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1. INTRODUCTION

Indonesia is an agrarian country, with its economy heavily reliant on the agricultural sector, including
oil palm plantations. Climate change has increasingly affected agricultural productivity worldwide, with
shifts in rainfall patterns posing significant challenges to crop management and yield stability [1]. Among
various agricultural commodities, oil palm cultivation serves as a critical case study due to its economic
significance and vulnerability to climatic variability [2]. Climate variability has been shown to reduce fresh
fruit bunch (FFB) yield, disrupt flowering cycles, and increase susceptibility to pests and diseases |3 |, making
oil palm a particularly vulnerable crop in the face of ongoing climate change [4]. As a pivotal national
commodity, oil palm production exhibits heightened sensitivity to meteorological conditions, particularly the
accessibility of water from precipitation [5]. Consequently, seasonal fluctuations in rainfall can disrupt
productivity [6], especially during periods of drought [7].

Rainfall is a key climatic factor influencing the growth of oil palm. It is imperative to ensure sufficient
water availability from rainfall to maintain optimal soil moisture levels in the root zone, as oil palms exhibit
substantial water demands [8]. The selection of oil palm as the focus of this study is particularly relevant
given Indonesia's position as the world's largest palm oil producer, contributing approximately 58% of global
production, making the sector's climate resilience crucial for both national economic stability and global
supply chain [6]. Conversely, water deficits resulting from low rainfall can adversely affect yield and disrupt
the physiological development of the crop [9].

To anticipate the impacts of climate change and ensure the sustainability of the agricultural sector, it
is essential to utilize an accurate weather prediction system. A prevalent approach involves the use of Global
Circulation Model (GCM) data for rainfall modeling, a technique that provides large-scale numerical climate
forecasts [10]. GCMs are widely recognized as essential tools for projecting future rainfall patterns under
various climate scenarios [11], though their coarse resolution often necessitates statistical downscaling to
enhance their applicability at the local level [12]. However, due to their limited spatial and temporal
resolution, GCM outputs necessitate downscaling to the regional level, which is typically accomplished
through statistical downscaling (SD) methods [ 13].

Statistical downscaling is a process that links global climate data (predictors) with local data
(responses) through statistical approaches such as linear regression. This technique addresses a critical
limitation of GCMs, which operate at coarse spatial resolutions (typically 100-300 km) that are insufficient
to capture local climate variability and site-specific precipitation patterns. The downscaling process involves
three key steps: (1) identifying relevant large-scale atmospheric predictors from GCM outputs, (2)
establishing statistical relationships between these predictors and observed local climate variables using
historical data, and (3) applying these relationships to generate local-scale climate predictions. Furthermore,
this approach facilitates the investigation of relationships between global-scale data and local-scale data over
a designated time period [14]. By transforming coarse-resolution GCM data into high-resolution local
estimates, downscaling enables more accurate and actionable climate predictions for agricultural planning
and water resource management at regional scales.

However, a notable challenge in implementing SD is the issue of multicollinearity, which arises due to
the high correlation among numerous predictor variables | 15]. This can result in high variance in estimated
parameters and reduce model accuracy. The decline in precision inherent to statistical downscaling
methodologies can adversely affect the reliability of climate estimations at particular locations, thereby
necessitating the mitigation of multicollinearity to ensure optimal outcomes.

A prevalent methodology for addressing multicollinearity is Principal Component Regression (PCR).
This approach integrates Principal Component Analysis (PCA) with linear regression, a technique that has
been employed to reduce dimensionality and eliminate correlations among predictor variables [ 16]. Principal
component analysis (PCA) is a statistical technique that transforms a set of correlated predictors into a new
set of uncorrelated principal components (PCs). These PCs are then incorporated into a regression model to
assess their influence on the response variable [17].

Research on statistical downscaling using Principal Component Regression (PCR) for rainfall
forecasting has previously been conducted by [7]. The study incorporated dummy variables to enhance the
accuracy of rainfall prediction models in Indramayu. The utilization of GCM data, arranged in a 6x4 grid
spanning the period 1979-2007, The utilization of GCM data, arranged in a 6x4 grid spanning the period
1979-2007, revealed multicollinearity issues among the predictors. The findings demonstrated that the
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combination of PCR with dummy variables yielded more accurate rainfall estimates compared to models
devoid of dummy variables. The incorporation of dummy variables addresses a key limitation of standard
PCR models, which assume a linear relationship between predictors and response variables across all
observations. However, rainfall patterns often exhibit distinct regimes or clusters that may respond differently
to the same atmospheric predictors. Dummy variables, generated through K-means clustering based on
rainfall intensity groupings, enable the model to capture these non-linear regime-dependent relationships by
allowing different intercepts for each rainfall cluster while maintaining the same slope coefficients from
principal components. This approach effectively partitions the data into homogeneous groups with similar
rainfall characteristics, thereby improving model fit and prediction accuracy without violating the
multicollinearity assumptions already addressed by PCR.

The optimal model employed a single principal component, achieving a high correlation value (0.99)
and a Root Mean Square Error of Prediction (RMSEP) of 28.84 millimeters. Furthermore, [ 18] employed
dummy variables generated through K-means clustering in combination with Liu-Ridge Regression (LLR) to
address multicollinearity. The study's findings indicated that incorporating dummy variables led to a
substantial enhancement in the model's accuracy, with an observed improvement of up to 15%.

Another study was conducted by [ 14]. The present study applied the PCR in the Statistical Downscaling
(PPSD) method to predict daily rainfall in Kupang City, including the handling of missing values. The most
optimal outcomes indicated that the model comprising 11 primary components from the 6x6 grid domain
(with cumulative variance of 94.01%) yielded high precision, exhibiting a mean absolute percentage error
(MAPE) of 2.81% and a root mean square error (RMSE) of 10.81 millimeters. [19] also employed the use of
SD and PCR to assess climate change in the Cauvery River basin, India. The present study sought to compare
the projected results of various CMIP5 GCMs in terms of rainfall and temperature with observational data
that has undergone validation at local stations. The PCR model demonstrated satisfactory performance, with
determination coefficients (R?) ranging from 70% to 83% across various GCM satellite scenarios.

The present study aims to develop a local-scale rainfall prediction model using statistical downscaling
and principal component regression (PCR) methods. The model is based on GCM data from CMIP6 (MPI-
ESM1-2-HR) with a spatial resolution of 100 km. The model is based on GCM data from CMIP6 (MPI-
ESM1-2-HR) with a spatial resolution of 100 km. This research makes a significant methodological
contribution to the field of climate modeling by integrating K-means clustering-derived dummy variables
into the PCR framework, effectively addressing both multicollinearity and non-linear regime-dependent
rainfall patterns simultaneously, a combination that has received limited attention in existing downscaling
literature. Model performance is evaluated using multiple metrics: the coefficient of determination (R?) and
Root Mean Squared Error (RMSE). It is anticipated that the resulting model, particularly the PCR-dummy
variable approach, will contribute to mitigating risks associated with climate change in oil palm agriculture
and support more effective water resource management in the future.

The novelty of this research lies in the incorporation of dummy variables derived from k-means
clustering of rainfall data to enhance model accuracy, demonstrating a hybrid approach that combines
dimensionality reduction with categorical partitioning to improve predictive performance. While this study
focuses on oil palm cultivation in Siak Regency, the proposed methodology is generalizable and can be
adapted to other agricultural systems, hydrological applications, and climate-sensitive sectors across various
geographical regions where accurate local-scale rainfall prediction is crucial for informed decision-making.
It is anticipated that the resulting model will contribute to mitigating risks associated with climate change in
oil palm agriculture and support more effective water resource management in the future.

2. RESEARCH METHODS

2.1 Data Sources

The observational data utilized in this study encompasses daily rainfall data, which is subsequently
aggregated into monthly rainfall data (in units of millimeters per month). The rainfall variable was employed
as the response variable in the modeling. The data was obtained from the Automated Weather Station (AWS)
owned by PT SMART Tbk, SMART Research Institute Division, located at LIBO Estate, for the period from
2013 to 2022. LIBO Estate operates three distinct AWS locations: The geographical locations in question
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correspond to the following divisions: Division 2 (latitude 0.9543°; longitude 101.2167°), Division 3 (latitude
0.9471°; longitude 101.1832°), and Division 7 (latitude 0.9264°; longitude 101.2061°).

The predictor variables are derived from precipitation data from the Global Circulation Model (GCM)
based on CMIP6 simulations, obtained from the website https://aims2.1lnl.gov/search/cmip6 [20]. The GCM
data utilized in this study possesses a nominal spatial resolution of 100 km (0.9375° x 0.9349°). These data
are derived from the MPI-ESM1-2-HR satellite model. Subsequently, the global data underwent a series of
processing stages, including interpolation and clipping, to obtain data relevant to the study area, specifically
Siak Regency. In this process, an 8 x 8 grid was formed with a resolution of 0.1° x 0.1° per grid, resulting in
64 grid points as predictor variables. Each grid encompasses 120 monthly observation data points, which will
be utilized in the statistical modeling process.

2.2 Analysis Method

The present study employs statistical downscaling, a statistical method that describes the relationship
between global-scale data and local-scale data within a specified time period. This relationship can be
expressed as follows [21]:

Y(tx1) :f(thg)’ (D

with y(txq) is the local climate variable (response variable), X; 4 is the GCM output variable (predictor

variable), t is the time period (monthly), and g is the number of GCM output grid domains. [21] shows that
the 8x8 domain is better than the other domains of sizes 10x10, 12x12, 14x14, and 16x16. An illustration of
the statistical downscaling process is presented as follows [22]:

General Circulation Model
(predictor variable) =100 km

area of observation

Statistical
Downscaling

surface
observation

~—

Figure 1. Illustration of Statistical Downscaling
Source: [22]

The primary objective of the present study was to employ the Principal Component Regression (PCR)
method to reduce the dimensions of monthly rainfall observation data from 2013 to 2022 through statistical
downscaling. Prior to PCR modeling, multicollinearity among the 64 continuous GCM predictor variables
was assessed using the Variance Inflation Factor (VIF), a widely used diagnostic tool for identifying
collinearity in regression analysis [23]. Multicollinearity occurs when two or more independent variables in
a regression model are highly correlated, resulting in inflated coefficients and unstable parameter estimates.
The application of VIF in this study serves to detect and quantify such multicollinearity, which justifies the
use of PCR as a dimension reduction technique capable of transforming correlated predictors into orthogonal
principal components. Dummy variables representing rainfall categories were added to the final model; these
do not introduce multicollinearity concerns since the principal components are orthogonal by construction,
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and the categorical variables serve to capture nonlinear rainfall effects without overlapping with the
continuous predictors [24]. The Variance Inflation Factor (VIF) method is a statistical technique used to
identify multicollinearity.

1 2
=Ry
]

with R ]-2 is the coefficient of determination—;j.

Then, Principal Component Analysis (PCA) was performed to reduce the dimension of predictor
variables by selecting principal components based on eigenvalue values greater than one, as indicated by the
elbow plot analysis. Principal Component Analysis (PCA) is a statistical method used to reduce variables in
a case into important features of the principal components. The formation of principal components using a
correlation matrix begins with transforming the original variable X into a standard form Z or standardizing
the variable [25]:

g KK
Y 2 3)

]

with Z;; a is the standardized j variable in i —row, X;; the original value of variable j inrow i, y; is the mean
of variable-J, sz is the standard deviation of variable -j. The eigenvalue (A) of the correlation matrix p is
calculated with the condition:

lp— All =0, “4)
while the value of eigenvector e]'- = [el j1€2) s e]-p] is calculated using the following formula:
(p— ADej = 0. (5)

The-j principal component is formed based on the variable Z' = [Zl,Zz, ...,Zp] determined using the
eigenvector:

== 4 == e .
W = &L = €121 + €2, + -+ €jpz), (6)

with w; is the j-th principal component, e; is the j-th eigenvector to j, and z; is the j-th standardized variable
value.

Two approaches are employed in the modeling process: The first approach involves the utilization of
a select array of principal components in the PCR model. The second approach incorporates dummy
variables, which function as supplementary predictors within the PCR framework. The PCR equation, when
reduced to m components, can be expressed as follows:

Y=0ay+aw; +--+a,w, +¢ @)

where a is the principal component regression constant, aq,as, ..., &, are the principal component
regression parameters, and wq, w,, ... Wy, are the principal components used.

To enhance the accuracy of the model and address issues of multicollinearity, dummy variables were
constructed using k-means clustering based on rainfall groupings. K-means clustering was selected for several
reasons: (1) it effectively captures natural groupings in rainfall patterns; (2) it provides an objective, data-
driven approach to categorize observations rather than arbitrary threshold selection, and (3) it has been
successfully applied in previous statistical downscaling studies to improve model performance by
incorporating seasonal or magnitude-based variations. By converting continuous rainfall data into categorical
dummy variables, the model can better account for non-linear relationships and regime-specific behaviors
that may not be adequately captured by principal components alone.

Dummy variables serve as analytical tools that facilitate the categorization of data into distinct groups
based on specific characteristics or attributes [26]. K-means clustering is a non-hierarchical method that
groups data according to similarity by predefining the number of clusters and initial centroid values. The
algorithmic process involves the iterative updating of centroids until optimal clustering is achieved [27]. This
approach has proven effective for rainfall classification. The assessment of cluster quality is facilitated by the
utilization of the silhouette coefficient, a metric that quantifies the extent to which each data point aligns with
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its designated cluster. The optimal number of clusters (k) is determined by identifying the peak value on the
silhouette plot [28], [29]. Subsequent to the establishment of the clusters, dummy variables are generated to
represent each identified rainfall group. The model's performance is then evaluated using the coefficient of
determination (R?), the RMSE, and the correlation between predicted and observed rainfall values.

The statistical downscaling methodology employed in this study involves multiple sequential stages,
each with distinct objectives and computational procedures. To provide a concise overview of the complete
analytical framework, Fig. 2 presents a comprehensive flowchart illustrating the workflow from data

collection through model validation.

.

Data Processing
Interpolation and
Clipping

Generate Dummy
Variable

K-Means Clustering
A A

Data Division

o 7y
Training: 2013-2021 Model 2 : PCR Analysis +

Validation: 2022 Dummy Variables

Evaluate PCR Model

Standardization T Evaluate PCR-Dummy
Model

Model 1: PCR Analysis

Model Comparison and
validation

Multicollinearity Check

Conclusions ¥

Figure 2. Statistical Downscaling Analysis Workflow

3. RESULTS AND DISCUSSION

3.1 Data Exploration

The rainfall patterns presented in Fig. 3 demonstrate analogous trends across all three weather stations,
with the highest average monthly rainfall consistently recorded in November. This consistent seasonal pattern
indicates that November typically marks the peak of the rainy season in the study area. The highest average
monthly rainfall during the observation period ranged from 153.35 to 172.43 mm, with the maximum monthly
rainfall was 587 mm in November 2015. This consistency in rainfall distribution can be attributed to various
factors such as wind patterns, topography, and the geographical location of each weather station. The high
rainfall in November may also reflect the influence of the La Nifla phenomenon, which is often associated
with increased rainfall intensity in tropical regions, including Indonesia.

Studies have shown that La Nifia tends to increase rainfall over the Maritime Continent, particularly in
Southeast Asia and Indonesia, due to enhanced moisture transport and strengthened Walker circulation. For
instance, central Pacific La Nifia events can trigger severe flooding across Southeast Asia, including parts of
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Indonesia, during the September—November period [30]. Another study showed that La Nifia events
contribute to positive precipitation anomalies across the Maritime Continent, driven by increased humidity
and local sea surface temperature gradients [31]. This regional linkage confirms that the intense rainfall

observed in November may indeed be influenced by La Nina dynamics.
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Figure 3. Rainfall patterns at Each Weather Station in LIBO Estate

Based on the data shown in Table 1, rainfall in LIBO Estate 7 exhibits relatively similar observation
values to those of weather stations in other divisions. This similarity is due to the location of the weather
stations, which are still within the same plantation area and have relatively close coordinates. During the
observation period, the highest monthly rainfall recorded was 587 mm in November 2015. Meanwhile, the
average monthly rainfall across the entire division ranged from 153.35 to 172.43 mm.

Table 1. Summary of Rainfall Statistics for Each Weather Station

Statistics LIBO Estate 1 LIBO Estate 3 LIBO Estate 7
Minimum 0 0 0
Median 151.5 147.5 156
Average 172.43 153.35 171.9
Maximum 581 481 587

3.2 Precipitation Data from GCM Data

The global data used in this study comes from the output of the Global Climate Model (GCM) based
on the CMIP6 (Coupled Model Intercomparison Project Phase 6) projections. Several institutions provide
GCM data, including MPI-M (Max Planck Institute for Meteorology), which provides global data projections
for each sub-experiment conducted over a decadal range. In this study, GCM data with a nominal spatial
resolution of 100 km were used, selected because the observation location is in a fairly specific local area.

The GCM data was downloaded in NetCDF (Network Common Data Form) format, which contains several
data dimensions, such as longitude, latitude, time, and pressure level.

GCM data with a resolution of 100 km has a grid size of 0.937° x 0.934°. On a global scale, this grid
size is quite fine and capable of providing detailed data representation. However, problems arise when this
global data is cropped for use in smaller or local areas. At this coarse resolution, the study area is represented
by only three grid cells (Figure 3a), where large portions are assigned identical precipitation values, making
it inadequate for capturing local climate variations. In such cases, spatial interpolation, specifically bilinear
interpolation, is required to generate a more varied and appropriate grid distribution at the local scale. This
interpolation transforms the original three-grid configuration into a finer 0.1° X 0.1° resolution grid,
dramatically increasing the number of data points available for analysis. For example, GCM data for
precipitation variables for the Siak Regency, as of January 1, 2013, are shown in Fig. 4.
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Figure 4. GCM Data (a) Before Interpolated and (b) After Interpolation
Source: Processed using RStudio 4.3.2

Fig. 4 shows that without interpolation, GCM data tends to be less diverse, with only three data grids
available for use. This is because areas within a single grid are considered to have the same precipitation
value. To overcome this limitation, spatial interpolation is performed to increase data diversity at the local
scale. By applying a grid resolution of 0.1° x 0.1° to the Siak Regency area, a grid domain of 9 x 22 is
obtained. After the global data is scaled down to the local level according to the research location, the next
step is to determine the main grid domain to be used in the analysis. The main domain is set at 8 X 8 grids,
with the observation weather station located at the center of the grid area used. The selected grid will function
as a predictor variable; therefore, the 8 x 8 grid configuration yields a total of 64 predictor variables. The
visualization of the grid distribution in the Siak Regency area is presented in Fig. 5.
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Figure 5. (a) GCM Grid Data, (b) Point Data at Each Grid, (c) Addition of Siak Map and Weather Station
Locations, (d) Main Grid to be Used
Source: Processed using RStudio 4.3.2

Fig. 5 presents a visualization of the stages of GCM output data usage. In part (a), a global grid of
GCM data covering the research location is displayed. Each grid has different precipitation values, depending
on the time of observation. The data on each grid is then represented as data points, as shown in part (b).
Next, in part (c), the administrative map of Siak Regency is added along with the location of the weather
observation station. From the entire grid available, a main domain measuring 8 x 8 grids is selected, as shown
in part (d). This grid will be used as the basis for analysis in the next stage.

3.3 Detection of Multicollinearity

Multicollinearity assessment using Variance Inflation Factor (VIF) analysis as shown in Table 2
revealed that all 64 GCM predictor variables exhibited excessively high VIF values, ranging from
417 X 103 to 4.17 x 1013, substantially exceeding the standard threshold of VIF > 10. This severe
multicollinearity, typical of gridded climate model data due to high spatial-temporal correlation among
neighboring grid points, would produce inflated coefficients and unstable estimates in conventional OLS
regression. Principal Component Regression (PCR) was therefore employed to eliminate multicollinearity by
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transforming correlated predictors into uncorrelated principal components while preserving predictor
information.

Table 2. Variance Inflation Factor (VIF) Values

No Variable VIF No Variable VIF

1 V1 1.801 x 101 33 V33 4.5 x 10
2 V2 4504 x 10° 34 V34 7.51 x 104
3 V3 2.252 x 10%° 35 V35 5.63 x 10*
4 V4 9.007 x 10 36 V36 3 x 10
5 V5 6.005 x 104 37 V37 1.67 x 10
6 Vé 9.007 x 101° 38 V38 3.46 x 10
7 \%/ 5.004 x 101* 39 V39 9.01 x 104
8 V8 1.365 x 104 40 V40 7.51 x 104
9 %Y 3.002 x 10%° 41 V41 2.81 x 104
10 V10 4504 x 10'° 42 V42 5.3 x 101*
11 Vil 3.002 x 10%° 43 V43 3.6 x 101*
12 V12 1.501 x 101 44 Va4 1.67 x 10
13 V13 1.287 x 1015 45 V45 9.19 x 1013
14 V14 9.007 x 10%° 46 V46 2.2 x 1014
15 V15 9.007 x 104 47 V47 429 x 104
16 V16 3.217 x 10%* 48 V48 2.31 x 104
17 V17 1.801 x 101° 49 V49 1.84 x 1014
18 V18 3.002 x 10%° 50 V50 3.34 x 10
19 V19 1.801 x 101 51 V51 2 x 1014
20 V20 1.287 x 10%° 52 V52 1.11 x 1014
21 V21 7.506 x 104 53 V53 5.93 x 1013
22 V22 2.252 x 10%° 54 V54 1.5 x 1014
23 V23 2.252 x 10° 55 V55 2.57 x 10
24 V24 1.001 x 1015 56 V56 1.13 x 10
25 V25 6.929 x 104 57 V57 1.27 x 10
26 V26 1.801 x 10 58 V58 2.31 x 1014
27 V27 1.001 x 10%° 59 V59 1.58 x 104
28 V28 5.629 x 104 60 V60 7.32 x 1013
29 V29 3.106 x 104 61 V61 417 x 1013
30 V30 6.929 x 10 62 V62 1.02 x 1014
31 V31 2.252 x 10'° 63 V63 1.61 x 101*
32 V32 1.501 x 10%° 64 V64 6.53 x 1013

3.4 Data Model Division and Validation

The data was partitioned for the purpose of evaluating the performance of the regression model
in predicting rainfall. This evaluation was conducted by comparing the predicted results with actual
observations. Data quality inspection confirmed that both the observed rainfall data from the three LIBO
Estate weather stations and the GCM precipitation data were complete, with no missing values, for the study
period (2013-2022), allowing for the direct application of the statistical downscaling procedure without
requiring imputation methods. The dataset was segmented into two subsets: a training set comprising monthly
data from 2013 to 2021 (108 observations) and a validation set comprising monthly data from 2022 (12
observations). The objective of this division was to evaluate the model's capacity for out-of-sample
prediction, thereby ensuring its ability to generalize effectively to data not utilized during the training phase.

3.5 Statistical Downscaling Modeling with PCR

Prior to applying the model, the predictor variables underwent standardization. The objective of this
standardization is to ensure that all variables are measured on a uniform scale, thereby facilitating more
consistent analysis and more accurate interpretation. Following standardization, Principal Component
Analysis (PCA) is used to derive the principal components that will be incorporated into the regression model.
These principal components are subsequently employed as input variables in regression modeling to perform
statistical downscaling of rainfall. The PCA commences with the calculation of the eigenvalues based on the
correlation matrix between the predictor variables. The value of the eigenvector is employed in the estimation
of the number of principal components utilized in the modeling process.



1652 Adnan, et al. STATISTICAL MODELING FOR DOWNSCALING USING PRINCIPAL COMPONENT REGRESSION ...

Table 3. Eigenvalue Analysis

Wq Wy W3 Wy Wy We
Eigenvalue 63.4116  0.3187 0.213 0.0491 0.0054  0.00175
Cumulative proportion 0.9908  0.99579 0.99912  0.99989 0.99997  1.00000

As illustrated in Table 3, the eigenvalues undergo a precipitous decline following the first and second
principal components. The first principal component (w1) accounts for 99.08% of the total variance, while
the combination of the first and second components (w1 and w2) explains 99.57% of the total variance in the
predictor data. The selection of these two principal components is further substantiated by visual analysis
employing the elbow plot and silhouette plot depicted in Fig. 6. As illustrated in Fig. 6 (a), the elbow plot
manifests a discernible "elbow" following the second component, thereby suggesting that two components
(k = 2) are optimal. Conversely, Fig. 6 (b) demonstrates that clustering based on two principal components
yields the most stable and well-separated results, as evidenced by the Silhouette Plot.

Optimal number of clusters
Plot Elbow Silhouette method
1.00 1 ;

Eigeen value

10 20 30 40 50 60

I
Average silhouette width
o
w
S

0

T T T T T T T
0 10 20 30 40 50 60

0.00+

Jumlah Komponen Utama Number of clusters k

(a) (b)
Figure 6. (a) Elbow Plot and (b) Silhouette Plot
Source: Processed using RStudio 4.3.2

The results of the selected principal components will subsequently be utilized to calculate the principal
component scores w; ,thereby forming the PCR equation. The component scores for each selected principal

component are enumerated in Table 4. These values indicate the contribution of each variable to the formation
of the principal components.

Table 4. Principal Component Score Values

Variable wy wy
Z, 0.1245 -0.1460
Z, 0.1247 -0.1640
Z; 0.1248 -0.1806
Z, 0.1247 -0.1959
Zs 0.1246 -0.2100
Zg 0.1247 -0.2039
Z, 0.1246 -0.1973
Zg 0.1243 -0.1902
Zy 0.1248 -0.1013
Zgy 0.1242 0.1707

The principal component formation equation can then be written as follows:
wy = 012457, +0.1247 Z, + 0.1248 Z3 + --- + 0.1242 Zg,,
wy, = —0.1460 Z; — 0.1640 Z, — 0.1806Z5 + -+ + 0.1707 Zg,.
These principal components will be continued as the PCR equation.

The principal component values w; and w, are subsequently employed as predictor variables in
regression analysis with the response variable Y, which represents rainfall at each weather station in Libo
Estate. The initial PCR model, excluding dummy variables, is delineated in Table 5.
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Table 5. PCR Model

Location Model
LIBO Estate 2 Y =168.102 + 3.862 w, + 27.224 w,
LIBO Estate 3 Y = 154.329 + 3.020 w; + 25.812 w,
LIBO Estate 7 Y =170.583 + 3.569 w; +4.210 w,

PCR modeling at each weather station uses two main components. The results obtained show that PCR
modeling is still inadequate in describing rainfall variability based on the coefficient of determination (R?)
values ranging from 6.97 to 10.62% and RMSE values ranging from 83.136 to 115.427, as shown in Table
5. To improve the accuracy of the model, dummy variables were applied to the PCR modeling at each weather

station.

3.6 Statistical Downscaling Modeling with PCR and Dummy Variables

To enhance the accuracy of the principal component regression (PCR) model, dummy variables based
on rainfall groupings were introduced. The generation of these dummy variables was achieved through the
implementation of the K-means clustering technique, which was applied to the monthly rainfall data from
each weather station. The determination of the optimal number of clusters was achieved through the
implementation of silhouette analysis, as depicted in Fig. 7 for the LIBE station across Divisions 2, 3, and 7.

The generation of these dummy variables was achieved through the implementation of the K-means
clustering technique, which was applied to the monthly rainfall data from each weather station. The
determination of the optimal number of clusters was achieved through the implementation of silhouette
analysis, as depicted in Fig. 7 for the LIBE station across Divisions 2, 3, and 7.

LIBE Divisi 2 LIBE Divisi 3 LIBE Divisi 7
08 : ; 061
= I

=
=

Average silhouette width
3
Average silhouette width

=
=
=
=

9 10 i 2 3
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Number of clusters k
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Number of clusters k Number of clusters k

(@) (b) (c)
Figure 7. Silhouette plots for LIBE (a) Division 2 (b) Division 3 (c) Division 7
Source: Processed using RStudio 4.3.2

The optimal clustering results vary between stations. LIBO Estate 2 is comprised of two clusters,
Division 3 consists of three clusters, and Division 7 is divided into eight clusters (see Fig. 6 and Table 6).
Each cluster reflects the range of monthly rainfall (in millimeters per month) based on observation data from
the 2013-2022 period. This discrepancy in the number of clusters has a direct impact on the number of
dummy variables generated for each station. The variation in cluster numbers across stations indicates
differences in rainfall variability: LIBO Estate 2 exhibits homogeneous patterns (low and high rainfall),
whereas LIBO Estate 7 demonstrates greater complexity with multiple intermediate rainfall regimes.

Table 6. Summary of K-Means Clustering Results

Group LIBO Estate 2 LIBO Estate 3 LIBO Estate 7
Range Total Range Total Range Total
1 0 -200 79 0 -120 48 0-38 9
2 205 - 581 41 123 - 241 55 47 - 86 15
3 - - 254 - 481 17 90 - 128 21
4 - - - - 134 - 172 26
5 - - - - 181 -222 14
6 - - - - 224 - 276 22
7 - - - - 299 - 365 10
8 - - - - 564 - 587 3

Total observation 120 120 120
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For instance, in LIBO Estate 2, two distinct rainfall groups are identified: the first cluster (0—200 mm,
79 observations) represents low rainfall and the second cluster (205-581 mm, 41 observations) representing
high rainfall. A single dummy variable D: is used, coded as 0 for the first cluster and 1 for the second cluster,
enabling the model to distinguish between two distinct rainfall regimes. or LIBO Estate 3, which comprises
three clusters, two dummy variables (D: and D) are employed. The coding scheme is: cluster 1 (0—120 mm)
= D1:0, D2:0; cluster 2 (123-241 mm) = Dui:1, D2:0; cluster 3 (254481 mm) = D::0, D2:1. This uniquely
represents each rainfall category. The same approach is applied to LIBO Estate 7, which comprises eight
clusters requiring seven dummy variables (D:i—D~). The eight rainfall categories range from 0-38 mm (very
low) to 564-587 mm (extreme, only 3 observations), indicating highly variable rainfall patterns that require
fine-grained categorization.

Table 7. Group Results With K-Means Clustering and Dummy Variables

Time LIBE Divisi 2 Group D1
Jan-13 283 2 1
Feb-13 220 2 1
Mar-13 60 1 0
Apr-13 97 1 0

May-13 132 1 0
Sept-22 1 0 1
Oct-22 331 2 1
Nov-22 301 2 1
Dec-22 330 2 1

An exemplar of dummy implementation for LIBO Estate 2 is presented in Table 7, wherein each
rainfall value is linked to the cluster group and the corresponding D1 value. These dummy variables are
subsequently employed as supplementary predictors in a polymerase chain reaction (PCR) analysis for each
station within the Libo Estate region. The ensuing discussion will elaborate on the modeling results that
incorporate dummy variables, as delineated in Table 8.

Table 8. PCR Model with Dummy Variables

Location Model
LIBE Estate 2 Y =113.146 + 1.3825 w; — 8.8584 w, + 174.567 D,
LIBE Estate 3 Y = 320.032+0.774 w; — 6.713 w, — 250.124 D, — 145.727 D,

LIBE Estate 7 Y = 573.109 + 0.187 w; + 0.437 w, — 557.272 D; — 504.614 D, — 462.129 D, — 418.280 D,
—370.131 D, — 327.464 D, — 253.476 D,

The incorporation of dummy variables has been demonstrated to markedly enhance model
performance, as evidenced by an augmentation in the R? value and a diminution in the RMSE value, as
illustrated in Table 8. As indicated by the findings presented in Table 9, the incorporation of dummy variables
within the PCR model results in a substantial enhancement of model performance. The coefficient of
determination (R?) exhibited an increase from 6.97-10.62% to 63.00-98.50%. The RMSE declined from
83.136-115.427 mm to 17.638-45.177 mm, representing a genuine improvement, not merely a numerical
change. For LIBO Estate 7, the RMSE decreased by 78.7% (from 48.4% to 10.3% of the average monthly
rainfall), demonstrating that prediction errors now fall within acceptable ranges for agricultural applications.
The concurrent improvement in correlation (0.235 to 0.924) validates that the model now captures rainfall
dynamics accurately.

Table 9. Coefficient of Determination and RMSE Values for The PCR And PCR with Dummy

Model Station Predictor Variables R? RMSE Correlation
PCR LIBE Estate 2 10.62% 115.427 0.235
LIBE Estate 3 Wy, Wy 8.90% 92.767 0.186
LIBE Estate 7 6.97% 83.136 0.343
PCR - LIBE Estate 2 Wy, Wy, Dy 63.0% 45.177 0.924
dummy LIBE Estate 3 Wi, Wy, Dy, D, 82.04% 33.320 0.944
LIBE Estate 7 Wi, Wy, Dy, D,, D3, Dy, Ds, Dg, D, 98.50% 17.683 0.984

Table 9 also shows that the correlation between the predicted results and the observed rainfall data for
2022 for the initial PCR model is relatively low (<0.4), indicating weaknesses in the model that does not
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include the dummy variable. After adding the dummy variable, the correlation value increased significantly
to 0.984. This indicates a very strong relationship between predictions and observations. Additionally, the
PCR-Dummy model for LIBO Estate 7 performs the best, with an R? value of 98.50% and an RMSE of
17.683, indicating that this model can explain nearly all variation in the rainfall data with very low prediction
error.

300 300 \ 300
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Figure 8. Plot of Observed Rainfall and Estimated Rainfall Using PCR and Dummy Variables for 2022:
(a) LIBO Estate 2; (b) LIBO Estate 3; (c) LIBO Estate 7
(Source: Processed using RStudio 4.3.2)

As illustrated in Fig. 8, the incorporation of dummy variables into the PCR model results in estimation
outcomes that closely mirror the observed rainfall patterns across all weather stations. The model
demonstrates a high degree of proficiency in capturing the monthly variations in rainfall, suggesting that it
exhibits a notable predictive capacity. Furthermore, the PCR model with dummy variables demonstrates the
highest degree of alignment with the observed data, suggesting that the incorporation of dummy variables
significantly enhances the model's capacity to accurately represent rainfall patterns in Siak Regency,
particularly at each weather station within the LIBO Estate.

4. CONCLUSION

The results of the Principal Component Analysis (PCA) indicate that two principal components account
for 99.57% of the variability in precipitation data derived from GCM outputs. The use of the Principal
Component Regression (PCR) method, without the inclusion of dummy variables, yields relatively low
coefficients of determination (R?), with a range of 6.97% to 10.62%. However, when PCR is combined with
dummy variables—constructed through rainfall data grouping using the K-means clustering method—there
is a substantial improvement in model performance. The R? values increased significantly, ranging from
63.0% to 98.50%. Furthermore, the Root Mean Square Error (RMSE) exhibits a substantial decrease,
transitioning from an initial range of 83.136—115.427 to a significantly lower range of 17.638—45.177. The
findings indicate that integrating PCR with dummy variables significantly enhances the model's accuracy and
its capacity to capture rainfall variability, particularly in the context of rainfall data modeling in Siak Regency,
with a particular emphasis on the Libo Estate region. The findings indicate that integrating PCR with dummy
variables significantly enhances the model's accuracy for rainfall modeling in Siak Regency. However, the
model's applicability is limited to the research location, as cluster structures, rainfall ranges, and principal
components are site-specific and derived from local climate patterns. The PCR-Dummy methodology is
transferable to other regions, but parameter values cannot be directly applied to areas with different climate
characteristics. Future research should validate this approach in diverse climate zones and investigate its
applicability across multiple oil palm plantation regions to establish broader frameworks for water resource
management.

Author Contributions

Arisman Adnan: Conceptualization, Supervision, Writing-Original Draft, Writing-Review and Editing. Elsa
Riesta Alika: Formal Analysis, Software, Visualization, Writing-Original Draft. Divo Dharma Silalahi:
Resources, Data Curation, Investigation, Validation. Felia Rizki Aulia: Methodology, Resources, Validation.
Gustriza Erda: Project Administration, Visualization, Writing-Review, and Editing. All authors discussed the
results, contributed to the interpretation of the data, and approved the final of the manuscript.



1656 Adnan, et al. STATISTICAL MODELING FOR DOWNSCALING USING PRINCIPAL COMPONENT REGRESSION ...

Funding Statement

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit
sectors.

Acknowledgment

We would like to express our sincere gratitude to the Head of the Environmental Statistical Laboratory,
Universitas Riau, for providing valuable guidance, support, and access to facilities that significantly
contributed to the completion of this research. We are also deeply thankful to the team at PT. SMART Tbk,
Div SMART Research Institute, for their collaboration, provision of data, and insightful discussions that
enriched the analysis and practical relevance of this study. Their support has been instrumental in the
successful execution of this research.

Declarations

The authors declare no competing interests.

Declaration of Generative Al and Al-Assisted Technologies

The authors used generative Al (ChatGPT) only to assist with language polishing and formatting consistency
(e.g., improving wording and ensuring uniform terminology). No Al was used to generate research content,
perform analysis, or create.

REFERENCES

[1] N. Dharmawati, S. Suntoro, K. Komariah, and H. Hermantoro, “POTENTIAL RAINWATER AVAILABILITY AND
CROP WATER REQUIREMENT OF OIL PALM CROPS DUE TO CLIMATE CHANGE,” IOP Conf Ser Earth Environ
Sci, vol. 1482, p., 2025, doi: https://doi.org/10.1088/1755-1315/1482/1/012006.

[2] J. P. Rajakal, V. Andiappan, and Y. K. Wan, “MATHEMATICAL APPROACH TO FORECAST OIL PALM
PLANTATION YIELD UNDER CLIMATE CHANGE UNCERTAINTIES,” Chem Eng Trans, vol. 83, pp. 115-120, 2021,
doi: https://doi.org/10.3303/CET2183020.

[3] A. Abubakar, M. Ishak, and A. Makmom, “NEXUS BETWEEN CLIMATE CHANGE AND OIL PALM PRODUCTION
IN MALAYSIA: A REVIEW,” Environ Monit Assess, vol. 194, p., 2022, doi: https://doi.org/10.1007/s10661-022-09915-8.

[4] 1. Pradiko, H. Hariyadi, and T. June, “QUANTIFICATION OF CLIMATE FACTORS CONTRIBUTING TO VARIATION
OF OIL PALM YIELD,” Jurnal Penelitian Kelapa Sawit, p., 2023, doi: https://doi.org/10.22302/iopri.jur.jpks.v31i2.222.

[5] Y. Go, Y.-L. Tan, and T.-H. Yiew, “SENSITIVITY OF OIL PALM YIELD IN INDONESIA TO CLIMATE CHANGE:
EVIDENCE FROM THRESHOLD COINTEGRATION MODELS,” Environ Dev Sustain, p., 2024, doi:
https://doi.org/10.1007/s10668-024-05635-w.

[6] S. Oktarina, R. Nurkhoiry, and I. Pradiko, “THE EFFECT OF CLIMATE CHANGE TO PALM OIL PRICE DYNAMICS:
A SUPPLY AND DEMAND MODEL,” IOP Conf Ser Earth Environ Sci, vol. 782, p., 2021, doi:
https://doi.org/10.1088/1755-1315/782/3/032062.

[7] S. Sahriman, A. Djuraidah, and A. H. Wigena, “APPLICATION OF PRINCIPAL COMPONENT REGRESSION WITH
DUMMY VARIABLE IN STATISTICAL DOWNSCALING TO FORECAST RAINFALL,” Open J Stat, vol. 04, pp. 678—

686, 2014, doi: http://dx.doi.org/10.4236/0js.2014.49063.

[8] L. Safitri, H. Hermantoro, S. Purboseno, V. Kautsar, S. K. Saptomo, and A. Kurniawan, “WATER FOOTPRINT AND
CROP WATER USAGE OF OIL PALM (ELEASIS GUINEENSIS) IN CENTRAL KALIMANTAN: ENVIRONMENTAL
SUSTAINABILITY INDICATORS FOR DIFFERENT CROP AGE AND SOIL CONDITIONS,” Water (Switzerland), vol.

11, no. 35, pp. 1-16, 2018, doi: https://doi.org/10.3390/w11010035.

9] N. S. Samsuddin, N. F. A. Aziz, B. Balachandran, and J. Ali, “ECONOMIC CLIMATE MODEL ON THE PALM
PRODUCTION: EMPIRICAL EVIDENCE FOR MALAYSIA AND INDONESIA,” Malaysian Journal of Consumer and
Family Economics, p., 2024, doi: https://doi.org/10.60016/majcafe.v33.17.

[10] A. Thant and W. Aye, “FUTURE PREDICTIONS OF RAINFALL USING GCMS: A CASE STUDY FOR MANDALAY,
MYANMAR,” International Journal of Scientific and Research Publications (IJSRP), p., 2019, doi:
https://doi.org/10.29322/ijs1p.9.09.2019.p9314.

[11] B. Deepthi and B. Sivakumar, “SHORTEST PATH LENGTH FOR EVALUATING GENERAL CIRCULATION
MODELS FOR RAINFALL SIMULATION,” Clim Dyn, vol. 61, pp. 3009-3028, 2023, doi: https://doi.org/10.1007/s00382-
023-06713-x.

[12] E. Rocheta, M. Sugiyanto, F. Johnson, J. Evans, and A. Sharma, “HOW WELL DO GENERAL CIRCULATION MODELS
REPRESENT LOW-FREQUENCY RAINFALL VARIABILITY?,” Water Resour Res, vol. 50, pp. 2108-2123, 2014, doi:
https://doi.org/10.1002/2012WR013085.



https://doi.org/10.1088/1755-1315/1482/1/012006
https://doi.org/10.3303/CET2183020
https://doi.org/10.1007/s10661-022-09915-8
https://doi.org/10.22302/iopri.jur.jpks.v31i2.222
https://doi.org/10.1007/s10668-024-05635-w
https://doi.org/10.1088/1755-1315/782/3/032062
http://dx.doi.org/10.4236/ojs.2014.49063
https://doi.org/10.3390/w11010035
https://doi.org/10.60016/majcafe.v33.17
https://doi.org/10.29322/ijsrp.9.09.2019.p9314
https://doi.org/10.1007/s00382-023-06713-x
https://doi.org/10.1007/s00382-023-06713-x
https://doi.org/10.1002/2012WR013085

BAREKENG: J. Math. & App., vol. 20(2), pp. 1643- 1658, June, 2026. 1657

[13]

[14]

[15]

[16]

[23]
[24]
[25]
[26]
[27]

[28]

[29]

[30]

[31]

X. Su, W. Shao, J. Liu, and Y. Jiang, “MULTI-SITE STATISTICAL DOWNSCALING METHOD USING GCM-BASED
MONTHLY DATA FOR DAILY PRECIPITATION GENERATION,” Water (Basel), vol. 12, pp. 1-21, 2020, doi:

https://doi.org/10.3390/w12030904.
M. D. Saputra, A. F. Hadi, A. Riski, and D. Anggraeni, “PRINCIPAL COMPONENT REGRESSION IN STATISTICAL
DOWNSCALING WITH MISSING VALUE FOR DAILY RAINFALL FORECASTING,” International Journal of

Quantitative Research and Modeling, vol. 2, no. 3, pp. 139-146, 2021, doi: https://doi.org/10.46336/ijqrm.v2i3.151.

A. Mulyati, A. Wigena, and A. Djuraidah, “STATISTICAL DOWNSCALING USING KERNEL QUANTILE
REGRESSION TO PREDICT EXTREME RAINFALL,” Int J Sci Basic Appl Res, vol. 42, pp. 1-9, 2018, [Online].
Available: https://consensus.app/papers/statistical-downscaling-using-kernel-quantile-djuraidah-
mulyati/ed63469d34a65eb28c90670b1cbfaf24/

S. Sahriman and A. S. Yulianti, “STATISTICAL DOWNSCALING MODEL WITH PRINCIPAL COMPONENT
REGRESSION AND LATENT ROOT REGRESSION TO FORECAST RAINFALL IN PANGKEP REGENCY,”
Barekeng: Journal of Mathematics and Its Applications, vol. 17, no. 1, pp. 0401-0410, 2023, doi:

https://doi.org/10.30598/barekengvoll 7iss1pp0401-0410.

S. Sahriman and A. Anisa, “FORECASTING MONTHLY RAINFALL IN PANGKEP REGENCY USING STATISTICAL
DOWNSCALING MODEL WITH ROBUST PRINCIPAL COMPONENT REGRESSION TECHNIQUE,” BAREKENG:
Jurnal llmu Matematika dan Terapan, p., 2025, doi: https://doi.org/10.30598/barekengvoll9iss2pp777-790.

S. Sahriman, E. L. Randa, S. A. Surianda, M. Z. G. Hisyam, Muh. I. Taufik, and G. D. Putra, “RAINFALL FORECASTING
OF SALT PRODUCING AREAS IN PANGKEP REGENCY USING STATISTICAL DOWNSCALING MODEL WITH
LINEARIZED RIDGE REGRESSION DUMMY,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 18, no. 1, pp.
0483-0492, Mar. 2024, doi: https://doi.org/10.30598/barekengvoll8iss1pp0483-0492.

P. Loganathan and A. B. Mahindrakar, “STATISTICAL DOWNSCALING USING PRINCIPAL COMPONENT
REGRESSION FOR CLIMATE CHANGE IMPACT ASSESSMENT AT THE CAUVERY RIVER BASIN,” Journal of

Water and Climate Change, vol. 12, no. 6, pp. 2314-2324, 2021, doi: https://doi.org/10.2166/wcc.2021.223.

Lawrence Livermore National Laboratory, “CMIP6.” [Online]. Available: https://aims2.1Inl.gov/search/cmip6/

A. H. Wigena, “PEMODELAN STATISTICAL DOWNSCALING DENGAN REGRESI PROJECTION PURSUIT
UNTUK PERAMALAN CURAH HUJAN BULANAN,” Institute Pertanian Bogor, 2006.

W. Surianto, “PEMODELAN STATISTICAL DOWNSCALING MENGGUNAKAN COMBINE CLUSTERWISE
REGRESSION UNTUK PENDUGAAN CURAH HUJAN HARIAN,” Institute Pertanian Bogor, 2022.

A. Gwelo, “PRINCIPAL COMPONENTS TO OVERCOME MULTICOLLINEARITY PROBLEM,” Oradea Journal of
Business and Economics, p., 2019, doi: https://doi.org/10.47535/19910JBE062.

M. Raheem, N. Udoh, and A. T. Gbolahan, “CHOOSING APPROPRIATE REGRESSION MODEL IN THE PRESENCE
OF MULTICOLINEARITY,” Open J Stat, p., 2019, doi: https://doi.org/10.4236/0JS.2019.92012.

R. A. Johnson and D. W. Wichern, APPLIED MULTIVARIATE STATISTICAL ANALYSIS, 6 Ed. United States of America:
Pearson Prentice Hall, 2007.

D. N. Gujarati and D. C. Porter, BASIC ECONOMETRICS, 5th ed. United States: The McGraw-Hill Companies, Inc., 2009.
D. A. Setiady and H. Leong, “IMPLEMENTATION OF K-MEANS ALGORITHM ELBOW METHOD AND
SILHOUETTE COEFFICIENT FOR RAINFALL CLASSIFICATION,” Proxies: Jurnal Informatika, p., 2024, doi:
https://doi.org/10.24167/proxies.v4il.12433.

G. Erda, C. Gunawan, and Z. Erda, “GROUPING OF POVERTY IN INDONESIA USING K-MEANS WITH
SILHOUETTE COEFFICIENT,” Parameter: Journal of Statistics, vol. 3, mno. 1, pp. 1-6, 2023, doi:

https://doi.org/10.29040/ijcis.v6il.218.

M. Riasetiawan, A. Ashari, and P. Wahyu, “THE PERFORMANCE EVALUATION OF K-MEANS AND
AGGLOMERATIVE HIERARCHICAL CLUSTERING FOR RAINFALL PATTERNS AND MODELLING,” 2022 6th
International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE), pp. 431—
436, 2022, doi: https://doi.org/10.1109/ICITISEE57756.2022.10057729.

J. Feng and X. Wang, “IMPACT OF TWO TYPES OF LA NINA ON BOREAL AUTUMN RAINFALL AROUND
SOUTHEAST ASIA AND AUSTRALIA,” Atmospheric and Oceanic Science Letters, vol. 11, pp. 1-6, 2018, doi:
https://doi.org/10.1080/16742834.2018.1386538.

S. Zhong, Y. Zhang, and L. Jiang, “IMPACT OF DIFFERENT TYPES OF LA NINA DEVELOPMENT ON THE
PRECIPITATION IN THE MARITIME CONTINENT,” Atmosphere-Ocean, vol. 62, pp. 254-267, 2024, doi:
https://doi.org/10.1080/07055900.2024.232661 1.



https://doi.org/10.3390/w12030904
https://doi.org/10.46336/ijqrm.v2i3.151
https://doi.org/10.30598/barekengvol17iss1pp0401-0410
https://doi.org/10.30598/barekengvol19iss2pp777-790
https://doi.org/10.30598/barekengvol18iss1pp0483-0492
https://doi.org/10.2166/wcc.2021.223
https://doi.org/10.47535/1991OJBE062
https://doi.org/10.4236/OJS.2019.92012
https://doi.org/10.24167/proxies.v4i1.12433
https://doi.org/10.29040/ijcis.v6i1.218
https://doi.org/10.1109/ICITISEE57756.2022.10057729
https://doi.org/10.1080/16742834.2018.1386538
https://doi.org/10.1080/07055900.2024.2326611

1658 Adnan, et al. STATISTICAL MODELING FOR DOWNSCALING USING PRINCIPAL COMPONENT REGRESSION ...



	STATISTICAL MODELING FOR DOWNSCALING USING PRINCIPAL COMPONENT REGRESSION AND DUMMY VARIABLES: A CASE OF SIAK DISTRICT
	1. INTRODUCTION
	2. RESEARCH METHODS
	2.1 Data Sources
	2.2 Analysis Method

	3. RESULTS AND DISCUSSION
	3.1 Data Exploration
	3.2 Precipitation Data from GCM Data
	3.3 Detection of Multicollinearity
	3.4 Data Model Division and Validation
	3.5 Statistical Downscaling Modeling with PCR
	3.6 Statistical Downscaling Modeling with PCR and Dummy Variables

	4. CONCLUSION
	Author Contributions
	Funding Statement
	Acknowledgment
	Declarations
	Declaration of Generative AI and AI-Assisted Technologies
	REFERENCES

