

https://doi.org/10.30598/barekengvol20iss2pp1675-1692

1675

June 2026 Volume 20 Issue 2 Page 1675–1692

P-ISSN: 1978-7227 E-ISSN: 2615-3017

BAREKENG: Journal of Mathematics and Its Applications

How to cite this article:

A. R. Lubis, D. Wulandari, L. T. Adha, T. Ariyani, Y. Y. Lase and F. S. Lubis., “A COMPARATIVE STUDY OF PIPELINE-VALIDATED

MACHINE LEARNING CLASSIFIERS FOR PERMISSION-BASED ANDROID MALWARE DETECTION, BAREKENG: J. Math. & App.,

vol. 20, no. 2, pp. 1675-1692, Jun, 2026.

A COMPARATIVE STUDY OF PIPELINE-VALIDATED

MACHINE LEARNING CLASSIFIERS FOR PERMISSION-BASED

ANDROID MALWARE DETECTION

 Arif Ridho Lubis 1*, Dewi Wulandari 2, Lilis Tiara Adha 3,

Tika Ariyani 4, Yuyun Yusnida Lase 5, Fahdi Saidi Lubis 6

1,2,3,4,5Departement Computer Engineering and Informatics, Politeknik Negeri Medan

Jln. Almamater no 1 Kampus USU, Medan, 20155, Indonesia

6Departement of Information Technology, Kulliyyah of Information and Communication Technology,

International Islamic University Malaysia

Jln. Gombak, 53100, Malaysia

Corresponding author’s e-mail: * arifridho@polmed.ac.id

Article Info ABSTRACT

Article History:
The growing prevalence of Android malware distributed through third-party APK

sideloading poses a significant security threat to users and developers. This study aims to

evaluate the effectiveness of three machine learning algorithms—Logistic Regression (LR),

Random Forests (RF), and Gradient Boosting Machine (GBM)—for static Android

malware detection based on permission features. The experiment employs the publicly

available Android Malware Prediction Dataset (Kaggle, accessed 2025), containing 4,464

application samples with 328 binary permission attributes. A leakage-free CRISP-DM

workflow was implemented, integrating data cleaning, automated feature selection via

SelectKBest (Mutual Information), and hyperparameter optimisation using GridSearchCV

with stratified 5-fold cross-validation. Results on the unseen hold-out test set show that

GBM achieved the best performance, with 96.05% accuracy and 0.9924 ROC-AUC,

outperforming LR and RF. In addition, GBM exhibited superior probability calibration

(Brier Score = 0.0344) and interpretability, as confirmed through SHAP analysis. The

ablation study further validated that optimal model performance saturates at 30–40

selected features. This research contributes a reproducible and pipeline-validated

comparative framework for static Android malware detection, addressing prior studies’

limitations regarding feature selection bias and data leakage. Nevertheless, the study is

limited by its reliance on static permission features and the absence of dynamic

behavioural data, which may restrict generalisation to evolving malware families.

Received: 23rd July 2025

Revised: 12th September 2025

Accepted: 3rd November 2025

Available Online:26th January 2026

Keywords:

Android Malware;

Classification;

Gradient Boosting Machine;

Logistic Regression;

Permission-Based Detection;

Random Forest.

 This article is an open access article distributed under the terms and

conditions of the Creative Commons Attribution-ShareAlike 4.0

International License.

Copyright © 2026 Author(s)

Journal homepage: https://ojs3.unpatti.ac.id/index.php/barekeng/

Journal e-mail: barekeng.math@yahoo.com; barekeng.journal@mail.unpatti.ac.id

Research Article ∙ Open Access

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
mailto:arifridho@polmed.ac.id
https://orcid.org/0000-0001-8855-1277
mailto:dewiwulandari@students.polmed.ac.id
https://orcid.org/0009-0004-6130-5120
mailto:lilistiaraadha@students.polmed.ac.id
https://orcid.org/0009-0005-9117-4704
mailto:tikaariyani@students.polmed.ac.id
https://orcid.org/0009-0003-8683-2288
mailto:yuyunlase@polmed.ac.id
https://orcid.org/0009-0004-6828-8693
mailto:fahdi.saidi@live.iium.edu.my
https://orcid.org/0000-0002-3743-2486
https://ojs3.unpatti.ac.id/index.php/barekeng/
mailto:barekeng.math@yahoo.com
mailto:barekeng.journal@mail.unpatti.ac.id

1676 Lubis, et al. A COMPARATIVE STUDY OF PIPELINE-VALIDATED MACHINE LEARNING CLASSIFIERS FO…

1. INTRODUCTION

In today’s hyperconnected digital environment, the boundaries between communication, work, and

entertainment have become increasingly blurred. The Android operating system dominates the mobile

market, powering billions of devices worldwide and serving as the backbone of mobile applications and

online services [1][2]. Its open-source framework provides flexibility and accessibility for developers, yet it

also introduces major cybersecurity vulnerabilities [3]. Cybercriminals are increasingly using social

engineering tactics to trick users into downloading malicious Android application packages (APKs) that

appear legitimate, often disguised as entertainment, productivity tools, or system updates [4][5]. These

applications are typically distributed outside the Google Play Store, a process known as sideloading, which

bypasses built-in security verification and exposes users to elevated risk [6]. Once installed, such malware

can access sensitive resources through overprivileged permissions, enabling activities such as surveillance,

credential theft, and financial fraud [7][8]. Research comparing sideloaded apps to those from the Play Store

found that sideloaded applications are more likely to lack privacy policies, transmit sensitive data

unencrypted, and even contain stalkerware or other malicious functionalities, making them especially

dangerous for users [9]. Dynamic code loading, a technique often used in sideloaded apps, can stealthily

introduce malware or vulnerabilities that evade detection by traditional antivirus tools, further increasing the

risk of privacy breaches and unauthorised access to device resources [10].

To mitigate these growing threats, machine learning (ML) has emerged as a central approach in

Android malware detection. ML-based systems can learn complex behavioural patterns from static features

such as permissions, API calls, or code metadata, providing more scalable detection than traditional signature-

based methods [11]. Among these, permission-based static analysis is particularly attractive because it does

not require executing the application and can thus be deployed in resource-constrained environments such as

mobile devices or app stores [12][13]. Each Android app declares its required permissions in the manifest

file, and patterns in these requests have been shown to strongly correlate with malicious intent [14]. Various

ML algorithms, including Random Forests, XGBoost, Support Vector Machines, and ensemble methods,

have demonstrated strong performance in malware detection, with some models achieving accuracy above

90% and low false-positive rates [15]. However, challenges remain, such as handling imbalanced datasets,

inconsistent evaluation protocols, limited cross-validation, or non-calibrated probability outputs, which

undermine reproducibility and limit real-world reliability [16].

The purpose of this study is to analyse and classify malware disseminated through Android applications

using a publicly available Kaggle dataset containing thousands of pre-labelled benign and malicious samples,

each represented by binary permission features [17]. The dataset was cleaned, deduplicated, and standardised

to ensure integrity and reproducibility. The research employs a structured data-mining framework consistent

with CRISP-DM (CRoss-Industry Standard Process for Data Mining) [18] principles, integrating mutual

information–based feature selection, cross-validated hyperparameter tuning, and probability calibration via

Brier scores and reliability curves Three supervised learning algorithms were also selected based on their

complementary characteristics, best results of the previous studies, and relevance to binary classification tasks

in malware detection. Logistic Regression was chosen for its interpretability and computational efficiency,

enabling a clear understanding of how individual permissions contribute to the prediction of malicious

behaviour [19]. Random Forests were included as a robust ensemble method that mitigates overfitting and

effectively handles large sets of binary permission features [20]. Meanwhile, the Gradient Boosting Machine

(GBM) was employed to capture complex non-linear relationships through iterative error correction, often

achieving superior predictive performance on structured datasets [21]. The models will be trained to

determine whether an application is malicious by learning the permissions requested by APK files. The

combination of these models enables a comparative analysis that balances interpretability, generalisation, and

accuracy, offering insights into the trade-offs between lightweight and high-performance malware classifiers.

Several studies have addressed malware detection, yet methodological differences remain. The first

research, conducted by Nasri et al. [22], employs five algorithms, namely Random Forests, Naive Bayes, J48,

DecisionTable, and MLP, for classifying and identifying malware. Their results showed that Random Forests

achieved the highest accuracy of 89.36%, validating ensemble methods as effective models for malware

detection. The dataset used by Nasri et al. was sourced from the AndroZoo project, containing APKs collected

from various repositories, including Google Play. While their approach demonstrated competitive accuracy,

their manual decompilation of applications to extract permissions limited scalability and reproducibility. The

present study differs by leveraging automated preprocessing and reproducible open-source datasets,

BAREKENG: J. Math. & App., vol. 20(2), pp. 1675- 1692, June, 2026. 1677

integrated into a fully encapsulated pipeline that supports robust hyperparameter tuning and model

comparison.

The study conducted by Ahmed et al. [23] compared the performance of six machine learning

algorithms for classifying Android malware: Decision Trees, Support Vector Machines, Naive Bayes,

Random Forests, K-Nearest Neighbours, and Ensemble Methods / Extra-Tree Classifier. The study achieved

its best accuracy of 95% using Random Forests with feature selection techniques such as Correlation, Chi-

Square, and Information Gain. Although the findings confirmed Random Forest’s strength for malware

detection, the evaluation pipeline selected features before cross-validation, introducing a feature-leakage

problem. Moreover, their analysis lacked emphasis on model calibration or interpretability. The present

research improves upon this by embedding feature selection and scaling directly within the cross-validation

process and evaluating probability calibration using Brier scores.

The third research by Droos et al. [24] utilised four machine learning algorithms for the detection of

Android malware: Random Forests, Naive Bayes (NB), J48, and IBK (K-Nearest Neighbors). Their

evaluation employed metrics such as Recall, Precision, and Accuracy, achieving the highest accuracy of

98.6% with Random Forests. The dataset, sourced from the University of New Brunswick repository,

contained multiple malware types, including adware, banking trojans, and SMS malware. Although their

results were impressive, their study did not explore calibration or discuss model efficiency for deployment in

resource-limited devices. In contrast, this research evaluates three models of varying complexity, which are

Logistic Regression, Random Forests, and GBM, under identical conditions to identify the optimal balance

between interpretability, computational efficiency, and predictive performance.

The fourth study, Kapoor et al. [25], examined six classical algorithms—Logistic Regression, Linear

Discriminant Analysis, k-Nearest Neighbours, Decision Tree, Naïve Bayes, and SVM—for permission-based

Android malware detection. Logistic Regression achieved the highest accuracy (99.34%), confirming its

strong suitability for binary permission-based data. However, their dataset was self-constructed, lacked

validation against external sources, and did not control for feature overlap or data leakage. The current

research builds upon Kapoor et al. by employing a public, reproducible dataset, applying mutual information-

based feature selection, and using calibrated probabilistic outputs, thereby addressing reproducibility and

overfitting concerns absent in earlier studies.

The purpose of this comparative analysis is to determine the most effective model for identifying

permission-based Android malware by using Logistic Regression, Random Forests, and Gradient Boosting

Machines. This research introduces several key innovations: (1) a reproducible, leakage-free pipeline

integrating mutual information–based feature selection; (2) cross-validated hyperparameter optimisation; and

(3) calibrated probabilistic evaluation. Additionally, an ablation study was conducted to analyse the influence

of feature dimensionality and selection criteria (Mutual Information vs. Correlation), confirming the

robustness and stability of the proposed framework. By addressing long-standing issues of data leakage,

reproducibility, and model interpretability, this research aims to contribute toward the development of

trustworthy, resource-efficient, and scientifically transparent malware detection systems.

2. RESEARCH METHODS

2.1 Workflow

This study follows a structured analytical workflow inspired by the Cross-Industry Standard Process

for Data Mining (CRISP-DM). CRISP-DM is a domain- and technology-independent process model that

structures data mining and machine learning projects into six iterative phases: business understanding, data

understanding, data preparation, modelling, evaluation, and deployment [26]. The stages include Dataset

Understanding, Exploratory Data Analysis (EDA), Feature Selection Strategy Design, Data Preprocessing,

Modelling and Evaluation, Implementation and Study, as shown in Fig. 1.

1678 Lubis, et al. A COMPARATIVE STUDY OF PIPELINE-VALIDATED MACHINE LEARNING CLASSIFIERS FO…

Figure 1. Workflow Diagram

The process begins with dataset acquisition and understanding, where the Android permissions dataset

from Kaggle [16] is examined for completeness, consistency, and suitability for classification. This stage lays

the foundation for subsequent analysis by identifying the data's structure and characteristics. Following data

understanding, exploratory data analysis (EDA) is performed to visualise and summarise the dataset’s main

features, identify general patterns, highlight key differences between benign and malicious applications, and

see how the columns correlate with each other. EDA insights guide the design of the feature selection strategy,

which determines the most relevant permission attributes using K-Fold Select. The data is then preprocessed

through cleaning, normalisation, and transformation to ensure that it is ready for training and evaluation.

The prepared data proceeds to the modelling and evaluation stage, where three supervised learning

algorithms—Logistic Regression, Random Forests, and Gradient Boosting Machine—are implemented and

compared. Each model is trained using a standardised pipeline with cross-validation and grid search

optimisation. The results are evaluated using multiple performance metrics, and the workflow concludes with

implementation and study, where the models are instructed to solve high-risk, medium-risk, low-risk, and no-

risk cases, and the models are analysed for calibration, interpretability, and robustness through additional

validation and ablation experiments.

2.2 Dataset

The dataset utilised in this research is a permission-based Android malware dataset, the “Android

Malware Detection Dataset” by Danny Revaldo, obtained from Kaggle [16], which contains static binary

features representing permissions requested by Android application packages (APKs). Each row in the dataset

corresponds to an individual application, while each column represents a specific permission or API-level

feature extracted from the application’s manifest file. The dataset comprises 4,464 records and 328 binary

attributes, along with a target column labelled benign or malware that serves as the ground truth for this study.

Each feature takes a binary value of 1 if the corresponding permission is declared by the application, and 0

otherwise. After duplicate removal, 3,292 unique samples remain, with 1,745 benign applications and 1,547

malware applications in the cleaned dataset.

BAREKENG: J. Math. & App., vol. 20(2), pp. 1675- 1692, June, 2026. 1679

The permissions in this dataset span a wide range of Android system resources, covering device

identifiers, storage access, communication services, location data, and system-level execution capabilities.

These permissions are typically used by legitimate applications but are frequently abused by malicious ones

to exfiltrate data, track user activity, or execute unauthorised actions. The dataset also includes several API

call indicators that correspond to potentially sensitive operations, such as dynamic code loading or direct

network communication, which can reveal malicious payload distribution or command-and-control

behaviour. The features in this dataset capture these behavioural patterns, making it particularly suitable for

static analysis and machine learning classification. Table 1 lists the permissions represented in the dataset.

Table 1. Permission Examples in the Dataset

No. Column Name Description

1. android.permission.READ_PHONE_STATE Allows access to device identifiers, IMEI,

network information, and call status.

2. android.permission.ACCESS_NETWORK_S

TATE

Allows an application to access the device's

location services to determine the user's precise

location.

3. android.permission.BLUETOOTH Enables an application to use the device's

Bluetooth capabilities, including connecting to

other devices.

4. android.permission.CAMERA Allows access to the device's camera, including

taking photos and recording videos.

5. android.permission.CHANGE_WIFI_STATE Grants an application the ability to change the

device's Wi-Fi settings.

6. android.permission.INTERNET Allows an application to access the internet,

including sending and receiving data over the

network

7. android.permission.PROCESS_OUTGOING_

CALLS

Enables an application to monitor and manage

outgoing phone calls.

8. android.permission.READ_CONTACTS Grants an application access to the device's

contact list.
9. android.permission.READ_INTERNAL_STO

RAGE

Allows an application to write data to internal

storage devices.

10. android.permission.WAKE_LOCK Enables an application to prevent the device

from going into sleep mode or locking the

screen, allowing it to continue running in the

background.

11 android.permission.READ_SMS Grants an application access to the device's

SMS messages, including reading and

managing SMS messages, including receiving

OTP (One-Time Passwords).

12 android.permission.SEND_SMS Allows an application to send SMS messages,

including sending and managing SMS

messages.

13 android.permission.PROCESS_OUTGOING_

CALLS

Enables an application to monitor and manage

outgoing phone calls, including intercepting

calls, managing call logs, and controlling call

settings

2.3 Exploratory Data Analysis

Exploratory Data Analysis (EDA) is a crucial step in the workflow, performed to examine the structural

characteristics and statistical patterns within a dataset before model development. EDA involves using

visualisations and statistical summaries to uncover underlying patterns, detect outliers, identify errors or

corrupt data, and reveal relationships between variables, all of which inform subsequent modelling decisions

and help validate initial assumptions about the data [27]. All EDA procedures were conducted using the

pandas, seaborn, and matplotlib libraries in Python, ensuring purely descriptive exploration without exposing

test data to the modelling process.

1680 Lubis, et al. A COMPARATIVE STUDY OF PIPELINE-VALIDATED MACHINE LEARNING CLASSIFIERS FO…

2.3.1 Distribution of Active Permissions per Application

Figure 2. Distribution of Active Permissions per Application

A statistical summary of the total active permissions requested per application (referred to as

permission_count) shows a mean of 24.57, a standard deviation of 16.99, a minimum of 1, and a maximum

of 177. The histogram in Fig. 2 shows a right-skewed distribution, with most applications requesting between

15 and 30 permissions, while a few outliers exhibit exceptionally high counts. This long-tail pattern suggests

that while most apps use moderate permissions for functional purposes, a minority of highly permission-

intensive applications may pose greater security risks. Such overprivileged behaviour often correlates with

malicious intent, as excessive access rights enable unauthorised operations on device resources.

2.3.2 Comparison of Permission Counts

Figure 3. Comparison of Permission Counts

The boxplot in Fig. 3 visualises the difference in permission intensity between benign and malicious

applications. Malware samples tend to have higher median permission counts and wider interquartile ranges,

reflecting greater variation in the number of permissions requested. Several outliers are visible, representing

applications that demand an unusually large number of permissions, a characteristic often associated with

privilege abuse or spyware-like activity. The benign group shows a more concentrated distribution, indicating

that legitimate applications typically operate within narrower permission scopes.

BAREKENG: J. Math. & App., vol. 20(2), pp. 1675- 1692, June, 2026. 1681

2.3.3 Feature Correlation Heatmap

Figure 4. Correlation Heatmap

Fig. 4 visualises the Spearman correlation coefficients among the ten permission features most strongly

correlated with the malware label. The bottom row and rightmost column show each feature’s relationship

with the target class, indicating that several permissions have strong positive correlations with malicious

behaviour. The top-ranked features include read phone state (𝜌 = 0.72), receive boot completed

notifications (𝜌 = 0.56), and installing shortcuts (𝜌 = 0.52), all of which are linked to high-risk operations

such as device identification, persistence after reboot, and silent shortcut installation. Additional correlations

are observed for access coarse location (𝜌 = 0.46), access fine location (𝜌 = 0.43), and network-related

APIs such as Ljava/net/URL;->openConnection (𝜌 = 0.38), which are commonly associated with user

tracking and unauthorised communication. To prevent bias and data leakage, the actual feature selection in

this study is performed independently in the modelling phase (Section 2.4) using SelectKBest with mutual

information scoring within a cross-validation pipeline.

2.4 Feature Selection

Feature selection is a critical step in machine learning to reduce dimensionality, improve model

performance, and prevent overfitting [28]. In this research, we compared two feature selection approaches

to determine the most effective method for malware classification:

 2.4.1 Manual Spearman Correlation

The first approach involved manually selecting the top 20 features based on Spearman correlation

coefficients with the target variable (malware status). The Spearman rank correlation coefficient (𝜌) measures

the strength of a monotonic relationship between two ranked variables [29] and is defined as:

𝑝 = 1 −
6 ∑ 𝑑𝑖

2

𝑛 (𝑛2 − 1)
, (1)

where 𝑑𝑖 represents the difference between the ranks of paired values and 𝑛 is the number of observations.

While intuitive and computationally simple, this baseline method presents several limitations:

1682 Lubis, et al. A COMPARATIVE STUDY OF PIPELINE-VALIDATED MACHINE LEARNING CLASSIFIERS FO…

1. Data leakage risk: Computing correlations on the entire dataset (including the test set) before

splitting can lead to overly optimistic performance estimates.

2. Static selection: The same set of features is used across all models, ignoring differences in

algorithmic sensitivity or inductive bias.

3. Limited to linear relationships: Correlation captures only monotonic linear relationships and may

fail to detect non-linear dependencies between features and the target variable.

Consequently, although this method serves as a meaningful interpretive baseline, it is not used in the final

modeling pipeline due to concerns about its reproducibility and bias.

2.4.2 Automated Select KBest with Mutual Information

To address the limitations of manual selection, we implemented an automated feature selection method

using SelectKBest with mutual information classification as the scoring function. This approach quantifies

both linear and non-linear dependencies between features and the target variable, making it more robust for

heterogeneous binary data such as Android permissions [30]. The mutual information between a feature 𝑋and

target 𝑌is defined as:

𝐼(𝑋, 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦)

𝑥∈𝑋
𝑦∈𝑌

𝑙𝑜𝑔 −
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
. (2)

This measure evaluates how much knowing 𝑋 reduces uncertainty about 𝑌, providing a model-agnostic

criterion for feature relevance. In this research, the mutual information selector was integrated directly within

a scikit-learn Pipeline, ensuring that feature selection occurs only on the training folds during Stratified K-

Fold cross-validation. This design provides three major benefits:

1. Leakage prevention: Feature selection is confined to training subsets within each fold, ensuring the

test data remain unseen throughout optimisation.

2. Joint optimisation: The number of selected features (columns) (𝑘) is tuned in conjunction with

model hyperparameters via GridSearchCV, aligning the feature subset with each classifier’s

structure. It means we don’t have to use all 328 columns to train the models.

3. Non-linear dependency capture: Mutual information can detect complex statistical relationships

beyond linear correlation, allowing the model to exploit diverse patterns in permission usage.

2.5 Data Preprocessing

The preprocessing phase was conducted to ensure the dataset was free of errors, duplicates, and

inconsistencies before model training. The dataset initially contained 4,464 records, of which 1,172 duplicates

were identified and removed using the duplicated() function in pandas. After deduplication, the dataset

consisted of 3,292 unique samples. The Label column, which indicated whether an application was benign or

malware, was standardised into binary values—benign as 0 and malware as 1. This standardisation was done

in-place using the map() function, and the distribution of labels was verified with value_counts(). This ensures

that the dataset accurately represents the two target categories.

Following deduplication and label standardisation, the dataset was split into training/validation

(80%) and test (20%) subsets using Stratified K-Fold cross-validation to preserve the proportions of both

classes in each fold. The training set was used for feature selection and hyperparameter tuning, while the test

set was kept separate to avoid data leakage. StandardScaler was applied only to the Logistic Regression model

within the pipeline because it is sensitive to feature magnitudes and relies on linear combinations of input

variables. Tree-based models (Random Forest and Gradient Boosting Machine) were not scaled, as they

inherently partition the feature space based on threshold values and are thus invariant to feature scaling [31].

2.6 Modelling and Evaluation

After splitting the data, the models were trained using three distinct machine learning algorithms:

Logistic Regression, Random Forests, and Gradient Boosting Machine. The models represent distinct

learning paradigms: linear (LR), bagging ensemble (RF), and boosting ensemble (GBM), allowing

comprehensive assessment of performance trade-offs. These three algorithms consistently demonstrate strong

BAREKENG: J. Math. & App., vol. 20(2), pp. 1675- 1692, June, 2026. 1683

performance in permission-based malware detection [21][22][23][24], providing a robust baseline for

comparison.

2.6.1 Logistic Regression

The algorithm's name, logistic regression, has led to the assumption that it is a regression tool, but the

method is actually for classification [32]. Logistic Regression is a machine learning method for classifying a

binary problem, where the outcome is either a binary yes/no or a binary positive/negative [33]. It is also one

of the simplest Machine Learning algorithms due to its interpretable and accurate results. Logistic regression

uses the following formula:

𝑃(𝑌 − 1) =
1

1 + 𝑒 − (𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + … + 𝛽𝑛𝑋𝑛
). (3)

This formula is known as the sigmoid function, which maps the linear combination of the independent

variables to a probability value between 0 and 1. The sigmoid function is defined as:

𝜎(𝑧) =
1

1 + 𝑒−𝑧
 , (4)

where z is the input to the function. This function has a unique property: it maps all real numbers to a value

between 0 and 1, making it suitable for modelling binary outcomes.

2.6.2 Random Forests

Random forests are an efficient non-parametric prediction method for classification (categorical

outcome) and regression (continuous outcome) applications [34]. Random Forests aim to improve upon the

limitations of single decision trees, such as overfitting, through techniques like bagging (bootstrap

aggregating) and feature randomness when building each tree, which helps to ensure that the trees are

uncorrelated and that the ensemble model has lower variance [35]. When performing classification on

Random Forests, the following formula is used:

𝐺𝑖𝑛𝑖 = 1 − ∑(𝑝𝑖)2

𝑐

𝑖=1

. (5)

In which the formula uses probability to determine the Gini of every branch, in this case, it determines the

probability of an app to be 0 or 1 based on the permission needed.

2.6.3 Gradient Boosting Machine

Gradient Boosting Machine (GBM) is an ensemble learning algorithm in machine learning that utilises

multiple weak models, typically decision trees, to produce a strong predictive model [36]. The method works

by sequentially adding predictors to an ensemble, each correcting its predecessor by focusing on errors from

previous models. GBM optimises a loss function over iterations using gradient descent, making it adaptable

to a variety of predictive modelling problems [37]. Gradient boosting itself uses an iterative update of the

model that could be represented as:

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝑛 . ℎ𝑚(𝑥) . (6)

After the initial development and application of each model, GridSearchCV will be utilised to fine-

tune the hyperparameters. This step is crucial to prevent overfitting, which can negatively impact the model's

accuracy. The process involves defining a parameter grid for each model, specifying the range of values to

test for each hyperparameter. GridSearchCV will then systematically explore various combinations of these

parameters to identify the set that yields the best performance. Once the optimal parameters are determined,

the models will be retrained using these settings to enhance their predictive capabilities.

2.6.4 Evaluation Metrics

Each model was evaluated on the unseen test set using multiple complementary metrics to assess

classification effectiveness:

1. Accuracy measures the overall correctness of the predictions:

1684 Lubis, et al. A COMPARATIVE STUDY OF PIPELINE-VALIDATED MACHINE LEARNING CLASSIFIERS FO…

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 . (7)

2. Precision quantifies how many predicted malware instances were correct:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 . (8)

3. Recall (or Sensitivity) measures how many actual malware instances were correctly identified:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 . (9)

4. F1-Score is the harmonic mean of precision and recall:

𝐹1 =
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
. (10)

These metrics collectively ensure that both the detection capability and reliability of positive predictions are

considered.

In addition, two threshold-independent metrics were calculated:

1. ROC-AUC (Receiver Operating Characteristic – Area Under Curve) measures the model’s ability

to distinguish between malware and benign apps across thresholds.

2. PR-AUC (Precision–Recall Area Under Curve) focuses on precision-recall trade-offs, particularly

valuable when the positive class is less frequent.

Both are computed as the integral (area) under the respective curves of true positive rate versus false positive

rate (ROC), and precision versus recall (PR).

2.6.5 Calibration Analysis

To ensure that probabilistic outputs from the models were interpretable and reliable, a calibration

analysis was performed. Calibration curves (reliability diagrams) were generated to compare the predicted

probabilities with the actual fraction of positive outcomes [38]. Models close to the diagonal line indicate

well-calibrated confidence estimates. Calibration quality was quantified using the Brier Score, defined as:

𝐵𝑆 =
1

𝑁
∑(𝑝𝑖 − 𝑦𝑖)2

𝑁

𝑖=1

, (11)

where 𝑝𝑖is the predicted probability and 𝑦𝑖is the true label. A lower Brier Score indicates better calibration.

2.7 Study

Following the primary model evaluation, additional analyses were conducted to validate the

interpretability and robustness of the proposed framework. These studies provide deeper insights into model

behaviour, feature relevance, and performance stability under varying conditions.

2.7.1 Model Explainability (SHAP Analysis)

To enhance interpretability, SHAP (SHapley Additive exPlanations) was applied to quantify the

contribution of each permission feature to individual predictions. SHAP values are grounded in cooperative

game theory, where each feature’s contribution to the model’s output is assessed relative to a baseline [39].

2.7.2 Ablation Study

An ablation study was performed to investigate how the number of selected features (𝑘) influences

model performance [40], and to compare two feature selection strategies: Mutual Information (MI) and

Spearman Correlation (Corr). Using Gradient Boosting Machine (GBM) as the reference classifier, the

number of selected features was varied across 𝑘 = {10,20,30,40,60,80}. Each configuration was evaluated

using five-fold cross-validation on the training data and further validated on the hold-out test set.

BAREKENG: J. Math. & App., vol. 20(2), pp. 1675- 1692, June, 2026. 1685

3. RESULTS AND DISCUSSION

3.1 Model Performance Comparison

Following the methodology outlined in Section 2, three machine learning algorithms—Logistic

Regression (LR), Random Forest (RF), and Gradient Boosting Machine (GBM)—were trained and evaluated

using a leakage-free pipeline integrating SelectKBest feature selection, GridSearchCV hyperparameter

optimisation, and stratified 5-fold cross-validation. All models were evaluated on an unseen hold-out test set

(659 samples, 20% of the cleaned dataset) to assess their generalisation capability.

3.1.1 Hyperparameter Optimisation Results

GridSearchCV systematically explored combinations of feature count (k) and model-specific

hyperparameters to identify the optimal configuration for each classifier. Table 2 summarises the best

hyperparameters discovered through cross-validated grid search.

Table 2. Optimal Hyperparameters from GridSearchCV

Model Feature Count (k) Key Hyperparameters
CV ROC-

AUC

Logistic Regression 40 C=1.0, solver='lbfgs', class_weight='balanced' 0.9877

Random Forests 40 max_depth=10, n_estimators=400,

class_weight='balanced'

0.9899

Gradient Boosting

Machine

40 learning_rate=0.1, max_depth=3,

n_estimators=200

0.9924

Key observations:

1. All three models converged on k=40 features as optimal, suggesting this feature dimensionality

balances information gain with overfitting prevention

2. GBM achieved the highest cross-validation ROC-AUC (0.9924), indicating superior

discrimination capability during training

3. The class_weight='balanced' parameter for LR and RF addressed the slight class imbalance (1,745

benign vs. 1,547 malware).

3.1.2 Metric Evaluation Results

Table 3 presents comprehensive performance metrics on the hold-out test set.

Table 3. Optimal Hyperparameters from GridSearchCV

Model Accuracy
Precision

(Malware)

Recall

(Malware)

F1

(Malware)

Precision

(Benign)

Recall

(Benign)

F1

(Benign)

ROC-

AUC

PR-

AUC

Logistic

Regression

94.34% 0.9513 0.9452 0.9482 0.9516 0.9570 0.9543 0.9880 0.987

2

Random

Forests

95.45% 0.9516 0.9516 0.9516 0.9570 0.9570 0.9570 0.9900 0.990

1

Gradient

Boosting

Machine

96.05% 0.9671 0.9484 0.9577 0.9549 0.9713 0.9631 0.9924 0.991

8

Performance analysis:

1. Gradient Boosting Machine emerged as the top performer, achieving:

a. Highest test accuracy (96.05%).

b. Best ROC-AUC (0.9924), indicating superior ability to distinguish malware across all

classification thresholds.

c. Best F1-score for both classes (Malware: 0.9577, Benign: 0.9631).

2. Random Forest demonstrated balanced performance:

a. Strong accuracy (95.45%) with equal precision and recall for both classes (0.9516/0.9570).

b. Slightly lower ROC-AUC than GBM (0.9899 vs. 0.9924).

1686 Lubis, et al. A COMPARATIVE STUDY OF PIPELINE-VALIDATED MACHINE LEARNING CLASSIFIERS FO…

c. Well-suited for scenarios requiring symmetric error costs.

3. Logistic Regression, despite being the simplest model, achieved competitive results (94.34%

accuracy), confirming that permission-based malware detection exhibits substantial linear

separability.

3.1.3 Confusion Matrix Analysis

Fig. 5 (a), Fig.5 (b), and Fig. 5 (c) present confusion matrices for Logistic Regression, Random Forests,

and Gradient Boosting Machine after testing the hold-out data, visualising the distribution of correct and

incorrect predictions.

Figure 5. Confusion Matrix for (a) Logistic Regression, (b) Random Forests, (c) Gradient Boosting Machine

Insights about the confusion matrices:

1. GBM achieved the lowest false positive rate (10 benign apps misclassified as malware), crucial for

user trust in production systems.

2. All models exhibited balanced error distribution between false positives and false negatives,

indicating no systematic bias toward either class.

3. The low false negative count (14–16 missed malware) confirms that the models effectively identify

malicious applications.

3.2 Feature Selection Strategy Comparison

To validate the effectiveness of the automated SelectKBest (Mutual Information) approach against the

traditional manual Spearman–correlation–based feature selection, a comparative analysis was performed.

This experiment addresses a key methodological gap in Android malware studies, where feature selection

methods are frequently adopted without assessing their impact on generalisation and data leakage risk

[22][23][24][25]. Both strategies were evaluated using identical data splits and classifiers—Logistic

Regression (LR), Random Forest (RF), and Gradient Boosting Machine (GBM)—to isolate the effect of the

selection method itself.

In the correlation-based baseline, the top 20 features were selected manually according to their absolute

Spearman correlation coefficients with the malware label, computed on the entire dataset before train–test

partitioning. This approach, while intuitive and interpretable, inherently risks data leakage because test

samples influence feature rankings. In contrast, the automated pipeline integrated

SelectKBest(mutual_info_classif) directly within a 5-fold Stratified K-Fold cross-validation using

GridSearchCV, ensuring that feature relevance was recalculated exclusively on training folds. This design

eliminates leakage, supports model-specific feature optimisation, and captures both linear and non-linear

dependencies between permissions and malware status. Table 4 shows the most influential features in both

methods.

Table 4. 10 Most Influential Features in Spearman vs Mutual Information

Rank

(Spearman)
Feature Name

Spearman

Correlation

MI

Importance

Rank

(GBM)

1 android.permission.READ_PHONE

_STATE

0.7166 0.5779 1

BAREKENG: J. Math. & App., vol. 20(2), pp. 1675- 1692, June, 2026. 1687

Rank

(Spearman)
Feature Name

Spearman

Correlation

MI

Importance

Rank

(GBM)

2 android.

permission.RECEIVE_BOOT_CO

MPLETED

0.5556 0.0477 3

3 com.android.launcher.permission.IN

STALL_SHORTCUT

0.5215 0.0464 4

4 com.google.android.c2dm.permissio

n.RECEIVE

0.4790 0.1961 2

5 android.permission.ACCESS_COA

RSE_LOCATION

0.4573 0.0029 14

6 android.permission.ACCESS_FINE

_LOCATION

0.4316 0.0090 10

7 RECEIVE_BOOT_COMPLETED 0.4123 0.0333 5

8 Ljava/net/URL;->openConnection 0.3825 0.0117 8

9 Landroid/location/LocationManager;

->getLastKgoodwarewnLocation

0.3574 0.0136 7

10 GET_TASKS 0.2996 0.00098 18

Both approaches identified overlapping high-risk permissions, indicating feature-level semantic

consistency between monotonic (Spearman) and entropy-based (Mutual Information) ranking. However,

their relative order of importance and contribution magnitudes differ significantly. For instance, while

READ_PHONE_STATE and C2DM.RECEIVE consistently dominates in both rankings; their relative

weights shift under the MI criterion — the latter increasing sharply (from ρ=0.4790 → MI weight=0.1961)

due to the capture of a non-linear dependency between network-related permissions and malware probability.

Conversely, location permissions (ACCESS_COARSE_LOCATION, ACCESS_FINE_LOCATION) drop

in importance when evaluated with MI, indicating that their predictive contribution is largely redundant or

confounded by correlated features (ρ≈0.43–0.45 but MI<0.01).

3.3 Calibration Analysis

Calibration analysis assesses whether a model's confidence scores correspond to actual outcome rates.

Models close to the diagonal line indicate well-calibrated predictions. The calibration results are then

evaluated using the Brier score, as shown in Table 5.

Table 5. Calibration Quality Metrics

Model Brier Score

Mean

Predicted

Probability

Actual Positive

Rate

Calibration

Error

Logistic Regression 0.0399 0.472 0.470 0.0325

Random Forests 0.0401 0.475 0.470 0.1069

Gradient Boosting Machine 0.0344 0.468 0.470 0.0955

Interpretation:

1. Gradient Boosting Machine achieved the lowest Brier Score (0.0344), indicating the most accurate

probability estimates among the three models.

2. All models demonstrate good calibration (Brier < 0.1), which is considered well-calibrated for

binary classification tasks. This indicates the models are suitable for production systems that require

reliable confidence estimates.

3. Mean Predicted Probability closely matches Actual Positive Rate across all models, with GBM

showing the smallest deviation (0.468 predicted vs. 0.470 actual, Δ = 0.002), confirming minimal

systematic bias.

4. Lower calibration error and reliability scores for GBM indicate superior probabilistic predictions,

making it more trustworthy for scenarios where confidence scores influence decision-making.

3.4 Ablation Study

An ablation study was conducted to investigate how feature count (k) influences model performance

and to assess the robustness of the SelectKBest mutual information approach. Using the Gradient Boosting

Machine as the reference classifier, the number of selected features was varied across k ∈ {10, 20, 30, 40, 60,

1688 Lubis, et al. A COMPARATIVE STUDY OF PIPELINE-VALIDATED MACHINE LEARNING CLASSIFIERS FO…

80}, with each configuration evaluated using 5-fold cross-validation and validated on the hold-out test set.

Additionally, a comparison was made between two feature selection strategies: Table 6 presents the

comprehensive results of the ablation study.

Table 6. Ablation Study Results

k Method CV ROC-AUC CV Std Test Accuracy Test F1-Macro Test ROC-AUC

10 MI 0.9785 0.0051 94.69% 0.9467 0.9881

10 Correlation 0.9778 0.0060 94.23% 0.9422 0.9838

20 MI 0.9855 0.0042 94.84% 0.9482 0.9883

20 Correlation 0.9855 0.0023 95.45% 0.9543 0.9886

30 MI 0.9866 0.0033 95.30% 0.9528 0.9909

30 Correlation 0.9881 0.0021 96.05% 0.9604 0.9912

40 MI 0.9856 0.0031 95.30% 0.9528 0.9905

40 Correlation 0.9889 0.0014 95.90% 0.9588 0.9927

60 MI 0.9879 0.0014 95.14% 0.9513 0.9931

60 Correlation 0.9895 0.0023 95.90% 0.9588 0.9935

80 MI 0.9886 0.0021 95.60% 0.9558 0.9930

80 Correlation 0.9898 0.0019 96.21% 0.9619 0.9935

Key findings:

1. Both feature selection methods show performance saturation beyond 𝑘 = 30 − 40 features. The

test accuracy improvements become marginal as k increases from 40 to 80 (Δ < 0.5%), suggesting

that the most informative permissions are captured within the first 30-40 features.

2. Interestingly, Spearman correlation-based selection achieved slightly higher test accuracy than

mutual information across most k values. At 𝑘 = 80, correlation-based selection reached 96.21%

compared to MI's 95.60%. This suggests that, for this dataset, the linear monotonic relationships

captured by Spearman's correlation are sufficient for effective malware detection.

3. Cross-validation standard deviation remains consistently low (< 0.006) across all configurations,

indicating stable and reproducible performance. Correlation-based selection generally exhibits

lower CV variance, particularly at 𝑘 = 40 (𝑠𝑡𝑑 = 0.0014 vs. 0.0031 for MI).

4. Based on the ablation study, 𝑘 = 30 − 40 features represent the optimal range, balancing

performance gains with computational efficiency. Beyond 𝑘 = 40, additional features contribute

minimal accuracy improvements while increasing model complexity.

3.5 SHAP Analysis

To enhance model interpretability and validate feature relevance beyond global importance scores,

this study employed SHAP on the GBM model using the hold-out test set as shown in Fig. 6.

Figure 6. SHAP Summary Plot

BAREKENG: J. Math. & App., vol. 20(2), pp. 1675- 1692, June, 2026. 1689

Fig. 6 presents the SHAP summary plot, which illustrates each feature’s impact on the model’s output

via its SHAP value distribution. Features positioned higher on the plot exert greater influence on malware

classification decisions. The analysis shows that READ_PHONE_STATE, INSTALL_SHORTCUT, and

RECEIVE are the three most influential features, consistently producing strong positive SHAP values when

active (indicated by red points). This implies that granting these permissions significantly increases the

model’s predicted probability of an application being malware. These features are directly associated with

sensitive operations such as device identification, silent shortcut creation, and background communication;

behaviours commonly exploited by spyware and trojans.

In contrast, features located at the bottom of the plot exhibit near-zero SHAP distributions, indicating

minimal contribution to the model’s decision boundary. The symmetric concentration of blue points around

zero for these permissions suggests limited discriminative power or contextual dependency, meaning that

their presence or absence does not substantially alter the likelihood of malware.

3.6 Sample Prediction Analysis

To validate model behaviour and demonstrate practical applicability, four test scenarios were designed

representing different risk profiles based on feature importance rankings. This analysis addresses the practical

question: "How do models respond to applications with varying permission combinations?"

Features were categorised into risk levels based on GBM importance quartiles:

1. HIGH-RISK: Top 25% importance (10 features, led by READ_PHONE_STATE).

2. MEDIUM-RISK: Middle 50% importance (20 features).

3. LOW-RISK: Bottom 25% importance (10 features).

Table 7. Sample Prediction Summary

Test Case Active Permissions (Examples)
Logistic

Regression

Random

Forest

Gradient

Boosting

Machine

High-Risk Only

(7 features)

READ_PHONE_STATE,

c2dm.RECEIVE,

RECEIVE_BOOT_COMPLETED,

INSTALL_SHORTCUT,

READ_EXTERNAL_STORAGE

Malware

(97.7%)

Malware

(77.0%)

Malware

(98.3%)

Mixed (3 High +

3 Medium)

READ_PHONE_STATE,

c2dm.RECEIVE,

RECEIVE_BOOT_COMPLETED,

CAMERA, permission_count,

WAKE_LOCK

Benign

(94.9%)

Benign (88.9%) Benign (85.3%)

Low-Risk Only

(6 features)

loadLibrary, getSimOperator,

RECEIVE_MMS,

UPDATE_DEVICE_STATS,

System.load,

READ_USER_DICTIONARY

Benign

(97.2%)

Benign (93.9%) Benign (95.4%)

No Permissions None Benign

(98.3%)

Benign (91.4%) Benign (95.7%)

Key observations:

1. GBM demonstrates the highest confidence and aligns closely with test performance results.

2. RF provides more conservative estimates, indicating potential robustness in real-world deployment.

3. All models show consistent agreement on extreme cases; high-risk combinations yield malware

predictions, while low/no permissions are benign.

4. Interestingly, the mixed-risk case resulted in benign predictions across all models with high

confidence (85-95%). This suggests that permission combinations, rather than isolated high-risk

features, drive malware classification. The absence of critical permission clusters (e.g.,

READ_PHONE_STATE + INSTALL_SHORTCUT + INTERNET simultaneously) may explain

benign predictions despite individual high-risk permissions being present. This behaviour

demonstrates model robustness against false positives, crucial for production deployment.

1690 Lubis, et al. A COMPARATIVE STUDY OF PIPELINE-VALIDATED MACHINE LEARNING CLASSIFIERS FO…

4. CONCLUSION

This study presented a structured, leakage-free machine learning framework for permission-based

Android malware detection, comparing Logistic Regression, Random Forest, and Gradient Boosting Machine

models within the CRISP-DM process model. Using a Kaggle-sourced dataset of 4,464 applications and 328

permissions, all models demonstrated strong classification capability, with GBM consistently outperforming

the others (96.05% accuracy, 0.9924 ROC-AUC, and the lowest Brier Score of 0.0344). Feature importance

and SHAP analyses confirmed that permissions such as READ_PHONE_STATE,

RECEIVE_BOOT_COMPLETED, and INSTALL_SHORTCUT were key indicators of malicious

behaviour. The comparative evaluation of manual Spearman correlation versus automated Mutual

Information selection revealed that automated selection is more robust and prevents data leakage. From a

theoretical perspective, the study provides empirical validation that ensemble boosting methods with entropy-

based feature selection deliver the best balance between predictive accuracy and interpretability for static

malware detection. In practice, the pipeline design ensures reproducibility and reliability for real-world

applications such as mobile antivirus systems and app store vetting. However, this study is limited to static

permission analysis and does not incorporate dynamic runtime behaviours or multi-source datasets. Future

work should integrate hybrid static–dynamic features, cross-dataset validation, and longitudinal updates to

address model drift and enhance detection resilience against adaptive malware.

Author Contributions

Arif Ridho Lubis: Conceptualisation, Methodology, Validation, Writing—Original Draft, Supervision. Dewi

Wulandari: Data Curation, Software, Investigation, Writing—Improvement upon the draft and editing. Lilis

Tiara Adha: Formal Analysis, Visualisation, Writing—Review and Editing. Tika Ariyani: Resources,

Software, Validation. Yuyun Yusnida Lase: Project Administration, Data Curation, Writing—Review and

Editing. Fahdi Saidi Lubis: Supervision, Methodology, Writing—Review and Editing. All authors reviewed,

discussed, and agreed on the final version of the manuscript and contributed equally to the development and

completion of this research.

Funding Statement

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit

sectors.

Acknowledgment

The authors would like to express their sincere gratitude to Politeknik Negeri Medan for its institutional

support and for providing the necessary facilities and laboratory infrastructure throughout the research

process, especially for data processing and analysis. We also extend our appreciation to colleagues who

provided technical guidance, reviewers who offered constructive feedback to improve the manuscript, and

everyone who contributed directly or indirectly to the completion of this studY.

Declarations

The authors declare that they have no conflicts of interest to report.

Declaration of Generative AI and AI-assisted technologies

The authors used generative AI (ChatGPT) only to assist with language polishing and formatting consistency

(e.g., improving wording and ensuring uniform terminology). No AI was used to generate research content,

perform analyses, or create/modify figures and tables. The authors reviewed the manuscript in full and remain

responsible for its content.

REFERENCES

[1] I. Kandel and M. Castella, “HOW DEEPLY TO FINE-TUNE A CONVOLUTIONAL NEURAL NETWORK: A CASE

STUDY USING A HISTOPATHOLOGY DATASET,” Comput. Secur., vol. 81, no. 5, p. ii, 2022, [Online]. Available:

https://doi.org/10.1016/j.cose.2022.102785%0Ahttps://doi.org/10.1016/j.jksuci.2022.02.026%0Ahttps://doi.org/10.1016/j.i

BAREKENG: J. Math. & App., vol. 20(2), pp. 1675- 1692, June, 2026. 1691

jepes.2022.108733%0Ahttps://doi.org/10.1016/j.cmpb.2022.107141%0Ahttps://doi.org/10.1016/j.chemolab.2022.104534

%0Ahttps://doi.org/10.101

[2] C. Easttom, “ANDROID OPERATING SYSTEM,” An In-Depth Guid. to Mob. Device Forensics, 2021, doi:

https://doi.org/10.1201/9781003118718-4.

[3] J. Lee, H. Jang, S. Ha, and Y. Yoon, “ANDROID MALWARE DETECTION USING MACHINE LEARNING WITH

FEATURE SELECTION BASED ON THE GENETIC ALGORITHM,” Mathematics, vol. 9, no. 21, pp. 1–20, 2021, doi:

https://doi.org/10.3390/math9212813.

[4] R. Satrio Hadikusuma, L. Lukas, and E. M. Rizaludin, “METHODS OF STEALING PERSONAL DATA ON ANDROID

USING A REMOTE ADMINISTRATION TOOL WITH SOCIAL ENGINEERING TECHNIQUES,” Ultim. J. Tek.

Inform., vol. 15, no. 1, pp. 44–49, 2023, doi: https://doi.org/10.31937/ti.v15i1.3122.

[5] H. A. S. Alsharya, “LEVERAGING SOCIAL ENGINEERING TECHNIQUES FOR ETHICAL PURPOSES: AN

APPROACH TO DEVELOP FAKE ANDROID APP FOR COLLECTING VALUABLE DATA DISCREETLY,” Wasit J.

Comput. Math. Sci., vol. 3, no. 3, pp. 45–59, 2024, doi: https://doi.org/10.31185/wjcms.268.

[6] G. M. Naidoo and A. Reddy Moonasamy, “WHATSAPP AS A TOOL FOR TEACHING AND LEARNING DURING THE

COVID-19 LOCKDOWN,” Univers. J. Educ. Res., vol. 10, no. 10, pp. 570–580, 2022, doi:

https://doi.org/10.13189/ujer.2022.101003.

[7] A. O. Japinye, D. O. Ukeagu, and E. C. Ejianya, “ENHANCING MOBILE SECURITY THROUGH HAPTIC FEEDBACK:

A MULTI-PARTICIPANT INVESTIGATION INTO MITIGATING SOCIAL ENGINEERING ATTACKS ON

ANDROID DEVICES,” Eur. J. Comput. Sci. Inf. Technol., vol. 13, no. 33, pp. 1–15, 2025, doi:

https://doi.org/10.37745/ejcsit.2013/vol13n33115.

[8] B. Urooj, M. A. Shah, C. Maple, M. K. Abbasi, and S. Riasat, “MALWARE DETECTION: A FRAMEWORK FOR

REVERSE ENGINEERED ANDROID APPLICATIONS THROUGH MACHINE LEARNING ALGORITHMS,” IEEE

Access, vol. 10, no. August, pp. 89031–89050, 2022, doi: https://doi.org/10.1109/ACCESS.2022.3149053.

[9] E.-M. Maier, L. M. Tanczer, and L. D. Klausner, SURVEILLANCE DISGUISED AS PROTECTION: A COMPARATIVE

ANALYSIS OF SIDELOADED AND IN-STORE PARENTAL CONTROL APPS, vol. 2025, no. 2. Association for Computing

Machinery, 2025. doi: https://doi.org/10.56553/popets-2025-0052.

[10] Z. Fang, W. Han, and Y. Li, “PERMISSION BASED ANDROID SECURITY: ISSUES AND COUNTERMEASURES,”

Comput. Secur., vol. 43, no. 0, pp. 205–218, 2024, doi: https://doi.org/10.1016/j.cose.2014.02.007.

[11] F. Akbar, M. Hussain, R. Mumtaz, Q. Riaz, A. W. A. Wahab, and K. H. Jung, “PERMISSIONS-BASED DETECTION OF

ANDROID MALWARE USING MACHINE LEARNING,” Symmetry (Basel)., vol. 14, no. 4, 2022, doi:

https://doi.org/10.3390/sym14040718.

[12] A. Muzaffar, H. Ragab Hassen, M. A. Lones, and H. Zantout, “AN IN-DEPTH REVIEW OF MACHINE LEARNING

BASED ANDROID MALWARE DETECTION,” Comput. Secur., vol. 121, p. 102833, 2022, doi:

https://doi.org/10.1016/j.cose.2022.102833.

[13] A. Iqubal and A. Payal, “MALWARE DETECTION TECHNIQUE FOR ANDROID DEVICES USING MACHINE

LEARNING ALGORITHMS,” 2024 Int. Conf. Comput. Sci. Commun. ICCSC 2024, no. 9, pp. 0–3, 2024, doi:

https://doi.org/10.1109/ICCSC62048.2024.10830310.

[14] P. Singh, P. Tiwari, and S. Singh, “ANALYSIS OF MALICIOUS BEHAVIOR OF ANDROID APPS,” Procedia Comput.

Sci., vol. 79, pp. 215–220, 2019, doi: https://doi.org/10.1016/j.procs.2016.03.028.

[15] W. Xie and X. Zhang, “THE APPLICATION OF MACHINE LEARNING IN ANDROID MALWARE DETECTION,”

2024 4th Int. Conf. Neural Networks, Inf. Commun. Eng. NNICE 2024, pp. 1–4, 2024, doi:

https://doi.org/10.1109/NNICE61279.2024.10498936.

[16] K. Liu, S. Xu, G. Xu, M. Zhang, D. Sun, and H. Liu, “A REVIEW OF ANDROID MALWARE DETECTION

APPROACHES BASED ON MACHINE LEARNING,” IEEE Access, vol. 8, pp. 124579–124607, 2020, doi:

https://doi.org/10.1109/ACCESS.2020.3006143.

[17] D. Revaldo, “ANDROID MALWARE DETECTION DATASET,” Kaggle. Accessed: Mar. 15, 2024. [Online]. Available:

https://www.kaggle.com/datasets/dannyrevaldo/android-malware-detection-dataset

[18] F. Martinez-Plumed et al., “CRISP-DM TWENTY YEARS LATER: FROM DATA MINING PROCESSES TO DATA

SCIENCE TRAJECTORIES,” IEEE Trans. Knowl. Data Eng., vol. 33, no. 8, pp. 3048–3061, 2021, doi:

https://doi.org/10.1109/TKDE.2019.2962680.

[19] R. Surendran, T. Thomas, and S. Emmanuel, “A TAN BASED HYBRID MODEL FOR ANDROID MALWARE

DETECTION,” J. Inf. Secur. Appl., vol. 54, 2020, doi: https://doi.org/10.1016/j.jisa.2020.102483.

[20] Z. Sun, G. Wang, P. Li, H. Wang, M. Zhang, and X. Liang, “AN IMPROVED RANDOM FOREST BASED ON THE

CLASSIFICATION ACCURACY AND CORRELATION MEASUREMENT OF DECISION TREES,” Expert Syst. Appl.,

vol. 237, no. PB, p. 121549, 2024, doi: https://doi.org/10.1016/j.eswa.2023.121549.

[21] Abdullah-All-Tanvir, I. Ali Khandokar, A. K. M. Muzahidul Islam, S. Islam, and S. Shatabda, “A GRADIENT BOOSTING

CLASSIFIER FOR PURCHASE INTENTION PREDICTION OF ONLINE SHOPPERS,” Heliyon, vol. 9, no. 4, p. e15163,

2023, doi: https://doi.org/10.1016/j.heliyon.2023.e15163.

[22] N. N. M. Nasri, M. F. A. Razak, R. R. Saedudin, S. M. Azmara, and A. Firdaus, “ANDROID MALWARE DETECTION

USING MACHINE LEARNING,” Proc. - 2020 Innov. Intell. Syst. Appl. Conf. ASYU 2020, vol. 9, no. 1, pp. 327–333, 2020,

doi: https://doi.org/10.1109/ASYU50717.2020.9259834.

[23] K. A. Ahmed, K. Boopalan, K. Lokeshwaran, R. Sugumar, and C. Kotteeswaran, “ANALYSIS OF ANDROID MALWARE

DETECTION USING MACHINE LEARNING TECHNIQUES,” AIP Conf. Proc., vol. 2935, no. 1, pp. 85–108, 2024, doi:

https://doi.org/10.1063/5.0199036.

[24] A. Droos, A. Al-Mahadeen, T. Al-Harasis, R. Al-Attar, and M. Ababneh, “ANDROID MALWARE DETECTION USING

MACHINE LEARNING,” 2022 13th Int. Conf. Inf. Commun. Syst. ICICS 2022, pp. 36–41, 2022, doi:

https://doi.org/10.1109/ICICS55353.2022.9811130.

[25] A. Kapoor, H. Kushwaha, and E. Gandotra, “PERMISSION BASED ANDROID MALICIOUS APPLICATION

DETECTION USING MACHINE LEARNING,” 2019 Int. Conf. Signal Process. Commun. ICSC 2019, pp. 103–108, 2019,

doi: https://doi.org/10.1109/ICSC45622.2019.8938236.

https://doi.org/10.1201/9781003118718-4
https://doi.org/10.3390/math9212813
https://doi.org/10.31937/ti.v15i1.3122
https://doi.org/10.31185/wjcms.268
https://doi.org/10.13189/ujer.2022.101003
https://doi.org/10.37745/ejcsit.2013/vol13n33115
https://doi.org/10.1109/ACCESS.2022.3149053
https://doi.org/10.56553/popets-2025-0052
https://doi.org/10.1016/j.cose.2014.02.007
https://doi.org/10.3390/sym14040718
https://doi.org/10.1016/j.cose.2022.102833
https://doi.org/10.1109/ICCSC62048.2024.10830310
https://doi.org/10.1016/j.procs.2016.03.028
https://doi.org/10.1109/NNICE61279.2024.10498936
https://doi.org/10.1109/ACCESS.2020.3006143
https://doi.org/10.1109/TKDE.2019.2962680
https://doi.org/10.1016/j.jisa.2020.102483
https://doi.org/10.1016/j.eswa.2023.121549
https://doi.org/10.1016/j.heliyon.2023.e15163
https://doi.org/10.1109/ASYU50717.2020.9259834
https://doi.org/10.1063/5.0199036
https://doi.org/10.1109/ICICS55353.2022.9811130
https://doi.org/10.1109/ICSC45622.2019.8938236

1692 Lubis, et al. A COMPARATIVE STUDY OF PIPELINE-VALIDATED MACHINE LEARNING CLASSIFIERS FO…

[26] J. Brzozowska, J. Pizoń, G. Baytikenova, A. Gola, A. Zakimova, and K. Piotrowska, “DATA ENGINEERING IN CRISP-

DM PROCESS PRODUCTION DATA – CASE STUDY,” Appl. Comput. Sci., vol. 19, no. 3, pp. 83–95, 2023, doi:

https://doi.org/10.35784/acs-2023-26.

[27] K. M. Arsyad, A. Yunita, H. M. Krismartopo, A. S. Dimar, K. Dewi, and I. Madrinovella, “REVEALING INSIGHTS

THROUGH EXPLORATORY DATA ANALYSIS ON EARTHQUAKE DATASET,” J. Sci. Informatics Soc., vol. 1, no.

1, pp. 1–6, 2023, doi: https://doi.org/10.57102/jsis.v1i1.18.

[28] D. Theng and K. K. Bhoyar, “FEATURE SELECTION TECHNIQUES FOR MACHINE LEARNING: A SURVEY OF

MORE THAN TWO DECADES OF RESEARCH,” Knowl. Inf. Syst., vol. 66, no. 3, pp. 1575–1637, 2024, doi:

https://doi.org/10.1007/s10115-023-02010-5.

[29] British Medical Journal, “ERRATUM: SPEARMAN’S RANK CORRELATION COEFFICIENT,” BMJ, vol. 349, no.

December, p. 7528, 2014, doi: https://doi.org/10.1136/bmj.g7528.

[30] J. Gonzalez-Lopez, S. Ventura, and A. Cano, “DISTRIBUTED SELECTION OF CONTINUOUS FEATURES IN

MULTILABEL CLASSIFICATION USING MUTUAL INFORMATION,” IEEE Trans. Neural Networks Learn. Syst., vol.

31, no. 7, pp. 2280–2293, 2020, doi: https://doi.org/10.1109/TNNLS.2019.2944298.

[31] E. Dumitrescu, S. Hué, C. Hurlin, and S. Tokpavi, “MACHINE LEARNING FOR CREDIT SCORING: IMPROVING

LOGISTIC REGRESSION WITH NON-LINEAR DECISION-TREE EFFECTS,” Eur. J. Oper. Res., vol. 297, no. 3, pp.

1178–1192, 2022, doi: https://doi.org/10.1016/j.ejor.2021.06.053.

[32] N. R. Panda, J. K. Pati, J. N. Mohanty, and R. Bhuyan, “A REVIEW ON LOGISTIC REGRESSION IN MEDICAL

RESEARCH,” Natl. J. Community Med., vol. 13, no. 4, pp. 265–270, 2022, doi: https://doi.org/10.55489/njcm.134202222.

[33] Jajang, N. Nurhayati, and S. J. Mufida, “ORDINAL LOGISTIC REGRESSION MODEL AND CLASSIFICATION TREE

ON ORDINAL RESPONSE DATA,” Barekeng, vol. 16, no. 1, pp. 75–82, 2022, doi:

https://doi.org/10.30598/barekengvol16iss1pp075-082.

[34] A. Devaux, C. Proust-Lima, and R. Genuer, “RANDOM FORESTS FOR TIME-FIXED AND TIME-DEPENDENT

PREDICTORS: THE DYNFOREST R PACKAGE,” 2023, [Online]. Available: http://arxiv.org/abs/2302.02670

[35] M. Denuit, D. Hainaut, and J. Trufin, “BAGGING TREES AND RANDOM FORESTS,” in Effective Statistical Learning

Methods for Actuaries II: Tree-Based Methods and Extensions, Cham: Springer International Publishing, 2020, pp. 107–

130. doi: https://doi.org/10.1007/978-3-030-57556-4_4.

[36] R. M. Syafei and D. A. Efrilianda, “MACHINE LEARNING MODEL USING EXTREME GRADIENT BOOSTING

(XGBOOST) FEATURE IMPORTANCE AND LIGHT GRADIENT BOOSTING MACHINE (LIGHTGBM) TO

IMPROVE ACCURATE PREDICTION OF BANKRUPTCY,” Recursive J. Informatics, vol. 1, no. 2, pp. 64–72, 2023, doi:

https://doi.org/10.15294/rji.v1i2.71229.

[37] R. Auti, A. Bhatt, and S. Tidake, “COMPARATIVE ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR

GENOMIC DATA,” 2023 1st DMIHER Int. Conf. Artif. Intell. Educ. Ind. 4.0, IDICAIEI 2023, vol. 13, no. 1, pp. 217–223,

2023, doi: https://doi.org/10.1109/IDICAIEI58380.2023.10406455.

[38] B. Li et al., “PREDICTING OUTCOMES FOLLOWING ENDOVASCULAR ABDOMINAL AORTIC ANEURYSM

REPAIR USING MACHINE LEARNING,” Ann. Surg., vol. 279, no. 3, 2024, [Online]. Available:

https://journals.lww.com/annalsofsurgery/fulltext/2024/03000/predicting_outcomes_following_endovascular.23.aspx

[39] Y. Nohara, K. Matsumoto, H. Soejima, and N. Nakashima, “EXPLANATION OF MACHINE LEARNING MODELS

USING SHAPLEY ADDITIVE EXPLANATION AND APPLICATION FOR REAL DATA IN HOSPITAL,” Comput.

Methods Programs Biomed., vol. 214, no. February, pp. 1–7, 2022, doi: https://doi.org/10.1016/j.cmpb.2021.106584.

[40] Y. Xue, X. Cai, and F. Neri, “A MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM WITH INTERVAL BASED

INITIALIZATION AND SELF-ADAPTIVE CROSSOVER OPERATOR FOR LARGE-SCALE FEATURE SELECTION

IN CLASSIFICATION,” Appl. Soft Comput., vol. 127, p. 109420, 2022, doi: https://doi.org/10.1016/j.asoc.2022.109420.

https://doi.org/10.35784/acs-2023-26
https://doi.org/10.57102/jsis.v1i1.18
https://doi.org/10.1007/s10115-023-02010-5
https://doi.org/10.1136/bmj.g7528
https://doi.org/10.1109/TNNLS.2019.2944298
https://doi.org/10.1016/j.ejor.2021.06.053
https://doi.org/10.55489/njcm.134202222
https://doi.org/10.30598/barekengvol16iss1pp075-082
https://doi.org/10.1007/978-3-030-57556-4_4
https://doi.org/10.15294/rji.v1i2.71229
https://doi.org/10.1109/IDICAIEI58380.2023.10406455
https://doi.org/10.1016/j.cmpb.2021.106584
https://doi.org/10.1016/j.asoc.2022.109420

	A COMPARATIVE STUDY OF PIPELINE-VALIDATED MACHINE LEARNING CLASSIFIERS FOR PERMISSION-BASED ANDROID MALWARE DETECTION
	1. INTRODUCTION
	2. RESEARCH METHODS
	2.1 Workflow
	2.2 Dataset
	2.3 Exploratory Data Analysis
	2.3.1 Distribution of Active Permissions per Application
	2.3.2 Comparison of Permission Counts
	2.3.3 Feature Correlation Heatmap

	2.4 Feature Selection
	2.4.1 Manual Spearman Correlation
	2.4.2 Automated Select KBest with Mutual Information

	2.5 Data Preprocessing
	2.6 Modelling and Evaluation
	2.6.1 Logistic Regression
	2.6.2 Random Forests
	2.6.3 Gradient Boosting Machine
	2.6.4 Evaluation Metrics
	2.6.5 Calibration Analysis

	2.7 Study
	2.7.1 Model Explainability (SHAP Analysis)
	2.7.2 Ablation Study

	3. RESULTS AND DISCUSSION
	3.1 Model Performance Comparison
	3.1.1 Hyperparameter Optimisation Results
	3.1.2 Metric Evaluation Results
	3.1.3 Confusion Matrix Analysis

	3.2 Feature Selection Strategy Comparison
	3.3 Calibration Analysis
	3.4 Ablation Study
	3.5 SHAP Analysis
	3.6 Sample Prediction Analysis

	4. CONCLUSION
	Author Contributions
	Funding Statement
	Acknowledgment
	Declarations
	Declaration of Generative AI and AI-assisted technologies
	REFERENCES

