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Article Info ABSTRACT 

Article History: 
Soil moisture is an important indicator in the management of water resources, precision 

agriculture, and disaster mitigation, such as drought and land fires. Fluctuations in soil 

moisture are influenced by various climate variables, requiring a reliable predictive 

approach essential. This research develops a daily soil moisture prediction model using 

Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) algorithms with 

univariate and multivariate approaches. Soil moisture data were obtained from Google 

Earth Engine, while climate data were collected from 10 BMKG stations in East Java for 

the period 2019–2024. Data preprocessing includes cubic spline interpolation to handle 

missing values and Min-Max normalization to achieve uniform feature scaling. Models 

were built using a direct forecasting approach for horizons 𝑡 to 𝑡 + 9 and five evaluation 

metrics: MAE, MSE, RMSE, MAPE, and R². The results show that the multivariate GRU 

model performs best at horizon 𝑡 + 9 with MAE = 0.05455, MSE = 0.00604, RMSE = 

0.07539, MAPE = 0.19280, and R² = starting from 0.9626 on day 1 (t), then decreasing to 

0.8075 on day 10 (𝑡 + 9). The univariate LSTM model excelled in training time efficiency 

(<400 seconds) at most stations. The multivariate GRU model demonstrates the highest 

accuracy and stability, making it suitable for medium- to long-term forecasting, while the 

univariate LSTM excels in training speed, making it effective for daily predictions. The 

model’s performance remains limited to the dataset's spatial and temporal scope. 

Therefore, future research should test the model in other regions and under extreme 

climate conditions, as well as apply transfer learning in data-scarce areas. The novelty of 

this study lies in comparing LSTM and GRU performance for daily soil moisture prediction 

in both univariate and multivariate scenarios, using complete climate variables from 

multiple stations. 
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1. INTRODUCTION 

Indonesia, as a tropical country, holds significant potential for natural resources but is also vulnerable 

to climate change due to its diverse geographical conditions [1]. Climate change over the last 150-200 years 

[2] has had a significant effect on agriculture, water resource management, disaster mitigation, infrastructure 

development, and ecosystem sustainability [3], [4], [5]. In the agricultural sector, climate change shifts 

cropping patterns and reduces crop yields. In water management, climate change impacts water quality and 

availability and increases the risk of natural disasters, requiring better mitigation strategies [6]. 

One critical component influenced by climate variability is soil moisture, which plays a role in the soil-

plant-atmosphere system, hydrology, and climate change [7], [8]. Soil moisture regulates the distribution of 

precipitation, surface flow, and feedback to the atmosphere [9], so accurate monitoring is essential to support 

agricultural productivity, disaster mitigation, and ecosystem sustainability [10], [11]. 

Predicting soil moisture from time-series data is necessary to enable real-time decision-making. Deep 

learning algorithms such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) offer 

advantages in handling sequential dependencies and addressing the vanishing gradient problem [12], [13], 

[14]. GRU has a simpler architecture with computational efficiency advantages over LSTM [15], making it 

a potential alternative for soil moisture prediction. 

Research on soil moisture prediction has been extensively conducted using various approaches. [16] 

employed the Convolutional Neural Network (CNN) algorithm to predict soil moisture based on different 

soil textures and achieved an R² value of 0.983. Although accurate, the study used only a univariate approach 

and did not consider climatic variables. [17] compared the ARIMA, Random Forest (RF), and LSTM 

algorithms for regional soil moisture prediction over a three-day horizon. The results indicated that LSTM 

outperformed the others with a MAPE of 6.76 and MAE of 0.007; however, the study did not 

comprehensively integrate climatic factors. Meanwhile, [18] implemented an LSTM for multivariate 

prediction, incorporating climate variables such as rainfall, season, temperature, evapotranspiration, and soil 

texture. The model achieved a performance of 𝑅² =  0.87 and RMSE =  0.046, suggesting that climate is a 

significant factor in soil moisture prediction. 

Although previous studies have successfully developed soil moisture prediction models using various 

machine learning and deep learning algorithms, several notable limitations remain. Many earlier studies 

focused solely on univariate prediction and overlooked the influence of key climatic variables, such as 

rainfall, temperature, humidity, sunlight duration, and wind speed, which play a crucial role in the dynamics 

of soil moisture. In addition, while LSTM models have been widely used, limited attention has been given to 

comparing their performance with other recurrent neural network architectures such as the GRU, which may 

offer advantages in computational efficiency and architectural simplicity. Therefore, this study aims to 

conduct a comprehensive comparison between LSTM and GRU models in predicting soil moisture using both 

univariate and multivariate approaches (integrated with climatic factors) across various prediction horizons. 

2. RESEARCH METHODS 

 The research process includes collecting data from various trusted sources, pre-processing the data to 

improve dataset quality, dividing the data into training and test sets, and modeling and evaluating the model's 

performance. 

2.1 Dataset  

The data used in this study cover the East Java Province, Indonesia, using soil moisture data and climate 

variables. The data and data sources used in this study are as follows. The data and data sources used in this 

study are as follows: 

1. Soil moisture data from July 1, 2019, to June 30, 2024, was obtained through Google Earth Engine 

(GEE), which integrates various satellite data sources, including SMAP, with a spatial resolution 

of 10 km × 10 km and a temporal resolution of 2-3 days. 

2. Climate data including rainfall (mm),  average humidity (%), minimum temperature (°C), 

maximum temperature (°C), average temperature (°C), duration of sunshine (hours), maximum 

wind speed (m/s), and average wind speed (m/s), were obtained from 10 meteorological stations in 
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East Java Province through the official website of the Meteorology, Climatology, and Geophysics 

Agency (BMKG) at https://dataonline.bmkg.go.id for the same observation period, from July 1, 

2019 to June 30, 2024. 

2.2 Research Stage  

This research was conducted through several stages: data collection, data preprocessing, data split into 

training and test sets, modeling using LSTM and GRU algorithms, both with and without climate features, 

and model testing and evaluation to assess prediction performance. The research stages are shown in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Research Stage 

2.2.1 Data Collection 

Soil moisture data were obtained from Google Earth Engine (SMAP) in 10 km × 10 km resolution for 

the period July 1, 2019 - June 30, 2024. Climate data (rainfall, temperature, humidity, solar irradiation, wind 

speed) were downloaded from BMKG for 10 stations in East Java during the same period. 

2.2.2 Data Preprocessing 

Pre-processing includes descriptive analysis, outlier detection with boxplots, and handling missing 

values using cubic spline interpolation. This method performs well at handling missing values [19]. Cubic 

spline interpolation technique can be calculated using Eq. (1) [20]. 

𝑠𝑖(𝑥) = 𝑎𝑖(𝑥 − 𝑥𝑖)3 + 𝑏𝑖(𝑥 − 𝑥𝑖)2 + 𝑐𝑖(𝑥 − 𝑥𝑖) + 𝑑𝑖.                             (1) 

Next, the data are normalized using the min-max technique. Normalization is important to prevent 

variable bias in predictions [21]. Min-max normalization converts data to the 0-1 range according to Eq. (2) 

[22]. 

𝑥′ =
𝑥 − 𝑥(min)

𝑥(max) − 𝑥(min)
, (2) 

where: 

𝑥′ : normalized value; 

𝑥  : original value of the data; 

𝑥(𝑚𝑎𝑥): maximum value of the data set. 

2.2.3 Data Partition 

fter preprocessing, the data was split into two: 80% for training and 20% for testing. This proportion 

was chosen because it has been empirically proven to optimize model performance [23], [24]. 
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2.2.4 Modeling Using with LSTM & GRU 

Modeling is performed using the LSTM and GRU algorithms with the Keras library in Python. The 

purpose of modeling is to get the best model in predicting soil moisture at 10 stations in East Java Province. 

The model was built in two scenarios: univariate (soil moisture only) and multivariate (using climate 

variables). Hyperparameter tuning is done by grid search to determine the best parameter combination. The 

parameters used in the grid search are shown in Table 1 [25]. 

Table 1. Parameters of LSTM and GRU 
LSTM parameters GRU parameters Description 

LSTM neurons GRU neurons Number of neurons in LSTM/GRU layer 

activation activation Activation function used 

optimizer optimizer Optimizer used 

dropout_rate dropout_rate Dropout ratio to avoid overfitting 

LSTM was first proposed by Hochreiter and Schmidhuber (1997) as an extension of RNN to overcome 

vanishing gradients by adding memory cells. The LSTM architecture is well-suited for predicting time-series 

data due to its ability to retain long-term information [26]. The architecture of an LSTM is shown in Fig. 2. 

 
Figure 2. LSTM Architecture (Modified from [27]) 

Based on Fig. 2, the LSTM has three main gates: the forget gate, input gate, and output gate, which 

regulate the flow of information. Each gate is governed by sigmoid and tanh functions to control the 

information retained or forgotten at each iteration [13]. The equation of each gate can be seen in Eqs. (3)–

(8). 

1. forget gate (𝑓𝑡) = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓),                    (3) 

2. input gate (𝑖𝑡) = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖),                 (4) 

output from input gate (𝐶̃𝑡) = 𝑡𝑎𝑛ℎ(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶),               (5) 

cell state gate (𝐶𝑡) = (𝑓𝑡 ∙ 𝐶𝑡−1 + 𝑖𝑡 ∙ 𝐶̃𝑡),                 (6) 

3. output gate (𝑜𝑡) = σ(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜),                 (7) 

4. hidden state (ℎ𝑡) = 𝑜𝑡 ∙ 𝑡𝑎𝑛ℎ(𝐶𝑡),                  (8) 

where: 

𝜎                        ∶ sigmoid activation function; 

𝑊𝑜, 𝑊𝐶 , 𝑊𝑓 , 𝑊𝑖: weight matrix of each gate;  

ℎ𝑡−1                   ∶ hidden state at previous timestep;  

𝑥𝑡                        ∶ input at current timestep;  

𝑏𝑜, 𝑏𝐶 , 𝑏𝑓 , 𝑏𝑖     ∶ bias of each gate.   
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Meanwhile, GRU was developed by [14] as a simpler version of LSTM. GRU has only an update gate 

and a reset gate, which combine the forget and input gate functions into a single mechanism. This structure 

makes GRU more computationally efficient, resulting in faster training time without sacrificing accuracy 

[15]. The architecture of the GRU is shown in Fig. 3. 

  

Figure 3. GRU Architecture (Modified from [28]) 

Fig. 3 shows the architecture of GRU, which processes input and hidden state through the reset gate 

and the update gate. The calculation process in GRU involves pointwise addition (⨁) and pointwise 

multiplication (⊙) operations to combine old and new information into the current state [14]. The equations 

for each gate are given in Eqs. (9) – (12). 

1. reset gate (rt) = σ(Wr ∙ [ht−1, xt] + br),                       (9) 

2. update gate (zt)= σ(Wz ∙ [ht−1,xt] + bz),                      (10) 

new memory (h̃t) = tanh(W ∙ [rt ⊙ ht−1, xt] + b),              (11) 

current state (ℎ𝑡) = 𝑧𝑡 ⊙ ℎ𝑡−1 + (1 − 𝑧𝑡) ⊙ ℎ̃𝑡 ,                                   (12) 

where:  

𝜎     : sigmoid activation function (produces output between 0 and 1); 

𝑊𝑟 , 𝑊𝑧, 𝑊 : weights for reset gate; 

ℎ𝑡−1       : hidden state at previous timestep; 

𝑥𝑡     : input at timestep 𝑡; 

𝑏𝑟, 𝑏𝑧, b     : bias of each gate. 

2.2.5 Model Evaluation 

Model evaluation is performed using several metrics, namely R-square (R²), MAE, MAPE, MSE, and 

RMSE. R² is used to measure how well the model explains the variability in the data, with values close to 1 

indicating better predictive performance [29]. MAE calculates the average absolute error between predicted 

and actual values, whereas MAPE measures the error as a percentage for easier interpretation [30]. MSE 

calculates the average squared error, and RMSE is the square root of MSE, scaling back to the original units 

of the data. These metrics are used to assess the predictive performance of the LSTM and GRU models in 

this study, calculated using Eqs. (13) – (17).  

𝑅2  =
∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1  − ∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

, (13) 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦𝑖 −

𝑛

𝑖=1

 𝑦̂𝑖|, (14) 
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𝑀𝐴𝑃𝐸 =
1

𝑛
 ∑ |

𝑦𝑖 − 𝑦̂𝑖

𝑦𝑖
|

𝑛

𝑖=1

  × 100%, (15) 

𝑀𝑆𝐸 =  
1

𝑛
  ∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

, (16) 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

. (17) 

where:  

𝑦𝑖  : the observed value for the ith observation; 

𝑦̂𝑖  : the predicted value for the ith observation; 

𝑦̅   : the average of all observed values; 

𝑛   : the total number of data points. 

3. RESULTS AND DISCUSSION 

3.1 Data Collection 

Data collection was carried out by downloading climate data from 10 BMKG stations located in East 

Java Province, namely: Malang Geophysics Station, Nganjuk Geophysics Station, Pasuruan Geophysics 

Station, East Java Climatology Station, Banyuwangi Meteorology Station, Juanda Meteorology Station, 

Tanjung Perak Maritime Meteorology Station, Perak I Meteorology Station, Trunojoyo Meteorology Station, 

and Tuban Meteorology Station. Soil moisture data were obtained from the Google Earth Engine (GEE) 

platform and matched to the coordinates of each BMKG station. All datasets were then merged using 

Microsoft Excel, separately for each station. The combined dataset for each station consists of 1828 rows × 

9 columns, representing daily records from July 1, 2019, to June 30, 2024. The data were processed separately 

for each station because both LSTM and GRU models are time-series-based and highly dependent on the 

temporal patterns and continuity of data at each specific location. 

3.2 Data Preprocessing 

The data preprocessing stage begins with identifying and handling missing values to ensure data 

completeness. The number of missing values varied across variables, including the rainfall variable. Missing 

value handling was performed using the Cubic Spline Interpolation method. This method constructs a smooth, 

continuous interpolation function using cubic polynomials to estimate missing values. Cubic Spline 

Interpolation works by dividing the data range into intervals between known data points and fitting a third-

degree (cubic) polynomial to each interval. The method ensures that the resulting curve is smooth at the 

boundaries, meaning the first and second derivatives are continuous across all intervals. This results in more 

natural and accurate estimates than linear interpolation, especially when the data exhibit non-linear patterns. 

The selection of the Cubic Spline Interpolation method is based on the study by [19], which showed that 

Spline Interpolation outperformed IL and ISt in handling missing values. 

As shown in Fig. 4, the missing rainfall data for several dates from 2019 to 2024 were imputed using 

the cubic spline interpolation method. The green dots in the graph indicate the previously missing values that 

have been filled, while the blue line represents the actual rainfall data. The results show that the green dots 

blend smoothly with the blue line's pattern, thereby preserving the trend and continuity of the time series. 

This approach provides a more realistic approach to filling missing data than relying solely on simple 

averages or constant values. 

 



BAREKENG: J. Math. & App., vol. 20(2), pp. 1659- 1674, June, 2026.     1665 

 

 

 
Figure 4. Visualization of Rainfall Data and Handled Missing Values Using Cubic Spline Interpolation 

After handling missing values, the data is normalized using Min-Max scaling so that each feature is in 

the range [0, 1]. Normalization is important to speed up model training and avoid the dominance of certain 

features caused by scale differences. This process is applied consistently to training and testing data to 

maintain model integrity. 

3.3 Data Partition 

The dataset is split into two parts: 80% for training and 20% for testing. This division aims to ensure 

that the model has sufficient data to learn underlying patterns and dependencies during the training phase 

[23]. At the same time, the reserved test set enables an objective evaluation of the model's generalization 

capability on unseen data. By separating the training and test sets, it is possible to assess whether the model 

performs well not only on the data it was trained on but also on new, real-world data, thereby avoiding 

overfitting and ensuring more reliable predictive performance. 

3.4 Modeling with LSTM and GRU 

Soil moisture prediction modeling is performed using LSTM and GRU algorithms implemented with 

the TensorFlow-based Keras library in Python. The model is designed to predict soil moisture for the 1-10 

days horizon at 10 BMKG stations in East Java using univariate and multivariate approaches. The LSTM and 

GRU model architectures for the two scenarios can be seen in Table 2 and Table 3. Each station was modeled 

and tested separately to capture local characteristics. Prediction is performed using a direct strategy, focusing 

on specific forecast horizons and minimizing accumulated error.  

Based on Table 2 and Table 3, architecture of the LSTM and GRU models used in this study to predict 

soil moisture values using two approaches: univariate and multivariate. In the univariate approach, the model 

only receives 1 input feature in the form of daily soil moisture data, so the input layer consists of one node. 

In addition, in the multivariate approach, the model receives nine input features, consisting of one soil 

moisture variable and eight climate variables, namely minimum temperature (Tn), maximum temperature 

(Tx), average temperature (Tavg), average humidity (RH_avg), rainfall (RR), length of sunshine (ss), 

maximum wind speed (ff_x), and average wind speed (ff_avg). With this architecture, it is necessary to tune 

the model parameters to achieve optimal prediction performance. Hyperparameter tuning is performed using 

grid search to find the optimal parameter combination. The parameters used in the grid search are shown in 

Table 4. 

Table 2. Univariate and Multivariate LSTM Architecture 

Characteristic Multivariate Specification Univariate Specification 

Architecture 

1 input layer, 9 nodes  

1 LSTM layer  

1 dropout layer  

1 dense layer  

1 output layer 

1 input layer, 1 node  

1 LSTM layer  

1 dropout layer  

1 dense layer  

1 output layer 

Activation Function relu, tanh relu, tanh 

Optimizer adam, rmsprop adam, rmsprop 
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Table 3. Univariate and Multivariate GRU Architecture 

Characteristic Multivariate Specification Univariate Specification 

Architecture 

1 input layer, 9 nodes  

1 GRU layer  

1 dropout layer  

1 dense layer  

1 output layer 

1 input layer, 1 node  

1 GRU layer  

1 dropout layer  

1 dense layer  

1 output layer 

Activation Function relu, tanh relu, tanh 

Optimizer adam, rmsprop adam, rmsprop 

Table 4. List of Parameter Values for Grid Search in LSTM and GRU Modeling 

Parameter Values 

Number of neurons 50, 100, 150 

Activation relu, tanh 

Optimizer adam, rmsprop 

Dropout_rate 0.01; 0.2; 0.5 

Based on Table 4, the parameters used in the hyperparameter tuning process for LSTM and GRU 

models include the number of neurons (50, 100, 150) to determine the number of neurons in the hidden layer, 

activation (relu, tanh) that play a role in determining the non-linearity of the learning process, optimizer 

(adam, rmsprop) used to optimize weight updates during training, and dropout_rate (0.01; 0.2; 0.5) applied 

to reduce the risk of overfitting by randomly ignoring some neurons during training. The LSTM and GRU 

architectures were designed with 50 epochs and 32 batch_sizes. Parameter adjustment is performed using the 

grid search method, which evaluates all possible parameter combinations to find the best configuration. The 

main objective is to find a set of parameters that yields the best predictive performance from the LSTM and 

GRU models using the available training data. 

After the grid search identifies the best parameter combination, the model is trained on 80% of the 

dataset (training data), with the remaining 20% used for testing. This training process aims to enable the 

model to learn sequential patterns from historical soil moisture data and climate factors, while reserving 

unseen data for evaluating its generalization. After the model has been trained, it is tested on test data that 

was not used during training to evaluate its generalization to new data. The modeling results are presented in 

four tables, each showing the RMSE and 𝑹² values for the univariate LSTM (Table 5), multivariate LSTM 

(Table 6), univariate GRU (Table 7), and multivariate GRU (Table 8) models for each station and prediction 

horizon. 

Table 5. RMSE and 𝑹² Values for Univariate LSTM Soil Moisture Prediction at All Stations for 

Prediction Horizons of 1, 4, 7, and 10 Days 

Station Metric 
Day 

1 4 7 10 

Malang Geophysical RMSE 0.038 0.074 0.091 0.104 

R² 0.956 0.828 0.741 0.667 

Nganjuk Geophysical RMSE 0.035 0.066 0.08 0.092 

R² 0.985 0.945 0.919 0.893 

Pasuruan Geophysical RMSE 0.037 0.057 0.068 0.085 

R² 0.984 0.963 0.948 0.918 

Jawa Timur Climatological RMSE 0.043 0.08 0.092 0.103 

R² 0.976 0.918 0.89 0.864 

Banyuwangi Meteorological RMSE 0.052 0.091 0.101 0.108 

R² 0.827 0.464 0.344 0.25 

Juanda Meteorological RMSE 0.028 0.054 0.068 0.082 

R² 0.99 0.962 0.941 0.915 

Maritim Tanjung Perak 

Meteorological 

RMSE 0.041 0.086 0.098 0.103 

R² 0.981 0.919 0.895 0.883 
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Station Metric 
Day 

1 4 7 10 

Perak I Meteorological RMSE 0.041 0.085 0.097 0.105 

R² 0.981 0.92 0.897 0.878 

Trunojoyo Meteorological RMSE 0.046 0.08 0.091 0.098 

R² 0.953 0.859 0.818 0.789 

Tuban Meteorological RMSE 0.042 0.075 0.088 0.098 

R² 0.974 0.918 0.887 0.86 

 

Table 6. MSE and 𝑹²  Values for Multivariate LSTM Soil Moisture Prediction at All Stations for 

Prediction Horizons of 1, 4, 7, and 10 Days 

Station Metric 
Day 

1 4 7 10 

Malang Geophysical RMSE 0.038 0.071 0.089 0.098 

R² 0.955 0.843 0.756 0.7 

Nganjuk Geophysical RMSE 0.034 0.064 0.076 0.086 

R² 0.985 0.947 0.926 0.906 

Pasuruan Geophysical RMSE 0.037 0.062 0.082 0.11 

R² 0.985 0.956 0.925 0.862 

Jawa Timur Climatological RMSE 0.042 0.076 0.087 0.094 

R² 0.978 0.925 0.903 0.886 

Banyuwangi Meteorological RMSE 0.054 0.09 0.104 0.105 

R² 0.814 0.48 0.304 0.288 

Juanda Meteorological RMSE 0.028 0.053 0.063 0.07 

R² 0.99 0.964 0.95 0.937 

Maritim Tanjung Perak 

Meteorological 

RMSE 0.04 0.084 0.094 0.096 

R² 0.983 0.923 0.903 0.899 

Perak I Meteorological RMSE 0.041 0.084 0.096 0.1 

R² 0.982 0.923 0.898 0.89 

Trunojoyo Meteorological RMSE 0.047 0.076 0.087 0.09 

R² 0.951 0.871 0.831 0.82 

Tuban Meteorological RMSE 0.041 0.073 0.087 0.091 

R² 0.975 0.921 0.89 0.878 

 

Table 7. RMSE and 𝑹²  Values for Univariate GRU Soil Moisture Prediction at All Stations for 

Prediction Horizons of 1, 4, 7, and 10 Days 

Station Metric 
Day 

1 4 7 10 

Malang Geophysical RMSE 0.036 0.073 0.092 0.105 

R² 0.959 0.833 0.735 0.661 

Nganjuk Geophysical RMSE 0.033 0.065 0.079 0.09 

R² 0.986 0.947 0.921 0.896 

Pasuruan Geophysical RMSE 0.036 0.056 0.069 0.084 

R² 0.985 0.964 0.946 0.921 

Jawa Timur Climatological RMSE 0.042 0.08 0.092 0.104 

R² 0.977 0.917 0.89 0.861 

Banyuwangi Meteorological RMSE 0.052 0.091 0.101 0.108 

R² 0.827 0.466 0.336 0.249 
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Station Metric 
Day 

1 4 7 10 

Juanda Meteorological RMSE 0.026 0.054 0.067 0.081 

R² 0.991 0.963 0.944 0.917 

Maritim Tanjung Perak 

Meteorological 

RMSE 0.04 0.084 0.097 0.105 

R² 0.983 0.923 0.897 0.878 

Perak I Meteorological RMSE 0.04 0.085 0.098 0.105 

R² 0.983 0.921 0.895 0.88 

Trunojoyo Meteorological RMSE 0.046 0.079 0.091 0.099 

R² 0.954 0.862 0.818 0.784 

Tuban Meteorological RMSE 0.042 0.074 0.088 0.098 

R² 0.974 0.919 0.887 0.859 

 

Table 8. RMSE and 𝑹² Values for Multivariate GRU Soil Moisture Prediction at All Stations for 

Prediction Horizons of 1. 4. 7. and 10 Days 

Station Metric Day 

1 4 7 10 

Malang Geophysical RMSE 0.036 0.072 0.088 0.1 

R² 0.96 0.84 0.762 0.69 

Nganjuk Geophysical RMSE 0.034 0.064 0.077 0.086 

R² 0.986 0.948 0.925 0.906 

Pasuruan Geophysical RMSE 0.036 0.062 0.086 0.109 

R² 0.985 0.956 0.917 0.865 

Jawa Timur Climatological RMSE 0.042 0.076 0.088 0.092 

R² 0.978 0.925 0.9 0.891 

Banyuwangi Meteorological RMSE 0.051 0.089 0.101 0.104 

R² 0.832 0.49 0.339 0.304 

Juanda Meteorological RMSE 0.025 0.053 0.062 0.07 

R² 0.992 0.965 0.952 0.937 

Maritim Tanjung Perak 

Meteorological 

RMSE 0.039 0.083 0.094 0.097 

R² 0.983 0.925 0.904 0.897 

Perak I Meteorological RMSE 0.04 0.083 0.096 0.1 

R² 0.982 0.925 0.9 0.89 

Trunojoyo Meteorological RMSE 0.046 0.077 0.087 0.091 

R² 0.954 0.87 0.833 0.819 

Tuban Meteorological RMSE 0.042 0.074 0.087 0.092 

R² 0.974 0.92 0.89 0.876 

Based on Table 5, Table 6, Table 7, and Table 8, all models (univariate LSTM, multivariate LSTM, 

univariate GRU, and multivariate GRU) demonstrate good soil moisture prediction performance at most 

stations. particularly for short-term horizons (t+1) with 𝑅² values above 0.90 and low RMSE. However. 

accuracy tends to decrease as the prediction horizon increases. Among the four models, the multivariate GRU 

shows the best overall performance, with high 𝑅² values and low RMSE at many stations, especially for 

short- to medium-term horizons. The univariate and multivariate LSTM models also produce competitive 

results. Although their performance at some stations is slightly below that of the multivariate GRU. The 

univariate GRU tends to produce smoother predictions, but its 𝑅² decreases more sharply over longer 

horizons. Stations such as Juanda Meteorological Station are examples of locations with very high 

performance across all models. while Banyuwangi Meteorological Station consistently shows the lowest 

accuracy. 
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3.5 Model Evaluation 

evaluated using several metrics. namely MAE, MSE, RMSE, MAPE, and 𝑅². The 5 metrics are 

calculated from the average of the predicted results across 10 observation stations and 10 times horizons (t to 

t+9). The performance comparison for each metric is presented sequentially: Fig. 5 illustrates the average 

MAE values. Fig.6 displays the MSE. Fig. 7 shows the RMSE. Fig. 8 presents the MAPE. and Fig. 9 depicts 

the R² values. Fig. 10 illustrates the training time (in seconds) of each model at each station, highlighting 

computational efficiency differences across models and locations. 

 
Figure 5. Comparison of Average MAE Values of LSTM and GRU Models 

 

 
Figure 6. Comparison of Average MSE Values of LSTM and GRU Models 

 

 

Figure 7. Comparison of Average Values of RMSE of LSTM and GRU Models 

 

Figure 8. Comparison of the Average Value of MAPE LSTM and GRU Models 
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Figure 9. Comparison of the Average Value of R² LSTM and GRU Models 

Based on the average evaluation results of the five-performance metrics (MAE, MSE, RMSE, 𝑅², and 

MAPE) shown in Fig. 5, Fig. 6, Fig. 7, Fig. 8, and Fig. 9, the multivariate GRU model consistently shows 

the most superior performance compared to other models. In the MAE metric, multivariate GRU obtained 

the lowest value of 0.05455, followed by multivariate LSTM (0.05494), univariate GRU (0.05530), and 

univariate LSTM (0.05583). Similar results were also seen in the MSE metric, where multivariate GRU again 

recorded the lowest value of 0.00604, slightly better than multivariate LSTM (0.00613), univariate GRU 

(0.00634), and univariate LSTM (0.00638). On the RMSE metric, multivariate GRU recorded an average of 

0.07539, indicating a consistently low error rate, followed by multivariate LSTM (0.07595), and univariate 

GRU (0.07698), while univariate LSTM obtained the highest value of 0.07750. In terms of relative accuracy 

based on percentage error (MAPE), multivariate GRU is again the best model with a value of 0.19280, 

followed by multivariate LSTM (0.19578), univariate LSTM (0.18302), and univariate GRU (0.17917). 

The consistency of the multivariate GRU's performance is also evident in the R² metric shown in Fig. 

10. The model recorded an R² of 0.9626 at the day 1 horizon and maintained an R² of 0.8075 at day 10. This 

shows that the multivariate GRU not only achieves the lowest prediction error but also demonstrates better 

long-term prediction stability. 

Overall, the multivariate GRU is recommended as the most reliable model for daily soil moisture 

prediction based on meteorological data, especially in the multivariate scenario with a prediction horizon of 

up to 10 days ahead. The model shows a balance between prediction accuracy, performance stability, and 

generalization efficiency. However, for short-term prediction needs, univariate GRU can also be an 

alternative with competitive performance. 

  
Figure 10. Training Time for Each Station and Model 
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Based on Fig. 10, the multivariate GRU has the longest training time. reaching more than 550 seconds 

at stations such as Geofisika Malang and Meteorology Tuban. This is due to the model's complexity, which 

processes many features at once. Multivariate LSTM models are more efficient than multivariate GRU, with 

training times generally under 500 seconds. Meanwhile, the univariate LSTM and univariate GRU showed 

the fastest training times. The univariate GRU even recorded times below 300 seconds at some stations. 

Overall, the multivariate model is more accurate but requires longer training time, while the univariate 

model is more computationally efficient. Therefore, model selection should balance accuracy and efficiency. 

4. CONCLUSION 

This study has successfully built a daily soil moisture prediction model based on deep learning 

algorithms LSTM and GRU, both in univariate and multivariate scenarios, by integrating climate variables 

from 10 meteorological stations in East Java Province. Evaluation results using five metrics (MAE, MSE, 

RMSE, MAPE, and 𝑅²) indicated that the multivariate GRU model was the best-performing. This model 

yielded the lowest error values (MAE = 0.05455; MSE = 0.00604; RMSE = 0.07539; MAPE = 0.19280) and 

the highest long-term prediction stability (R² from 0.955 at t to 0.802 at t+9). The univariate GRU model also 

demonstrated strong performance at short prediction horizons. However, the fastest training time was 

recorded by the univariate LSTM model (<400 seconds). making it the most computationally efficient option. 

In contrast. multivariate models. especially the multivariate GRU. require longer training times (>550 seconds 

at some stations) due to the increased input complexity. Therefore, model selection should consider both the 

prediction time horizon and computational constraints. For medium to long-term forecasting, the multivariate 

GRU is recommended for its accuracy and stability. Meanwhile, for fast, efficient daily predictions, the 

univariate LSTM is a practical alternative. Future research should explore applications across different 

regions and climate conditions. with a focus on developing a real-time early warning system based on soil 

moisture prediction. In addition. Future studies are encouraged to expand the geographical coverage of 

datasets and investigate hybrid modeling approaches that combine the strengths of multiple algorithms to 

further enhance prediction accuracy and robustness. Researchers should also consider incorporating 

additional environmental variables and testing transfer learning techniques for regions with limited data. and 

evaluating model performance under extreme climate events to ensure broader applicability and resilience. 
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