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ABSTRACT

Partial Least Squares SEM (PLS-SEM) is the recommended technique for structural
equation modeling (SEM), which assesses correlations between latent components
concurrently, particularly for small samples and non-normal data. But because traditional
PLS-SEM only calculates average correlations between constructs, it runs the risk of
overlooking variances in the quantile distribution. Consequently, the creation of the
Quantile PLS-SEM approach, which incorporates quantile regression, provides a means
to examine correlations across the entire data distribution. To improve estimation, wild
bootstrap is used to address heteroscedasticity issues and produce more reliable
inferences. The purpose of this study is to develop and apply Quantile based PLS-SEM
with Wild Bootstrap to analyze the gizi data status of the Indonesian population based on
the Survey Status Gizi Indonesia 2024. The analysis's findings indicate that specific and
sensitive interventions have a significant impact on the gizi status of different quantities.
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1. INTRODUCTION

There is a pressing need for statistical analysis techniques that can capture variation and heterogeneity
in the interactions between variables in an era of data that is becoming more complicated and diverse. One
of the most popular methods for concurrently assessing connections between latent components is structural
equation modeling, or SEM |[1]. With a composite-based methodology distinct from covariance-based SEM,
Partial Least Squares SEM (PLS-SEM) is one of the most versatile SEM methods, especially for non-normal
data and small samples [2].

The average relationship (conditional mean) between constructs is typically the only estimate made by
conventional PLS-SEM, which may overlook variations in effects on other data distribution components.
When heteroscedasticity or diverse effect patterns exist across multiple quantiles of the distribution, as in
complicated socioeconomic or health data, this condition becomes problematic [3]. A more thorough
depiction of the variability in effects between variables is provided by the creation of Quantile PLS-SEM,
which incorporates quantile regression into the estimation process and provides a way to analyze relationships
across multiple quantiles rather than just the mean [4]. The bootstrap methodology is the primary approach
for measuring estimation uncertainty in PLS-SEM for statistical inference [5]. Confidence intervals and
hypothesis testing may be erroneous due to the constraints of the traditional bootstrap when handling
heteroscedastic data [6]. By generating residuals calibrated to the real variance pattern in the original data,
the wild bootstrap approach provides a more efficient substitute that yields more reliable and correct
conclusions [7].

Significant methodological advancements in SEM analysis are enabled by combining Quantile PLS-
SEM with the wild bootstrap, which allows researchers to obtain more trustworthy conclusions and robust
estimates even in less-than-ideal data settings [8]. Applications in the social, economic, health, and
environmental domains, where data frequently display heteroscedasticity and non-normal distributions, are
especially pertinent to this approach [9]. Therefore, research that develops and applies Quantile-based PLS-
SEM using a wild bootstrap approach is a crucial step in enhancing the validity and reliability of findings
from structural relationship analysis while broadening the study's reach to encompass the full range of
complex data distributions.

2. RESEARCH METHODS

2.1 Structural Equation Modeling (SEM)

SEM is a statistical analysis method that estimates multiple equations simultaneously by combining
factor analysis and multiple regression [10]. SEM produces and performs two tasks: (i) concurrently
estimating many interconnected equations with structural model output, as well as (ii) using measurement
model output to represent latent variables (construct/latent/unobserved variables) based on indicator variables
(manifest/observed). The following is the structural equation model:

n=Bn+TIE+ < (1)

The endogenous latent variable 7 (eta) has a size of m x 1, the exogenous latent independent random
variable vector & (xi) has a size of n x 1, and the coefficient matrix B shows how the endogenous latent
variable affects other variables of size m x m, while I shows the relationship between ¢ and ) of size m x n.
The random error vector { (zeta) is of size m x 1, using zero as the intended value. The structural model
equation of latent variables makes the following assumptions: (I — B)™1) is a nonsingular matrix, ¢ is not
associated with &, and E(n) = 0,E(§) = 0,and E({) = 0. Confirmatory Factor Analysis Model (CFA)
or measurement model [11]. The following is one way to express the measuring model (CFA):

y = Ayn+ €X(x), 2)
x= A8+ 4. 3)
Egs. (2) and (3) show that the covariance matrix in SEM X(0) looks like this:

z®=@§?ﬂ @)

XX
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Additionally, the structural parameter's function for 2, (8) = [Ay[(I — B)"*(T'®I" + ¥)(I1 - B) A, +
0], 2y, (8) = A,(1 - B)™'T®A," dan £,,(8) = 4,4, + 05.

2.1.1 SEM Partial Least Square (SEM PLS)

Herman Wold first introduced partial least squares (PLS) in 1975. When the theory behind the model
design is weak, this model was created as a backup. Because PLS has more flexible assumptions and can be
applied to data at any scale, it is a robust analysis method. There are three steps involved in estimation using
the PLS method. A straightforward regression or multiple regression iteration process that considers the
structural model/inner model, measurement model/outer model, and weight estimation/weight relation is the
initial stage in PLS estimation. The latent variable scores, which are linear combinations of indicator/manifest
variables, are then determined from the estimated weights. Estimating the structural model coefficients (inner
model) and the measurement model coefficients (outer model) are the second and third steps after acquiring
the latent variable scores [12]. Ordinary least squares estimation is used in a sequence of simple and multiple
regressions that make up the PLS algorithm [13].

In PLS, the relationships between latent variables are described by the structural model, often known as the
inner model [ 14]. The following is a linear equation representation of the model equation:

& =Ziﬁjifi+fj- (5)

E(( j) =0, E(fl-( j) =0, and Bj; is the path coefficient, or coefficient of the link between latent
variables i and j. Every indicator block in PLS can be associated with its latent variable to construct the
measurement model or outer model. Using simple regression, the following equation may be expressed for a
reflecting indicator block:

Xjk = AjrSj + €k (6)

E (sjk) =FE (f ]-sjk) = 0, & is the residual or error of each measurement variable, and A is the coefficient
loading of the relationship between the latent variable j (;) and its indicator k (x ;).

2.2 Quantile Regression

Koenker and Bassett in 1978 developed the regression analysis technique known as quantile regression.
Several quantile functions of a distribution Y are estimated using this method as a function of X. When there
is heterogeneity in the data distribution, quantile regression is highly helpful [15]. Consider the following
data: {Xy;, X5, ..., Xki, Yi}» @ collection of paired random variables with quantiles 7 € (0,1) that are
independently and identically distributed.

The following is the general equation for linear quantile regression:

Y = Bo(@) + 1 (D) Xy; + - + B (D) Xy + &(7). (7
Eq. (7) can therefore be expressed using the linear model form shown below:
Y =XB(1) + (7). 8)

2.2.1 Calculated Quantile Regression for Parameters

A paired data set {xu‘ Xoi X3j ---xki,yi}i =1,2,---n, j=1,2---k is a collection of paired random

variables with quantile T € (0,1) that are independently and identically distributed [ 16]. The following is the
definition of the conditional probability distribution function for the data:

F(Y|x) = P(Y < ylxy). 9

Considering the response variable y's T-quantile [17], the inverse function F~1(7) = inf{y: F(y) =
7}. Accordingly, the following is the definition of the general equation of linear quantile regression for
conditional quantiles:

Qy(zlx) = B, (ylxy) = inf{y: E,(ylx) = t}.
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Consequently, the following is the conditional quantile function model:

Qy(Tlxi) = XT.B(T)!T € (0!1) (10)
The response variable's general linear quantile regression equation is expressed as follows:
Vi = Bo(®) + B1(Dx1; + - + Br (D) Xk + &(7). (11)

Eq. (11) can therefore be expressed in the matrix form shown below:

1 x11 X1 Xk][Bo(®) (1)
[ ‘ [1 x12 xzz xl_cz\ [&(T)‘{_ fz(T) ’
1 xln xZn xl.cn bk(f) :En(T)

in order to produce the linear model that follows:
y =XB(0) +&(0). (12)

Quantile regression has the principle of minimizing the sum of squared residuals to find estimators, as in the
OLS method. The tth quantile regression of Fy can be obtained from Eq. (13) as follows:

¥y ©
Ep(Y —9) = j (1 - DO - Pf)dy + f o = Hf Y)dy. (13)
—© y

Eq. (14) is therefore reduced to zero:

0
Fr E[p,(Y =9)] =0 (14)

2 a-o0-9rma+ J, 7= 9row =0

0 A ° R B
3 [(1 ) f_ @ -=-Nfdy + Tf:o - y)f(y)dy] =0

1-1) [(y NfFB) ‘ 3 (y Nf (y)dy]

© 9
[(y y)f(y)‘ aA(y y)f(y)dy]—o

hY ©
(1-1) [(y —DFO) ‘y 5+ f(y)dy] i1 [(y —DFO) ‘y 5+ f(y)dy] -0
. ,

A-D[0+F/F®]+ T[O - (1 - FY()A’))] =0
A1-DF@®) - T(l - FY()A’)) =0
A-DF@) —-t-1tKH@) =0
FF@) —-t=0,
then acquired
@) =1

So that the solution of Fy is the T quantile. By minimizing the sum of the absolute values of the mistakes with
weight (7) for positive errors and weight (1 — t) for negative errors, the T quantile regression is produced.
The following solution is the result of this:

B = mint )y = 2ly = XTBl+(1=0) )y <xly - X", (15)

or can be expressed as follows in Eq. (16):
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n

p@) = ﬁg}?mlzpr(ui), (16)
i=1

where:
prlus) = {(T ;u];)l\f\;lt‘}/lvft? 2o "

with

f(t)  :parameter estimator;

T : quantile index with T € (0,1);

p-(u;) :loss function;
u; : error of the parameter estimator.

The sum of squared errors is minimized in the OLS estimation of a linear model on y. In contrast,
quantile regression estimation of a linear model on y is achieved by minimizing the predicted value of p,(u)
[18], which is the value of the asymmetric loss function. The loss function's asymmetry will next be
demonstrated using the following justification:

provided
pr=[tIw=0)+ 1 —NI((u<0)]lul =[r—I(u<0)]y,
with
=0 =y g and = {555
where
u : error from parameter estimator;

I(u)  :indicator function that has been defined.

So that it can be proven

_ { u,u=0
Pr = T—-Duu<0
Eq. (16) can only be solved numerically rather than analytically. The simplex algorithm is a numerical
technique. Barrodale and Robert created the simplex algorithm approach in 1974. With the aid of

computation, this algorithmic approach provides solutions to linear programming problems with numerous
decision variables [19].

2.3 Bootstrap

In order to lessen the unreliability that comes with using the normal distribution incorrectly, Efron in
1979 created the bootstrap approach [20]. The standard deviation of B replications is used to compute the
bootstrap standard error of 8.

~ B_ (8% — 07"
Q(HB) — \/Zb—l( B(If 1 ()) :

B A*
. . . . A =10 A ..
where B is the number of resampling sets of size n with replacement, and (9*(,)) = Z—b‘lB ® The @ statistic

derived from the bth resampling (b = 1,...,B) is é*(b).

2.4 Wild Bootstrap

Liu introduced the wild bootstrap method as an innovative approach to address heteroskedasticity in
regression models, particularly the instability of error variances [21]. Before this development, the standard
bootstrap technique was already widely used to examine sample distributions and construct confidence
intervals without making assumptions about the underlying distribution. However, the traditional bootstrap
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method tends to perform poorly when applied to data with non-constant error variances, a common issue in
economic and financial analyses. To overcome this limitation, Liu proposed the wild bootstrap method, which
modifies residuals in regression analysis by multiplying them by random Rademacher values, which take
only two values, +1 and —1, each with probability 0.5. In this study, the wild bootstrap, a variant of the
traditional bootstrap that incorporates randomization in the resampling process, is employed to provide a
more robust inference framework for models affected by heteroskedasticity.

According to Feng, He, and Hu, the wild bootstrap model for quantile regression is a resampling
technique intended to enhance inference in quantile regression estimates, especially when heteroscedasticity
and fixed designs are present [22]. Because the error distribution cannot be presumed to be symmetric, typical
bootstrap techniques like residual bootstrap are inappropriate when quantile regression minimizes the
asymmetric loss function p;(u) = u(t —I(u < 0)). It makes it impossible to assume that the error
distribution is symmetric, rendering conventional bootstrap techniques like residual bootstrap incorrect. By
modifying residual resampling using random weights (wild weights), wild bootstrap provides a solution;
nevertheless, it is modified to account for the quantile loss function's asymmetry [23].

2.4.1 Methods for Quantile Regression Using Wild Bootstrap

1. Fit the data to the quantile regression model:

n
argmian,(yi —xI'B(r), i=1.2,..,n t€(O1).
peRp =

Obtain residuals:
& =y —x{ B().
2. Create a residual bootstrap:
e =wilél,
where w; represents a random weight drawn from a distribution that satisfies specific requirements.
3. Create a bootstrapped data set.
yi =x{ B +ei.
4. Refit model using bootstrapped data:
Utilizing quantile regression on {y;, x;}, compute £* (7).

5. Steps 2—4 should be repeated multiple times. For inference tasks, such as computing standard errors
and confidence intervals, use the distribution of the bootstrapped estimates (8™ distribution).

The 2024 Survey Status Gizi Indonesia (SSGI) publication served as the source of data for this
investigation. The data gathered from this survey is essential for assessing the general health of the population
in different parts of Indonesia. Table | provides an explanation of the variables used in this study using a
number of distinct variables:

Table 1. Research Variable
Laten Variable Manifest Variable
Nutritional status (1) Underweight (y; 1)
Stunting (y;5)

Wasting (y;.3)
Overweight (y;.4)

Specific Interventions (§1) Percentage of pregnant women with chronic energy deficiency (CED) who
receive additional nutritional intake (x; ;)
Percentage of pregnant women who consume at least 90 tablets of iron
supplements during pregnancy (x4 ,)
Percentage of adolescent girls who consume iron supplements (x; 3)
Percentage of infants under 6 months of age receiving exclusive breastfeeding
(*1.4)
Percentage of children aged 6-23 months who receive complementary foods to
breast milk (x;5)
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Laten Variable Manifest Variable

Percentage of children under five years of age (toddlers) with malnutrition who

receive malnutrition treatment services (x;¢)
Percentage of children under five years of age (toddlers) whose growth and
development are monitored (x; ;)

Percentage of children under five years of age (toddlers) who are malnourished
and receive additional nutritional intake (x;g)

Percentage of children under five years of age (toddlers) who receive complete

basic immunizations (X; )

Sensitive Intervention (&) Percentage of family planning (FP) services after childbirth (x, ;)
Percentage of unwanted pregnancies (x, )
Coverage of prospective couples of childbearing age (PUS) who receive health
checks as part of marriage services (x,3)
Percentage of households with access to safe drinking water in priority
districts/cities (x5 4)
Percentage of households with access to proper sanitation (domestic wastewater)
in priority districts/cities (x,5)

Coverage of National Health Insurance Contribution Assistance Recipients (x, ¢)
Coverage of families at risk of stunting who receive assistance (x; ;)
Number of poor and vulnerable families receiving conditional cash transfers
(x28)

Percentage of target beneficiaries who have a good understanding of stunting in
priority locations (x; )

Number of poor and vulnerable families receiving social assistance in the form of
food (x2.10)

Percentage of villages/subdistricts that have stopped open defecation free (ODF)

(x2.11)

Data source: SSGI 2024

2.5 Steps in Research
The methods and techniques of analysis that will be used to achieve the research goal are as follows:
1. Presenting a conceptual model based on theory.

The theoretical framework on the context, causes, and effects of toddler stunting served as the
foundation for the development of the Status conceptual framework, which also took into account
the policies and measures in place to hasten the reduction of stunting in Indonesia. A number of
factors, including Specific Intervention Indicators and Sensitive Intervention Indicators, affect
toddlers' nutritional status, which is measured as underweight, stunted, wasted, or overweight [24].

Nutritional
Status

Sensitive
Intervention

Specific
Intervention

. Conceptual model based on theory

2. Creating a path diagram.

3. Validity testing in the outer model and the structural model/inner model is done by PLS-SEM
modeling.

4. For every hidden variable, get the weighted factor scores. The Quantile Regression modeling
analysis using PLS-SEM structural equations will make use of these weighted factor scores.
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5.
6.
7.
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Finding the estimated values of the SEM quantile regression parameters.
Using bootstrap and wild bootstrap for hypothesis testing.

Interpreting and summarizing the results.

3. RESULTS AND DISCUSSION

3.1 Estimating Model Parameters

This work employed a route approach to obtain the model parameter coefficients using PLS. The
following are the A coefficients for exogenous and endogenous variables:

Apr = 0.6974,1 2 = 0821455 = 0.6731,, 4 = 0.7641,, 5 = 0.7441,, , = 0.505
Apr7 = 075145 = 0.7174,5 ¢ = 0.7544,5 1 = 0.6051,,, = 0.0771,,5 = 0.723
Ayos = 0652155 = 0.6561,, 6 = 0.4091,,, = 0.6651,, 4 = 0.4961,,, = 0.745
Axzio = 04992, 11 = 0.618Ay;; = 0.9614,,, = 0.7971,, 5 = 0.8241,, = —0.481.

Coefficient y:
yl.l = _0.137 andyz_l = _0.214.

3.2 Assessment of Outer Model Measurement Models

The measurement model (outer model) was evaluated for each PLS scheme employed, namely the path
scheme. Assessing each indicator's validity and reliability in relation to its latent variable was part of the
measurement model evaluation process.

1.

Validity

A metric used to characterize the relationship between indicator scores and latent variables is called
validity. First, the validity indicators displayed by the factor loading values (A) are examined. The
indicator is deemed legitimate if the loading value (L) is more than or equal to 0.5. If A is less than
or equal to 0.5, the indicator is deemed invalid and needs to be eliminated from the analysis because
it shows that it is not trustworthy enough to measure the hidden variable. There are still factor
loading values (A) <0.5 in the A coefficients, namely in indicators X5, X»6, X2, and X.10, Which
represent the specific intervention service variable, and indicator Y4, which represents the
nutritional status variable. A loading factor value (A) < 0.5 indicates that the indicator is invalid
and should be removed from the analysis because it indicates that the indicator is not good enough
to measure the latent variable. Therefore, indicators Y14, Xz, X26, X2, and X1 are not used in the
PLS analysis.

Y1.1 Y12 Y1.3
X141 =
® 0gss 0798 paxg
N
X12 \
X113 \069\?
0821 A
_0.133lutrional Status ) 599
x14 067
-
X15 40.746—
P
X168 0-754 (adific Interventions Sensitive Interventi
0716
/
A ?//n.?s:}
X118 /
X149

Figure 2. Path Diagram for Structural Equations using Path Scheme
Source: Processed results from smartPLS 4
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According to Fig. 2, each indicator of the latent variables Nutritional Status, Sensitive Intervention
Services, and Specific Intervention Services has a loading factor (L) values greater than 0.5.
Therefore, it can be concluded that every indicator employed to measure hidden variables is
excellent and reliable.

Reliability

A coefficient called reliability indicates how consistent the data are. If the data at several points in
time are similar, the study is deemed credible. For a variable to be considered trustworthy, its
composite reliability value must be better than 0.7. Table 2 displays the output results, which
include each variable's composite reliability (CR) values.

Table 2. Reliability Value

Latent Variable Composite reliability
Specific Interventions 0.809

Nutritional Status 0.836
Sensitive Intervention 0.911

Data source: Processed Results from smartPLS 4

From Table 2, every indicator employed to measure latent variables is dependable since each latent
variable has a composite reliability (CR) value higher than 0.7. These factors lead to the conclusion
that the measurement model is good since it satisfies the criterion for validity and reliability.

3.3 Evaluation of Structural Models (Inner Model)

The parameter coefficient estimates and their significance levels were examined to evaluate the
structural model and investigate the connections among the previously proposed latent components. R-square
of 0.110 is one metric that may be used to assess the structural model (inner model).

1.

Hypothesis Testing

The parameters A and y are tested as part of hypothesis testing. The t-test is the statistical test that
smartPLS uses.

a. Testing the measurement model hypothesis (outer model)

The following hypothesis is applied in order to determine the importance of the outer model
parameters:

HO:/li = O,
Hl:/’ll‘ i 0

At a significance level of a equal to 5 percent, reject Hy if tgeqr > trapie O p — value < a.
The t-table value is 1.960. Table 3 displays the findings of the measurement model's t-statistic
test.

Table 3. Bootstrap t-Statistic Significance Test

La?ent MalfifeSt Loading Standard t -statistics  p- values
Variable Variable Error
Specific X141 0.696 0.055 12.606 0.000
Interventions X1 5 0.821 0.033 24912 0.000
X13 0.674 0.043 15.816 0.000
X14 0.765 0.034 22.711 0.000
X1 0.746 0.037 19.978 0.000
X1 6 0.505 0.059 8.577 0.000
X1 0.754 0.040 18.866 0.000
X1 g 0.716 0.049 14.564 0.000
X109 0.750 0.031 24213 0.000
Sensitive X34 0.600 0.048 12.517 0.000
Interventions

Xy3 0.746 0.039 19.324 0.000
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La?ent Maqifest Loading Standard t -statistics  p- values
Variable Variable Error

X34 0.676 0.051 13.277 0.000
X25 0.686 0.048 14.389 0.000
X3 0.662 0.048 13.642 0.000
X329 0.748 0.039 19.292 0.000
X211 0.633 0.052 12.060 0.000
Nutritional Vi1 0.959 0.006 172.507 0.000
Status V12 0.798 0.032 25.260 0.000
Vi3 0.828 0.025 33.038 0.000

Data source: Processed results from smartPLS 4

Table 3 shows that the loading factor values link the Specific Intervention construct to the
indicator variables x;;, X1, X13, X714, X15 X16 X17. X1g and x;¢. The Sensitive Intervention
construct to the indicator variables x, 1, X, 3, X5 4, X5 5 , X 7, X2 o and X, ;1. The association between
the nutritional status construct and the indicator variables vy, ;, y; , and y, ; has a t-statistic value
> 1.960 at a significance threshold of a = 0.05, and each has a loading value (A) > 0.5.

The following equation was created using the loading factor and standard error values found in
Table 3.

i. Exogenous latent variable 1 (Specific Intervention)

X1 = 0.696¢, + 0.055
X, = 0.821&, + 0.033
X3 = 0.674&, + 0.043
X, 4 = 0.765¢, + 0.034
Xy s = 0.746&, + 0.037
X6 = 0.505&; + 0.059
X, 7 = 0.754&, + 0.040
X, g = 0.716&, + 0.049
X1 = 0.750&; + 0.031

ii. Exogenous latent variable 2 (Sensitive Intervention)

x5, = 0.600, + 0.048
Xy 3 = 0.746&, + 0.039
X34 = 0.676&, + 0.051
X, 5 = 0.686&, + 0.048
Xy, = 0.662&, + 0.048
Xy = 0.748Z, + 0.039
X511 = 0.828&, + 0.025

iii. Latent variable endogenous (Nutritional Status)

y11 = 0.978n + 0.010
V1, = 0.917n + 0.034
13 = 0.953n 4+ 0.032.

b. Examining the inner model's structural model hypothesis
The following hypothesis was applied in order to test the inner model parameters.
i. Sensitive intervention (&) on Nutritional Status (1)

Hyiy11 =0,
Hl:yll * 0

ii. Specific intervention (&) on Nutritional Status (1)
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The t-table value, with a significance level of o = 5 percent, is 1.960. tsiqr > trgpie OT P —
value < a,reject Hy. Table 4 displays the findings of the path coefficient estimation.

Table 4. Estimation of Path Coefficient Values

. Parameter Standard .
Latent Variable Coefficient deviation t-statistics p-value
Specific Interventions->
Nutritional Status -0.133 0.055 2412 0.016
Sensitive Intervention-> 0229 0.057 4.040 0.000

Nutritional Status

Data source: Processed results from smartPLS

The following explanation explains the influence of the link between factors in Table 4. Specific
interventions affect nutritional status, The path parameter coefficient obtained from the
relationship between the Sensitive Intervention variable and nutritional status is -0.133, with a
t-statistic value of 2.412 > 1.960 (t;qp1e), at a significance level of @ = 5%, indicating that
there is a significant effect between specific interventions and nutritional status. Sensitive
interventions influence nutritional status. The path parameter coefficient obtained from the
relationship between the specific intervention variable and nutritional status is -0.133 with a
tstatistic value of 4.040 > 1.960 (t;qp1e) at a significance level of o = 5%, indicating a significant
effect of sensitive interventions on nutritional status.

3.4 Quantile Regression in SEM for Nutritional Status

To determine the coefficient for each predictor variable, this study used the Quantile Regression
approach to fit a model for each quantile that explains the degree to which the predictor variables affect
nutritional status at that quantile. Furthermore, the degree to which the predictor factors influence nutritional
status at each quantile is shown. Table 5 displays the results of the parameter estimation.

Table 5. Estimation of Path Quantile Regression
Quantile (T)

Parameter
0.05 0.5 0.95
Bo(T) -1.55578 -0.08226 1.66386
B (T) -0.26339 -0.23091 0.01856
B, (7) 0.22905 -0.19032 -0.57280

Data source: Processed results from RStudio

The quantiles indicate that several predictor variables have both positive and negative effects on
nutritional status. The factors with a major impact on nutritional status at each quantile will be examined
next. Table 6 presents the results of the parameter significance test.

Table 6. p-Value from The Results of Parameter Estimation
Quantile (7)

Parameter
0.05 0.5 0.95
Bo(T) 0.00000 0.08237 0.00000
B1(7T) 0.26947 0.00029 0.90690
B2 (T) 0.33682 0.00276 0.00034

Data source: Processed results from RStudio

There is substantial variance in the quantile regression parameters across quantiles, as shown in Table

6, which shows the p-values from the estimation of the parameters at the three quantile levels (0.05, 0.5, and
0.95). With p-values of 0.00029 and 0.00276, respectively, the parameters Specific Interventions (8, (7)) and
Sensitive Interventions (8, (t) ) are significant at the median quantile but not at the lower or upper quantiles.
The quantile regression approach is beneficial for capturing heterogeneity in covariate effects across the data
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distribution, as these results show that the influence of each parameter on the response variable varies across
different portions of the distribution.

3.5 Bootstrap for each quantile in SEM

A quantile regression analysis was carried out using the bootstrap method to gain a more thorough
understanding of each predictor's impact on the distribution of the response variable. This technique enables
identification of shifts in the predictors' influence on the mean and on specific distributional segments,
including the lower, middle, and upper quantiles. Three quantile levels, 0.05, 0.5, and 0.95, were employed
in this instance to capture the dynamics of the predictor effects at different distributional positions.
Additionally, as shown in Fig. 3 below, the predicted regression coefficients are displayed with 95%
confidence intervals.

Bootstrap Inference for Quantile based PLS-SEM with 95% CI
0.05 [ 0.5 0.95

o
|
1

Significance

-@- Not Significant
024 ® -@- Significant

Coefficient Estimate
|
|

&
®

& & & & 2 ?
K o K ) R of
Predictor

Figure 3. Bootstrap Quantile in SEM
Source: Processed results from RStudio

Fig. 3 shows the results of Bootstrap Quantile Regression analysis with a 95% confidence interval at
three quantiles (0.05, 0.5, and 0.95), which illustrates the effect of two predictors (Specific Intervention, and
Sensitive Intervention) on the distribution of the response variable. At the 0.05 quantile, none of the predictors
are significant. At the 0.5 quantile (median), the sensitive intervention predictor shows a significant negative
effect on the response, while the other predictors are not significant. At the 0.95 quantile, sensitive
intervention again shows a significant negative effect, while the intercept shows a significant positive effect.
These results indicate that sensitivity has a significant effect that varies depending on the part of the response
distribution being analyzed, with a tendency to decrease values at the median and upper quantiles, while
specific intervention does not have a significant effect at all quantiles.

3.6 Wild Bootstrap for each quantile in SEM

Based on the results from the standard bootstrap, further analysis can be performed using the wild
bootstrap to address potential heteroscedasticity and structural error dependence in the quantile regression
model. Wild bootstrap provides more robust confidence intervals by accounting for more realistic variations
in random errors, thereby providing more accurate and reliable estimates for testing the significance of
coefficients at various quantiles. By using wild bootstrap, we can reduce bias arising from error distributions
that do not meet classical assumptions and thereby improve statistical inference in this quantile regression
model.
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Wild Bootstrap Inference for Quantile-Based PLS-SEM with 95% CI
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Figure 4. Wild Bootstrap Quantile in SEM
Source: Processed results from RStudio

With negative coefficient estimates, Fig. 4 demonstrates that all predictors significantly impact the
lower values of the response distribution at the 0.05 quantile. Only the sensitive intervention variable and the
particular intervention variable are significantly negative at the 0.5 quantile; the intercept, which shows how
predictors affect the median response value, is not significant. All three predictors, however, are significant
at the 0.95 quantile, with the sensitive intervention variable having a negative influence and the intercept and
specific intervention variable exhibiting large positive effects. Given that the direction and significance of
effects can vary substantially across different portions of the distribution, these results highlight the need to
account for the position within the distribution (quantile) when assessing the impact of predictors.

4. CONCLUSION

Based on the results of two approaches, Bootstrap Quantile in SEM and Wild Bootstrap Quantile in
SEM, it can be concluded that the predictor consistently shows a significant negative effect on the median
(quantile 0.5) and the upper quantile (0.95) of the response distribution, while at the lower quantile (0.05),
the effect varies depending on the method used. In the conventional bootstrap analysis, the predictor does not
exhibit a significant effect at any quantile, whereas in the wild bootstrap approach, it shows significance at
the 0.05 and 0.95 quantiles. This indicates that the wild bootstrap method is more sensitive in detecting the
significance of regression coefficients, especially under heteroskedasticity or unstable error distributions. Its
main advantage lies in its ability to handle the heterogeneity of variance commonly found in real-world data,
thereby producing more robust and accurate confidence interval estimates. Consequently, the use of the wild
bootstrap in quantile regression enhances the reliability of statistical inference and provides a more
comprehensive understanding of how predictor effects vary across the entire response distribution.
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