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Article Info ABSTRACT 

Article History: 
This study aims to develop a predictive model for fish catch volume in Ureng Village, 

Central Maluku, using a mathematical modeling approach based on artificial intelligence 

with the Scikit-Learn and TensorFlow libraries. The research dataset consists of 24 
monthly data records collected from July 2024 to June 2025. The data were obtained 

through a combination of primary and secondary collection methods. Primary data were 

gathered through interviews, field observations, and fishermen’s catch records, while 

secondary data included oceanographic parameters such as sea surface temperature, 
weather conditions, and current velocity. Two main models were developed: a linear 

regression model using Scikit-Learn as the baseline and a neural network model using 

TensorFlow as the comparator, both trained and evaluated on the same dataset to ensure 

consistency. The testing results show that the linear regression model produced a Mean 
Squared Error (MSE) of 0.8821 and a coefficient of determination (R²) of 0.682, while the 

neural network model achieved an MSE of 0.5423 and an R² of 0.815. These findings 

indicate that the neural network model is more capable of capturing nonlinear patterns 

among temperature, weather, and current variables, resulting in higher prediction 
accuracy than the linear model. Nevertheless, this study is limited by the relatively small 

sample size and the need for a more detailed description of the data period and 

measurement units to allow a more objective evaluation of the model’s performance. 

Overall, this AI-based approach has the potential to support more efficient, adaptive, and 
sustainable decision-making in fishery planning for coastal communities. 
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1. INTRODUCTION 

Indonesia, as an archipelagic nation with a coastline of more than 108,000 km, has significant potential 

for capture fisheries, serving as a primary source of livelihood for coastal communities, including those in 

Ureng Village, Central Maluku. This coastal area is rich in marine biodiversity, encompassing numerous 

economically important fish species, such as tuna, skipjack, and mackerel, which are leading commodities in 

both the domestic and international markets. The capture fisheries sector not only contributes to the provision 

of food and animal protein but also serves as a cornerstone of the local economy through job creation, catch 

distribution, and strengthening regional food security. However, this vast potential cannot be fully utilized 

optimally due to challenges in predicting catch yields, which directly impact the operational efficiency and 

fishing strategies of local fishermen. 

Despite the continuous advancement of fishing technology and navigation systems, catch uncertainty 

remains a major and challenging issue. Environmental factors such as sea surface temperature (SST), ocean 

current patterns, chlorophyll-a concentration, water clarity, and weather conditions play a significant role in 

determining the spatial and temporal distribution of fish in the ocean. In addition, operational variables such 

as departure time, fishing duration, and site selection are also important determinants of both quantity and 

quality of catch [1]. Such uncertainty not only leads to fluctuations in fishermen's income but also increases 

the risk of high operational costs and potentially threatens the sustainability of fish resources if fishing 

strategies are not based on accurate and up-to-date information. 

Advances in Artificial Intelligence (AI) and machine learning (ML) technologies provide new 

opportunities to reduce this uncertainty. By utilizing historical catch records and oceanographic parameters, 

predictive models can be developed to identify complex patterns among variables [2]. For example, deep 

learning-based studies integrating multiple environmental variables have successfully enhanced the accuracy 

of identifying fishing grounds for economically important species [3]. Such models not only improve the 

efficiency of fishing operations but also contribute to sustainable fisheries management. 

A hybrid approach that combines oceanographic variables, fishermen's operational records, and 

astronomical factors such as lunar phases has proven effective in mapping fishing grounds with great 

precision [4]. The integration of these data sources offers strategic benefits, particularly for small-scale 

fisheries operating with limited resources. Furthermore, modeling that considers environmental effects and 

spatio-temporal factors has shown that small changes in SST or chlorophyll concentration can significantly 

impact catch quantities [5]. 

On the other hand, interpretable machine learning-based models provide additional insights for 

decision-making as they not only generate predictions but also reveal the contribution of each variable to the 

model results [6]. This feature is crucial for fishermen to understand the key factors influencing fishing 

success. In fact, ML-based multi-month forecasts for tuna habitat have been successfully implemented in an 

offshore fisheries context [7], opening opportunities for similar applications in coastal areas such as Central 

Maluku. 

Nevertheless, implementing this technology in remote areas like Ureng Village faces several 

challenges, including limited access to high-quality data, hardware constraints, and low levels of digital 

literacy among fishermen. Regression algorithms are widely used in fisheries prediction studies because they 

can model the relationship between environmental variables and fish catch quantitatively. However, linear 

regression has limitations in capturing complex and non-linear interactions among oceanographic parameters. 

Therefore, artificial neural networks (ANNs) are introduced as an alternative due to their strong capability in 

pattern recognition and non-linear modeling [8]. Despite their potential, ANN models often require large 

datasets and substantial computational resources, which can be challenging in data-limited regions such as 

Ureng Village. To address these challenges, this study focuses on developing AI-based mathematical models 

using Scikit-Learn and TensorFlow while accounting for local constraints. The models integrate 

oceanographic data (SST, currents, chlorophyll-a), operational fishing data, and catch records to generate 

accurate, accessible predictions for fishermen via a simple decision-support system. This approach is 

expected to enhance fishing efficiency, reduce operational risk, and support fisheries sustainability in Ureng 

Village. 

The application of artificial intelligence (AI) and machine learning technologies in the fisheries sector 

has increasingly gained attention, as they have proven effective in improving the accuracy of catch 

predictions. Deep learning–based studies have demonstrated that integrating oceanographic variables with 
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spatio-temporal data can accurately identify squid fishing grounds with high precision [9]. Analyses 

combining AIS data and environmental variables have also developed a comprehensive framework for 

mapping deep-sea fishing activities, which can be applied to small-scale fisheries [10]. A global review of 

fisheries management emphasizes that data-driven approaches and AI models contribute significantly to 

fisheries sustainability and marine conservation [11]. Deep learning approaches for small-scale fisheries have 

even been used to predict catch volumes, evaluate key variables, and reveal interactions among factors 

influencing fishing outcomes. In addition, the development of decision support systems based on in-trawl 

cameras and automated image processing offers new potential for monitoring catches while supporting 

adaptive fisheries policies [12][13]. Furthermore, previous studies in related fields have demonstrated the 

effectiveness of neural networks and multivariate analysis for classifying and predicting complex 

environmental datasets. For instance, analytical chemistry, multivariate data analysis, and neural networks 

were employed to classify marine oil spill samples using GC-MS and GC-FID data, where Scikit-learn and 

Keras–TensorFlow were applied to implement Linear Discriminant Analysis (LDA), Principal Component 

Analysis (PCA), and Neural Network-based models, achieving consistent and reliable predictions compared 

to traditional univariate statistics. These findings suggest that regression and neural network algorithms can 

effectively model nonlinear relationships and handle multivariate environmental data, which can be adapted 

to predict fish catch yields in coastal communities [8]. 

2. RESEARCH METHODS 

This research uses a quantitative, computational-experimental approach, focusing on the development 

and testing of an AI-based mathematical model to predict fish catches in the coastal area of Ureng Village. 

The research was conducted in several structured stages, including predictive model design, data collection, 

model training, validation, and model performance evaluation. 

2.1 Research Design  

This study employs an exploratory-quantitative design aimed at investigating the potential of 

integrating linear regression analysis and artificial neural networks (ANN) as a predictive modeling approach 

for fish catches. Linear regression is used as the baseline model to map linear relationships among predictor 

variables such as sea surface temperature (SST), current velocity, and fishing duration. Meanwhile, an ANN 

model with a TensorFlow Sequential architecture is employed to capture nonlinear relationships and multi-

factor interactions that linear models cannot adequately address [14][15]. 

This approach adopts the principles of supervised learning, using historical fish catch records and 

oceanographic data to train the model to predict outcomes based on marine environmental variables and 

operational fishing parameters. Previous studies have shown that ANNs can improve predictive accuracy 

compared to traditional linear models, particularly for seasonal and fluctuating data [16]. This is relevant to 

this study, considering that oceanographic factors such as seasonal changes in SST, shifts in ocean current 

patterns, and fluctuations in chlorophyll-a concentrations significantly influence the distribution of fish stocks 

[4].  

The ANN model used in this study is designed to adapt to seasonal characteristics and local geographic 

conditions, particularly in coastal areas and small islands such as Ureng Village, Central Maluku. A linear 

regression model is still used as a benchmark to assess the accuracy improvement of the nonlinear approach. 

This approach is further supported by recent research demonstrating the superior performance of ANN-based 

models in medium- to long-term fisheries prediction compared to purely statistical methods [17]. 

The results of this study are expected to produce a predictive model that is not only statistically accurate 

but also contextually relevant and applicable to local fishermen. Furthermore, these models can serve as the 

foundation for developing a user-friendly Decision Support System (DSS) that can be easily accessed by 

fishing communities to support decision-making in fishing activities. 

2.2 Data Sources 

The primary data for this study were collected through field observations and direct interviews with 

active fishermen in Ureng Village, Leihitu District, Central Maluku. The data collected included daily catch 

(in tons), fish species, fishing locations, fishing time, fishing duration, sea temperature, weather, and current 

strength. Additional data were obtained from the Meteorology, Climatology, and Geophysics Agency 
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(BMKG) stations and from NOAA oceanographic satellite data to ensure the accuracy and completeness of 

environmental data. 

To ensure representativeness and validity, data were collected over six months (January–June 2025) at 

a weekly frequency, involving 25 fishing vessels as a fixed sample. Primary data collection was conducted 

using digital data sheets and GPS location tracking. 

2.3 Data Collection Techniques 

The data collection was conducted using a participatory approach triangulation, combining structured 

interviews, direct observations, and daily digital data recording. Primary data were obtained from fishermen, 

including the type of fishing gear, fish species, catch volume, fishing time, and duration at sea, while 

secondary data, such as sea temperature, weather conditions, and current velocity, were obtained from BMKG 

stations. The research team also conducted brief training for the fishermen on how to enter digital data using 

a simple spreadsheet-based application adapted to the local context. Data were collected monthly from July 

2024 to June 2025. 

The use of technology in data collection enabled efficiency, timeliness, and facilitated real-time data 

processing [18]. In addition, sea temperature sensors and current strength meters were used periodically 

during fishing activities. 

2.4 Model Development and Data Analysis 

Data processing was carried out in several stages: data preprocessing, data splitting (training and test), 

model training, and performance evaluation. The data preprocessing stage was carried out to ensure the 

dataset's quality and consistency before model training. In this stage, data cleaning was performed to remove 

missing, duplicate, or inconsistent data. Numerical variables were then normalized using min-max scaling to 

scale values between 0 and 1, ensuring that all features have balanced weights during model training. If 

categorical features were present, encoding (e.g., one-hot encoding) was applied so that the data could be 

processed by machine learning algorithms. 

After preprocessing, the dataset was divided into two subsets: 80% for the training set and 20% for the 

testing set. The training set was used to train the model to learn the relationship patterns between predictor 

variables and the target variable, while the testing set was used to evaluate the model’s ability to predict new, 

unseen data. This division is important to prevent overfitting and to ensure that model performance evaluation 

is conducted objectively. 

During the training stage, two models were developed using the training data. The first model was 

Linear Regression, used as a baseline to map linear relationships among predictor variables such as sea 

surface temperature, current velocity, and fishing duration. The second model was an Artificial Neural 

Network (ANN) with a TensorFlow Sequential architecture, designed to capture nonlinear relationships and 

complex interactions among variables that cannot be explained by the linear model. 

After training, model performance was evaluated using Mean Squared Error (MSE) and R-squared 

(R²) metrics. MSE measures the average squared difference between predicted and actual values, while R² 

indicates the proportion of data variability explained by the model. This evaluation provides insights into the 

prediction accuracy and effectiveness of the model in capturing patterns in the data. 

The linear regression model was developed using the scikit-learn library with the Ordinary Least 

Squares (OLS) algorithm. Meanwhile, the artificial neural network model was built using the TensorFlow 

Sequential API, with a multilayer perceptron architecture comprising an input layer, two hidden layers with 

ReLU activation, and an output layer with a linear activation. Optimization was performed using the Adam 

algorithm and the mean squared error (MSE) loss function [19]. 

Model performance evaluation was conducted by calculating Mean Squared Error (MSE) and R-

squared (𝑅²). These metrics are essential for assessing how well the model fits the data. MSE measures the 

average squared difference between the predicted and actual values, indicating the overall magnitude of 

prediction error; a smaller MSE value indicates higher prediction accuracy. Meanwhile, R² (Coefficient of 

Determination) measures the proportion of variance in the dependent variable that can be explained by the 

independent variables in the model, where a higher R² value indicates a better fit of the model to the data. 
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In addition, statistical analyses were performed to evaluate the significance and validity of the model 

parameters. These analyses included residual normality testing (Kolmogorov–Smirnov or Shapiro–Wilk), 

multicollinearity testing using the Variance Inflation Factor (VIF), and hypothesis testing of the regression 

coefficients (𝑡-test) as well as the overall model (F-test) at a 95% confidence level. All computational and 

statistical analyses were performed using the Python programming language with supporting libraries such 

as Pandas, NumPy, Matplotlib, Scikit-learn, Statsmodels, and TensorFlow. 

Formulas: 

1. Mean Squared Error (MSE) 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑦𝑖 − ŷ𝑖)2,

𝑛

𝑖=1

 

where:  

   𝑦
𝑖
  : actual value; 

   ŷ𝑖  : predicted value; 

   𝑛   : number of observations. 

2. Coefficient of Determination (𝑅²) 

𝑅² =  1 −  
∑(𝑦𝑖 − 𝑦̂𝑖)2

∑(𝑦𝑖 − 𝑦̅)2  

 where: 

  𝑦
𝑖
 : actual value; 

  𝑦̂
𝑖
 : predicted value;  

     𝑦̅  : mean of actual values.   

All computations, including the calculation of MSE, R², and statistical significance tests, were automatically 

performed using Python-based libraries to ensure reproducibility and accuracy of the results. 

To visualize the methodological sequence of this research, a structured research flowchart is presented. 

This flowchart serves to illustrate the logical order of activities carried out throughout the study, from the 

initial conceptual phase to the final analysis and reporting stage. It provides a concise overview of how each 

component is interconnected and contributes to achieving the research objectives. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Research Flow Diagram 

As shown in Fig. 1, the research process begins with problem identification and literature review, 

which form the foundation for designing the research framework. The subsequent steps involve data 

collection, preprocessing, and model development, followed by training, validation, and evaluation stages to 
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ensure model reliability. Finally, the interpretation of results and ethical reporting complete the process, 

ensuring that the study maintains both scientific rigor and ethical standards. 

2.5 Ethical Considerations 

This research has obtained permission from village officials and includes informed consent from 

participating fishermen. All personal data collected was anonymized and will be used solely for research 

purposes. The researchers also guarantee that there will be no negative interference in the community's 

economic activities during the research process. 

3. RESULTS AND DISCUSSION 

3.1. Description of Research Data 

This study collected monthly fish catch data from fishermen in Ureng Village from July 2024 to June 

2025. The dataset comprises both operational variables and environmental variables that are considered to 

influence catch volume. The operational variables include fishing gear (nets or handlines), fish species (small 

pelagic fish or tuna), fishing time (departure time), and fishing duration (number of days spent fishing each 

month). The environmental variables include sea surface temperature (°C), weather conditions, and current 

velocity (m/s), which were obtained from BMKG oceanographic data stations. 

Table 1 summarizes the monthly fish catch and the associated environmental conditions. From the 

table, it is evident that nets consistently yielded higher catch volumes of small pelagic fish (5.0–8.1 tons) 

compared to handlines targeting tuna (2.2–4.2 tons). Fishing schedules were relatively fixed: nets were 

operated in the morning for 30 days per month, while handlines were deployed at dawn for 24 days per month. 

This indicates that catch variability was primarily driven by environmental conditions rather than differences 

in fishing effort. 

Seasonal trends are also observable in the data. Sea surface temperature increased from 25.8 °C in July 

2024 to 30.19 °C in January 2025 and then slightly declined, while current velocity reached a peak of 7.04 

m/s in June 2025 during the heavy rainy season. These environmental changes corresponded to a reduction 

in catch volumes for both species, highlighting the sensitivity of fish catch to oceanographic variability. 

Overall, the table demonstrates that catch outcomes are strongly influenced by seasonal patterns of 

temperature, rainfall, and current velocity. The descriptive evidence provided by these data forms the 

empirical foundation for predictive modeling, where operational and environmental variables such as fishing 

gear, departure time, sea temperature, and current velocity are expected to play a dominant role in explaining 

fish catch variability. 

Table 1. Monthly Summary of Fish Catch, Fishing Effort, and Environmental Conditions 

(July 2024 – June 2025) 

Time 

(Month/ 

Year) 

Fishing 

Gear 

Fish 

Species 

Catch 

Volume 

(tons) 

Departure 

Time (Hours) 

Fishing 

Duration 

(Days) 

Sea 

Temp 

(°C) 

Weather 

Current 

Velocity 

(m/s) 

July 2024 Net Small 

pelagic 

fish 

8.1 Morning 30 25.8 Light Rain 1.87 

July 2024 Handline Tuna 4.2 Dawn 24 25.8 Light Rain 1.87 

August 2024 Net Small 

pelagic 
fish 

7.6 Morning 30 25.55 Cloudy 2.96 

August 2024 Handline Tuna 3.9 Dawn 24 25.55 Cloudy 2.96 
September  

2024 

Net Small 

pelagic 

fish 

6.9 Morning 30 26.5 Partly 

Cloudy 

2.51 

September  

2024 

Handline Tuna 3.6 Dawn 24 26.5 Partly 

Cloudy 

2.51 

October 2024 Net Small 
pelagic 

fish 

6.7 Morning 30 28.0 Partly 
Cloudy 

2.84 

October 2024 Handline Tuna 3.5 Dawn 24 28.0 Partly 

Cloudy 

2.84 
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Time 

(Month/ 

Year) 

Fishing 

Gear 

Fish 

Species 

Catch 

Volume 

(tons) 

Departure 

Time (Hours) 

Fishing 

Duration 

(Days) 

Sea 

Temp 

(°C) 

Weather 

Current 

Velocity 

(m/s) 

November 

2024 

Net Small 

pelagic 

fish 

6.5 Morning 30 28.45 Partly 

Cloudy 

2.38 

November 

2024 

Handline Tuna 3.5 Dawn 24 28.45 Partly 

Cloudy 

2.38 

December 

2024 

Net Small 

pelagic 

fish 

6.11 Morning 30 29.25 Cloudy 3.41 

December 

2024 

Handline Tuna 3.32 Dawn 24 29.25 Cloudy 3.41 

January 2025 Net Small 
pelagic 

fish 

5.94 Morning 30 30.19 Light Rain 5.03 

January 2025 Handline Tuna 3.22 Dawn 24 30.19 Light Rain 5.03 

February 

2025 

Net Small 

pelagic 
fish 

6.11 Morning 30 29.87 Light Rain 4.05 

February 

2025 

Handline Tuna 3 Dawn 24 29.87 Light Rain 4.05 

March 2025 Net Small 

pelagic 
fish 

5.87 Morning 30 28.15 Light Rain 5.22 

March 2025 Handline Tuna 3.43 Dawn 24 28.15 Light Rain 5.22  
April 2025 Net Small 

pelagic 

fish 

6.23 Morning 30 26.95 Light Rain 4.12 

April 2025 Handline Tuna 3.5 Dawn 24 26.95 Light Rain 4.12 

May 2025 Net Small 

pelagic 
fish 

5.2 Morning 30 27.3 Moderate 

Rain 

4.33 

May 2025 Handline Tuna 2.8 Dawn 24 27.3 Moderate 

Rain 

4.33 

June 2025 Net Small 

pelagic 
fish 

5 Morning 30 26.3 Heavy Rain 7.04 

June 2025 Handline Tuna 2.203 Dawn 24 26.3 Heavy Rain 7.04 

Table 1 shows that nets consistently yielded higher catch volumes of small pelagic fish (5.0–8.1 tons) 

compared to handlines targeting tuna (2.2–4.2 tons). Fishing schedules were relatively fixed, with nets 

operated in the morning for 30 days and handlines at dawn for 24 days each month, which indicates that catch 

variability is primarily driven by environmental conditions rather than differences in fishing effort. Seasonal 

changes were evident: sea surface temperature rose from 25.8 °C in July 2024 to 30.19 °C in January 2025 

before declining slightly, while current velocity peaked at 7.04 m/s in June 2025 during the heavy rainy 

season. These dynamics coincided with reduced catch volumes for both species, highlighting the sensitivity 

of fishing outcomes to oceanographic variability. 

Overall, the table demonstrates that catch yields are strongly influenced by seasonal patterns of 

temperature, rainfall, and current velocity. This descriptive evidence provides the empirical foundation for 

developing predictive models, where variables such as temperature, salinity, and current velocity are expected 

to play a dominant role in explaining fish catch variability. 

3.2. Data Pre-Processing Results  

The observational data used consisted of 24 samples with input variables of sea temperature, salinity, 

and water depth, and the target variable of fish catch volume. The data was read from the data_tangkapan.xlsx 

file.  

The pre-processing steps were as follows: 

1. Feature Selection: The temperature, salinity, and depth columns were used as predictor features, and 

catch_result as the target variable. 
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2. Dataset Division: The data was divided into training data (70%, 17 samples) and test data (30%, 7 

samples) using train_test_split with random_state = 42. 

3. Data Normalization: For Neural Network-based models, features were normalized using 

MinMaxScaler to ensure all values were within the range 0–1.  

3.3. Modeling Using Scikit-Learn (Linear Regression) 

A linear regression model is used as a simple baseline to see the linear relationship between oceanographic 

variables and fish catches. 

Python: 

import pandas as pd 

from sklearn.model_selection import train_test_split 

from sklearn.linear_model import LinearRegression 

from sklearn.metrics import mean_squared_error, r2_score 

 

# Read data 

data = pd.read_excel("fish_catch.xlsx") 

 

# Feature selection and target definition 

X = data[['temperature', 'salinity', 'depth']] 

y = data['catch_volume'] 

 

# Split data 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, 

random_state=42) 

 

# Linear regression model 

model_lr = LinearRegression() 

model_lr.fit(X_train, y_train) 

 

# Prediction results 

y_pred = model_lr.predict(X_test) 

 

# Evaluation 

print("MSE:", mean_squared_error(y_test, y_pred)) 

print("R² Score:", r2_score(y_test, y_pred)) 

3.4 Evaluation results 

The MSE value of 0.8821 indicates that the average squared difference between the predicted and 

actual data is relatively small, suggesting that the linear regression model has a fairly good predictive 

capability. MSE measures the magnitude of prediction errors in squared units; therefore, the smaller the value, 

the more accurate the model in predicting the fish catch volume based on temperature, current strength, and 

weather variables. The fact that the MSE is nonzero implies that some deviations between the predicted and 

actual results remain, indicating that the model’s accuracy can be further improved through parameter 

optimization or additional training data. 

Meanwhile, the 𝑅² value of 0.682 indicates that approximately 68.2% of the variation in fish catch 

volume can be explained by the variations in temperature, current strength, and weather, while the remaining 

31.8% is influenced by other factors not included in the model, such as differences in fish species, more 

complex oceanic conditions, or nonlinear environmental factors. The relatively high 𝑅² value indicates that 

the model captures a significant portion of the linear relationship between the oceanographic variables and 

fish catch volume, although there is still room to improve predictive performance. 

Fig. 2 shows the predicted fish catch based on Scikit-learn (linear regression). 
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Figure 2. Fish Catch Prediction based on Scikit Learn (Linear Regression) 

The scatter plot above illustrates the comparison between the actual fish catch volume (x-axis) and the 

values predicted by the linear regression model (y-axis). The red dashed line represents the ideal scenario 

where the predicted values equal the actual values. The closer the blue points are to this line, the higher the 

model’s accuracy in predicting fish catch volumes based on the input variables. 

In this study, the dataset was divided into 80% for training and 20% for testing. The training data were 

used to construct the model and to learn the relationships between the predictor variables—namely, 

temperature, current strength, and weather—and the fish catch volume. Meanwhile, the testing data were 

employed to evaluate the model’s performance on unseen data. The test results show that most data points 

are close to the diagonal line, indicating that the model has strong predictive capability. Nevertheless, there 

are some minor deviations from the red line, reflecting differences between the predicted and actual values. 

These differences contribute to a Mean Squared Error (MSE) of 0.8821, indicating that the average squared 

difference between the actual and predicted values is relatively small. Overall, the model explains 

approximately 68.2% (R² = 0.682) of the variance in fish catch volume based on temperature, current, and 

weather, although some data complexities are not fully captured by this linear model. 

3.5 Modeling Using TensorFlow (Neural Network) 

The Neural Network model is designed to study nonlinear patterns between oceanographic variables and fish 

catches.  

python 

CopyEdit 

import pandas as pd 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import MinMaxScaler 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense 

from tensorflow.keras.optimizers import Adam 

from sklearn.metrics import mean_squared_error, r2_score 

 

# Loading data 

data = pd.read_excel("fish_catch_data.xlsx") 

 

# Selection of features and target 

X = data[['temperature', 'salinity', 'depth']] 

y = data['catch_volume'] 

 

# Normalization of features 

scaler = MinMaxScaler() 

X_scaled = scaler.fit_transform(X) 

 

# Split data 
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X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, 

test_size=0.3, random_state=42) 

 

# Develop a Neural Network Model  

model_nn = Sequential([ 

    Dense(16, input_dim=X_train.shape[1], activation='relu'), 

    Dense(8, activation='relu'), 

    Dense(1)]) 

 

# Compile & train 

model_nn.compile(optimizer=Adam(learning_rate=0.01), loss='mse') 

model_nn.fit(X_train, y_train, epochs=100, verbose=0) 

 

# Prediction and Model Evaluation 

y_pred_nn = model_nn.predict(X_test).flatten() 

print("MSE:", mean_squared_error(y_test, y_pred_nn)) 

print("R² Score:", r2_score(y_test, y_pred_nn 

 

3.6  Evaluation Results 

The MSE value of 0.5423 indicates that the mean squared difference between the predicted values and 

the actual data is relatively small, suggesting a lower prediction error rate than the linear regression model. 

Meanwhile, the R² Score of 0.815 indicates that the model explains approximately 81.5% of the variation in 

fish catch volume, suggesting that the neural network model has more accurate and effective predictive 

capabilities for capturing the complex relationships among oceanographic variables. Fig. 3 shows the 

predicted fish catch based on TensorFlow.  

 

Figure 3. Fish Catch Prediction based on TensorFlow 

Fig. 3 depicts a comparison between actual and predicted fish catch volume. The red dashed line 

represents the ideal scenario where predicted values equal actual values. The model shows good predictive 

performance with a Mean Squared Error (MSE) of 0.5423 and an R² score of 0.815, indicating that 

approximately 81.5% of the variance in fish catch volume is explained by the model. 

3.7. Comparison of Model Results 

In this study, the dataset was divided into 80% for training and 20% for testing to ensure that the model 

could learn effectively while maintaining sufficient data for evaluation. To see the performance differences 

between the linear regression model and neural network model, the Mean Squared Error (MSE) and 𝑅²  scores 

on the test data were compared. A lower MSE value indicates a smaller prediction error, while a higher 𝑅² 

value indicates a better model’s ability to explain data variation. The comparison results of the two models 

are presented in Table 2. 
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Table 2. Performance Differences between Sci-Learn and TensorFlow Models 

Model MSE R² Score 

Linear Regression 0.8821 0.682 

Neural Network 0.5423 0.815 

 Table 2 shows that the Neural Network model achieves lower MSE and higher 𝑅² score than the Linear 

Regression model. This result indicates that the Neural Network is better at capturing nonlinear relationships 

within the dataset, leading to more accurate predictions of fish catch volumes. 

3.8 Discussion  

The evaluation of the linear regression model using Scikit-learn showed an MSE of 0.8821 and an 𝑅² 

of 0.682. The 𝑅² value indicates that the model explains approximately 68.2% of the variation in fish catch 

volume based on temperature, salinity, and water depth. Although the MSE value is relatively small, the 

discrepancy between the predicted and actual values indicates that this model still has limitations in capturing 

complex patterns among oceanographic variables. This finding aligns with those who argue that linear 

regression tends to be less optimal for multivariate and nonlinear environmental data, often resulting in lower 

performance than ensemble learning methods that can better model variable interactions. 

In contrast, the model trained with a TensorFlow-based Neural Network produced an MSE of 0.5423 

and an 𝑅² of 0.815. These values indicate a significant improvement over linear regression, both in predictive 

accuracy and in the model's ability to explain data variation (81.5%). This superior performance can be 

explained by neural networks' ability to learn nonlinear and complex relationships among variables, which 

linear models struggle to capture. According to Denny Arbahri et al. (2024), the use of nonlinear algorithms 

such as Decision Trees and Random Forests in oceanographic data analysis can yield low MSE and high 𝑅², 

even near-perfect values, due to their ability to capture complex interactions among variables [19]. 

The improvement in neural network model accuracy is also consistent with McMillan's [20], which 

shows that artificial neural networks have advantages for modeling fisheries systems because they can 

dynamically adapt their parameters to capture complex changes in environmental conditions. In other words, 

neural networks not only provide more accurate predictions but are also more reliable when applied to 

dynamic and variable oceanographic data [21]. 

Based on the performance comparison between the two models, it is clear that neural networks have 

lower MSE and a higher R² than linear regression. This indicates that neural networks are more appropriate 

for predicting fish catches, which are influenced by various environmental factors that interact nonlinearly. 

Nevertheless, linear regression remains valuable as a simple, fast, and easily interpretable baseline model, 

making it useful in the initial stages of analysis before applying more complex models. 

4. CONCLUSION 

The application of mathematical modeling with Scikit-Learn and TensorFlow demonstrates that 

artificial intelligence (AI) has significant potential to improve the accuracy of fish catch predictions based on 

oceanographic and temporal variables. This study confirms that linear regression (Scikit-Learn) can provide 

reliable baseline results, while deep learning models (TensorFlow) can capture more complex and nonlinear 

patterns in marine data. These findings demonstrate the importance of integrating machine learning in 

fisheries management, particularly for small-scale fishers in coastal areas who rely heavily on accurate 

predictive information. This model not only strengthens decision-making but also supports sustainability 

efforts by enabling more precise and efficient fishing practices. The results of this study emphasize the 

relevance of data-driven approaches in addressing real-world challenges in the marine sector and offer 

solutions that can be further developed for resource prediction and coastal development strategies.  
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