BAREKENG: Journal of Mathematics and Its Applications
l June 2026 Volume 20 Issue 2 Page 1675-1692
are @n (q P-ISSN: 1978-7227 E-ISSN: 2615-3017

D
jurnal iimu matematika dan terapan d https://d01.0rg/10.30598/bareken_

A COMPARATIVE STUDY OF PIPELINE-VALIDATED
MACHINE LEARNING CLASSIFIERS FOR PERMISSION-BASED
ANDROID MALWARE DETECTION

Arif Ridho Lubis=®!", Dewi Wulandari:<®2, Lilis Tiara Adha<® 3,
Tika Ariyani=<®*, Yuyun Yusnida Lase=®3, Fahdi Saidi Lubisx<® 6

12345 Departement Computer Engineering and Informatics, Politeknik Negeri Medan
Jin. Almamater no 1 Kampus USU, Medan, 20155, Indonesia

’Departement of Information Technology, Kulliyyah of Information and Communication Technology,
International Islamic University Malaysia
Jin. Gombak, 53100, Malaysia

Corresponding author’s e-mail: * arifridho@polmed.ac.id

Article Info ABSTRACT

The growing prevalence of Android malware distributed through third-party APK

Article History: sideloading poses a significant security threat to users and developers. This study aims to
Received: 23" July 2025 evaluate the effectiveness of three machine learning algorithms—Logistic Regression (LR),
Revised: 12" September 2025 Random Forests (RF), and Gradient Boosting Machine (GBM)—for static Android
Accepted: 37 November 2025 malware detection based on permission features. The experiment employs the publicly

Available Online:26" January 2026 gvailable Android Malware Prediction Dataset (Kaggle, accessed 2025), containing 4,464
application samples with 328 binary permission attributes. A leakage-free CRISP-DM
workflow was implemented, integrating data cleaning, automated feature selection via

Keywords: SelectKBest (Mutual Information), and hyperparameter optimisation using GridSearchCV
Android Malware; with stratified 5-fold cross-validation. Results on the unseen hold-out test set show that
Classification; GBM achieved the best performance, with 96.05% accuracy and 0.9924 ROC-AUC,
Gradient Boosting Machine; outperforming LR and RF. In addition, GBM exhibited superior probability calibration
Logistic Regression; (Brier Score = 0.0344) and interpretability, as confirmed through SHAP analysis. The
Permission-Based Detection; ablation study further validated that optimal model performance saturates at 30—40
Random Forest. selected features. This research contributes a reproducible and pipeline-validated

comparative framework for static Android malware detection, addressing prior studies’
limitations regarding feature selection bias and data leakage. Nevertheless, the study is
limited by its reliance on static permission features and the absence of dynamic
behavioural data, which may restrict generalisation to evolving malware families.

This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution-ShareAlike 4.0
International License.

How to cite this article:

A. R. Lubis, D. Wulandari, L. T. Adha, T. Ariyani, Y. Y. Lase and F. S. Lubis., “A COMPARATIVE STUDY OF PIPELINE-VALIDATED
MACHINE LEARNING CLASSIFIERS FOR PERMISSION-BASED ANDROID MALWARE DETECTION, BAREKENG: J. Math. & App.,
vol. 20, no. 2, pp. 1675-1692, Jun, 2026.

Copyright © 2026 Author(s)
Journal homepage: https://ojs3.unpatti.ac.id/index.php/barekeng/
Journal e-mail: barekeng.math@yahoo.com; barekeng.journal@mail.unpatti.ac.id

R h Article - A
esearch Article - Open Access 1675

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
mailto:arifridho@polmed.ac.id
https://orcid.org/0000-0001-8855-1277
mailto:dewiwulandari@students.polmed.ac.id
https://orcid.org/0009-0004-6130-5120
mailto:lilistiaraadha@students.polmed.ac.id
https://orcid.org/0009-0005-9117-4704
mailto:tikaariyani@students.polmed.ac.id
https://orcid.org/0009-0003-8683-2288
mailto:yuyunlase@polmed.ac.id
https://orcid.org/0009-0004-6828-8693
mailto:fahdi.saidi@live.iium.edu.my
https://orcid.org/0000-0002-3743-2486
https://ojs3.unpatti.ac.id/index.php/barekeng/
mailto:barekeng.math@yahoo.com
mailto:barekeng.journal@mail.unpatti.ac.id

1676 Lubis, etal. A COMPARATIVE STUDY OF PIPELINE-VALIDATED MACHINE LEARNING CLASSIFIERS FO...

1. INTRODUCTION

In today’s hyperconnected digital environment, the boundaries between communication, work, and
entertainment have become increasingly blurred. The Android operating system dominates the mobile
market, powering billions of devices worldwide and serving as the backbone of mobile applications and
online services [1][2]. Its open-source framework provides flexibility and accessibility for developers, yet it
also introduces major cybersecurity vulnerabilities [3]. Cybercriminals are increasingly using social
engineering tactics to trick users into downloading malicious Android application packages (APKs) that
appear legitimate, often disguised as entertainment, productivity tools, or system updates [4][5]. These
applications are typically distributed outside the Google Play Store, a process known as sideloading, which
bypasses built-in security verification and exposes users to elevated risk [6]. Once installed, such malware
can access sensitive resources through overprivileged permissions, enabling activities such as surveillance,
credential theft, and financial fraud [7][&]. Research comparing sideloaded apps to those from the Play Store
found that sideloaded applications are more likely to lack privacy policies, transmit sensitive data
unencrypted, and even contain stalkerware or other malicious functionalities, making them especially
dangerous for users [9]. Dynamic code loading, a technique often used in sideloaded apps, can stealthily
introduce malware or vulnerabilities that evade detection by traditional antivirus tools, further increasing the
risk of privacy breaches and unauthorised access to device resources [10].

To mitigate these growing threats, machine learning (ML) has emerged as a central approach in
Android malware detection. ML-based systems can learn complex behavioural patterns from static features
such as permissions, API calls, or code metadata, providing more scalable detection than traditional signature-
based methods [11]. Among these, permission-based static analysis is particularly attractive because it does
not require executing the application and can thus be deployed in resource-constrained environments such as
mobile devices or app stores [12][13]. Each Android app declares its required permissions in the manifest
file, and patterns in these requests have been shown to strongly correlate with malicious intent [14]. Various
ML algorithms, including Random Forests, XGBoost, Support Vector Machines, and ensemble methods,
have demonstrated strong performance in malware detection, with some models achieving accuracy above
90% and low false-positive rates [15]. However, challenges remain, such as handling imbalanced datasets,
inconsistent evaluation protocols, limited cross-validation, or non-calibrated probability outputs, which
undermine reproducibility and limit real-world reliability [16].

The purpose of this study is to analyse and classify malware disseminated through Android applications
using a publicly available Kaggle dataset containing thousands of pre-labelled benign and malicious samples,
each represented by binary permission features [17]. The dataset was cleaned, deduplicated, and standardised
to ensure integrity and reproducibility. The research employs a structured data-mining framework consistent
with CRISP-DM (CRoss-Industry Standard Process for Data Mining) [18] principles, integrating mutual
information—based feature selection, cross-validated hyperparameter tuning, and probability calibration via
Brier scores and reliability curves Three supervised learning algorithms were also selected based on their
complementary characteristics, best results of the previous studies, and relevance to binary classification tasks
in malware detection. Logistic Regression was chosen for its interpretability and computational efficiency,
enabling a clear understanding of how individual permissions contribute to the prediction of malicious
behaviour [19]. Random Forests were included as a robust ensemble method that mitigates overfitting and
effectively handles large sets of binary permission features [20]. Meanwhile, the Gradient Boosting Machine
(GBM) was employed to capture complex non-linear relationships through iterative error correction, often
achieving superior predictive performance on structured datasets [21]. The models will be trained to
determine whether an application is malicious by learning the permissions requested by APK files. The
combination of these models enables a comparative analysis that balances interpretability, generalisation, and
accuracy, offering insights into the trade-offs between lightweight and high-performance malware classifiers.

Several studies have addressed malware detection, yet methodological differences remain. The first
research, conducted by Nasri et al. [22], employs five algorithms, namely Random Forests, Naive Bayes, J48,
DecisionTable, and MLP, for classifying and identifying malware. Their results showed that Random Forests
achieved the highest accuracy of 89.36%, validating ensemble methods as effective models for malware
detection. The dataset used by Nasri et al. was sourced from the AndroZoo project, containing APKs collected
from various repositories, including Google Play. While their approach demonstrated competitive accuracy,
their manual decompilation of applications to extract permissions limited scalability and reproducibility. The
present study differs by leveraging automated preprocessing and reproducible open-source datasets,

BAREKENG: J. Math. & App., vol. 20(2), pp. 1675- 1692, June, 2026. 1677

integrated into a fully encapsulated pipeline that supports robust hyperparameter tuning and model
comparison.

The study conducted by Ahmed et al. [23] compared the performance of six machine learning
algorithms for classifying Android malware: Decision Trees, Support Vector Machines, Naive Bayes,
Random Forests, K-Nearest Neighbours, and Ensemble Methods / Extra-Tree Classifier. The study achieved
its best accuracy of 95% using Random Forests with feature selection techniques such as Correlation, Chi-
Square, and Information Gain. Although the findings confirmed Random Forest’s strength for malware
detection, the evaluation pipeline selected features before cross-validation, introducing a feature-leakage
problem. Moreover, their analysis lacked emphasis on model calibration or interpretability. The present
research improves upon this by embedding feature selection and scaling directly within the cross-validation
process and evaluating probability calibration using Brier scores.

The third research by Droos et al. [24] utilised four machine learning algorithms for the detection of
Android malware: Random Forests, Naive Bayes (NB), J48, and IBK (K-Nearest Neighbors). Their
evaluation employed metrics such as Recall, Precision, and Accuracy, achieving the highest accuracy of
98.6% with Random Forests. The dataset, sourced from the University of New Brunswick repository,
contained multiple malware types, including adware, banking trojans, and SMS malware. Although their
results were impressive, their study did not explore calibration or discuss model efficiency for deployment in
resource-limited devices. In contrast, this research evaluates three models of varying complexity, which are
Logistic Regression, Random Forests, and GBM, under identical conditions to identify the optimal balance
between interpretability, computational efficiency, and predictive performance.

The fourth study, Kapoor et al. [25], examined six classical algorithms—Logistic Regression, Linear
Discriminant Analysis, k-Nearest Neighbours, Decision Tree, Naive Bayes, and SVM—for permission-based
Android malware detection. Logistic Regression achieved the highest accuracy (99.34%), confirming its
strong suitability for binary permission-based data. However, their dataset was self-constructed, lacked
validation against external sources, and did not control for feature overlap or data leakage. The current
research builds upon Kapoor et al. by employing a public, reproducible dataset, applying mutual information-
based feature selection, and using calibrated probabilistic outputs, thereby addressing reproducibility and
overfitting concerns absent in earlier studies.

The purpose of this comparative analysis is to determine the most effective model for identifying
permission-based Android malware by using Logistic Regression, Random Forests, and Gradient Boosting
Machines. This research introduces several key innovations: (1) a reproducible, leakage-free pipeline
integrating mutual information—based feature selection; (2) cross-validated hyperparameter optimisation; and
(3) calibrated probabilistic evaluation. Additionally, an ablation study was conducted to analyse the influence
of feature dimensionality and selection criteria (Mutual Information vs. Correlation), confirming the
robustness and stability of the proposed framework. By addressing long-standing issues of data leakage,
reproducibility, and model interpretability, this research aims to contribute toward the development of
trustworthy, resource-efficient, and scientifically transparent malware detection systems.

2. RESEARCH METHODS

2.1 Workflow

This study follows a structured analytical workflow inspired by the Cross-Industry Standard Process
for Data Mining (CRISP-DM). CRISP-DM is a domain- and technology-independent process model that
structures data mining and machine learning projects into six iterative phases: business understanding, data
understanding, data preparation, modelling, evaluation, and deployment [26]. The stages include Dataset
Understanding, Exploratory Data Analysis (EDA), Feature Selection Strategy Design, Data Preprocessing,
Modelling and Evaluation, Implementation and Study, as shown in Fig. 1.

1678 Lubis, etal. A COMPARATIVE STUDY OF PIPELINE-VALIDATED MACHINE LEARNING CLASSIFIERS FO...

- Dataset
Dataset Understanding

¥

Exploratory Data
Feature Selection Analysis (EDA)
A4
Data
Preprocessing
h 4
{gudelling & Evaluation)
) v ¥
' ™\
. . Gradient Boosting
(Logsilc Regressmnw Random Forest { Machine l

A4

Evaluation

Y

Implementation &
Study

Figure 1. Workflow Diagram

The process begins with dataset acquisition and understanding, where the Android permissions dataset
from Kaggle [16] is examined for completeness, consistency, and suitability for classification. This stage lays
the foundation for subsequent analysis by identifying the data's structure and characteristics. Following data
understanding, exploratory data analysis (EDA) is performed to visualise and summarise the dataset’s main
features, identify general patterns, highlight key differences between benign and malicious applications, and
see how the columns correlate with each other. EDA insights guide the design of the feature selection strategy,
which determines the most relevant permission attributes using K-Fold Select. The data is then preprocessed
through cleaning, normalisation, and transformation to ensure that it is ready for training and evaluation.

The prepared data proceeds to the modelling and evaluation stage, where three supervised learning
algorithms—Logistic Regression, Random Forests, and Gradient Boosting Machine—are implemented and
compared. Each model is trained using a standardised pipeline with cross-validation and grid search
optimisation. The results are evaluated using multiple performance metrics, and the workflow concludes with
implementation and study, where the models are instructed to solve high-risk, medium-risk, low-risk, and no-
risk cases, and the models are analysed for calibration, interpretability, and robustness through additional
validation and ablation experiments.

2.2 Dataset

The dataset utilised in this research is a permission-based Android malware dataset, the “Android
Malware Detection Dataset” by Danny Revaldo, obtained from Kaggle [16], which contains static binary
features representing permissions requested by Android application packages (APKs). Each row in the dataset
corresponds to an individual application, while each column represents a specific permission or API-level
feature extracted from the application’s manifest file. The dataset comprises 4,464 records and 328 binary
attributes, along with a target column labelled benign or malware that serves as the ground truth for this study.
Each feature takes a binary value of 1 if the corresponding permission is declared by the application, and 0
otherwise. After duplicate removal, 3,292 unique samples remain, with 1,745 benign applications and 1,547
malware applications in the cleaned dataset.

BAREKENG: J. Math. & App., vol. 20(2), pp. 1675- 1692, June, 2026. 1679

The permissions in this dataset span a wide range of Android system resources, covering device
identifiers, storage access, communication services, location data, and system-level execution capabilities.
These permissions are typically used by legitimate applications but are frequently abused by malicious ones
to exfiltrate data, track user activity, or execute unauthorised actions. The dataset also includes several API
call indicators that correspond to potentially sensitive operations, such as dynamic code loading or direct
network communication, which can reveal malicious payload distribution or command-and-control
behaviour. The features in this dataset capture these behavioural patterns, making it particularly suitable for
static analysis and machine learning classification. Table | lists the permissions represented in the dataset.

Table 1. Permission Examples in the Dataset

No. Column Name Description
l. android.permission.READ PHONE STATE Allows access to device identifiers, IMEI,
network information, and call status.
2. android.permission. ACCESS NETWORK S Allows an application to access the device's
TATE location services to determine the user's precise
location.
3. android.permission. BLUETOOTH Enables an application to use the device's
Bluetooth capabilities, including connecting to
other devices.
4. android.permission. CAMERA Allows access to the device's camera, including
taking photos and recording videos.
5. android.permission. CHANGE WIFI STATE Grants an application the ability to change the
device's Wi-Fi settings.
6. android.permission.INTERNET Allows an application to access the internet,
including sending and receiving data over the
network
7. android.permission.PROCESS OUTGOING _ Enables an application to monitor and manage
CALLS outgoing phone calls.
8. android.permission.READ_CONTACTS Grants an application access to the device's
contact list.
9. android.permission.READ INTERNAL STO Allows an application to write data to internal
RAGE storage devices.
10. android.permission. WAKE LOCK Enables an application to prevent the device
from going into sleep mode or locking the
screen, allowing it to continue running in the
background.
11 android.permission.READ SMS Grants an application access to the device's
SMS messages, including reading and
managing SMS messages, including receiving
OTP (One-Time Passwords).
12 android.permission.SEND SMS Allows an application to send SMS messages,
including sending and managing SMS
messages.
13 android.permission.PROCESS OUTGOING_ Enables an application to monitor and manage

CALLS

outgoing phone calls, including intercepting
calls, managing call logs, and controlling call
settings

2.3 Exploratory Data Analysis

Exploratory Data Analysis (EDA) is a crucial step in the workflow, performed to examine the structural
characteristics and statistical patterns within a dataset before model development. EDA involves using
visualisations and statistical summaries to uncover underlying patterns, detect outliers, identify errors or
corrupt data, and reveal relationships between variables, all of which inform subsequent modelling decisions
and help validate initial assumptions about the data [27]. All EDA procedures were conducted using the
pandas, seaborn, and matplotlib libraries in Python, ensuring purely descriptive exploration without exposing
test data to the modelling process.

1680 Lubis, etal. A COMPARATIVE STUDY OF PIPELINE-VALIDATED MACHINE LEARNING CLASSIFIERS FO...

2.3.1 Distribution of Active Permissions per Application

Distribution of Active Permissions per Application

800

600 -

Frequency

'y

Q

o
L

200 A

0 . : _I.-P"'|_"I=-__

T T T T
0 25 50 75 100 125 150 175
Number of Active Permissions

Figure 2. Distribution of Active Permissions per Application

A statistical summary of the total active permissions requested per application (referred to as
permission_count) shows a mean of 24.57, a standard deviation of 16.99, a minimum of 1, and a maximum
of 177. The histogram in Fig. 2 shows a right-skewed distribution, with most applications requesting between
15 and 30 permissions, while a few outliers exhibit exceptionally high counts. This long-tail pattern suggests
that while most apps use moderate permissions for functional purposes, a minority of highly permission-
intensive applications may pose greater security risks. Such overprivileged behaviour often correlates with
malicious intent, as excessive access rights enable unauthorised operations on device resources.

2.3.2 Comparison of Permission Counts

Comparison of Permission Counts: Malware vs Benign

;

175 A
150 A
125 A

100 ~

E
+
L

75 A

50 4

Number of Active Permissions

=% }7 +’I—m0 (o] Q@ O

| [
] L

254 |

Label (0 = Benign, 1 = Malware)

Figure 3. Comparison of Permission Counts

The boxplot in Fig. 3 visualises the difference in permission intensity between benign and malicious
applications. Malware samples tend to have higher median permission counts and wider interquartile ranges,
reflecting greater variation in the number of permissions requested. Several outliers are visible, representing
applications that demand an unusually large number of permissions, a characteristic often associated with
privilege abuse or spyware-like activity. The benign group shows a more concentrated distribution, indicating
that legitimate applications typically operate within narrower permission scopes.

BAREKENG: J. Math. & App., vol. 20(2), pp. 1675- 1692, June, 2026. 1681

2.3.3 Feature Correlation Heatmap
Spearman Correlation Matrix (Top 10 Permissions + Malware Label) - Informative EDA

android.permission READ_PHOME_STATE CM 051 043 [GECE 049 046

android. permission.RECEIVE_BOOT_COMPLETED - 0.51 047 | 010 040 040

com.android.launcher.permission INSTALL_SHORTCUT - 0.43 047

com.google.android.czdm permissian. RECEIVE -SRI -0.10

. [

android.permission. ACCESS_COARSE_LOCATION - 049 0.40
android.permission ACCESS_FINE_LOCATION - 0.46 0.40

RECEIVE_BOOT_COMPLETED - 031 023 0.22

GET_TASKS - 0.23

- H

- 0.0

&

,l
com.google. android.c2dm.permission RECEIVE - & ;
& E

55_FINE_LOCATION -

android. permission. ACCES!

5_COARSE_LOCATION -

E_BOOT_COMPLETED -

RECEIVE_BOOT_COMPLETED -
tLasti

android. permission.READ_PHONE_STATE
Ljava/net/URL -=openConnectio

android.permission. ACCES:

android.permission. RECEIVI
com.android.launcher.permission. INSTALL_SHORTCUT -

Landroidflocation/L

Figure 4. Correlation Heatmap

Fig. 4 visualises the Spearman correlation coefficients among the ten permission features most strongly
correlated with the malware label. The bottom row and rightmost column show each feature’s relationship
with the target class, indicating that several permissions have strong positive correlations with malicious
behaviour. The top-ranked features include read phone state (o = 0.72), receive boot completed
notifications (p = 0.56), and installing shortcuts (o0 = 0.52), all of which are linked to high-risk operations
such as device identification, persistence after reboot, and silent shortcut installation. Additional correlations
are observed for access coarse location (p = 0.46), access fine location (p = 0.43), and network-related
APIs such as Ljava/net/URL;->openConnection (p = 0.38), which are commonly associated with user
tracking and unauthorised communication. To prevent bias and data leakage, the actual feature selection in
this study is performed independently in the modelling phase (Section 2.4) using SelectKBest with mutual
information scoring within a cross-validation pipeline.

2.4 Feature Selection

Feature selection is a critical step in machine learning to reduce dimensionality, improve model
performance, and prevent overfitting [28]. In this research, we compared two feature selection approaches
to determine the most effective method for malware classification:

2.4.1 Manual Spearman Correlation

The first approach involved manually selecting the top 20 features based on Spearman correlation
coefficients with the target variable (malware status). The Spearman rank correlation coefficient (p) measures
the strength of a monotonic relationship between two ranked variables [29] and is defined as:

6 d?
n(n?—1)

where d; represents the difference between the ranks of paired values and n is the number of observations.

p= (1)

While intuitive and computationally simple, this baseline method presents several limitations:

1682 Lubis, etal. A COMPARATIVE STUDY OF PIPELINE-VALIDATED MACHINE LEARNING CLASSIFIERS FO...

1. Data leakage risk: Computing correlations on the entire dataset (including the test set) before
splitting can lead to overly optimistic performance estimates.

2. Static selection: The same set of features is used across all models, ignoring differences in
algorithmic sensitivity or inductive bias.

3. Limited to linear relationships: Correlation captures only monotonic linear relationships and may
fail to detect non-linear dependencies between features and the target variable.

Consequently, although this method serves as a meaningful interpretive baseline, it is not used in the final
modeling pipeline due to concerns about its reproducibility and bias.

2.4.2 Automated Select KBest with Mutual Information

To address the limitations of manual selection, we implemented an automated feature selection method
using SelectKBest with mutual information classification as the scoring function. This approach quantifies
both linear and non-linear dependencies between features and the target variable, making it more robust for
heterogeneous binary data such as Android permissions [30]. The mutual information between a feature Xand
target Yis defined as:

IX,Y) = Zyey Z p(x,y)log — %- 2)
XEX

This measure evaluates how much knowing X reduces uncertainty about Y, providing a model-agnostic
criterion for feature relevance. In this research, the mutual information selector was integrated directly within
a scikit-learn Pipeline, ensuring that feature selection occurs only on the training folds during Stratified K-
Fold cross-validation. This design provides three major benefits:

1. Leakage prevention: Feature selection is confined to training subsets within each fold, ensuring the
test data remain unseen throughout optimisation.

2. Joint optimisation: The number of selected features (columns) (k) is tuned in conjunction with
model hyperparameters via GridSearchCV, aligning the feature subset with each classifier’s
structure. It means we don’t have to use all 328 columns to train the models.

3. Non-linear dependency capture: Mutual information can detect complex statistical relationships
beyond linear correlation, allowing the model to exploit diverse patterns in permission usage.

2.5 Data Preprocessing

The preprocessing phase was conducted to ensure the dataset was free of errors, duplicates, and
inconsistencies before model training. The dataset initially contained 4,464 records, of which 1,172 duplicates
were identified and removed using the duplicated() function in pandas. After deduplication, the dataset
consisted of 3,292 unique samples. The Label column, which indicated whether an application was benign or
malware, was standardised into binary values—benign as 0 and malware as 1. This standardisation was done
in-place using the map() function, and the distribution of labels was verified with value counts(). This ensures
that the dataset accurately represents the two target categories.

Following deduplication and label standardisation, the dataset was split into training/validation
(80%) and test (20%) subsets using Stratified K-Fold cross-validation to preserve the proportions of both
classes in each fold. The training set was used for feature selection and hyperparameter tuning, while the test
set was kept separate to avoid data leakage. StandardScaler was applied only to the Logistic Regression model
within the pipeline because it is sensitive to feature magnitudes and relies on linear combinations of input
variables. Tree-based models (Random Forest and Gradient Boosting Machine) were not scaled, as they
inherently partition the feature space based on threshold values and are thus invariant to feature scaling [31].

2.6 Modelling and Evaluation

After splitting the data, the models were trained using three distinct machine learning algorithms:
Logistic Regression, Random Forests, and Gradient Boosting Machine. The models represent distinct
learning paradigms: linear (LR), bagging ensemble (RF), and boosting ensemble (GBM), allowing
comprehensive assessment of performance trade-offs. These three algorithms consistently demonstrate strong

BAREKENG: J. Math. & App., vol. 20(2), pp. 1675- 1692, June, 2026. 1683

performance in permission-based malware detection [21][22][23][24], providing a robust baseline for
comparison.

2.6.1 Logistic Regression

The algorithm's name, logistic regression, has led to the assumption that it is a regression tool, but the
method is actually for classification [32]. Logistic Regression is a machine learning method for classifying a
binary problem, where the outcome is either a binary yes/no or a binary positive/negative [33]. It is also one
of the simplest Machine Learning algorithms due to its interpretable and accurate results. Logistic regression
uses the following formula:

1
1+e—(By + P1X1+ B2 Xz + ... + Xy

This formula is known as the sigmoid function, which maps the linear combination of the independent
variables to a probability value between 0 and 1. The sigmoid function is defined as:

1
"= e

where z is the input to the function. This function has a unique property: it maps all real numbers to a value
between 0 and 1, making it suitable for modelling binary outcomes.

PY-1)=). 3)

4)

2.6.2 Random Forests

Random forests are an efficient non-parametric prediction method for classification (categorical
outcome) and regression (continuous outcome) applications [34]. Random Forests aim to improve upon the
limitations of single decision trees, such as overfitting, through techniques like bagging (bootstrap
aggregating) and feature randomness when building each tree, which helps to ensure that the trees are
uncorrelated and that the ensemble model has lower variance [35]. When performing classification on
Random Forests, the following formula is used:

Gini =1 — Z(pl-)z. (5)
i=1

In which the formula uses probability to determine the Gini of every branch, in this case, it determines the
probability of an app to be 0 or 1 based on the permission needed.

2.6.3 Gradient Boosting Machine

Gradient Boosting Machine (GBM) is an ensemble learning algorithm in machine learning that utilises
multiple weak models, typically decision trees, to produce a strong predictive model [36]. The method works
by sequentially adding predictors to an ensemble, each correcting its predecessor by focusing on errors from
previous models. GBM optimises a loss function over iterations using gradient descent, making it adaptable
to a variety of predictive modelling problems [37]. Gradient boosting itself uses an iterative update of the
model that could be represented as:

Fp(x) = Fpo1(x) + . hpyp () (6)

After the initial development and application of each model, GridSearchCV will be utilised to fine-
tune the hyperparameters. This step is crucial to prevent overfitting, which can negatively impact the model's
accuracy. The process involves defining a parameter grid for each model, specifying the range of values to
test for each hyperparameter. GridSearchCV will then systematically explore various combinations of these
parameters to identify the set that yields the best performance. Once the optimal parameters are determined,
the models will be retrained using these settings to enhance their predictive capabilities.

2.6.4 Evaluation Metrics

Each model was evaluated on the unseen test set using multiple complementary metrics to assess
classification effectiveness:

1. Accuracy measures the overall correctness of the predictions:

1684 Lubis, etal. A COMPARATIVE STUDY OF PIPELINE-VALIDATED MACHINE LEARNING CLASSIFIERS FO...

TP + TN

A = : 7
CUaY=TP ¥ TN + FP + FN 2
2. Precision quantifies how many predicted malware instances were correct:
TP
p - —) 8
recision TP + FP ()
3. Recall (or Sensitivity) measures how many actual malware instances were correctly identified:
TP
Recall = ——. 9
T TP+ PN ©)
4. F1-Score is the harmonic mean of precision and recall:
2 x Precision x Recall
F1= (10)

Precision + Recall ’

These metrics collectively ensure that both the detection capability and reliability of positive predictions are
considered.

In addition, two threshold-independent metrics were calculated:

1. ROC-AUC (Receiver Operating Characteristic — Area Under Curve) measures the model’s ability
to distinguish between malware and benign apps across thresholds.

2. PR-AUC (Precision—Recall Area Under Curve) focuses on precision-recall trade-offs, particularly
valuable when the positive class is less frequent.

Both are computed as the integral (area) under the respective curves of true positive rate versus false positive
rate (ROC), and precision versus recall (PR).

2.6.5 Calibration Analysis

To ensure that probabilistic outputs from the models were interpretable and reliable, a calibration
analysis was performed. Calibration curves (reliability diagrams) were generated to compare the predicted
probabilities with the actual fraction of positive outcomes [38]. Models close to the diagonal line indicate
well-calibrated confidence estimates. Calibration quality was quantified using the Brier Score, defined as:

1 N
BS = N.Z“’l’ - w7 (n
=

where p;is the predicted probability and y;is the true label. A lower Brier Score indicates better calibration.

2.7 Study

Following the primary model evaluation, additional analyses were conducted to validate the
interpretability and robustness of the proposed framework. These studies provide deeper insights into model
behaviour, feature relevance, and performance stability under varying conditions.

2.7.1 Model Explainability (SHAP Analysis)

To enhance interpretability, SHAP (SHapley Additive exPlanations) was applied to quantify the
contribution of each permission feature to individual predictions. SHAP values are grounded in cooperative
game theory, where each feature’s contribution to the model’s output is assessed relative to a baseline [39].

2.7.2 Ablation Study

An ablation study was performed to investigate how the number of selected features (k) influences
model performance [40], and to compare two feature selection strategies: Mutual Information (MI) and
Spearman Correlation (Corr). Using Gradient Boosting Machine (GBM) as the reference classifier, the
number of selected features was varied across k = {10,20,30,40,60,80}. Each configuration was evaluated
using five-fold cross-validation on the training data and further validated on the hold-out test set.

BAREKENG: J. Math. & App., vol. 20(2), pp. 1675- 1692, June, 2026. 1685

3. RESULTS AND DISCUSSION

3.1 Model Performance Comparison

Following the methodology outlined in Section 2, three machine learning algorithms—Logistic
Regression (LR), Random Forest (RF), and Gradient Boosting Machine (GBM)—were trained and evaluated
using a leakage-free pipeline integrating SelectKBest feature selection, GridSearchCV hyperparameter
optimisation, and stratified 5-fold cross-validation. All models were evaluated on an unseen hold-out test set
(659 samples, 20% of the cleaned dataset) to assess their generalisation capability.

3.1.1 Hyperparameter Optimisation Results

GridSearchCV systematically explored combinations of feature count (k) and model-specific
hyperparameters to identify the optimal configuration for each classifier. Table 2 summarises the best
hyperparameters discovered through cross-validated grid search.

Table 2. Optimal Hyperparameters from GridSearchCV

Model Feature Count (k) Key Hyperparameters C\;%(C)C-
Logistic Regression 40 C=1.0, solver="lIbfgs', class_weight='balanced' 0.9877
Random Forests 40 max_depth=10, n_estimators=400, 0.9899
class weight="balanced'
Gradient Boosting 40 learning_rate=0.1, max_depth=3, 0.9924
Machine n_estimators=200

Key observations:

1. All three models converged on k=40 features as optimal, suggesting this feature dimensionality
balances information gain with overfitting prevention

2. GBM achieved the highest cross-validation ROC-AUC (0.9924), indicating superior
discrimination capability during training

3. The class weight="balanced' parameter for LR and RF addressed the slight class imbalance (1,745
benign vs. 1,547 malware).

3.1.2 Metric Evaluation Results

Table 3 presents comprehensive performance metrics on the hold-out test set.

Table 3. Optimal Hyperparameters from GridSearchCV

Model Accuracy Precision Recall F1 Precision Recall F1 ROC- PR-

(Malware) (Malware) (Malware) (Benign) (Benign) (Benign) AUC AUC

Logistic 94.34% 0.9513 0.9452 0.9482 0.9516 0.9570 0.9543 0.9880 0.987
Regression 2

Random 95.45% 0.9516 0.9516 0.9516 0.9570 0.9570 0.9570 0.9900 0.990
Forests 1

Gradient 96.05% 0.9671 0.9484 0.9577 0.9549 0.9713 0.9631 0.9924 0.991
Boosting 8

Machine

Performance analysis:

1.

Gradient Boosting Machine emerged as the top performer, achieving:

a. Highest test accuracy (96.05%).

b. Best ROC-AUC (0.9924), indicating superior ability to distinguish malware across all

classification thresholds.
c. Best Fl-score for both classes (Malware: 0.9577, Benign: 0.9631).

Random Forest demonstrated balanced performance:

a. Strong accuracy (95.45%) with equal precision and recall for both classes (0.9516/0.9570).

b. Slightly lower ROC-AUC than GBM (0.9899 vs. 0.9924).

1686 Lubis, etal. A COMPARATIVE STUDY OF PIPELINE-VALIDATED MACHINE LEARNING CLASSIFIERS FO...

c. Well-suited for scenarios requiring symmetric error costs.

3. Logistic Regression, despite being the simplest model, achieved competitive results (94.34%
accuracy), confirming that permission-based malware detection exhibits substantial linear
separability.

3.1.3 Confusion Matrix Analysis

Fig. 5 (a), Fig.5 (b), and Fig. 5 (c) present confusion matrices for Logistic Regression, Random Forests,
and Gradient Boosting Machine after testing the hold-out data, visualising the distribution of correct and
incorrect predictions.

Logistic Regression - Confusion Matrix (Hold-out) Random Forest - Confusion Matrix (Hold-out)

- 300
H &3 - 250
&

- 200

- 150
g - 100
2

-50

15
Benign Malware
predicted Label

i Matrix (Hold-out)

300
10
250
- 200
alware

Figure 5. Confusion Matrix for (a) Logistic Regression, (b) Random Forests, (¢c) Gradient Boosting Machine

Actual Label
Actual Label
Actual Label

Malware

Malh

i ; hine - Conf
16

Benign [

predicted Label

Insights about the confusion matrices:

1. GBM achieved the lowest false positive rate (10 benign apps misclassified as malware), crucial for
user trust in production systems.

2. All models exhibited balanced error distribution between false positives and false negatives,
indicating no systematic bias toward either class.

3. The low false negative count (14—16 missed malware) confirms that the models effectively identify
malicious applications.

3.2 Feature Selection Strategy Comparison

To validate the effectiveness of the automated SelectKBest (Mutual Information) approach against the
traditional manual Spearman—correlation—based feature selection, a comparative analysis was performed.
This experiment addresses a key methodological gap in Android malware studies, where feature selection
methods are frequently adopted without assessing their impact on generalisation and data leakage risk
[22][23][24][25]. Both strategies were evaluated using identical data splits and classifiers—Logistic
Regression (LR), Random Forest (RF), and Gradient Boosting Machine (GBM)—to isolate the effect of the
selection method itself.

In the correlation-based baseline, the top 20 features were selected manually according to their absolute
Spearman correlation coefficients with the malware label, computed on the entire dataset before train—test
partitioning. This approach, while intuitive and interpretable, inherently risks data leakage because test
samples influence feature rankings. In contrast, the automated pipeline integrated
SelectKBest(mutual info classif) directly within a 5-fold Stratified K-Fold cross-validation using
GridSearchCV, ensuring that feature relevance was recalculated exclusively on training folds. This design
eliminates leakage, supports model-specific feature optimisation, and captures both linear and non-linear
dependencies between permissions and malware status. Table 4 shows the most influential features in both
methods.

Table 4. 10 Most Influential Features in Spearman vs Mutual Information

Rank Feature Name Spearman MI Rank
(Spearman) Correlation Importance (GBM)
1 android.permission.READ PHONE 0.7166 0.5779 1

STATE

BAREKENG: J. Math. & App., vol. 20(2), pp. 1675- 1692, June, 2026. 1687

Rank Feature Name Spearman MI Rank
(Spearman) Correlation Importance (GBM)
2 android. 0.5556 0.0477 3
permission.RECEIVE_BOOT_CO

MPLETED

3 com.android.launcher.permission.IN 0.5215 0.0464 4

STALL SHORTCUT

4 com.google.android.c2dm.permissio 0.4790 0.1961 2
n.RECEIVE

5 android.permission.ACCESS COA 0.4573 0.0029 14

RSE LOCATION
6 android.permission.ACCESS FINE 0.4316 0.0090 10
~LOCATION

7 RECEIVE_BOOT_COMPLETED 0.4123 0.0333 5

8 Ljava/net/URL;->openConnection 0.3825 0.0117 8

9 Landroid/location/LocationManager; 0.3574 0.0136 7

->getLastKgoodwarewnLocation
10 GET TASKS 0.2996 0.00098 18

Both approaches identified overlapping high-risk permissions, indicating feature-level semantic
consistency between monotonic (Spearman) and entropy-based (Mutual Information) ranking. However,
their relative order of importance and contribution magnitudes differ significantly. For instance, while
READ PHONE STATE and C2DM.RECEIVE consistently dominates in both rankings; their relative
weights shift under the MI criterion — the latter increasing sharply (from p=0.4790 — MI weight=0.1961)
due to the capture of a non-linear dependency between network-related permissions and malware probability.
Conversely, location permissions (ACCESS COARSE LOCATION, ACCESS_FINE LOCATION) drop
in importance when evaluated with MI, indicating that their predictive contribution is largely redundant or
confounded by correlated features (p=~0.43—0.45 but MI<0.01).

3.3 Calibration Analysis

Calibration analysis assesses whether a model's confidence scores correspond to actual outcome rates.
Models close to the diagonal line indicate well-calibrated predictions. The calibration results are then
evaluated using the Brier score, as shown in Table 5.

Table 5. Calibration Quality Metrics

Mean . . .
Model Brier Score Predicted Actual Positive Calibration
e Rate Error
Probability
Logistic Regression 0.0399 0.472 0.470 0.0325
Random Forests 0.0401 0.475 0.470 0.1069
Gradient Boosting Machine 0.0344 0.468 0.470 0.0955

Interpretation:

1. Gradient Boosting Machine achieved the lowest Brier Score (0.0344), indicating the most accurate
probability estimates among the three models.

2. All models demonstrate good calibration (Brier < 0.1), which is considered well-calibrated for
binary classification tasks. This indicates the models are suitable for production systems that require
reliable confidence estimates.

3. Mean Predicted Probability closely matches Actual Positive Rate across all models, with GBM
showing the smallest deviation (0.468 predicted vs. 0.470 actual, A = 0.002), confirming minimal
systematic bias.

4. Lower calibration error and reliability scores for GBM indicate superior probabilistic predictions,
making it more trustworthy for scenarios where confidence scores influence decision-making.
3.4 Ablation Study

An ablation study was conducted to investigate how feature count (k) influences model performance
and to assess the robustness of the SelectKBest mutual information approach. Using the Gradient Boosting
Machine as the reference classifier, the number of selected features was varied across k € {10, 20, 30, 40, 60,

1688

Lubis, etal. A COMPARATIVE STUDY OF PIPELINE-VALIDATED MACHINE LEARNING CLASSIFIERS FO...

80}, with each configuration evaluated using 5-fold cross-validation and validated on the hold-out test set.
Additionally, a comparison was made between two feature selection strategies: Table 6 presents the
comprehensive results of the ablation study.

Table 6. Ablation Study Results

k Method CV ROC-AUC CV Std Test Accuracy Test F1-Macro Test ROC-AUC
10 MI 0.9785 0.0051 94.69% 0.9467 0.9881
10 Correlation 0.9778 0.0060 94.23% 0.9422 0.9838
20 MI 0.9855 0.0042 94.84% 0.9482 0.9883
20 Correlation 0.9855 0.0023 95.45% 0.9543 0.9886
30 MI 0.9866 0.0033 95.30% 0.9528 0.9909
30 Correlation 0.9881 0.0021 96.05% 0.9604 0.9912
40 MI 0.9856 0.0031 95.30% 0.9528 0.9905
40 Correlation 0.9889 0.0014 95.90% 0.9588 0.9927
60 MI 0.9879 0.0014 95.14% 0.9513 0.9931
60 Correlation 0.9895 0.0023 95.90% 0.9588 0.9935
80 MI 0.9886 0.0021 95.60% 0.9558 0.9930
80 Correlation 0.9898 0.0019 96.21% 0.9619 0.9935
Key findings:

1. Both feature selection methods show performance saturation beyond k = 30 — 40 features. The
test accuracy improvements become marginal as k increases from 40 to 80 (A <0.5%), suggesting
that the most informative permissions are captured within the first 30-40 features.

2. Interestingly, Spearman correlation-based selection achieved slightly higher test accuracy than
mutual information across most k values. At k = 80, correlation-based selection reached 96.21%
compared to MI's 95.60%. This suggests that, for this dataset, the linear monotonic relationships
captured by Spearman's correlation are sufficient for effective malware detection.

3. Cross-validation standard deviation remains consistently low (< 0.006) across all configurations,
indicating stable and reproducible performance. Correlation-based selection generally exhibits
lower CV variance, particularly at k = 40 (std = 0.0014 vs. 0.0031 for MI).

4. Based on the ablation study, k = 30 — 40 features represent the optimal range, balancing

performance gains with computational efficiency. Beyond k = 40, additional features contribute
minimal accuracy improvements while increasing model complexity.

3.5 SHAP Analysis

To enhance model interpretability and validate feature relevance beyond global importance scores,

this study employed SHAP on the GBM model using the hold-out test set as shown in Fig. 6.

GBM - SHAP Summary (Hold-out)
High

android.permission.READ_PHONE_STATE = ==ii® 4
com.android.launcher.permission.INSTALL_SHORTCUT ’ -
com.google.android.c2dm.permission.RECEIVE -— '

RECEIVE_BOOT_COMPLETED - *

android.permission.RECEIVE_BOOT_COMPLETED H
com.android.vending.BILLING .-'
android.permission.READ_EXTERNAL_STORAGE -'

android. permission.ACCESS_FINE_LOCATION *’
Landroid/location/LocationManager;->getlLastKgoodwarewnLocation -I
android.permission. CAMERA —'

permission_count

Feature value

android.permission.WAKE_LOCK

Ljava/net/URL;->openConnection

com.google.android.providers.gsf.permission.READ_GSERVICES
Ldalvik/system/DexClassLoader;->loadClass
android.permission.GET_ACCOUNTS
android.permission.READ_LOGS
android.permission.ACCESS_COARSE_LOCATION

+
|
|
ACCESS_WIFI_STATE ‘
=
|
'
'.
t
|

android.permission.RECEIVE_USER_PRESENT =

———— " Low
-2.50.0 2.5
SHAP value (impact on model outp

Figure 6. SHAP Summary Plot

BAREKENG: J. Math. & App., vol. 20(2), pp. 1675- 1692, June, 2026. 1689

Fig. 6 presents the SHAP summary plot, which illustrates each feature’s impact on the model’s output
via its SHAP value distribution. Features positioned higher on the plot exert greater influence on malware
classification decisions. The analysis shows that READ PHONE STATE, INSTALL SHORTCUT, and
RECEIVE are the three most influential features, consistently producing strong positive SHAP values when
active (indicated by red points). This implies that granting these permissions significantly increases the
model’s predicted probability of an application being malware. These features are directly associated with
sensitive operations such as device identification, silent shortcut creation, and background communication;
behaviours commonly exploited by spyware and trojans.

In contrast, features located at the bottom of the plot exhibit near-zero SHAP distributions, indicating
minimal contribution to the model’s decision boundary. The symmetric concentration of blue points around
zero for these permissions suggests limited discriminative power or contextual dependency, meaning that
their presence or absence does not substantially alter the likelihood of malware.

3.6 Sample Prediction Analysis

To validate model behaviour and demonstrate practical applicability, four test scenarios were designed
representing different risk profiles based on feature importance rankings. This analysis addresses the practical
question: "How do models respond to applications with varying permission combinations?"

Features were categorised into risk levels based on GBM importance quartiles:
1. HIGH-RISK: Top 25% importance (10 features, led by READ PHONE_STATE).
2. MEDIUM-RISK: Middle 50% importance (20 features).
3. LOW-RISK: Bottom 25% importance (10 features).

Table 7. Sample Prediction Summary

Logistic Random Gradient
Test Case Active Permissions (Examples) . Boosting
Regression Forest .
Machine
High-Risk Only READ PHONE STATE, Malware Malware Malware
(7 features) c2dm.RECEIVE, (97.7%) (77.0%) (98.3%)
RECEIVE _BOOT_COMPLETED,
INSTALL_SHORTCUT,
READ_EXTERNAL STORAGE
Mixed (3 High + READ PHONE STATE, Benign Benign (88.9%) Benign (85.3%)
3 Medium) c2dm.RECEIVE, (94.9%)
RECEIVE _BOOT_COMPLETED,
CAMERA, permission_count,
WAKE LOCK
Low-Risk Only loadLibrary, getSimOperator, Benign Benign (93.9%) Benign (95.4%)
(6 features) RECEIVE_MMS, (97.2%)
UPDATE DEVICE STATS,
System.load,
READ_USER_DICTIONARY
No Permissions None Benign Benign (91.4%) Benign (95.7%)
(98.3%)

Key observations:
1. GBM demonstrates the highest confidence and aligns closely with test performance results.
2. RF provides more conservative estimates, indicating potential robustness in real-world deployment.

3. All models show consistent agreement on extreme cases; high-risk combinations yield malware
predictions, while low/no permissions are benign.

4. Interestingly, the mixed-risk case resulted in benign predictions across all models with high
confidence (85-95%). This suggests that permission combinations, rather than isolated high-risk
features, drive malware classification. The absence of critical permission clusters (e.g.,
READ PHONE STATE + INSTALL SHORTCUT + INTERNET simultancously) may explain
benign predictions despite individual high-risk permissions being present. This behaviour
demonstrates model robustness against false positives, crucial for production deployment.

1690 Lubis, etal. A COMPARATIVE STUDY OF PIPELINE-VALIDATED MACHINE LEARNING CLASSIFIERS FO...

4. CONCLUSION

This study presented a structured, leakage-free machine learning framework for permission-based
Android malware detection, comparing Logistic Regression, Random Forest, and Gradient Boosting Machine
models within the CRISP-DM process model. Using a Kaggle-sourced dataset of 4,464 applications and 328
permissions, all models demonstrated strong classification capability, with GBM consistently outperforming
the others (96.05% accuracy, 0.9924 ROC-AUC, and the lowest Brier Score of 0.0344). Feature importance
and SHAP analyses confirmed that permissions such as READ PHONE STATE,
RECEIVE BOOT _COMPLETED, and INSTALL SHORTCUT were key indicators of malicious
behaviour. The comparative evaluation of manual Spearman correlation versus automated Mutual
Information selection revealed that automated selection is more robust and prevents data leakage. From a
theoretical perspective, the study provides empirical validation that ensemble boosting methods with entropy-
based feature selection deliver the best balance between predictive accuracy and interpretability for static
malware detection. In practice, the pipeline design ensures reproducibility and reliability for real-world
applications such as mobile antivirus systems and app store vetting. However, this study is limited to static
permission analysis and does not incorporate dynamic runtime behaviours or multi-source datasets. Future
work should integrate hybrid static—dynamic features, cross-dataset validation, and longitudinal updates to
address model drift and enhance detection resilience against adaptive malware.

Author Contributions

Arif Ridho Lubis: Conceptualisation, Methodology, Validation, Writing—Original Draft, Supervision. Dewi
Woulandari: Data Curation, Software, Investigation, Writing—Improvement upon the draft and editing. Lilis
Tiara Adha: Formal Analysis, Visualisation, Writing—Review and Editing. Tika Ariyani: Resources,
Software, Validation. Yuyun Yusnida Lase: Project Administration, Data Curation, Writing—Review and
Editing. Fahdi Saidi Lubis: Supervision, Methodology, Writing—Review and Editing. All authors reviewed,
discussed, and agreed on the final version of the manuscript and contributed equally to the development and
completion of this research.

Funding Statement

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit
sectors.

Acknowledgment

The authors would like to express their sincere gratitude to Politeknik Negeri Medan for its institutional
support and for providing the necessary facilities and laboratory infrastructure throughout the research
process, especially for data processing and analysis. We also extend our appreciation to colleagues who
provided technical guidance, reviewers who offered constructive feedback to improve the manuscript, and
everyone who contributed directly or indirectly to the completion of this studY.

Declarations

The authors declare that they have no conflicts of interest to report.

Declaration of Generative Al and Al-assisted technologies

The authors used generative Al (ChatGPT) only to assist with language polishing and formatting consistency
(e.g., improving wording and ensuring uniform terminology). No Al was used to generate research content,
perform analyses, or create/modify figures and tables. The authors reviewed the manuscript in full and remain
responsible for its content.

REFERENCES

[1] I. Kandel and M. Castella, “HOW DEEPLY TO FINE-TUNE A CONVOLUTIONAL NEURAL NETWORK: A CASE
STUDY USING A HISTOPATHOLOGY DATASET,” Comput. Secur., vol. 81, no. 5, p. ii, 2022, [Online]. Available:
https://doi.org/10.1016/j.cose.2022.102785%0Ahttps://doi.org/10.1016/j.jksuci.2022.02.026%0Ahttps://doi.org/10.1016/j.i

BAREKENG: J. Math. & App., vol. 20(2), pp. 1675- 1692, June, 2026. 1691

[6]

[7]

(8]

(]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

jepes.2022.108733%0Ahttps://doi.org/10.1016/j.cmpb.2022.107141%0Ahttps://doi.org/10.1016/j.chemolab.2022.104534
%O0Ahttps://doi.org/10.101

C. Easttom, “ANDROID OPERATING SYSTEM,” 4n In-Depth Guid. to Mob. Device Forensics, 2021, doi:
https://doi.org/10.1201/9781003118718-4.

J. Lee, H. Jang, S. Ha, and Y. Yoon, “ANDROID MALWARE DETECTION USING MACHINE LEARNING WITH
FEATURE SELECTION BASED ON THE GENETIC ALGORITHM,” Mathematics, vol. 9, no. 21, pp. 1-20, 2021, doi:
https://doi.org/10.3390/math9212813.

R. Satrio Hadikusuma, L. Lukas, and E. M. Rizaludin, “METHODS OF STEALING PERSONAL DATA ON ANDROID
USING A REMOTE ADMINISTRATION TOOL WITH SOCIAL ENGINEERING TECHNIQUES,” Ultim. J. Tek.
Inform., vol. 15, no. 1, pp. 44-49, 2023, doi: https://doi.org/10.31937/ti.v15i1.3122.

H. A. S. Alsharya, “LEVERAGING SOCIAL ENGINEERING TECHNIQUES FOR ETHICAL PURPOSES: AN
APPROACH TO DEVELOP FAKE ANDROID APP FOR COLLECTING VALUABLE DATA DISCREETLY,” Wasit J.
Comput. Math. Sci., vol. 3, no. 3, pp. 45-59, 2024, doi: https://doi.org/10.31185/wjcms.268.

G. M. Naidoo and A. Reddy Moonasamy, “WHATSAPP AS A TOOL FOR TEACHING AND LEARNING DURING THE
COVID-19 LOCKDOWN,” Univers. J. Educ. Res., vol. 10, no. 10, pp. 570-580, 2022, doi:
https://doi.org/10.13189/ujer.2022.101003.

A. O. Japinye, D. O. Ukeagu, and E. C. Ejianya, “ENHANCING MOBILE SECURITY THROUGH HAPTIC FEEDBACK:
A MULTI-PARTICIPANT INVESTIGATION INTO MITIGATING SOCIAL ENGINEERING ATTACKS ON
ANDROID DEVICES,” Eur. J. Comput. Sci. Inf- Technol., vol. 13, no. 33, pp. 1-15, 2025, doi:
https://doi.org/10.37745/ejcsit.2013/vol13n33115.

B. Urooj, M. A. Shah, C. Maple, M. K. Abbasi, and S. Riasat, “MALWARE DETECTION: A FRAMEWORK FOR
REVERSE ENGINEERED ANDROID APPLICATIONS THROUGH MACHINE LEARNING ALGORITHMS,” IEEE
Access, vol. 10, no. August, pp. 89031-89050, 2022, doi: https://doi.org/10.1109/ACCESS.2022.3149053.

E.-M. Maier, L. M. Tanczer, and L. D. Klausner, SURVEILLANCE DISGUISED AS PROTECTION: A COMPARATIVE
ANALYSIS OF SIDELOADED AND IN-STORE PARENTAL CONTROL APPS, vol. 2025, no. 2. Association for Computing
Machinery, 2025. doi: https://doi.org/10.56553/popets-2025-0052.

Z. Fang, W. Han, and Y. Li, “PERMISSION BASED ANDROID SECURITY: ISSUES AND COUNTERMEASURES,”
Comput. Secur., vol. 43, no. 0, pp. 205-218, 2024, doi: https://doi.org/10.1016/j.cose.2014.02.007.

F. Akbar, M. Hussain, R. Mumtaz, Q. Riaz, A. W. A. Wahab, and K. H. Jung, “PERMISSIONS-BASED DETECTION OF
ANDROID MALWARE USING MACHINE LEARNING,” Symmetry (Basel)., vol. 14, no. 4, 2022, doi:
https://doi.org/10.3390/sym14040718.

A. Muzaffar, H. Ragab Hassen, M. A. Lones, and H. Zantout, “AN IN-DEPTH REVIEW OF MACHINE LEARNING
BASED ANDROID MALWARE DETECTION,” Comput. Secur., vol. 121, p. 102833, 2022, doi:
https://doi.org/10.1016/j.cose.2022.102833.

A. Iqubal and A. Payal, “MALWARE DETECTION TECHNIQUE FOR ANDROID DEVICES USING MACHINE
LEARNING ALGORITHMS,” 2024 Int. Conf- Comput. Sci. Commun. ICCSC 2024, no. 9, pp. 0-3, 2024, doi:
https://doi.org/10.1109/ICCSC62048.2024.10830310.

P. Singh, P. Tiwari, and S. Singh, “ANALYSIS OF MALICIOUS BEHAVIOR OF ANDROID APPS,” Procedia Comput.
Sci., vol. 79, pp. 215-220, 2019, doi: https://doi.org/10.1016/j.procs.2016.03.028.

W. Xie and X. Zhang, “THE APPLICATION OF MACHINE LEARNING IN ANDROID MALWARE DETECTION,”
2024 4th Int. Conf. Neural Networks, Inf. Commun. FEng. NNICE 2024, pp. 1-4, 2024, doi:
https://doi.org/10.1109/NNICE61279.2024.10498936.

K. Liu, S. Xu, G. Xu, M. Zhang, D. Sun, and H. Liu, “A REVIEW OF ANDROID MALWARE DETECTION
APPROACHES BASED ON MACHINE LEARNING,” [EEE Access, vol. 8, pp. 124579-124607, 2020, doi:
https://doi.org/10.1109/ACCESS.2020.3006143.

D. Revaldo, “ANDROID MALWARE DETECTION DATASET,” Kaggle. Accessed: Mar. 15, 2024. [Online]. Available:
https://www.kaggle.com/datasets/dannyrevaldo/android-malware-detection-dataset

F. Martinez-Plumed et al., “CRISP-DM TWENTY YEARS LATER: FROM DATA MINING PROCESSES TO DATA
SCIENCE TRAJECTORIES,” [EEE Trans. Knowl. Data Eng., vol. 33, no. 8, pp. 3048-3061, 2021, doi:
https://doi.org/10.1109/TKDE.2019.2962680.

R. Surendran, T. Thomas, and S. Emmanuel, “A TAN BASED HYBRID MODEL FOR ANDROID MALWARE
DETECTION,” J. Inf- Secur. Appl., vol. 54, 2020, doi: https://doi.org/10.1016/].jisa.2020.102483.

Z. Sun, G. Wang, P. Li, H. Wang, M. Zhang, and X. Liang, “AN IMPROVED RANDOM FOREST BASED ON THE
CLASSIFICATION ACCURACY AND CORRELATION MEASUREMENT OF DECISION TREES,” Expert Syst. Appl.,
vol. 237, no. PB, p. 121549, 2024, doi: https://doi.org/10.1016/j.eswa.2023.121549.

Abdullah-All-Tanvir, I. Ali Khandokar, A. K. M. Muzahidul Islam, S. Islam, and S. Shatabda, “A GRADIENT BOOSTING
CLASSIFIER FOR PURCHASE INTENTION PREDICTION OF ONLINE SHOPPERS,” Heliyon, vol. 9, no. 4, p. e15163,
2023, doi: https://doi.org/10.1016/j.heliyon.2023.e15163.

N. N. M. Nasri, M. F. A. Razak, R. R. Saedudin, S. M. Azmara, and A. Firdaus, “ANDROID MALWARE DETECTION
USING MACHINE LEARNING,” Proc. - 2020 Innov. Intell. Syst. Appl. Conf. ASYU 2020, vol. 9, no. 1, pp. 327-333, 2020,
doi: https://doi.org/10.1109/ASYU50717.2020.9259834.

K. A. Ahmed, K. Boopalan, K. Lokeshwaran, R. Sugumar, and C. Kotteeswaran, “ANALYSIS OF ANDROID MALWARE
DETECTION USING MACHINE LEARNING TECHNIQUES,” AIP Conf. Proc., vol. 2935, no. 1, pp. 85-108, 2024, doi:
https://doi.org/10.1063/5.0199036.

A. Droos, A. Al-Mahadeen, T. Al-Harasis, R. Al-Attar, and M. Ababneh, “ANDROID MALWARE DETECTION USING
MACHINE LEARNING,” 2022 13th Int. Conf. Inf Commun. Syst. ICICS 2022, pp. 3641, 2022, doi:
https://doi.org/10.1109/ICICS55353.2022.9811130.

A. Kapoor, H. Kushwaha, and E. Gandotra, “PERMISSION BASED ANDROID MALICIOUS APPLICATION
DETECTION USING MACHINE LEARNING,” 2019 Int. Conf. Signal Process. Commun. ICSC 2019, pp. 103-108, 2019,
doi: https://doi.org/10.1109/ICSC45622.2019.8938236.

https://doi.org/10.1201/9781003118718-4
https://doi.org/10.3390/math9212813
https://doi.org/10.31937/ti.v15i1.3122
https://doi.org/10.31185/wjcms.268
https://doi.org/10.13189/ujer.2022.101003
https://doi.org/10.37745/ejcsit.2013/vol13n33115
https://doi.org/10.1109/ACCESS.2022.3149053
https://doi.org/10.56553/popets-2025-0052
https://doi.org/10.1016/j.cose.2014.02.007
https://doi.org/10.3390/sym14040718
https://doi.org/10.1016/j.cose.2022.102833
https://doi.org/10.1109/ICCSC62048.2024.10830310
https://doi.org/10.1016/j.procs.2016.03.028
https://doi.org/10.1109/NNICE61279.2024.10498936
https://doi.org/10.1109/ACCESS.2020.3006143
https://doi.org/10.1109/TKDE.2019.2962680
https://doi.org/10.1016/j.jisa.2020.102483
https://doi.org/10.1016/j.eswa.2023.121549
https://doi.org/10.1016/j.heliyon.2023.e15163
https://doi.org/10.1109/ASYU50717.2020.9259834
https://doi.org/10.1063/5.0199036
https://doi.org/10.1109/ICICS55353.2022.9811130
https://doi.org/10.1109/ICSC45622.2019.8938236

1692

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[33]

[36]

[37]

[38]

[39]

[40]

Lubis, etal. A COMPARATIVE STUDY OF PIPELINE-VALIDATED MACHINE LEARNING CLASSIFIERS FO...

J. Brzozowska, J. Pizon, G. Baytikenova, A. Gola, A. Zakimova, and K. Piotrowska, “DATA ENGINEERING IN CRISP-
DM PROCESS PRODUCTION DATA — CASE STUDY,” 4ppl. Comput. Sci., vol. 19, no. 3, pp. 83-95, 2023, doi:
https://doi.org/10.35784/acs-2023-26.

K. M. Arsyad, A. Yunita, H. M. Krismartopo, A. S. Dimar, K. Dewi, and 1. Madrinovella, “REVEALING INSIGHTS
THROUGH EXPLORATORY DATA ANALYSIS ON EARTHQUAKE DATASET,” J. Sci. Informatics Soc., vol. 1, no.
1, pp. 1-6, 2023, doi: https://doi.org/10.57102/jsis.v1il.18.

D. Theng and K. K. Bhoyar, “FEATURE SELECTION TECHNIQUES FOR MACHINE LEARNING: A SURVEY OF
MORE THAN TWO DECADES OF RESEARCH,” Knowl. Inf. Syst., vol. 66, no. 3, pp. 15751637, 2024, doi:
https://doi.org/10.1007/s10115-023-02010-5.

British Medical Journal, “ERRATUM: SPEARMAN’S RANK CORRELATION COEFFICIENT,” BMJ, vol. 349, no.
December, p. 7528, 2014, doi: https://doi.org/10.1136/bmj.g7528.

J. Gonzalez-Lopez, S. Ventura, and A. Cano, “DISTRIBUTED SELECTION OF CONTINUOUS FEATURES IN
MULTILABEL CLASSIFICATION USING MUTUAL INFORMATION,” IEEE Trans. Neural Networks Learn. Syst., vol.
31, no. 7, pp. 2280-2293, 2020, doi: https://doi.org/10.1109/TNNLS.2019.2944298.

E. Dumitrescu, S. Hué, C. Hurlin, and S. Tokpavi, “MACHINE LEARNING FOR CREDIT SCORING: IMPROVING
LOGISTIC REGRESSION WITH NON-LINEAR DECISION-TREE EFFECTS,” Eur. J. Oper. Res., vol. 297, no. 3, pp.
1178-1192, 2022, doi: https://doi.org/10.1016/j.ejor.2021.06.053.

N. R. Panda, J. K. Pati, J. N. Mohanty, and R. Bhuyan, “A REVIEW ON LOGISTIC REGRESSION IN MEDICAL
RESEARCH,” Natl. J. Community Med., vol. 13, no. 4, pp. 265-270, 2022, doi: https:/doi.org/10.55489/njcm.134202222.
Jajang, N. Nurhayati, and S. J. Mufida, “ORDINAL LOGISTIC REGRESSION MODEL AND CLASSIFICATION TREE
ON ORDINAL RESPONSE DATA,” Barekeng, vol. 16, mno. 1, pp. 75-82, 2022, doi:
https://doi.org/10.30598/barekengvoll 6iss1pp075-082.

A. Devaux, C. Proust-Lima, and R. Genuer, “RANDOM FORESTS FOR TIME-FIXED AND TIME-DEPENDENT
PREDICTORS: THE DYNFOREST R PACKAGE,” 2023, [Online]. Available: http://arxiv.org/abs/2302.02670

M. Denuit, D. Hainaut, and J. Trufin, “BAGGING TREES AND RANDOM FORESTS,” in Effective Statistical Learning
Methods for Actuaries II: Tree-Based Methods and Extensions, Cham: Springer International Publishing, 2020, pp. 107—
130. doi: https://doi.org/10.1007/978-3-030-57556-4 4.

R. M. Syafei and D. A. Efrilianda, “MACHINE LEARNING MODEL USING EXTREME GRADIENT BOOSTING
(XGBOOST) FEATURE IMPORTANCE AND LIGHT GRADIENT BOOSTING MACHINE (LIGHTGBM) TO
IMPROVE ACCURATE PREDICTION OF BANKRUPTCY,” Recursive J. Informatics, vol. 1, no. 2, pp. 64-72, 2023, doi:
https://doi.org/10.15294/rji.v1i2.71229.

R. Auti, A. Bhatt, and S. Tidake, “COMPARATIVE ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR
GENOMIC DATA,” 2023 1st DMIHER Int. Conf. Artif. Intell. Educ. Ind. 4.0, IDICAIEI 2023, vol. 13, no. 1, pp. 217-223,
2023, doi:_https://doi.org/10.1109/IDICAIEI58380.2023.10406455.

B. Li et al., “PREDICTING OUTCOMES FOLLOWING ENDOVASCULAR ABDOMINAL AORTIC ANEURYSM
REPAIR USING MACHINE LEARNING,” Ann. Surg., vol. 279, no. 3, 2024, [Online]. Available:
https://journals.lww.com/annalsofsurgery/fulltext/2024/03000/predicting_outcomes_following endovascular.23.aspx

Y. Nohara, K. Matsumoto, H. Soejima, and N. Nakashima, “EXPLANATION OF MACHINE LEARNING MODELS
USING SHAPLEY ADDITIVE EXPLANATION AND APPLICATION FOR REAL DATA IN HOSPITAL,” Comput.
Methods Programs Biomed., vol. 214, no. February, pp. 1-7, 2022, doi: https://doi.org/10.1016/j.cmpb.2021.106584.

Y. Xue, X. Cai, and F. Neri, “A MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM WITH INTERVAL BASED
INITIALIZATION AND SELF-ADAPTIVE CROSSOVER OPERATOR FOR LARGE-SCALE FEATURE SELECTION
IN CLASSIFICATION,” App!. Soft Comput., vol. 127, p. 109420, 2022, doi: https://doi.org/10.1016/j.as0¢.2022.109420.

https://doi.org/10.35784/acs-2023-26
https://doi.org/10.57102/jsis.v1i1.18
https://doi.org/10.1007/s10115-023-02010-5
https://doi.org/10.1136/bmj.g7528
https://doi.org/10.1109/TNNLS.2019.2944298
https://doi.org/10.1016/j.ejor.2021.06.053
https://doi.org/10.55489/njcm.134202222
https://doi.org/10.30598/barekengvol16iss1pp075-082
https://doi.org/10.1007/978-3-030-57556-4_4
https://doi.org/10.15294/rji.v1i2.71229
https://doi.org/10.1109/IDICAIEI58380.2023.10406455
https://doi.org/10.1016/j.cmpb.2021.106584
https://doi.org/10.1016/j.asoc.2022.109420

	A COMPARATIVE STUDY OF PIPELINE-VALIDATED MACHINE LEARNING CLASSIFIERS FOR PERMISSION-BASED ANDROID MALWARE DETECTION
	1. INTRODUCTION
	2. RESEARCH METHODS
	2.1 Workflow
	2.2 Dataset
	2.3 Exploratory Data Analysis
	2.3.1 Distribution of Active Permissions per Application
	2.3.2 Comparison of Permission Counts
	2.3.3 Feature Correlation Heatmap

	2.4 Feature Selection
	2.4.1 Manual Spearman Correlation
	2.4.2 Automated Select KBest with Mutual Information

	2.5 Data Preprocessing
	2.6 Modelling and Evaluation
	2.6.1 Logistic Regression
	2.6.2 Random Forests
	2.6.3 Gradient Boosting Machine
	2.6.4 Evaluation Metrics
	2.6.5 Calibration Analysis

	2.7 Study
	2.7.1 Model Explainability (SHAP Analysis)
	2.7.2 Ablation Study

	3. RESULTS AND DISCUSSION
	3.1 Model Performance Comparison
	3.1.1 Hyperparameter Optimisation Results
	3.1.2 Metric Evaluation Results
	3.1.3 Confusion Matrix Analysis

	3.2 Feature Selection Strategy Comparison
	3.3 Calibration Analysis
	3.4 Ablation Study
	3.5 SHAP Analysis
	3.6 Sample Prediction Analysis

	4. CONCLUSION
	Author Contributions
	Funding Statement
	Acknowledgment
	Declarations
	Declaration of Generative AI and AI-assisted technologies
	REFERENCES

