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Article Info ABSTRACT 

Article History: 
The growing prevalence of Android malware distributed through third-party APK 

sideloading poses a significant security threat to users and developers. This study aims to 

evaluate the effectiveness of three machine learning algorithms—Logistic Regression (LR), 

Random Forests (RF), and Gradient Boosting Machine (GBM)—for static Android 

malware detection based on permission features. The experiment employs the publicly 

available Android Malware Prediction Dataset (Kaggle, accessed 2025), containing 4,464 

application samples with 328 binary permission attributes. A leakage-free CRISP-DM 

workflow was implemented, integrating data cleaning, automated feature selection via 

SelectKBest (Mutual Information), and hyperparameter optimisation using GridSearchCV 

with stratified 5-fold cross-validation. Results on the unseen hold-out test set show that 

GBM achieved the best performance, with 96.05% accuracy and 0.9924 ROC-AUC, 

outperforming LR and RF. In addition, GBM exhibited superior probability calibration 

(Brier Score = 0.0344) and interpretability, as confirmed through SHAP analysis. The 

ablation study further validated that optimal model performance saturates at 30–40 

selected features. This research contributes a reproducible and pipeline-validated 

comparative framework for static Android malware detection, addressing prior studies’ 

limitations regarding feature selection bias and data leakage. Nevertheless, the study is 

limited by its reliance on static permission features and the absence of dynamic 

behavioural data, which may restrict generalisation to evolving malware families. 
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1. INTRODUCTION 

In today’s hyperconnected digital environment, the boundaries between communication, work, and 

entertainment have become increasingly blurred. The Android operating system dominates the mobile 

market, powering billions of devices worldwide and serving as the backbone of mobile applications and 

online services [1][2]. Its open-source framework provides flexibility and accessibility for developers, yet it 

also introduces major cybersecurity vulnerabilities [3]. Cybercriminals are increasingly using social 

engineering tactics to trick users into downloading malicious Android application packages (APKs) that 

appear legitimate, often disguised as entertainment, productivity tools, or system updates [4][5]. These 

applications are typically distributed outside the Google Play Store, a process known as sideloading, which 

bypasses built-in security verification and exposes users to elevated risk [6]. Once installed, such malware 

can access sensitive resources through overprivileged permissions, enabling activities such as surveillance, 

credential theft, and financial fraud [7][8]. Research comparing sideloaded apps to those from the Play Store 

found that sideloaded applications are more likely to lack privacy policies, transmit sensitive data 

unencrypted, and even contain stalkerware or other malicious functionalities, making them especially 

dangerous for users [9]. Dynamic code loading, a technique often used in sideloaded apps, can stealthily 

introduce malware or vulnerabilities that evade detection by traditional antivirus tools, further increasing the 

risk of privacy breaches and unauthorised access to device resources [10]. 

To mitigate these growing threats, machine learning (ML) has emerged as a central approach in 

Android malware detection. ML-based systems can learn complex behavioural patterns from static features 

such as permissions, API calls, or code metadata, providing more scalable detection than traditional signature-

based methods [11]. Among these, permission-based static analysis is particularly attractive because it does 

not require executing the application and can thus be deployed in resource-constrained environments such as 

mobile devices or app stores [12][13]. Each Android app declares its required permissions in the manifest 

file, and patterns in these requests have been shown to strongly correlate with malicious intent [14]. Various 

ML algorithms, including Random Forests, XGBoost, Support Vector Machines, and ensemble methods, 

have demonstrated strong performance in malware detection, with some models achieving accuracy above 

90% and low false-positive rates [15]. However, challenges remain, such as handling imbalanced datasets, 

inconsistent evaluation protocols, limited cross-validation, or non-calibrated probability outputs, which 

undermine reproducibility and limit real-world reliability [16]. 

The purpose of this study is to analyse and classify malware disseminated through Android applications 

using a publicly available Kaggle dataset containing thousands of pre-labelled benign and malicious samples, 

each represented by binary permission features [17]. The dataset was cleaned, deduplicated, and standardised 

to ensure integrity and reproducibility. The research employs a structured data-mining framework consistent 

with CRISP-DM (CRoss-Industry Standard Process for Data Mining) [18] principles, integrating mutual 

information–based feature selection, cross-validated hyperparameter tuning, and probability calibration via 

Brier scores and reliability curves  Three supervised learning algorithms were also selected based on their 

complementary characteristics, best results of the previous studies, and relevance to binary classification tasks 

in malware detection. Logistic Regression was chosen for its interpretability and computational efficiency, 

enabling a clear understanding of how individual permissions contribute to the prediction of malicious 

behaviour [19]. Random Forests were included as a robust ensemble method that mitigates overfitting and 

effectively handles large sets of binary permission features [20]. Meanwhile, the Gradient Boosting Machine 

(GBM) was employed to capture complex non-linear relationships through iterative error correction, often 

achieving superior predictive performance on structured datasets [21]. The models will be trained to 

determine whether an application is malicious by learning the permissions requested by APK files. The 

combination of these models enables a comparative analysis that balances interpretability, generalisation, and 

accuracy, offering insights into the trade-offs between lightweight and high-performance malware classifiers.  

Several studies have addressed malware detection, yet methodological differences remain. The first 

research, conducted by Nasri et al. [22], employs five algorithms, namely Random Forests, Naive Bayes, J48, 

DecisionTable, and MLP, for classifying and identifying malware. Their results showed that Random Forests 

achieved the highest accuracy of 89.36%, validating ensemble methods as effective models for malware 

detection. The dataset used by Nasri et al. was sourced from the AndroZoo project, containing APKs collected 

from various repositories, including Google Play. While their approach demonstrated competitive accuracy, 

their manual decompilation of applications to extract permissions limited scalability and reproducibility. The 

present study differs by leveraging automated preprocessing and reproducible open-source datasets, 
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integrated into a fully encapsulated pipeline that supports robust hyperparameter tuning and model 

comparison. 

The study conducted by Ahmed et al. [23] compared the performance of six machine learning 

algorithms for classifying Android malware: Decision Trees, Support Vector Machines, Naive Bayes, 

Random Forests, K-Nearest Neighbours, and Ensemble Methods / Extra-Tree Classifier. The study achieved 

its best accuracy of 95% using Random Forests with feature selection techniques such as Correlation, Chi-

Square, and Information Gain. Although the findings confirmed Random Forest’s strength for malware 

detection, the evaluation pipeline selected features before cross-validation, introducing a feature-leakage 

problem. Moreover, their analysis lacked emphasis on model calibration or interpretability. The present 

research improves upon this by embedding feature selection and scaling directly within the cross-validation 

process and evaluating probability calibration using Brier scores. 

The third research by Droos et al. [24] utilised four machine learning algorithms for the detection of 

Android malware: Random Forests, Naive Bayes (NB), J48, and IBK (K-Nearest Neighbors). Their 

evaluation employed metrics such as Recall, Precision, and Accuracy, achieving the highest accuracy of 

98.6% with Random Forests. The dataset, sourced from the University of New Brunswick repository, 

contained multiple malware types, including adware, banking trojans, and SMS malware. Although their 

results were impressive, their study did not explore calibration or discuss model efficiency for deployment in 

resource-limited devices. In contrast, this research evaluates three models of varying complexity, which are 

Logistic Regression, Random Forests, and GBM, under identical conditions to identify the optimal balance 

between interpretability, computational efficiency, and predictive performance. 

The fourth study, Kapoor et al. [25], examined six classical algorithms—Logistic Regression, Linear 

Discriminant Analysis, k-Nearest Neighbours, Decision Tree, Naïve Bayes, and SVM—for permission-based 

Android malware detection. Logistic Regression achieved the highest accuracy (99.34%), confirming its 

strong suitability for binary permission-based data. However, their dataset was self-constructed, lacked 

validation against external sources, and did not control for feature overlap or data leakage. The current 

research builds upon Kapoor et al. by employing a public, reproducible dataset, applying mutual information-

based feature selection, and using calibrated probabilistic outputs, thereby addressing reproducibility and 

overfitting concerns absent in earlier studies. 

The purpose of this comparative analysis is to determine the most effective model for identifying 

permission-based Android malware by using Logistic Regression, Random Forests, and Gradient Boosting 

Machines. This research introduces several key innovations: (1) a reproducible, leakage-free pipeline 

integrating mutual information–based feature selection; (2) cross-validated hyperparameter optimisation; and 

(3) calibrated probabilistic evaluation. Additionally, an ablation study was conducted to analyse the influence 

of feature dimensionality and selection criteria (Mutual Information vs. Correlation), confirming the 

robustness and stability of the proposed framework. By addressing long-standing issues of data leakage, 

reproducibility, and model interpretability, this research aims to contribute toward the development of 

trustworthy, resource-efficient, and scientifically transparent malware detection systems. 

2. RESEARCH METHODS 

2.1 Workflow 

This study follows a structured analytical workflow inspired by the Cross-Industry Standard Process 

for Data Mining (CRISP-DM). CRISP-DM is a domain- and technology-independent process model that 

structures data mining and machine learning projects into six iterative phases: business understanding, data 

understanding, data preparation, modelling, evaluation, and deployment [26]. The stages include Dataset 

Understanding, Exploratory Data Analysis (EDA), Feature Selection Strategy Design, Data Preprocessing, 

Modelling and Evaluation, Implementation and Study, as shown in Fig. 1.  
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Figure 1. Workflow Diagram 

The process begins with dataset acquisition and understanding, where the Android permissions dataset 

from Kaggle [16] is examined for completeness, consistency, and suitability for classification. This stage lays 

the foundation for subsequent analysis by identifying the data's structure and characteristics. Following data 

understanding, exploratory data analysis (EDA) is performed to visualise and summarise the dataset’s main 

features, identify general patterns, highlight key differences between benign and malicious applications, and 

see how the columns correlate with each other. EDA insights guide the design of the feature selection strategy, 

which determines the most relevant permission attributes using K-Fold Select. The data is then preprocessed 

through cleaning, normalisation, and transformation to ensure that it is ready for training and evaluation. 

The prepared data proceeds to the modelling and evaluation stage, where three supervised learning 

algorithms—Logistic Regression, Random Forests, and Gradient Boosting Machine—are implemented and 

compared. Each model is trained using a standardised pipeline with cross-validation and grid search 

optimisation. The results are evaluated using multiple performance metrics, and the workflow concludes with 

implementation and study, where the models are instructed to solve high-risk, medium-risk, low-risk, and no-

risk cases, and the models are analysed for calibration, interpretability, and robustness through additional 

validation and ablation experiments. 

2.2 Dataset 

The dataset utilised in this research is a permission-based Android malware dataset, the “Android 

Malware Detection Dataset” by Danny Revaldo, obtained from Kaggle [16], which contains static binary 

features representing permissions requested by Android application packages (APKs). Each row in the dataset 

corresponds to an individual application, while each column represents a specific permission or API-level 

feature extracted from the application’s manifest file. The dataset comprises 4,464 records and 328 binary 

attributes, along with a target column labelled benign or malware that serves as the ground truth for this study. 

Each feature takes a binary value of 1 if the corresponding permission is declared by the application, and 0 

otherwise. After duplicate removal, 3,292 unique samples remain, with 1,745 benign applications and 1,547 

malware applications in the cleaned dataset. 
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The permissions in this dataset span a wide range of Android system resources, covering device 

identifiers, storage access, communication services, location data, and system-level execution capabilities. 

These permissions are typically used by legitimate applications but are frequently abused by malicious ones 

to exfiltrate data, track user activity, or execute unauthorised actions. The dataset also includes several API 

call indicators that correspond to potentially sensitive operations, such as dynamic code loading or direct 

network communication, which can reveal malicious payload distribution or command-and-control 

behaviour. The features in this dataset capture these behavioural patterns, making it particularly suitable for 

static analysis and machine learning classification. Table 1 lists the permissions represented in the dataset. 

Table 1. Permission Examples in the Dataset 

No. Column Name Description 

1. android.permission.READ_PHONE_STATE Allows access to device identifiers, IMEI, 

network information, and call status. 

2. android.permission.ACCESS_NETWORK_S

TATE 

Allows an application to access the device's 

location services to determine the user's precise 

location. 

3. android.permission.BLUETOOTH Enables an application to use the device's 

Bluetooth capabilities, including connecting to 

other devices. 

4. android.permission.CAMERA Allows access to the device's camera, including 

taking photos and recording videos. 

5. android.permission.CHANGE_WIFI_STATE Grants an application the ability to change the 

device's Wi-Fi settings. 

6. android.permission.INTERNET Allows an application to access the internet, 

including sending and receiving data over the 

network 

7. android.permission.PROCESS_OUTGOING_

CALLS 

Enables an application to monitor and manage 

outgoing phone calls. 

8. android.permission.READ_CONTACTS Grants an application access to the device's 

contact list. 
9. android.permission.READ_INTERNAL_STO

RAGE 

Allows an application to write data to internal 

storage devices. 

10. android.permission.WAKE_LOCK Enables an application to prevent the device 

from going into sleep mode or locking the 

screen, allowing it to continue running in the 

background. 

11 android.permission.READ_SMS Grants an application access to the device's 

SMS messages, including reading and 

managing SMS messages, including receiving 

OTP (One-Time Passwords). 

12 android.permission.SEND_SMS Allows an application to send SMS messages, 

including sending and managing SMS 

messages. 

13 android.permission.PROCESS_OUTGOING_

CALLS 

Enables an application to monitor and manage 

outgoing phone calls, including intercepting 

calls, managing call logs, and controlling call 

settings 

2.3 Exploratory Data Analysis 

Exploratory Data Analysis (EDA) is a crucial step in the workflow, performed to examine the structural 

characteristics and statistical patterns within a dataset before model development. EDA involves using 

visualisations and statistical summaries to uncover underlying patterns, detect outliers, identify errors or 

corrupt data, and reveal relationships between variables, all of which inform subsequent modelling decisions 

and help validate initial assumptions about the data [27]. All EDA procedures were conducted using the 

pandas, seaborn, and matplotlib libraries in Python, ensuring purely descriptive exploration without exposing 

test data to the modelling process. 
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2.3.1 Distribution of Active Permissions per Application 

 
Figure 2. Distribution of Active Permissions per Application 

A statistical summary of the total active permissions requested per application (referred to as 

permission_count) shows a mean of 24.57, a standard deviation of 16.99, a minimum of 1, and a maximum 

of 177. The histogram in Fig. 2 shows a right-skewed distribution, with most applications requesting between 

15 and 30 permissions, while a few outliers exhibit exceptionally high counts. This long-tail pattern suggests 

that while most apps use moderate permissions for functional purposes, a minority of highly permission-

intensive applications may pose greater security risks. Such overprivileged behaviour often correlates with 

malicious intent, as excessive access rights enable unauthorised operations on device resources. 

2.3.2 Comparison of Permission Counts 

 
Figure 3. Comparison of Permission Counts 

The boxplot in Fig. 3 visualises the difference in permission intensity between benign and malicious 

applications. Malware samples tend to have higher median permission counts and wider interquartile ranges, 

reflecting greater variation in the number of permissions requested. Several outliers are visible, representing 

applications that demand an unusually large number of permissions, a characteristic often associated with 

privilege abuse or spyware-like activity. The benign group shows a more concentrated distribution, indicating 

that legitimate applications typically operate within narrower permission scopes.  
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2.3.3 Feature Correlation Heatmap 

 
Figure 4. Correlation Heatmap 

Fig. 4 visualises the Spearman correlation coefficients among the ten permission features most strongly 

correlated with the malware label. The bottom row and rightmost column show each feature’s relationship 

with the target class, indicating that several permissions have strong positive correlations with malicious 

behaviour. The top-ranked features include read phone state (𝜌 =  0.72), receive boot completed 

notifications (𝜌 =  0.56), and installing shortcuts (𝜌 =  0.52), all of which are linked to high-risk operations 

such as device identification, persistence after reboot, and silent shortcut installation. Additional correlations 

are observed for access coarse location (𝜌 =  0.46), access fine location (𝜌 =  0.43), and network-related 

APIs such as Ljava/net/URL;->openConnection (𝜌 =  0.38), which are commonly associated with user 

tracking and unauthorised communication. To prevent bias and data leakage, the actual feature selection in 

this study is performed independently in the modelling phase (Section 2.4) using SelectKBest with mutual 

information scoring within a cross-validation pipeline. 

2.4 Feature Selection 

Feature selection is a critical step in machine learning to reduce dimensionality, improve model 

performance, and prevent overfitting [28].  In this research, we compared two feature selection approaches 

to determine the most effective method for malware classification:  

 2.4.1 Manual Spearman Correlation 

The first approach involved manually selecting the top 20 features based on Spearman correlation 

coefficients with the target variable (malware status). The Spearman rank correlation coefficient (𝜌) measures 

the strength of a monotonic relationship between two ranked variables [29] and is defined as:  

𝑝 =  1 −
6 ∑ 𝑑𝑖

2

𝑛 (𝑛2 − 1)
, (1) 

where 𝑑𝑖 represents the difference between the ranks of paired values and 𝑛 is the number of observations. 

While intuitive and computationally simple, this baseline method presents several limitations: 
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1. Data leakage risk: Computing correlations on the entire dataset (including the test set) before 

splitting can lead to overly optimistic performance estimates. 

2. Static selection: The same set of features is used across all models, ignoring differences in 

algorithmic sensitivity or inductive bias. 

3. Limited to linear relationships: Correlation captures only monotonic linear relationships and may 

fail to detect non-linear dependencies between features and the target variable. 

Consequently, although this method serves as a meaningful interpretive baseline, it is not used in the final 

modeling pipeline due to concerns about its reproducibility and bias.  

2.4.2 Automated Select KBest with Mutual Information 

To address the limitations of manual selection, we implemented an automated feature selection method 

using SelectKBest with mutual information classification as the scoring function. This approach quantifies 

both linear and non-linear dependencies between features and the target variable, making it more robust for 

heterogeneous binary data such as Android permissions [30]. The mutual information between a feature 𝑋and 

target 𝑌is defined as: 

𝐼(𝑋, 𝑌) =  ∑ ∑ 𝑝(𝑥, 𝑦)

𝑥∈𝑋
𝑦∈𝑌

𝑙𝑜𝑔 −
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
. (2) 

This measure evaluates how much knowing 𝑋 reduces uncertainty about 𝑌, providing a model-agnostic 

criterion for feature relevance. In this research, the mutual information selector was integrated directly within 

a scikit-learn Pipeline, ensuring that feature selection occurs only on the training folds during Stratified K-

Fold cross-validation. This design provides three major benefits: 

1. Leakage prevention: Feature selection is confined to training subsets within each fold, ensuring the 

test data remain unseen throughout optimisation. 

2. Joint optimisation: The number of selected features (columns) (𝑘) is tuned in conjunction with 

model hyperparameters via GridSearchCV, aligning the feature subset with each classifier’s 

structure. It means we don’t have to use all 328 columns to train the models. 

3. Non-linear dependency capture: Mutual information can detect complex statistical relationships 

beyond linear correlation, allowing the model to exploit diverse patterns in permission usage.  

2.5 Data Preprocessing 

The preprocessing phase was conducted to ensure the dataset was free of errors, duplicates, and 

inconsistencies before model training. The dataset initially contained 4,464 records, of which 1,172 duplicates 

were identified and removed using the duplicated() function in pandas. After deduplication, the dataset 

consisted of 3,292 unique samples. The Label column, which indicated whether an application was benign or 

malware, was standardised into binary values—benign as 0 and malware as 1. This standardisation was done 

in-place using the map() function, and the distribution of labels was verified with value_counts(). This ensures 

that the dataset accurately represents the two target categories.  

Following deduplication and label standardisation, the dataset was split into training/validation 

(80%) and test (20%) subsets using Stratified K-Fold cross-validation to preserve the proportions of both 

classes in each fold. The training set was used for feature selection and hyperparameter tuning, while the test 

set was kept separate to avoid data leakage. StandardScaler was applied only to the Logistic Regression model 

within the pipeline because it is sensitive to feature magnitudes and relies on linear combinations of input 

variables. Tree-based models (Random Forest and Gradient Boosting Machine) were not scaled, as they 

inherently partition the feature space based on threshold values and are thus invariant to feature scaling [31]. 

2.6 Modelling and Evaluation 

After splitting the data, the models were trained using three distinct machine learning algorithms: 

Logistic Regression, Random Forests, and Gradient Boosting Machine. The models represent distinct 

learning paradigms: linear (LR), bagging ensemble (RF), and boosting ensemble (GBM), allowing 

comprehensive assessment of performance trade-offs. These three algorithms consistently demonstrate strong 
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performance in permission-based malware detection [21][22][23][24], providing a robust baseline for 

comparison. 

2.6.1 Logistic Regression 

The algorithm's name, logistic regression, has led to the assumption that it is a regression tool, but the 

method is actually for classification [32]. Logistic Regression is a machine learning method for classifying a 

binary problem, where the outcome is either a binary yes/no or a binary positive/negative [33]. It is also one 

of the simplest Machine Learning algorithms due to its interpretable and accurate results. Logistic regression 

uses the following formula: 

𝑃(𝑌 − 1) =
1

1 + 𝑒 − (𝛽0  +  𝛽1𝑋1 +  𝛽2𝑋2 +  … + 𝛽𝑛𝑋𝑛
). (3) 

This formula is known as the sigmoid function, which maps the linear combination of the independent 

variables to a probability value between 0 and 1. The sigmoid function is defined as: 

𝜎(𝑧) =  
1

1 +  𝑒−𝑧
 , (4) 

where z is the input to the function. This function has a unique property: it maps all real numbers to a value 

between 0 and 1, making it suitable for modelling binary outcomes.                                                                                           

2.6.2 Random Forests 

Random forests are an efficient non-parametric prediction method for classification (categorical 

outcome) and regression (continuous outcome) applications [34]. Random Forests aim to improve upon the 

limitations of single decision trees, such as overfitting, through techniques like bagging (bootstrap 

aggregating) and feature randomness when building each tree, which helps to ensure that the trees are 

uncorrelated and that the ensemble model has lower variance [35]. When performing classification on 

Random Forests, the following formula is used: 

𝐺𝑖𝑛𝑖 = 1 − ∑(𝑝𝑖)2

𝑐

𝑖=1

. (5) 

In which the formula uses probability to determine the Gini of every branch, in this case, it determines the 

probability of an app to be 0 or 1 based on the permission needed. 

2.6.3 Gradient Boosting Machine 

Gradient Boosting Machine (GBM) is an ensemble learning algorithm in machine learning that utilises 

multiple weak models, typically decision trees, to produce a strong predictive model [36]. The method works 

by sequentially adding predictors to an ensemble, each correcting its predecessor by focusing on errors from 

previous models. GBM optimises a loss function over iterations using gradient descent, making it adaptable 

to a variety of predictive modelling problems [37]. Gradient boosting itself uses an iterative update of the 

model that could be represented as: 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝑛 . ℎ𝑚(𝑥) . (6) 

After the initial development and application of each model, GridSearchCV will be utilised to fine-

tune the hyperparameters. This step is crucial to prevent overfitting, which can negatively impact the model's 

accuracy. The process involves defining a parameter grid for each model, specifying the range of values to 

test for each hyperparameter. GridSearchCV will then systematically explore various combinations of these 

parameters to identify the set that yields the best performance. Once the optimal parameters are determined, 

the models will be retrained using these settings to enhance their predictive capabilities. 

2.6.4 Evaluation Metrics  

Each model was evaluated on the unseen test set using multiple complementary metrics to assess 

classification effectiveness: 

1. Accuracy measures the overall correctness of the predictions: 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁
 . (7) 

2. Precision quantifies how many predicted malware instances were correct: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
  . (8) 

3. Recall (or Sensitivity) measures how many actual malware instances were correctly identified: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 . (9) 

4. F1-Score is the harmonic mean of precision and recall: 

𝐹1 =
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
. (10) 

These metrics collectively ensure that both the detection capability and reliability of positive predictions are 

considered. 

In addition, two threshold-independent metrics were calculated: 

1. ROC-AUC (Receiver Operating Characteristic – Area Under Curve) measures the model’s ability 

to distinguish between malware and benign apps across thresholds. 

2. PR-AUC (Precision–Recall Area Under Curve) focuses on precision-recall trade-offs, particularly 

valuable when the positive class is less frequent.  

Both are computed as the integral (area) under the respective curves of true positive rate versus false positive 

rate (ROC), and precision versus recall (PR). 

2.6.5 Calibration Analysis 

To ensure that probabilistic outputs from the models were interpretable and reliable, a calibration 

analysis was performed. Calibration curves (reliability diagrams) were generated to compare the predicted 

probabilities with the actual fraction of positive outcomes [38]. Models close to the diagonal line indicate 

well-calibrated confidence estimates. Calibration quality was quantified using the Brier Score, defined as: 

𝐵𝑆 =
1

𝑁
∑(𝑝𝑖 −  𝑦𝑖)2

𝑁

𝑖=1

, (11) 

where 𝑝𝑖is the predicted probability and 𝑦𝑖is the true label. A lower Brier Score indicates better calibration. 

2.7 Study 

Following the primary model evaluation, additional analyses were conducted to validate the 

interpretability and robustness of the proposed framework. These studies provide deeper insights into model 

behaviour, feature relevance, and performance stability under varying conditions.  

2.7.1 Model Explainability (SHAP Analysis) 

To enhance interpretability, SHAP (SHapley Additive exPlanations) was applied to quantify the 

contribution of each permission feature to individual predictions. SHAP values are grounded in cooperative 

game theory, where each feature’s contribution to the model’s output is assessed relative to a baseline [39]. 

2.7.2 Ablation Study 

An ablation study was performed to investigate how the number of selected features (𝑘) influences 

model performance [40], and to compare two feature selection strategies: Mutual Information (MI) and 

Spearman Correlation (Corr). Using Gradient Boosting Machine (GBM) as the reference classifier, the 

number of selected features was varied across 𝑘 = {10,20,30,40,60,80}. Each configuration was evaluated 

using five-fold cross-validation on the training data and further validated on the hold-out test set.  
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3. RESULTS AND DISCUSSION 

3.1 Model Performance Comparison 

Following the methodology outlined in Section 2, three machine learning algorithms—Logistic 

Regression (LR), Random Forest (RF), and Gradient Boosting Machine (GBM)—were trained and evaluated 

using a leakage-free pipeline integrating SelectKBest feature selection, GridSearchCV hyperparameter 

optimisation, and stratified 5-fold cross-validation. All models were evaluated on an unseen hold-out test set 

(659 samples, 20% of the cleaned dataset) to assess their generalisation capability. 

3.1.1 Hyperparameter Optimisation Results 

GridSearchCV systematically explored combinations of feature count (k) and model-specific 

hyperparameters to identify the optimal configuration for each classifier. Table 2 summarises the best 

hyperparameters discovered through cross-validated grid search. 

Table 2.  Optimal Hyperparameters from GridSearchCV 

Model Feature Count (k) Key Hyperparameters 
CV ROC-

AUC 

Logistic Regression 40 C=1.0, solver='lbfgs', class_weight='balanced' 0.9877 

Random Forests 40 max_depth=10, n_estimators=400, 

class_weight='balanced' 

0.9899 

Gradient Boosting 

Machine 

40 learning_rate=0.1, max_depth=3, 

n_estimators=200 

0.9924 

Key observations: 

1. All three models converged on k=40 features as optimal, suggesting this feature dimensionality 

balances information gain with overfitting prevention 

2. GBM achieved the highest cross-validation ROC-AUC (0.9924), indicating superior 

discrimination capability during training 

3. The class_weight='balanced' parameter for LR and RF addressed the slight class imbalance (1,745 

benign vs. 1,547 malware). 

3.1.2 Metric Evaluation Results 

Table 3 presents comprehensive performance metrics on the hold-out test set. 

Table 3.  Optimal Hyperparameters from GridSearchCV 

Model Accuracy 
Precision 

(Malware) 

Recall 

(Malware) 

F1 

(Malware) 

Precision 

(Benign)  

Recall 

(Benign) 

F1 

(Benign) 

ROC-

AUC 

PR-

AUC 

Logistic 

Regression 

94.34% 0.9513 0.9452 0.9482 0.9516 0.9570 0.9543 0.9880 0.987

2 

Random 

Forests 

95.45% 0.9516 0.9516 0.9516 0.9570 0.9570 0.9570 0.9900 0.990

1 

Gradient 

Boosting 

Machine 

96.05% 0.9671 0.9484 0.9577 0.9549 0.9713 0.9631 0.9924 0.991

8 

Performance analysis: 

1. Gradient Boosting Machine emerged as the top performer, achieving: 

a. Highest test accuracy (96.05%). 

b. Best ROC-AUC (0.9924), indicating superior ability to distinguish malware across all 

classification thresholds. 

c. Best F1-score for both classes (Malware: 0.9577, Benign: 0.9631). 

2. Random Forest demonstrated balanced performance:  

a. Strong accuracy (95.45%) with equal precision and recall for both classes (0.9516/0.9570). 

b. Slightly lower ROC-AUC than GBM (0.9899 vs. 0.9924). 
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c. Well-suited for scenarios requiring symmetric error costs. 

3. Logistic Regression, despite being the simplest model, achieved competitive results (94.34% 

accuracy), confirming that permission-based malware detection exhibits substantial linear 

separability.  

3.1.3 Confusion Matrix Analysis 

Fig. 5 (a), Fig.5 (b), and Fig. 5 (c) present confusion matrices for Logistic Regression, Random Forests, 

and Gradient Boosting Machine after testing the hold-out data, visualising the distribution of correct and 

incorrect predictions. 

 

Figure 5. Confusion Matrix for (a) Logistic Regression, (b) Random Forests, (c) Gradient Boosting Machine 

Insights about the confusion matrices: 

1. GBM achieved the lowest false positive rate (10 benign apps misclassified as malware), crucial for 

user trust in production systems. 

2. All models exhibited balanced error distribution between false positives and false negatives, 

indicating no systematic bias toward either class. 

3. The low false negative count (14–16 missed malware) confirms that the models effectively identify 

malicious applications. 

3.2 Feature Selection Strategy Comparison 

To validate the effectiveness of the automated SelectKBest (Mutual Information) approach against the 

traditional manual Spearman–correlation–based feature selection, a comparative analysis was performed.  

This experiment addresses a key methodological gap in Android malware studies, where feature selection 

methods are frequently adopted without assessing their impact on generalisation and data leakage risk 

[22][23][24][25]. Both strategies were evaluated using identical data splits and classifiers—Logistic 

Regression (LR), Random Forest (RF), and Gradient Boosting Machine (GBM)—to isolate the effect of the 

selection method itself.  

In the correlation-based baseline, the top 20 features were selected manually according to their absolute 

Spearman correlation coefficients with the malware label, computed on the entire dataset before train–test 

partitioning. This approach, while intuitive and interpretable, inherently risks data leakage because test 

samples influence feature rankings. In contrast, the automated pipeline integrated 

SelectKBest(mutual_info_classif) directly within a 5-fold Stratified K-Fold cross-validation using 

GridSearchCV, ensuring that feature relevance was recalculated exclusively on training folds. This design 

eliminates leakage, supports model-specific feature optimisation, and captures both linear and non-linear 

dependencies between permissions and malware status. Table 4 shows the most influential features in both 

methods. 

Table 4.  10 Most Influential Features in Spearman vs Mutual Information 

Rank 

(Spearman) 
Feature Name 

Spearman 

Correlation 

MI 

Importance 

Rank 

(GBM) 

 

1 android.permission.READ_PHONE

_STATE 

0.7166 0.5779 1  
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Rank 

(Spearman) 
Feature Name 

Spearman 

Correlation 

MI 

Importance 

Rank 

(GBM) 

 

2 android. 

permission.RECEIVE_BOOT_CO

MPLETED 

0.5556 0.0477 3  

3 com.android.launcher.permission.IN

STALL_SHORTCUT 

0.5215 0.0464 4  

4 com.google.android.c2dm.permissio

n.RECEIVE 

0.4790 0.1961 2  

5 android.permission.ACCESS_COA

RSE_LOCATION 

0.4573 0.0029 14  

6 android.permission.ACCESS_FINE

_LOCATION 

0.4316 0.0090 10  

7 RECEIVE_BOOT_COMPLETED 0.4123 0.0333 5  

8 Ljava/net/URL;->openConnection 0.3825 0.0117 8  

9 Landroid/location/LocationManager;

->getLastKgoodwarewnLocation 

0.3574 0.0136 7  

10 GET_TASKS 0.2996 0.00098 18  

Both approaches identified overlapping high-risk permissions, indicating feature-level semantic 

consistency between monotonic (Spearman) and entropy-based (Mutual Information) ranking. However, 

their relative order of importance and contribution magnitudes differ significantly. For instance, while 

READ_PHONE_STATE and C2DM.RECEIVE consistently dominates in both rankings; their relative 

weights shift under the MI criterion — the latter increasing sharply (from ρ=0.4790 → MI weight=0.1961) 

due to the capture of a non-linear dependency between network-related permissions and malware probability. 

Conversely, location permissions (ACCESS_COARSE_LOCATION, ACCESS_FINE_LOCATION) drop 

in importance when evaluated with MI, indicating that their predictive contribution is largely redundant or 

confounded by correlated features (ρ≈0.43–0.45 but MI<0.01). 

3.3 Calibration Analysis 

Calibration analysis assesses whether a model's confidence scores correspond to actual outcome rates. 

Models close to the diagonal line indicate well-calibrated predictions. The calibration results are then 

evaluated using the Brier score, as shown in Table 5. 

Table 5.  Calibration Quality Metrics 

Model Brier Score 

Mean 

Predicted 

Probability 

Actual Positive 

Rate 

Calibration 

Error 

Logistic Regression 0.0399 0.472 0.470 0.0325 

Random Forests 0.0401 0.475 0.470 0.1069 

Gradient Boosting Machine 0.0344 0.468 0.470 0.0955 

Interpretation: 

1. Gradient Boosting Machine achieved the lowest Brier Score (0.0344), indicating the most accurate 

probability estimates among the three models. 

2. All models demonstrate good calibration (Brier < 0.1), which is considered well-calibrated for 

binary classification tasks. This indicates the models are suitable for production systems that require 

reliable confidence estimates. 

3. Mean Predicted Probability closely matches Actual Positive Rate across all models, with GBM 

showing the smallest deviation (0.468 predicted vs. 0.470 actual, Δ = 0.002), confirming minimal 

systematic bias. 

4. Lower calibration error and reliability scores for GBM indicate superior probabilistic predictions, 

making it more trustworthy for scenarios where confidence scores influence decision-making. 

3.4 Ablation Study 

An ablation study was conducted to investigate how feature count (k) influences model performance 

and to assess the robustness of the SelectKBest mutual information approach. Using the Gradient Boosting 

Machine as the reference classifier, the number of selected features was varied across k ∈ {10, 20, 30, 40, 60, 
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80}, with each configuration evaluated using 5-fold cross-validation and validated on the hold-out test set. 

Additionally, a comparison was made between two feature selection strategies: Table 6 presents the 

comprehensive results of the ablation study. 

Table 6.  Ablation Study Results 

k Method CV ROC-AUC CV Std Test Accuracy Test F1-Macro Test ROC-AUC 

10 MI 0.9785 0.0051 94.69% 0.9467 0.9881 

10 Correlation 0.9778 0.0060 94.23% 0.9422 0.9838 

20 MI 0.9855 0.0042 94.84% 0.9482 0.9883 

20 Correlation 0.9855 0.0023 95.45% 0.9543 0.9886 

30 MI 0.9866 0.0033 95.30% 0.9528 0.9909 

30 Correlation 0.9881 0.0021 96.05% 0.9604 0.9912 

40 MI 0.9856 0.0031 95.30% 0.9528 0.9905 

40 Correlation 0.9889 0.0014 95.90% 0.9588 0.9927 

60 MI 0.9879 0.0014 95.14% 0.9513 0.9931 

60 Correlation 0.9895 0.0023 95.90% 0.9588 0.9935 

80 MI 0.9886 0.0021 95.60% 0.9558 0.9930 

80 Correlation 0.9898 0.0019 96.21% 0.9619 0.9935 

Key findings: 

1. Both feature selection methods show performance saturation beyond 𝑘 = 30 − 40 features. The 

test accuracy improvements become marginal as k increases from 40 to 80 (Δ < 0.5%), suggesting 

that the most informative permissions are captured within the first 30-40 features. 

2. Interestingly, Spearman correlation-based selection achieved slightly higher test accuracy than 

mutual information across most k values. At 𝑘 = 80, correlation-based selection reached 96.21% 

compared to MI's 95.60%. This suggests that, for this dataset, the linear monotonic relationships 

captured by Spearman's correlation are sufficient for effective malware detection. 

3. Cross-validation standard deviation remains consistently low (< 0.006) across all configurations, 

indicating stable and reproducible performance. Correlation-based selection generally exhibits 

lower CV variance, particularly at 𝑘 = 40 (𝑠𝑡𝑑 = 0.0014 vs. 0.0031 for MI). 

4. Based on the ablation study, 𝑘 = 30 − 40 features represent the optimal range, balancing 

performance gains with computational efficiency. Beyond 𝑘 = 40, additional features contribute 

minimal accuracy improvements while increasing model complexity. 

3.5 SHAP Analysis 

To enhance model interpretability and validate feature relevance beyond global importance scores, 

this study employed SHAP on the GBM model using the hold-out test set as shown in Fig. 6. 

 
Figure 6. SHAP Summary Plot 
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Fig. 6 presents the SHAP summary plot, which illustrates each feature’s impact on the model’s output 

via its SHAP value distribution. Features positioned higher on the plot exert greater influence on malware 

classification decisions. The analysis shows that READ_PHONE_STATE, INSTALL_SHORTCUT, and 

RECEIVE are the three most influential features, consistently producing strong positive SHAP values when 

active (indicated by red points). This implies that granting these permissions significantly increases the 

model’s predicted probability of an application being malware. These features are directly associated with 

sensitive operations such as device identification, silent shortcut creation, and background communication; 

behaviours commonly exploited by spyware and trojans. 

In contrast, features located at the bottom of the plot exhibit near-zero SHAP distributions, indicating 

minimal contribution to the model’s decision boundary. The symmetric concentration of blue points around 

zero for these permissions suggests limited discriminative power or contextual dependency, meaning that 

their presence or absence does not substantially alter the likelihood of malware. 

3.6 Sample Prediction Analysis 

To validate model behaviour and demonstrate practical applicability, four test scenarios were designed 

representing different risk profiles based on feature importance rankings. This analysis addresses the practical 

question: "How do models respond to applications with varying permission combinations?"  

Features were categorised into risk levels based on GBM importance quartiles: 

1. HIGH-RISK: Top 25% importance (10 features, led by READ_PHONE_STATE). 

2. MEDIUM-RISK: Middle 50% importance (20 features). 

3. LOW-RISK: Bottom 25% importance (10 features). 

Table 7.  Sample Prediction Summary 

Test Case Active Permissions (Examples) 
Logistic 

Regression 

Random 

Forest 

Gradient 

Boosting 

Machine 

High-Risk Only 

(7 features) 

READ_PHONE_STATE, 

c2dm.RECEIVE, 

RECEIVE_BOOT_COMPLETED, 

INSTALL_SHORTCUT, 

READ_EXTERNAL_STORAGE 

Malware 

(97.7%) 

Malware 

(77.0%) 

Malware 

(98.3%) 

Mixed (3 High + 

3 Medium) 

READ_PHONE_STATE, 

c2dm.RECEIVE, 

RECEIVE_BOOT_COMPLETED, 

CAMERA, permission_count, 

WAKE_LOCK 

Benign 

(94.9%) 

Benign (88.9%) Benign (85.3%) 

Low-Risk Only 

(6 features) 

loadLibrary, getSimOperator, 

RECEIVE_MMS, 

UPDATE_DEVICE_STATS, 

System.load, 

READ_USER_DICTIONARY 

Benign 

(97.2%) 

Benign (93.9%) Benign (95.4%) 

No Permissions None Benign 

(98.3%) 

Benign (91.4%) Benign (95.7%) 

Key observations: 

1. GBM demonstrates the highest confidence and aligns closely with test performance results. 

2. RF provides more conservative estimates, indicating potential robustness in real-world deployment. 

3. All models show consistent agreement on extreme cases; high-risk combinations yield malware 

predictions, while low/no permissions are benign. 

4. Interestingly, the mixed-risk case resulted in benign predictions across all models with high 

confidence (85-95%). This suggests that permission combinations, rather than isolated high-risk 

features, drive malware classification. The absence of critical permission clusters (e.g., 

READ_PHONE_STATE + INSTALL_SHORTCUT + INTERNET simultaneously) may explain 

benign predictions despite individual high-risk permissions being present. This behaviour 

demonstrates model robustness against false positives, crucial for production deployment.   
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4. CONCLUSION 

This study presented a structured, leakage-free machine learning framework for permission-based 

Android malware detection, comparing Logistic Regression, Random Forest, and Gradient Boosting Machine 

models within the CRISP-DM process model. Using a Kaggle-sourced dataset of 4,464 applications and 328 

permissions, all models demonstrated strong classification capability, with GBM consistently outperforming 

the others (96.05% accuracy, 0.9924 ROC-AUC, and the lowest Brier Score of 0.0344). Feature importance 

and SHAP analyses confirmed that permissions such as READ_PHONE_STATE, 

RECEIVE_BOOT_COMPLETED, and INSTALL_SHORTCUT were key indicators of malicious 

behaviour. The comparative evaluation of manual Spearman correlation versus automated Mutual 

Information selection revealed that automated selection is more robust and prevents data leakage. From a 

theoretical perspective, the study provides empirical validation that ensemble boosting methods with entropy-

based feature selection deliver the best balance between predictive accuracy and interpretability for static 

malware detection. In practice, the pipeline design ensures reproducibility and reliability for real-world 

applications such as mobile antivirus systems and app store vetting. However, this study is limited to static 

permission analysis and does not incorporate dynamic runtime behaviours or multi-source datasets. Future 

work should integrate hybrid static–dynamic features, cross-dataset validation, and longitudinal updates to 

address model drift and enhance detection resilience against adaptive malware.  
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