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1. INTRODUCTION

Indonesia, as a tropical country, holds significant potential for natural resources but is also vulnerable
to climate change due to its diverse geographical conditions [ 1]. Climate change over the last 150-200 years
[2] has had a significant effect on agriculture, water resource management, disaster mitigation, infrastructure
development, and ecosystem sustainability [3], [4], [5]. In the agricultural sector, climate change shifts
cropping patterns and reduces crop yields. In water management, climate change impacts water quality and
availability and increases the risk of natural disasters, requiring better mitigation strategies [6].

One critical component influenced by climate variability is soil moisture, which plays a role in the soil-
plant-atmosphere system, hydrology, and climate change 7], [8]. Soil moisture regulates the distribution of
precipitation, surface flow, and feedback to the atmosphere [9], so accurate monitoring is essential to support
agricultural productivity, disaster mitigation, and ecosystem sustainability [10], [11].

Predicting soil moisture from time-series data is necessary to enable real-time decision-making. Deep
learning algorithms such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) offer
advantages in handling sequential dependencies and addressing the vanishing gradient problem [12], [13],
[14]. GRU has a simpler architecture with computational efficiency advantages over LSTM | 15], making it
a potential alternative for soil moisture prediction.

Research on soil moisture prediction has been extensively conducted using various approaches. [16]
employed the Convolutional Neural Network (CNN) algorithm to predict soil moisture based on different
soil textures and achieved an R? value of 0.983. Although accurate, the study used only a univariate approach
and did not consider climatic variables. [17] compared the ARIMA, Random Forest (RF), and LSTM
algorithms for regional soil moisture prediction over a three-day horizon. The results indicated that LSTM
outperformed the others with a MAPE of 6.76 and MAE of 0.007; however, the study did not
comprehensively integrate climatic factors. Meanwhile, [18] implemented an LSTM for multivariate
prediction, incorporating climate variables such as rainfall, season, temperature, evapotranspiration, and soil
texture. The model achieved a performance of R = 0.87 and RMSE = 0.046, suggesting that climate is a
significant factor in soil moisture prediction.

Although previous studies have successfully developed soil moisture prediction models using various
machine learning and deep learning algorithms, several notable limitations remain. Many earlier studies
focused solely on univariate prediction and overlooked the influence of key climatic variables, such as
rainfall, temperature, humidity, sunlight duration, and wind speed, which play a crucial role in the dynamics
of soil moisture. In addition, while LSTM models have been widely used, limited attention has been given to
comparing their performance with other recurrent neural network architectures such as the GRU, which may
offer advantages in computational efficiency and architectural simplicity. Therefore, this study aims to
conduct a comprehensive comparison between LSTM and GRU models in predicting soil moisture using both
univariate and multivariate approaches (integrated with climatic factors) across various prediction horizons.

2. RESEARCH METHODS

The research process includes collecting data from various trusted sources, pre-processing the data to
improve dataset quality, dividing the data into training and test sets, and modeling and evaluating the model's
performance.

2.1 Dataset

The data used in this study cover the East Java Province, Indonesia, using soil moisture data and climate
variables. The data and data sources used in this study are as follows. The data and data sources used in this
study are as follows:

1. Soil moisture data from July 1, 2019, to June 30, 2024, was obtained through Google Earth Engine
(GEE), which integrates various satellite data sources, including SMAP, with a spatial resolution
of 10 km x 10 km and a temporal resolution of 2-3 days.

2. Climate data including rainfall (mm), average humidity (%), minimum temperature (°C),
maximum temperature (°C), average temperature (°C), duration of sunshine (hours), maximum
wind speed (m/s), and average wind speed (m/s), were obtained from 10 meteorological stations in
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East Java Province through the official website of the Meteorology, Climatology, and Geophysics
Agency (BMKG) at https://dataonline.bmkg.go.id for the same observation period, from July 1,
2019 to June 30, 2024.

2.2 Research Stage

This research was conducted through several stages: data collection, data preprocessing, data split into
training and test sets, modeling using LSTM and GRU algorithms, both with and without climate features,
and model testing and evaluation to assess prediction performance. The research stages are shown in Fig. 1.

Data Collection

v
Data Preprocessing LSTM and GRU Modeling

without Climate features
v
Data Partition 47/ Training data /—

! LSTM and GRU Modeling

with climate features
/ Test Data /

v

Model Testing and Evaluation 47/ Prediction Model /

Figure 1. Research Stage
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2.2.1 Data Collection

Soil moisture data were obtained from Google Earth Engine (SMAP) in 10 km x 10 km resolution for
the period July 1, 2019 - June 30, 2024. Climate data (rainfall, temperature, humidity, solar irradiation, wind
speed) were downloaded from BMKG for 10 stations in East Java during the same period.

2.2.2 Data Preprocessing

Pre-processing includes descriptive analysis, outlier detection with boxplots, and handling missing
values using cubic spline interpolation. This method performs well at handling missing values [19]. Cubic
spline interpolation technique can be calculated using Eq. (1) [20].

5i(x) = a;(x — x;)* + by (x — x)* + ¢;(x — x;) + d;. (1)
Next, the data are normalized using the min-max technique. Normalization is important to prevent

variable bias in predictions [21|. Min-max normalization converts data to the 0-1 range according to Eq. (2)
[22].

, x — x(min)
= —, ()
x(max) — x(min)
where:
x' : normalized value;
x : original value of the data;

x(max): maximum value of the data set.

2.2.3 Data Partition

fter preprocessing, the data was split into two: 80% for training and 20% for testing. This proportion
was chosen because it has been empirically proven to optimize model performance [23], [24].
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2.2.4 Modeling Using with LSTM & GRU

Modeling is performed using the LSTM and GRU algorithms with the Keras library in Python. The
purpose of modeling is to get the best model in predicting soil moisture at 10 stations in East Java Province.
The model was built in two scenarios: univariate (soil moisture only) and multivariate (using climate
variables). Hyperparameter tuning is done by grid search to determine the best parameter combination. The
parameters used in the grid search are shown in Table 1 [25].

Table 1. Parameters of LSTM and GRU

LSTM parameters GRU parameters Description
LSTM neurons GRU neurons Number of neurons in LSTM/GRU layer
activation activation Activation function used
optimizer optimizer Optimizer used
dropout _rate dropout rate Dropout ratio to avoid overfitting

LSTM was first proposed by Hochreiter and Schmidhuber (1997) as an extension of RNN to overcome
vanishing gradients by adding memory cells. The LSTM architecture is well-suited for predicting time-series
data due to its ability to retain long-term information [26]. The architecture of an LSTM is shown in Fig. 2.
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Figure 2. LSTM Architecture (Modified from [27])

Based on Fig. 2, the LSTM has three main gates: the forget gate, input gate, and output gate, which
regulate the flow of information. Each gate is governed by sigmoid and tanh functions to control the
information retained or forgotten at each iteration [13]. The equation of each gate can be seen in Egs. (3)—
(8).

1. forget gate (f;) = O'(Wf [heoq, xe] + bf), 3)
2. input gate (i;) = o(W; - [he_q, x¢] + by), 4)
output from input gate (C,) = tanh(W¢ - [he_1, X¢] + bc), (5)
cell state gate (C;) = (ft “Ciq i C}), (6)
3. output gate (0;) = o(W, - [ht_1,x¢] + by), (7)
4. hidden state (h;) = o; - tanh(C}), ®)
where:
o : sigmoid activation function;

Wo, We, Wr, W;: weight matrix of each gate;
he—q : hidden state at previous timestep;
Xt : input at current timestep;

bo, bc, by, by : bias of each gate.
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Meanwhile, GRU was developed by | 14] as a simpler version of LSTM. GRU has only an update gate
and a reset gate, which combine the forget and input gate functions into a single mechanism. This structure
makes GRU more computationally efficient, resulting in faster training time without sacrificing accuracy
[15]. The architecture of the GRU is shown in Fig. 3.

h,
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x
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Figure 3. GRU Architecture (Modified from [28])

Fig. 3 shows the architecture of GRU, which processes input and hidden state through the reset gate
and the update gate. The calculation process in GRU involves pointwise addition (@) and pointwise
multiplication () operations to combine old and new information into the current state [ 14]. The equations
for each gate are given in Eqs. (9) — (12).

1. reset gate (ry) = o(W, - [hi_1,X¢] + by), ©
2. update gate (z;)= O'(WZ ‘[heop xe] + bz), (10)
new memory (h;) = tanh(W - [r; @ he_1,%] +b), (11
current state (hy) = z, © he—q + (1 —2,) © hy, (12)
where:
o : sigmoid activation function (produces output between 0 and 1);

W,., W,, W : weights for reset gate;
hi_q : hidden state at previous timestep;
Xt : input at timestep t;

b,,b,,b :Dbias of each gate.

2.2.5 Model Evaluation

Model evaluation is performed using several metrics, namely R-square (R?), MAE, MAPE, MSE, and
RMSE. R? is used to measure how well the model explains the variability in the data, with values close to 1
indicating better predictive performance [29]. MAE calculates the average absolute error between predicted
and actual values, whereas MAPE measures the error as a percentage for easier interpretation [30]. MSE
calculates the average squared error, and RMSE is the square root of MSE, scaling back to the original units
of the data. These metrics are used to assess the predictive performance of the LSTM and GRU models in
this study, calculated using Eqs. (13) —(17).

2ie1 (i — y)? - iy — 912
Ym0 — y)?

R? = , (13)

n
1
MAE = =1y - 5il, (14)
i=1
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n

1 C— 9.
MAPE = - z |u| X 100%, (15)
n & Vi
=1
n
1 52
MSE = - Z(}’i - 3% (16)
i=1
RMSE = (17)

where:

y; : the observed value for the ith observation;

~

¥; : the predicted value for the ith observation;

: the average of all observed values;

n : the total number of data points.

3. RESULTS AND DISCUSSION

3.1 Data Collection

Data collection was carried out by downloading climate data from 10 BMKG stations located in East
Java Province, namely: Malang Geophysics Station, Nganjuk Geophysics Station, Pasuruan Geophysics
Station, East Java Climatology Station, Banyuwangi Meteorology Station, Juanda Meteorology Station,
Tanjung Perak Maritime Meteorology Station, Perak I Meteorology Station, Trunojoyo Meteorology Station,
and Tuban Meteorology Station. Soil moisture data were obtained from the Google Earth Engine (GEE)
platform and matched to the coordinates of each BMKG station. All datasets were then merged using
Microsoft Excel, separately for each station. The combined dataset for each station consists of 1828 rows x
9 columns, representing daily records from July 1, 2019, to June 30, 2024. The data were processed separately
for each station because both LSTM and GRU models are time-series-based and highly dependent on the
temporal patterns and continuity of data at each specific location.

3.2 Data Preprocessing

The data preprocessing stage begins with identifying and handling missing values to ensure data
completeness. The number of missing values varied across variables, including the rainfall variable. Missing
value handling was performed using the Cubic Spline Interpolation method. This method constructs a smooth,
continuous interpolation function using cubic polynomials to estimate missing values. Cubic Spline
Interpolation works by dividing the data range into intervals between known data points and fitting a third-
degree (cubic) polynomial to each interval. The method ensures that the resulting curve is smooth at the
boundaries, meaning the first and second derivatives are continuous across all intervals. This results in more
natural and accurate estimates than linear interpolation, especially when the data exhibit non-linear patterns.
The selection of the Cubic Spline Interpolation method is based on the study by [19], which showed that
Spline Interpolation outperformed IL and ISt in handling missing values.

As shown in Fig. 4, the missing rainfall data for several dates from 2019 to 2024 were imputed using
the cubic spline interpolation method. The green dots in the graph indicate the previously missing values that
have been filled, while the blue line represents the actual rainfall data. The results show that the green dots
blend smoothly with the blue line's pattern, thereby preserving the trend and continuity of the time series.
This approach provides a more realistic approach to filling missing data than relying solely on simple
averages or constant values.
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Figure 4. Visualization of Rainfall Data and Handled Missing Values Using Cubic Spline Interpolation

After handling missing values, the data is normalized using Min-Max scaling so that each feature is in
the range [0, 1]. Normalization is important to speed up model training and avoid the dominance of certain
features caused by scale differences. This process is applied consistently to training and testing data to
maintain model integrity.

3.3 Data Partition

The dataset is split into two parts: 80% for training and 20% for testing. This division aims to ensure
that the model has sufficient data to learn underlying patterns and dependencies during the training phase
[23]. At the same time, the reserved test set enables an objective evaluation of the model's generalization
capability on unseen data. By separating the training and test sets, it is possible to assess whether the model
performs well not only on the data it was trained on but also on new, real-world data, thereby avoiding
overfitting and ensuring more reliable predictive performance.

3.4 Modeling with LSTM and GRU

Soil moisture prediction modeling is performed using LSTM and GRU algorithms implemented with
the TensorFlow-based Keras library in Python. The model is designed to predict soil moisture for the 1-10
days horizon at 10 BMKG stations in East Java using univariate and multivariate approaches. The LSTM and
GRU model architectures for the two scenarios can be seen in Table 2 and Table 3. Each station was modeled
and tested separately to capture local characteristics. Prediction is performed using a direct strategy, focusing
on specific forecast horizons and minimizing accumulated error.

Based on Table 2 and Table 3, architecture of the LSTM and GRU models used in this study to predict
soil moisture values using two approaches: univariate and multivariate. In the univariate approach, the model
only receives 1 input feature in the form of daily soil moisture data, so the input layer consists of one node.
In addition, in the multivariate approach, the model receives nine input features, consisting of one soil
moisture variable and eight climate variables, namely minimum temperature (Tn), maximum temperature
(Tx), average temperature (Tavg), average humidity (RH avg), rainfall (RR), length of sunshine (ss),
maximum wind speed (ff x), and average wind speed (ff_avg). With this architecture, it is necessary to tune
the model parameters to achieve optimal prediction performance. Hyperparameter tuning is performed using
grid search to find the optimal parameter combination. The parameters used in the grid search are shown in
Table 4.

Table 2. Univariate and Multivariate LSTM Architecture

Characteristic Multivariate Specification Univariate Specification
1 input layer, 9 nodes 1 input layer, 1 node
1 LSTM layer 1 LSTM layer
Architecture 1 dropout layer 1 dropout layer
1 dense layer 1 dense layer
1 output layer 1 output layer
Activation Function relu, tanh relu, tanh

Optimizer adam, rmsprop adam, rmsprop
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Table 3. Univariate and Multivariate GRU Architecture
Characteristic =~ Multivariate Specification Univariate Specification

1 input layer, 9 nodes 1 input layer, 1 node
1 GRU layer 1 GRU layer
Architecture 1 dropout layer 1 dropout layer
1 dense layer 1 dense layer
1 output layer 1 output layer
Activation Function relu, tanh relu, tanh
Optimizer adam, rmsprop adam, rmsprop

Table 4. List of Parameter Values for Grid Search in LSTM and GRU Modeling

Parameter Values
Number of neurons 50, 100, 150
Activation relu, tanh
Optimizer adam, rmsprop
Dropout_rate 0.01;0.2; 0.5

Based on Table 4, the parameters used in the hyperparameter tuning process for LSTM and GRU
models include the number of neurons (50, 100, 150) to determine the number of neurons in the hidden layer,
activation (relu, tanh) that play a role in determining the non-linearity of the learning process, optimizer
(adam, rmsprop) used to optimize weight updates during training, and dropout_rate (0.01; 0.2; 0.5) applied
to reduce the risk of overfitting by randomly ignoring some neurons during training. The LSTM and GRU
architectures were designed with 50 epochs and 32 batch_sizes. Parameter adjustment is performed using the
grid search method, which evaluates all possible parameter combinations to find the best configuration. The
main objective is to find a set of parameters that yields the best predictive performance from the LSTM and
GRU models using the available training data.

After the grid search identifies the best parameter combination, the model is trained on 80% of the
dataset (training data), with the remaining 20% used for testing. This training process aims to enable the
model to learn sequential patterns from historical soil moisture data and climate factors, while reserving
unseen data for evaluating its generalization. After the model has been trained, it is tested on test data that
was not used during training to evaluate its generalization to new data. The modeling results are presented in
four tables, each showing the RMSE and R? values for the univariate LSTM (Table 5), multivariate LSTM
(Table 6), univariate GRU (Table 7), and multivariate GRU (Table 8) models for each station and prediction
horizon.

Table 5. RMSE and R? Values for Univariate LSTM Soil Moisture Prediction at All Stations for
Prediction Horizons of 1, 4, 7, and 10 Days

. . Day
Station Metric
1 4 7 10
Malang Geophysical RMSE 0.038 0.074 0.091 0.104
R? 0.956 0.828 0.741 0.667
Nganjuk Geophysical RMSE 0.035 0.066 0.08 0.092
R? 0.985 0.945 0.919 0.893
Pasuruan Geophysical RMSE 0.037 0.057 0.068 0.085
R? 0.984 0.963 0.948 0918
Jawa Timur Climatological RMSE 0.043 0.08 0.092 0.103
R? 0.976 0.918 0.89 0.864
Banyuwangi Meteorological RMSE 0.052 0.091 0.101 0.108
R? 0.827 0.464 0.344 0.25
Juanda Meteorological RMSE 0.028 0.054 0.068 0.082
R? 0.99 0.962 0.941 0.915
Maritim Tanjung Perak RMSE 0.041 0.086 0.098 0.103

Meteorological R? 0.981 0.919 0.895 0.883
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Day
Station Metric
4 7 10
Perak I Meteorological RMSE 0.041 0.085 0.097 0.105
R? 0.981 0.92 0.897 0.878
Trunojoyo Meteorological RMSE 0.046 0.08 0.091 0.098
R? 0.953 0.859 0.818 0.789
Tuban Meteorological RMSE 0.042 0.075 0.088 0.098
R? 0.974 0.918 0.887 0.86
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Table 6. MSE and R? Values for Multivariate LSTM Soil Moisture Prediction at All Stations for
Prediction Horizons of 1, 4, 7, and 10 Days

. . Day
Station Metric
4 7 10

Malang Geophysical RMSE 0.038 0.071 0.089 0.098

R? 0.955 0.843 0.756 0.7
Nganjuk Geophysical RMSE 0.034 0.064 0.076 0.086
R? 0.985 0.947 0.926 0.906

Pasuruan Geophysical RMSE 0.037 0.062 0.082 0.11
R? 0.985 0.956 0.925 0.862
Jawa Timur Climatological RMSE 0.042 0.076 0.087 0.094
R? 0.978 0.925 0.903 0.886
Banyuwangi Meteorological RMSE 0.054 0.09 0.104 0.105
R? 0.814 0.48 0.304 0.288

Juanda Meteorological RMSE 0.028 0.053 0.063 0.07
R? 0.99 0.964 0.95 0.937
Maritim Tanjung Perak RMSE 0.04 0.084 0.094 0.096
Meteorological R 0.983 0.923 0.903 0.899

Perak I Meteorological RMSE 0.041 0.084 0.096 0.1
R? 0.982 0.923 0.898 0.89

Trunojoyo Meteorological RMSE 0.047 0.076 0.087 0.09
R? 0.951 0.871 0.831 0.82
Tuban Meteorological RMSE 0.041 0.073 0.087 0.091
R? 0.975 0.921 0.89 0.878

Table 7. RMSE and R? Values for Univariate GRU Soil Moisture Prediction at All Stations for
Prediction Horizons of 1, 4, 7, and 10 Days

. . Day
Station Metric
4 7 10

Malang Geophysical RMSE 0.036 0.073 0.092 0.105

R? 0.959 0.833 0.735 0.661

Nganjuk Geophysical RMSE 0.033 0.065 0.079 0.09
R? 0.986 0.947 0.921 0.896

Pasuruan Geophysical RMSE 0.036 0.056 0.069 0.084
R? 0.985 0.964 0.946 0.921

Jawa Timur Climatological RMSE 0.042 0.08 0.092 0.104
R? 0.977 0.917 0.89 0.861

Banyuwangi Meteorological RMSE 0.052 0.091 0.101 0.108
R? 0.827 0.466 0.336 0.249
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Day
Station Metric
1 4 7 10
Juanda Meteorological RMSE 0.026 0.054 0.067 0.081
R? 0.991 0.963 0.944 0.917
Maritim Tanjung Perak RMSE 0.04 0.084 0.097 0.105
Meteorological R? 0.983 0.923 0.897  0.878
Perak I Meteorological RMSE 0.04 0.085 0.098 0.105
R? 0.983 0.921 0.895 0.88
Trunojoyo Meteorological RMSE 0.046 0.079 0.091 0.099
R? 0.954 0.862 0.818 0.784
Tuban Meteorological RMSE 0.042 0.074 0.088 0.098
R? 0.974 0.919 0.887 0.859

Table 8. RMSE and R? Values for Multivariate GRU Soil Moisture Prediction at All Stations for
Prediction Horizons of 1. 4. 7. and 10 Days

Station Metric Day

1 4 7 10

Malang Geophysical RMSE 0.036 0.072 0.088 0.1
R? 0.96 0.84 0.762 0.69
Nganjuk Geophysical RMSE 0.034 0.064 0.077 0.086
R? 0.986 0.948 0.925 0.906
Pasuruan Geophysical RMSE 0.036 0.062 0.086 0.109
R? 0.985 0.956 0.917 0.865
Jawa Timur Climatological RMSE 0.042 0.076 0.088 0.092
R? 0.978 0.925 0.9 0.891
Banyuwangi Meteorological RMSE 0.051 0.089 0.101 0.104
R? 0.832 0.49 0.339 0.304
Juanda Meteorological RMSE 0.025 0.053 0.062 0.07
R? 0.992 0.965 0.952 0.937
Maritim Tanjung Perak RMSE 0.039 0.083 0.094 0.097
Meteorological R 0.983 0.925 0.904  0.897

Perak I Meteorological RMSE 0.04 0.083 0.096 0.1
R? 0.982 0.925 0.9 0.89
Trunojoyo Meteorological RMSE 0.046 0.077 0.087 0.091
R? 0.954 0.87 0.833 0.819
Tuban Meteorological RMSE 0.042 0.074 0.087 0.092
R? 0.974 0.92 0.89 0.876

Based on Table 5, Table 6, Table 7, and Table 8, all models (univariate LSTM, multivariate LSTM,
univariate GRU, and multivariate GRU) demonstrate good soil moisture prediction performance at most
stations. particularly for short-term horizons (t+1) with R? values above 0.90 and low RMSE. However.
accuracy tends to decrease as the prediction horizon increases. Among the four models, the multivariate GRU
shows the best overall performance, with high R* values and low RMSE at many stations, especially for
short- to medium-term horizons. The univariate and multivariate LSTM models also produce competitive
results. Although their performance at some stations is slightly below that of the multivariate GRU. The
univariate GRU tends to produce smoother predictions, but its R? decreases more sharply over longer
horizons. Stations such as Juanda Meteorological Station are examples of locations with very high
performance across all models. while Banyuwangi Meteorological Station consistently shows the lowest
accuracy.
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3.5 Model Evaluation

evaluated using several metrics. namely MAE, MSE, RMSE, MAPE, and R?. The 5 metrics are
calculated from the average of the predicted results across 10 observation stations and 10 times horizons (t to
t+9). The performance comparison for each metric is presented sequentially: Fig. 5 illustrates the average
MAE values. Fig.6 displays the MSE. Fig. 7 shows the RMSE. Fig. 8 presents the MAPE. and Fig. 9 depicts

the R? values. Fig. 10 illustrates the training time (in seconds) of each model at each station, highlighting
computational efficiency differences across models and locations.

Average MAE Evaluation of All Models

GRU MULTIVARIAT 0.05455

GRU UNIVARIAT 0.05530

Model

LSTM MULTIARIAT 0.05494

LSTM UNIVARIAT 0.05583

T T T T
0.00 0.01 0.02 0.03 0.04 0.05 0.06
MAE Value (Average)

Figure 5. Comparison of Average MAE Values of LSTM and GRU Models

Average MSE Evaluation of All Models

GRU MULTIVARIAT 0.00604

GRU UNIVARIAT 0.00634

Model

|

LSTM MULTIARIAT 0.00613

LSTM UNIVARIAT 0.00638
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0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007
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Figure 6. Comparison of Average MSE Values of LSTM and GRU Models

Average RMSE Evaluation of All Models

GRU MULTIVARIAT 0.07539

GRU UNIVARIAT 0.07698

Model

|

LSTM MULTIARIAT 0.07595

LSTM UNIVARIAT 0.07750

T T
0.00 0.02 0.04 0.06 0.08
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Figure 7. Comparison of Average Values of RMSE of LSTM and GRU Models

Average MAPE Evaluation of All Models

GRU MULTIVARIAT 0.19280

GRU UNIVARIAT 0.17917

Model

|

LSTM MULTIARIAT 0.19578

LSTM UNIVARIAT 0.18302

T T
0.00 0.05 0.10 0.15 0.20
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Figure 8. Comparison of the Average Value of MAPE LSTM and GRU Models
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Figure 9. Comparison of the Average Value of R* LSTM and GRU Models

Based on the average evaluation results of the five-performance metrics (MAE, MSE, RMSE, R?, and
MAPE) shown in Fig. 5, Fig. 6, Fig. 7, Fig. 8, and Fig. 9, the multivariate GRU model consistently shows
the most superior performance compared to other models. In the MAE metric, multivariate GRU obtained
the lowest value of 0.05455, followed by multivariate LSTM (0.05494), univariate GRU (0.05530), and
univariate LSTM (0.05583). Similar results were also seen in the MSE metric, where multivariate GRU again
recorded the lowest value of 0.00604, slightly better than multivariate LSTM (0.00613), univariate GRU
(0.00634), and univariate LSTM (0.00638). On the RMSE metric, multivariate GRU recorded an average of
0.07539, indicating a consistently low error rate, followed by multivariate LSTM (0.07595), and univariate
GRU (0.07698), while univariate LSTM obtained the highest value of 0.07750. In terms of relative accuracy
based on percentage error (MAPE), multivariate GRU is again the best model with a value of 0.19280,
followed by multivariate LSTM (0.19578), univariate LSTM (0.18302), and univariate GRU (0.17917).

The consistency of the multivariate GRU's performance is also evident in the R? metric shown in Fig.
10. The model recorded an R? of 0.9626 at the day 1 horizon and maintained an R? of 0.8075 at day 10. This
shows that the multivariate GRU not only achieves the lowest prediction error but also demonstrates better
long-term prediction stability.

Overall, the multivariate GRU is recommended as the most reliable model for daily soil moisture
prediction based on meteorological data, especially in the multivariate scenario with a prediction horizon of
up to 10 days ahead. The model shows a balance between prediction accuracy, performance stability, and
generalization efficiency. However, for short-term prediction needs, univariate GRU can also be an
alternative with competitive performance.

Training Time for each Station and Model
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Figure 10. Training Time for Each Station and Model
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Based on Fig. 10, the multivariate GRU has the longest training time. reaching more than 550 seconds
at stations such as Geofisika Malang and Meteorology Tuban. This is due to the model's complexity, which
processes many features at once. Multivariate LSTM models are more efficient than multivariate GRU, with
training times generally under 500 seconds. Meanwhile, the univariate LSTM and univariate GRU showed
the fastest training times. The univariate GRU even recorded times below 300 seconds at some stations.

Overall, the multivariate model is more accurate but requires longer training time, while the univariate
model is more computationally efficient. Therefore, model selection should balance accuracy and efficiency.

4. CONCLUSION

This study has successfully built a daily soil moisture prediction model based on deep learning
algorithms LSTM and GRU, both in univariate and multivariate scenarios, by integrating climate variables
from 10 meteorological stations in East Java Province. Evaluation results using five metrics (MAE, MSE,
RMSE, MAPE, and R?) indicated that the multivariate GRU model was the best-performing. This model
yielded the lowest error values (MAE = 0.05455; MSE = 0.00604; RMSE = 0.07539; MAPE = 0.19280) and
the highest long-term prediction stability (R? from 0.955 at t to 0.802 at t+9). The univariate GRU model also
demonstrated strong performance at short prediction horizons. However, the fastest training time was
recorded by the univariate LSTM model (<400 seconds). making it the most computationally efficient option.
In contrast. multivariate models. especially the multivariate GRU. require longer training times (>550 seconds
at some stations) due to the increased input complexity. Therefore, model selection should consider both the
prediction time horizon and computational constraints. For medium to long-term forecasting, the multivariate
GRU is recommended for its accuracy and stability. Meanwhile, for fast, efficient daily predictions, the
univariate LSTM is a practical alternative. Future research should explore applications across different
regions and climate conditions. with a focus on developing a real-time early warning system based on soil
moisture prediction. In addition. Future studies are encouraged to expand the geographical coverage of
datasets and investigate hybrid modeling approaches that combine the strengths of multiple algorithms to
further enhance prediction accuracy and robustness. Researchers should also consider incorporating
additional environmental variables and testing transfer learning techniques for regions with limited data. and
evaluating model performance under extreme climate events to ensure broader applicability and resilience.
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