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Article History: 
Partial Least Squares SEM (PLS-SEM) is the recommended technique for structural 

equation modeling (SEM), which assesses correlations between latent components 

concurrently, particularly for small samples and non-normal data. But because traditional 

PLS-SEM only calculates average correlations between constructs, it runs the risk of 

overlooking variances in the quantile distribution. Consequently, the creation of the 

Quantile PLS-SEM approach, which incorporates quantile regression, provides a means 

to examine correlations across the entire data distribution. To improve estimation, wild 

bootstrap is used to address heteroscedasticity issues and produce more reliable 

inferences. The purpose of this study is to develop and apply Quantile based PLS-SEM 

with Wild Bootstrap to analyze the gizi data status of the Indonesian population based on 

the Survey Status Gizi Indonesia 2024. The analysis's findings indicate that specific and 

sensitive interventions have a significant impact on the gizi status of different quantities. 
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1. INTRODUCTION  

There is a pressing need for statistical analysis techniques that can capture variation and heterogeneity 

in the interactions between variables in an era of data that is becoming more complicated and diverse. One 

of the most popular methods for concurrently assessing connections between latent components is structural 

equation modeling, or SEM [1]. With a composite-based methodology distinct from covariance-based SEM, 

Partial Least Squares SEM (PLS-SEM) is one of the most versatile SEM methods, especially for non-normal 

data and small samples [2].   

The average relationship (conditional mean) between constructs is typically the only estimate made by 

conventional PLS-SEM, which may overlook variations in effects on other data distribution components. 

When heteroscedasticity or diverse effect patterns exist across multiple quantiles of the distribution, as in 

complicated socioeconomic or health data, this condition becomes problematic [3]. A more thorough 

depiction of the variability in effects between variables is provided by the creation of Quantile PLS-SEM, 

which incorporates quantile regression into the estimation process and provides a way to analyze relationships 

across multiple quantiles rather than just the mean [4]. The bootstrap methodology is the primary approach 

for measuring estimation uncertainty in PLS-SEM for statistical inference [5]. Confidence intervals and 

hypothesis testing may be erroneous due to the constraints of the traditional bootstrap when handling 

heteroscedastic data [6]. By generating residuals calibrated to the real variance pattern in the original data, 

the wild bootstrap approach provides a more efficient substitute that yields more reliable and correct 

conclusions [7].  

Significant methodological advancements in SEM analysis are enabled by combining Quantile PLS-

SEM with the wild bootstrap, which allows researchers to obtain more trustworthy conclusions and robust 

estimates even in less-than-ideal data settings [8]. Applications in the social, economic, health, and 

environmental domains, where data frequently display heteroscedasticity and non-normal distributions, are 

especially pertinent to this approach [9]. Therefore, research that develops and applies Quantile-based PLS-

SEM using a wild bootstrap approach is a crucial step in enhancing the validity and reliability of findings 

from structural relationship analysis while broadening the study's reach to encompass the full range of 

complex data distributions. 

2. RESEARCH METHODS 

2.1 Structural Equation Modeling (SEM)  

SEM is a statistical analysis method that estimates multiple equations simultaneously by combining 

factor analysis and multiple regression [10].  SEM produces and performs two tasks: (i) concurrently 

estimating many interconnected equations with structural model output, as well as (ii) using measurement 

model output to represent latent variables (construct/latent/unobserved variables) based on indicator variables 

(manifest/observed). The following is the structural equation model: 

𝜂 =  Β𝜂 +  Γξ +  ζ. (1) 

The endogenous latent variable 𝜂 (eta) has a size of m × 1, the exogenous latent independent random 

variable vector 𝜉 (xi) has a size of n × 1, and the coefficient matrix B shows how the endogenous latent 

variable affects other variables of size m × m, while 𝛤 shows the relationship between 𝜉 and 𝜂 of size m × n. 

The random error vector 𝜁 (zeta) is of size m × 1, using zero as the intended value. The structural model 

equation of latent variables makes the following assumptions: (Ι − Β)−1) is a nonsingular matrix, 𝜁 is not 

associated with 𝜉, and 𝐸(𝜂)  =  0, 𝐸(𝜉)  =  0, and 𝐸(𝜁)  =  0. Confirmatory Factor Analysis Model (CFA) 

or measurement model [11]. The following is one way to express the measuring model (CFA): 

𝑦 =  𝛬𝑦𝜂 +  𝜀Σ(κ), (2) 

𝑥 =  𝛬𝑥ξ +  𝛿. (3) 

Eqs. (2) and (3) show that the covariance matrix in SEM Σ(θ) looks like this:  

Σ(κ) = [
Σ𝑦𝑦 Σ𝑦𝑥

Σ𝑥𝑦 Σ𝑥𝑥
]. (4) 
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Additionally, the structural parameter's function for Σ𝑦𝑦(θ) = [Λy[(Ι − Β)−1(ΓΦΓ′ + Ψ)(Ι − Β′)−1]Λ′
y +

Θε], Σ𝑦𝑥(θ) = 𝛬𝑦(Ι − Β)−1ΓΦ𝛬𝑥
′ dan Σ𝑥𝑥(θ) = 𝛬𝑥Φ𝛬𝑥

′ + Θδ. 

2.1.1 SEM Partial Least Square (SEM PLS) 

Herman Wold first introduced partial least squares (PLS) in 1975. When the theory behind the model 

design is weak, this model was created as a backup. Because PLS has more flexible assumptions and can be 

applied to data at any scale, it is a robust analysis method. There are three steps involved in estimation using 

the PLS method. A straightforward regression or multiple regression iteration process that considers the 

structural model/inner model, measurement model/outer model, and weight estimation/weight relation is the 

initial stage in PLS estimation. The latent variable scores, which are linear combinations of indicator/manifest 

variables, are then determined from the estimated weights. Estimating the structural model coefficients (inner 

model) and the measurement model coefficients (outer model) are the second and third steps after acquiring 

the latent variable scores [12]. Ordinary least squares estimation is used in a sequence of simple and multiple 

regressions that make up the PLS algorithm [13]. 

In PLS, the relationships between latent variables are described by the structural model, often known as the 

inner model [14]. The following is a linear equation representation of the model equation: 

𝜉𝑗 = ∑ 𝛽𝑗𝑖𝜉𝑖 + 𝜁𝑗.
𝑖

 (5) 

Ε(𝜁𝑗) = 0, Ε(𝜉𝑖𝜁𝑗) = 0, and  𝛽𝑗𝑖 is the path coefficient, or coefficient of the link between latent 

variables i and j. Every indicator block in PLS can be associated with its latent variable to construct the 

measurement model or outer model. Using simple regression, the following equation may be expressed for a 

reflecting indicator block: 

𝑥𝑗𝑘 = 𝜆𝑗𝑘𝜉𝑗 + 𝜀𝑗𝑘 , (6) 

𝐸(𝜀𝑗𝑘) = 𝐸(𝜉𝑗𝜀𝑗𝑘) = 0,  𝜀𝑗𝑘 is the residual or error of each measurement variable, and 𝜆𝑗𝑘 is the coefficient 

loading of the relationship between the latent variable j (𝜉𝑗) and its indicator k  (𝑥𝑗𝑘). 

2.2 Quantile Regression 

Koenker and Bassett in 1978 developed the regression analysis technique known as quantile regression. 

Several quantile functions of a distribution Y are estimated using this method as a function of X. When there 

is heterogeneity in the data distribution, quantile regression is highly helpful [15]. Consider the following 

data: {𝑋1𝑖, 𝑋2𝑖, … , 𝑋𝑘𝑖, 𝑌𝑖},, a collection of paired random variables with quantiles 𝜏 ∈ (0,1) that are 

independently and identically distributed. 

The following is the general equation for linear quantile regression: 

𝑌𝑖 = 𝛽0(𝜏) + 𝛽1(𝜏)𝑋1𝑖 + ⋯ + 𝛽𝑘(𝜏)𝑋𝑘𝑖 + 𝜀𝑖(𝜏). (7) 

Eq. (7) can therefore be expressed using the linear model form shown below: 

𝑌 = 𝑋𝛽(𝜏) + 𝜀(𝜏). (8) 

2.2.1 Calculated Quantile Regression for Parameters 

A paired data set {𝑥1𝑖,
𝑥2𝑖,𝑥3𝑖, ⋯ 𝑥𝑘𝑖,𝑦𝑖} 𝑖 = 1,2, ⋯ 𝑛, 𝑗 = 1,2 ⋯ 𝑘 is a collection of paired random 

variables with quantile 𝜏 ∈ (0,1) that are independently and identically distributed [16]. The following is the 

definition of the conditional probability distribution function for the data: 

𝐹(𝑌|𝑥𝑖) = 𝑃(𝑌 ≤ 𝑦|𝑥𝑖). (9) 

Considering the response variable y's 𝜏-quantile [17], the inverse function 𝐹−1(𝜏) = 𝑖𝑛𝑓{𝑦: 𝐹(𝑦) ≥
𝜏}. Accordingly, the following is the definition of the general equation of linear quantile regression for 

conditional quantiles: 

𝑄𝑦(𝜏|𝑥) = 𝐹𝑦
−1(𝑦|𝑥𝑖) = 𝑖𝑛𝑓{𝑦: 𝐹𝑦(𝑦|𝑥) ≥ 𝜏}. 
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Consequently, the following is the conditional quantile function model: 

𝑄𝑦(𝜏|𝑥𝑖) = 𝑋𝑇𝛽(𝜏), 𝜏 ∈ (0,1). (10) 

The response variable's general linear quantile regression equation is expressed as follows: 

𝑦𝑖 = 𝛽0(𝜏) + 𝛽1(𝜏)𝑥1𝑖 + ⋯ + 𝛽𝑘(𝜏)𝑥𝑘𝑖 + 𝜀𝑖(𝜏). (11) 

Eq. (11) can therefore be expressed in the matrix form shown below: 

[

𝑦1

𝑦2

⋮
𝑦𝑛

] = [

1 𝑥11 𝑥21 ⋯ 𝑥𝑘1

1 𝑥12 𝑥22 ⋯ 𝑥𝑘2

⋮ ⋮ ⋮ ⋱ ⋮
1 𝑥1𝑛 𝑥2𝑛 ⋯ 𝑥𝑘𝑛

] [

𝛽0(𝜏)

𝛽1(𝜏)
⋮
𝛽𝑘(𝜏)

] + [

𝜀1(𝜏)

𝜀2(𝜏)
⋮
𝜀𝑛(𝜏)

], 

in order to produce the linear model that follows: 

y = Xβ(𝜏) + ε(𝜏). (12) 

Quantile regression has the principle of minimizing the sum of squared residuals to find estimators, as in the 

OLS method. The 𝜏th quantile regression of 𝐹𝑌 can be obtained from Eq. (13) as follows: 

𝐸𝜌(𝑌 − 𝑦̂) = ∫ (1 − 𝜏)(𝑦 − 𝑦̂)𝑓(𝑦)𝑑𝑦 +
𝑦̂

−∞

∫ 𝜏(𝑦 − 𝑦̂)𝑓(𝑦)𝑑𝑦
∞

𝑦̂

. (13) 

Eq. (14) is therefore reduced to zero: 

𝜕

𝜕𝑦̂
𝐸[𝜌𝜏(𝑌 − 𝑦̂)] = 0 (14) 

𝜕

𝜕𝑦̂
∫ (1 − 𝜏)(𝑦 − 𝑦̂)𝑓(𝑦)𝑑𝑦 +

𝑦̂

−∞

∫ 𝜏(𝑦 − 𝑦̂)𝑓(𝑦)𝑑𝑦
∞

𝑦̂

= 0 

𝜕

𝜕𝑦̂
[(1 − 𝜏) ∫ (𝑦 − 𝑦̂)𝑓(𝑦)𝑑𝑦

𝑦̂

−∞

+ 𝜏 ∫ (𝑦 − 𝑦̂)𝑓(𝑦)𝑑𝑦
∞

𝑦̂

] = 0 

(1 − 𝜏) [(𝑦 − 𝑦̂)𝑓(𝑦) |
𝑦̂

−∞
+ ∫

𝜕

𝜕𝑦̂
(𝑦 − 𝑦̂)𝑓(𝑦)𝑑𝑦

𝑦̂

−∞

] + 

𝜏 [(𝑦 − 𝑦̂)𝑓(𝑦) |
−∞

𝑦̂ + ∫
𝜕

𝜕𝑦̂
(𝑦 − 𝑦̂)𝑓(𝑦)𝑑𝑦

∞

𝑦̂

] = 0 

(1 − 𝜏) [(𝑦 − 𝑦̂)𝑓(𝑦) |𝑦 = 𝑦̂ + ∫ 𝑓(𝑦)𝑑𝑦
𝑦̂

−∞

] + 𝜏 [(𝑦 − 𝑦̂)𝑓(𝑦) |𝑦 = 𝑦̂ + ∫ 𝑓(𝑦)𝑑𝑦
∞

𝑦̂

] = 0 

(1 − 𝜏)[0 + 𝐹𝑌(𝑦̂)] + 𝜏[0 − (1 − 𝐹𝑌(𝑦̂))] = 0 

(1 − 𝜏)𝐹𝑌(𝑦̂) − 𝜏(1 − 𝐹𝑌(𝑦̂)) = 0 

(1 − 𝜏)𝐹𝑌(𝑦̂) − 𝜏 − 𝜏𝐹𝑌(𝑦̂) = 0 

𝐹𝑌(𝑦̂) − 𝜏 = 0, 

then acquired 

𝐹𝑌(𝑦̂) = 𝜏. 

So that the solution of 𝐹𝑌 is the 𝜏 quantile. By minimizing the sum of the absolute values of the mistakes with 

weight (𝜏) for positive errors and weight (1 − 𝜏) for negative errors, the 𝜏 quantile regression is produced. 

The following solution is the result of this: 

𝛽̂(𝜏) = 𝑚𝑖𝑛
𝛽∈𝑅𝑝+1

𝜏 ∑ 𝑦 ≥ 𝑥|𝑦 − 𝑋𝑇𝛽| + (1 − 𝜏) ∑ 𝑦 < 𝑥|𝑦 − 𝑋𝑇𝛽|, (15) 

or can be expressed as follows in Eq. (16): 
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𝛽̂(𝜏) = 𝑚𝑖𝑛
𝜷∈𝑅𝑝+1

∑ 𝜌𝜏(𝑢𝑖),

𝑛

𝑖=1

 (16) 

where: 

𝜌𝜏(𝑢𝑖) = {
(𝜏 − 1)𝑢𝑖 ,with 𝑢𝑖 < 0

𝜏𝑢𝑖, with 𝑢𝑖 ≥ 0
, 

with 

𝛽̂(𝜏)  : parameter estimator; 

𝜏  : quantile index with 𝜏 ∈ (0,1); 

𝜌𝜏(𝑢𝑖)   : loss function; 

𝑢𝑖  : error of the parameter estimator. 

The sum of squared errors is minimized in the OLS estimation of a linear model on y. In contrast, 

quantile regression estimation of a linear model on y is achieved by minimizing the predicted value of 𝜌𝜏(𝑢) 

[18], which is the value of the asymmetric loss function. The loss function's asymmetry will next be 

demonstrated using the following justification: 

provided 

𝜌𝜏 = [𝜏𝐼(𝑢 ≥ 0) + (1 − 𝜏))𝐼((𝑢 < 0))]|𝑢| = [𝜏 − 𝐼(𝑢 < 0)]𝑢, 

with  

𝐼(𝑢 ≥ 0) = {
1, 𝑢 ≥ 0
0, 𝑢 < 0

   and  |𝑢| = {
𝑢, 𝑢 ≥ 0

−𝑢, 𝑢 < 0
, 

where  

𝑢  : error from parameter estimator; 

𝐼(𝑢)  : indicator function that has been defined. 

So that it can be proven 

𝜌𝜏 = {
𝜏𝑢, 𝑢 ≥ 0

(𝜏 − 1)𝑢, 𝑢 < 0
. 

Eq. (16) can only be solved numerically rather than analytically. The simplex algorithm is a numerical 

technique. Barrodale and Robert created the simplex algorithm approach in 1974. With the aid of 

computation, this algorithmic approach provides solutions to linear programming problems with numerous 

decision variables [19]. 

2.3 Bootstrap 

In order to lessen the unreliability that comes with using the normal distribution incorrectly, Efron in 

1979 created the bootstrap approach [20]. The standard deviation of B replications is used to compute the 

bootstrap standard error of 𝜃. 

𝑠𝑒̂(𝜃𝐵) = √∑ (𝜃∗
(𝑏) − 𝜃∗

(.))
2𝐵

𝑏=1

𝐵 − 1
, 

where 𝐵 is the number of resampling sets of size 𝑛 with replacement, and (𝜃∗
(.)) =

∑ 𝜃̂∗
(𝑏)

𝐵
𝑏=1

𝐵
. The 𝜃 statistic 

derived from the bth resampling (𝑏 =  1, … , 𝐵) is 𝜃∗
(𝑏). 

2.4 Wild Bootstrap 

Liu introduced the wild bootstrap method as an innovative approach to address heteroskedasticity in 

regression models, particularly the instability of error variances [21]. Before this development, the standard 

bootstrap technique was already widely used to examine sample distributions and construct confidence 

intervals without making assumptions about the underlying distribution. However, the traditional bootstrap 
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method tends to perform poorly when applied to data with non-constant error variances, a common issue in 

economic and financial analyses. To overcome this limitation, Liu proposed the wild bootstrap method, which 

modifies residuals in regression analysis by multiplying them by random Rademacher values, which take 

only two values, +1 and –1, each with probability 0.5. In this study, the wild bootstrap, a variant of the 

traditional bootstrap that incorporates randomization in the resampling process, is employed to provide a 

more robust inference framework for models affected by heteroskedasticity. 

According to Feng, He, and Hu, the wild bootstrap model for quantile regression is a resampling 

technique intended to enhance inference in quantile regression estimates, especially when heteroscedasticity 

and fixed designs are present [22]. Because the error distribution cannot be presumed to be symmetric, typical 

bootstrap techniques like residual bootstrap are inappropriate when quantile regression minimizes the 

asymmetric loss function 𝜌𝜏(𝑢) = 𝑢(𝜏 − 𝐼(𝑢 < 0)). It makes it impossible to assume that the error 

distribution is symmetric, rendering conventional bootstrap techniques like residual bootstrap incorrect. By 

modifying residual resampling using random weights (wild weights), wild bootstrap provides a solution; 

nevertheless, it is modified to account for the quantile loss function's asymmetry [23]. 

2.4.1 Methods for Quantile Regression Using Wild Bootstrap 

1. Fit the data to the quantile regression model: 

argmin
𝛽∈ℝ𝑝

∑ 𝜌𝜏(𝑦𝑖 − 𝑥𝑖
𝑇𝛽(𝜏)),

𝑛

𝑖=1

 𝑖 = 1,2, … , 𝑛 𝜏 ∈ (0,1). 

Obtain residuals: 

𝑒̂𝑖 = 𝑦𝑖 − 𝑥𝑖
𝑇𝛽(𝜏). 

2. Create a residual bootstrap: 

𝑒𝑖
∗ = 𝑤𝑖|𝑒̂𝑖|, 

where 𝑤𝑖 represents a random weight drawn from a distribution that satisfies specific requirements. 

3. Create a bootstrapped data set. 

𝑦𝑖
∗ = 𝑥𝑖

𝑇𝛽(𝜏) + 𝑒𝑖
∗. 

4. Refit model using bootstrapped data: 

Utilizing quantile regression on {𝑦𝑖
∗, 𝑥𝑖}, compute 𝛽̂∗(𝜏). 

5. Steps 2–4 should be repeated multiple times. For inference tasks, such as computing standard errors 

and confidence intervals, use the distribution of the bootstrapped estimates (𝛽̂∗ distribution). 

The 2024 Survey Status Gizi Indonesia (SSGI) publication served as the source of data for this 

investigation. The data gathered from this survey is essential for assessing the general health of the population 

in different parts of Indonesia. Table 1 provides an explanation of the variables used in this study using a 

number of distinct variables: 

Table 1. Research Variable 
Laten Variable Manifest Variable 

Nutritional status (𝜼) Underweight (𝑦1.1) 

Stunting (𝑦1.2) 

Wasting (𝑦1.3) 

Overweight (𝑦1.4) 

Specific Interventions (𝝃𝟏) Percentage of pregnant women with chronic energy deficiency (CED) who 

receive additional nutritional intake (𝑥1.1) 

Percentage of pregnant women who consume at least 90 tablets of iron 

supplements during pregnancy (𝑥1.2) 

Percentage of adolescent girls who consume iron supplements (𝑥1.3) 

Percentage of infants under 6 months of age receiving exclusive breastfeeding 

(𝑥1.4) 

Percentage of children aged 6-23 months who receive complementary foods to 

breast milk (𝑥1.5) 
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Laten Variable Manifest Variable 

Percentage of children under five years of age (toddlers) with malnutrition who 

receive malnutrition treatment services (𝑥1.6) 

Percentage of children under five years of age (toddlers) whose growth and 

development are monitored (𝑥1.7) 

Percentage of children under five years of age (toddlers) who are malnourished 

and receive additional nutritional intake (𝑥1.8) 

Percentage of children under five years of age (toddlers) who receive complete 

basic immunizations (𝑥1.9) 

Sensitive Intervention  (𝝃𝟐) Percentage of family planning (FP) services after childbirth (𝑥2.1) 

Percentage of unwanted pregnancies (𝑥2.2) 

Coverage of prospective couples of childbearing age (PUS) who receive health 

checks as part of marriage services (𝑥2.3) 

Percentage of households with access to safe drinking water in priority 

districts/cities (𝑥2.4) 

Percentage of households with access to proper sanitation (domestic wastewater) 

in priority districts/cities (𝑥2.5) 

Coverage of National Health Insurance Contribution Assistance Recipients (𝑥2.6) 

Coverage of families at risk of stunting who receive assistance (𝑥2.7) 

Number of poor and vulnerable families receiving conditional cash transfers 

(𝑥2.8) 

Percentage of target beneficiaries who have a good understanding of stunting in 

priority locations (𝑥2.9) 

Number of poor and vulnerable families receiving social assistance in the form of 

food (𝑥2.10) 

Percentage of villages/subdistricts that have stopped open defecation free (ODF) 

(𝑥2.11) 

Data source: SSGI 2024 

2.5 Steps in Research 

The methods and techniques of analysis that will be used to achieve the research goal are as follows: 

1. Presenting a conceptual model based on theory. 

The theoretical framework on the context, causes, and effects of toddler stunting served as the 

foundation for the development of the Status conceptual framework, which also took into account 

the policies and measures in place to hasten the reduction of stunting in Indonesia. A number of 

factors, including Specific Intervention Indicators and Sensitive Intervention Indicators, affect 

toddlers' nutritional status, which is measured as underweight, stunted, wasted, or overweight [24]. 

 

 

 

 

 

 

 

 

 
Figure 1. Conceptual model based on theory 

 

2. Creating a path diagram. 

3. Validity testing in the outer model and the structural model/inner model is done by PLS-SEM 

modeling. 

4. For every hidden variable, get the weighted factor scores. The Quantile Regression modeling 

analysis using PLS-SEM structural equations will make use of these weighted factor scores. 

Nutritional 

Status 

Sensitive 

Intervention

s 
 

Specific 

Intervention

s 

 



1782 Balami, et al.    QUANTILE BASED PLS-SEM WITH WILD BOOTSTRAP …  

5. Finding the estimated values of the SEM quantile regression parameters. 

6. Using bootstrap and wild bootstrap for hypothesis testing. 

7. Interpreting and summarizing the results. 

3. RESULTS AND DISCUSSION 

3.1 Estimating Model Parameters 

This work employed a route approach to obtain the model parameter coefficients using PLS. The 

following are the λ coefficients for exogenous and endogenous variables: 

𝜆𝑥1.1 = 0.697𝜆𝑥1.2 = 0.821𝜆𝑥1.3 = 0.673𝜆𝑥1.4 = 0.764𝜆𝑥1.5 = 0.744𝜆𝑥1.6 = 0.505 
𝜆𝑥1.7 = 0.751𝜆𝑥1.8 = 0.717𝜆𝑥1.9 = 0.754𝜆𝑥2.1 = 0.605𝜆𝑥2.2 = 0.077𝜆𝑥2.3 = 0.723 
𝜆𝑥2.4 = 0.652𝜆𝑥2.5 = 0.656𝜆𝑥2.6 = 0.409𝜆𝑥2.7 = 0.665𝜆𝑥2.8 = 0.496𝜆𝑥2.9 = 0.745 

      𝜆𝑥2.10 = 0.499𝜆𝑥2.11 = 0.618𝜆𝑦1.1 = 0.961𝜆𝑦1.2 = 0.797𝜆𝑦1.3 = 0.824𝜆𝑦1.4 = −0.481. 

Coefficient 𝛾: 

𝛾1.1 = −0.137 and 𝛾2.1 = −0.214. 

3.2 Assessment of Outer Model Measurement Models 

The measurement model (outer model) was evaluated for each PLS scheme employed, namely the path 

scheme. Assessing each indicator's validity and reliability in relation to its latent variable was part of the 

measurement model evaluation process. 

1. Validity 

A metric used to characterize the relationship between indicator scores and latent variables is called 

validity. First, the validity indicators displayed by the factor loading values (λ) are examined. The 

indicator is deemed legitimate if the loading value (λ) is more than or equal to 0.5. If λ is less than 

or equal to 0.5, the indicator is deemed invalid and needs to be eliminated from the analysis because 

it shows that it is not trustworthy enough to measure the hidden variable. There are still factor 

loading values (λ) <0.5 in the λ coefficients, namely in indicators X2.2, X2.6,  X2.8, and X2.10, which 

represent the specific intervention service variable, and indicator Y1.4, which represents the 

nutritional status variable. A loading factor value (λ) < 0.5 indicates that the indicator is invalid 

and should be removed from the analysis because it indicates that the indicator is not good enough 

to measure the latent variable. Therefore, indicators Y1.4, X2.2, X2.6,  X2.8, and X2.10 are not used in the 

PLS analysis. 

 

Figure 2. Path Diagram for Structural Equations using Path Scheme 

Source: Processed results from smartPLS 4 
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According to Fig. 2, each indicator of the latent variables Nutritional Status, Sensitive Intervention 

Services, and Specific Intervention Services has a loading factor (λ) values greater than 0.5. 

Therefore, it can be concluded that every indicator employed to measure hidden variables is 

excellent and reliable. 

2. Reliability 

A coefficient called reliability indicates how consistent the data are. If the data at several points in 

time are similar, the study is deemed credible. For a variable to be considered trustworthy, its 

composite reliability value must be better than 0.7. Table 2 displays the output results, which 

include each variable's composite reliability (CR) values. 

Table 2. Reliability Value  

Latent Variable Composite reliability 

Specific Interventions 0.809 

Nutritional Status 0.836 

Sensitive Intervention 0.911 

Data source: Processed Results from smartPLS 4 

From Table 2, every indicator employed to measure latent variables is dependable since each latent 

variable has a composite reliability (CR) value higher than 0.7. These factors lead to the conclusion 

that the measurement model is good since it satisfies the criterion for validity and reliability. 

3.3 Evaluation of Structural Models (Inner Model) 

The parameter coefficient estimates and their significance levels were examined to evaluate the 

structural model and investigate the connections among the previously proposed latent components. R-square 

of 0.110 is one metric that may be used to assess the structural model (inner model). 

1. Hypothesis Testing 

The parameters 𝜆 and 𝛾 are tested as part of hypothesis testing. The 𝑡-test is the statistical test that 

smartPLS uses. 

a. Testing the measurement model hypothesis (outer model) 

The following hypothesis is applied in order to determine the importance of the outer model 

parameters: 

𝐻0: 𝜆𝑖 = 0, 
𝐻1: 𝜆𝑖 ≠ 0. 

At a significance level of α equal to 5 percent, reject 𝐻0 if 𝑡𝑠𝑡𝑎𝑡  > 𝑡𝑡𝑎𝑏𝑙𝑒 or 𝑝 − 𝑣𝑎𝑙𝑢𝑒 <  𝛼. 

The 𝑡-table value is 1.960. Table 3 displays the findings of the measurement model's 𝑡-statistic 

test. 

Table 3. Bootstrap t-Statistic Significance Test 
Latent 

Variable 

Manifest 

Variable 
Loading 

Standard 

Error 
t -statistics p- values 

Specific 

Interventions 

𝑥1.1 0.696 0.055 12.606 0.000 

𝑥1.2 0.821 0.033 24.912 0.000 

𝑥1.3 0.674 0.043 15.816 0.000 

𝑥1.4 0.765 0.034 22.711 0.000 

𝑥1.5 0.746 0.037 19.978 0.000 

𝑥1.6 0.505 0.059 8.577 0.000 

𝑥1.7 0.754 0.040 18.866 0.000 

𝑥1.8 0.716 0.049 14.564 0.000 

𝑥1.9 0.750 0.031 24.213 0.000 

Sensitive 

Interventions 

𝑥2.1 0.600 0.048 12.517 0.000 

𝑥2.3 0.746 0.039 19.324 0.000 
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Latent 

Variable 

Manifest 

Variable 
Loading 

Standard 

Error 
t -statistics p- values 

𝑥2.4 0.676 0.051 13.277 0.000 

𝑥2.5 0.686 0.048 14.389 0.000 

𝑥2.7 0.662 0.048 13.642 0.000 

𝑥2.9 0.748 0.039 19.292 0.000 

𝑥2.11 0.633 0.052 12.060 0.000 

Nutritional 

Status 
𝑦1.1 0.959 0.006 172.507 0.000 

𝑦1.2 0.798 0.032 25.260 0.000 

𝑦1.3 0.828 0.025 33.038 0.000 

Data source: Processed results from smartPLS 4 

Table 3 shows that the loading factor values link the Specific Intervention construct to the 

indicator variables 𝑥1.1, 𝑥1.2, 𝑥1.3, 𝑥1.4, 𝑥1.5, 𝑥1.6, 𝑥1.7, 𝑥1.8, and 𝑥1.9. The Sensitive Intervention 

construct to the indicator variables 𝑥2.1, 𝑥2.3, 𝑥2.4, 𝑥2.5 , 𝑥2.7, 𝑥2.9 and 𝑥2.11. The association between 

the nutritional status construct and the indicator variables 𝑦1.1, 𝑦1.2 and  𝑦1.3 has a t-statistic value 

> 1.960 at a significance threshold of α = 0.05, and each has a loading value (λ) ≥ 0.5. 

The following equation was created using the loading factor and standard error values found in 

Table 3. 

i. Exogenous latent variable 1 (Specific Intervention) 

𝑥1.1 = 0.696𝜉1 + 0.055 
𝑥1.2 = 0.821𝜉1 + 0.033 
𝑥1.3 = 0.674𝜉1 + 0.043 
𝑥1.4 = 0.765𝜉1 + 0.034 
𝑥1.5 = 0.746𝜉1 + 0.037 
𝑥1.6 = 0.505𝜉1 + 0.059 
𝑥1.7 = 0.754𝜉1 + 0.040 
𝑥1.8 = 0.716𝜉1 + 0.049 
𝑥1.9 = 0.750𝜉1 + 0.031 

ii. Exogenous latent variable 2 (Sensitive Intervention) 

𝑥2.1 = 0.600𝜉2 + 0.048 
𝑥2.3 = 0.746𝜉2 + 0.039 
𝑥2.4 = 0.676𝜉2 + 0.051 
𝑥2.5 = 0.686𝜉2 + 0.048 
𝑥2.7 = 0.662𝜉2 + 0.048 
𝑥2.9 = 0.748𝜉2 + 0.039 
𝑥2.11 = 0.828𝜉2 + 0.025 

iii. Latent variable endogenous (Nutritional Status) 

𝑦1.1 = 0.978𝜂 + 0.010 
𝑦1.2 = 0.917𝜂 + 0.034 
𝑦1.3 = 0.953𝜂 + 0.032. 

b. Examining the inner model's structural model hypothesis 

The following hypothesis was applied in order to test the inner model parameters. 

i. Sensitive intervention (ξ1) on Nutritional Status (η) 

𝐻0: 𝛾11 = 0, 
𝐻1: 𝛾11 ≠ 0. 

ii. Specific intervention (ξ2) on Nutritional Status (η) 

𝐻0: 𝛾12 = 0, 
𝐻1: 𝛾12 ≠ 0. 
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The t-table value, with a significance level of α = 5 percent, is 1.960. 𝑡𝑠𝑡𝑎𝑡  > 𝑡𝑡𝑎𝑏𝑙𝑒 or 𝑝 −
𝑣𝑎𝑙𝑢𝑒 <  𝛼, reject 𝐻0. Table 4 displays the findings of the path coefficient estimation. 

Table 4. Estimation of Path Coefficient Values 

Latent Variable 
Parameter 

Coefficient 

Standard 

deviation 
t-statistics p-value 

Specific Interventions-> 

Nutritional Status 
-0.133 0.055 2.412 0.016 

Sensitive Intervention-> 

Nutritional Status 
-0.229 0.057 4.040 0.000 

Data source: Processed results from smartPLS  

The following explanation explains the influence of the link between factors in Table 4. Specific 

interventions affect nutritional status, The path parameter coefficient obtained from the 

relationship between the Sensitive Intervention variable and nutritional status is -0.133, with a 

𝑡-statistic value of 2.412 > 1.960 (𝑡𝑡𝑎𝑏𝑙𝑒), at a significance level of 𝛼 =  5%, indicating that 

there is a significant effect between specific interventions and nutritional status. Sensitive 

interventions influence nutritional status. The path parameter coefficient obtained from the 

relationship between the specific intervention variable and nutritional status is -0.133 with a 

𝑡𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 value of 4.040 > 1.960 (𝑡𝑡𝑎𝑏𝑙𝑒) at a significance level of α = 5%, indicating a significant 

effect of sensitive interventions on nutritional status. 

3.4 Quantile Regression in SEM for Nutritional Status 

To determine the coefficient for each predictor variable, this study used the Quantile Regression 

approach to fit a model for each quantile that explains the degree to which the predictor variables affect 

nutritional status at that quantile. Furthermore, the degree to which the predictor factors influence nutritional 

status at each quantile is shown. Table 5 displays the results of the parameter estimation. 

Table 5. Estimation of Path Quantile Regression 

Parameter 
Quantile (𝝉) 

0.05 0.5 0.95 

𝛽0(𝜏) -1.55578 -0.08226 1.66386 

𝛽1(𝜏) -0.26339 -0.23091 0.01856 

𝛽2(𝜏) 0.22905 -0.19032 -0.57280 

Data source: Processed results from RStudio 

The quantiles indicate that several predictor variables have both positive and negative effects on 

nutritional status. The factors with a major impact on nutritional status at each quantile will be examined 

next. Table 6 presents the results of the parameter significance test. 

Table 6. p-Value from The Results of Parameter Estimation 

Parameter 
Quantile (𝝉) 

0.05 0.5 0.95 

𝛽0(𝜏) 0.00000 0.08237 0.00000 

𝛽1(𝜏) 0.26947 0.00029 0.90690 

𝛽2(𝜏) 0.33682 0.00276 0.00034 

Data source: Processed results from RStudio 

There is substantial variance in the quantile regression parameters across quantiles, as shown in Table 

6, which shows the p-values from the estimation of the parameters at the three quantile levels (0.05, 0.5, and 

0.95). With p-values of 0.00029 and 0.00276, respectively, the parameters Specific Interventions (𝛽1
(𝜏)) and 

Sensitive Interventions (𝛽2(𝜏) ) are significant at the median quantile but not at the lower or upper quantiles. 

The quantile regression approach is beneficial for capturing heterogeneity in covariate effects across the data 
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distribution, as these results show that the influence of each parameter on the response variable varies across 

different portions of the distribution. 

3.5 Bootstrap for each quantile in SEM 

A quantile regression analysis was carried out using the bootstrap method to gain a more thorough 

understanding of each predictor's impact on the distribution of the response variable. This technique enables 

identification of shifts in the predictors' influence on the mean and on specific distributional segments, 

including the lower, middle, and upper quantiles. Three quantile levels, 0.05, 0.5, and 0.95, were employed 

in this instance to capture the dynamics of the predictor effects at different distributional positions. 

Additionally, as shown in Fig. 3 below, the predicted regression coefficients are displayed with 95% 

confidence intervals. 

 

Figure 3. Bootstrap Quantile in SEM 

Source: Processed results from RStudio 

Fig. 3 shows the results of Bootstrap Quantile Regression analysis with a 95% confidence interval at 

three quantiles (0.05, 0.5, and 0.95), which illustrates the effect of two predictors (Specific Intervention, and 

Sensitive Intervention) on the distribution of the response variable. At the 0.05 quantile, none of the predictors 

are significant. At the 0.5 quantile (median), the sensitive intervention predictor shows a significant negative 

effect on the response, while the other predictors are not significant. At the 0.95 quantile, sensitive 

intervention again shows a significant negative effect, while the intercept shows a significant positive effect. 

These results indicate that sensitivity has a significant effect that varies depending on the part of the response 

distribution being analyzed, with a tendency to decrease values at the median and upper quantiles, while 

specific intervention does not have a significant effect at all quantiles. 

3.6 Wild Bootstrap for each quantile in SEM 

Based on the results from the standard bootstrap, further analysis can be performed using the wild 

bootstrap to address potential heteroscedasticity and structural error dependence in the quantile regression 

model. Wild bootstrap provides more robust confidence intervals by accounting for more realistic variations 

in random errors, thereby providing more accurate and reliable estimates for testing the significance of 

coefficients at various quantiles. By using wild bootstrap, we can reduce bias arising from error distributions 

that do not meet classical assumptions and thereby improve statistical inference in this quantile regression 

model. 
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Figure 4. Wild Bootstrap Quantile in SEM 

Source: Processed results from RStudio 

With negative coefficient estimates, Fig. 4 demonstrates that all predictors significantly impact the 

lower values of the response distribution at the 0.05 quantile. Only the sensitive intervention variable and the 

particular intervention variable are significantly negative at the 0.5 quantile; the intercept, which shows how 

predictors affect the median response value, is not significant. All three predictors, however, are significant 

at the 0.95 quantile, with the sensitive intervention variable having a negative influence and the intercept and 

specific intervention variable exhibiting large positive effects. Given that the direction and significance of 

effects can vary substantially across different portions of the distribution, these results highlight the need to 

account for the position within the distribution (quantile) when assessing the impact of predictors. 

4. CONCLUSION 

Based on the results of two approaches, Bootstrap Quantile in SEM and Wild Bootstrap Quantile in 

SEM, it can be concluded that the predictor consistently shows a significant negative effect on the median 

(quantile 0.5) and the upper quantile (0.95) of the response distribution, while at the lower quantile (0.05), 

the effect varies depending on the method used. In the conventional bootstrap analysis, the predictor does not 

exhibit a significant effect at any quantile, whereas in the wild bootstrap approach, it shows significance at 

the 0.05 and 0.95 quantiles. This indicates that the wild bootstrap method is more sensitive in detecting the 

significance of regression coefficients, especially under heteroskedasticity or unstable error distributions. Its 

main advantage lies in its ability to handle the heterogeneity of variance commonly found in real-world data, 

thereby producing more robust and accurate confidence interval estimates. Consequently, the use of the wild 

bootstrap in quantile regression enhances the reliability of statistical inference and provides a more 

comprehensive understanding of how predictor effects vary across the entire response distribution. 
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