b) LIBO Estate 3; (c) LIBO Estate 7  

(Source: Processed using RStudio 4.3.2) 

As illustrated in Fig. 8, the incorporation of dummy variables into the PCR model results in estimation 

outcomes that closely mirror the observed rainfall patterns across all weather stations. The model 

demonstrates a high degree of proficiency in capturing the monthly variations in rainfall, suggesting that it 

exhibits a notable predictive capacity. Furthermore, the PCR model with dummy variables demonstrates the 

highest degree of alignment with the observed data, suggesting that the incorporation of dummy variables 

significantly enhances the model's capacity to accurately represent rainfall patterns in Siak Regency, 

particularly at each weather station within the LIBO Estate. 

4. CONCLUSION 

The results of the Principal Component Analysis (PCA) indicate that two principal components account 

for 99.57% of the variability in precipitation data derived from GCM outputs. The use of the Principal 

Component Regression (PCR) method, without the inclusion of dummy variables, yields relatively low 

coefficients of determination (R²), with a range of 6.97% to 10.62%. However, when PCR is combined with 

dummy variables—constructed through rainfall data grouping using the K-means clustering method—there 

is a substantial improvement in model performance. The R² values increased significantly, ranging from 

63.0% to 98.50%. Furthermore, the Root Mean Square Error (RMSE) exhibits a substantial decrease, 

transitioning from an initial range of 83.136–115.427 to a significantly lower range of 17.638–45.177. The 

findings indicate that integrating PCR with dummy variables significantly enhances the model's accuracy and 

its capacity to capture rainfall variability, particularly in the context of rainfall data modeling in Siak Regency, 

with a particular emphasis on the Libo Estate region. The findings indicate that integrating PCR with dummy 

variables significantly enhances the model's accuracy for rainfall modeling in Siak Regency. However, the 

model's applicability is limited to the research location, as cluster structures, rainfall ranges, and principal 

components are site-specific and derived from local climate patterns. The PCR-Dummy methodology is 

transferable to other regions, but parameter values cannot be directly applied to areas with different climate 

characteristics. Future research should validate this approach in diverse climate zones and investigate its 

applicability across multiple oil palm plantation regions to establish broader frameworks for water resource 

management. 
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