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Abstract 

The axioms of fields satisfy over sets of numbers such as ℚ, ℝ, and ℂ. Generally, a set matrix is not 

commutative for binary multiplication properties, such that cannot satisfy of field axioms. In this paper 

we will discuss the circulant matrix set ℂ𝕀ℝℕ𝑛(𝑎) which satisfies the commutative properties of 

multiplication, then it will be shown that the definition of a field is satisfied by the circulant matrix 

ℂ𝕀ℝℕ𝑛
∗ (𝑎). This can provide a new perspective on a field formed by matrix. 
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1. INTRODUCTION 

The algebraic structure is defined as a non-empty set in which at least one equivalence relation 

(equality) and one or more binary operations are defined [7]. The number of operations and axioms that apply 

to a structure will be the difference between one algebraic structure with another. One form of algebraic 

structure is a field. 

A field is another special type of ring. The axioms that must be satisfied by a field include the axioms 

of a commutative ring equipped with certain axioms, so that an algebraic structure of field will be more 

complex compared to the structure of group or ring. In many literatures, the fields that have been given and 

discussed are sets of numbers. An example is the set of numbers ℚ, ℝ, and ℂ. In this paper we will discuss a 

set of matrix that can satisfy the axioms of a field, which is a set of circulant matrix[4]. 

Circulant matrix is one type of matrix that has special properties. The special properties possessed by 

the circulant matrix is the commutative multiplication. In addition, the circulant matrix also has a well-defined 

closure property [9]. A circulant matrix be defined as follows. 

 

Definition 1. (Circulant Matrix) 

Let 𝒂 = (𝒂𝟎, 𝒂𝟏, ⋯ , 𝒂𝒏−𝟏) then the circulant matrix 𝑨 = (𝒂𝒊,𝒊)𝒊,𝒋
 where 𝒂𝒊,𝒋 = 𝒂𝒋−𝒊(mod n).  

The circulant matrix A with order 𝑛 is denoted by 𝐶𝐼𝑅𝐶𝑛(𝑎). An 𝑛 −square circulant matrix is a matrix of the 

form. 

𝐶𝐼𝑅𝐶𝑛(𝑎) =

[
 
 
 
 

𝑎0 𝑎1 𝑎2 ⋯ 𝑎𝑛−2 𝑎𝑛−1
𝑎𝑛−1 𝑎0 𝑎1 ⋯ 𝑎𝑛−3 𝑎𝑛−2
𝑎𝑛−2 𝑎𝑛−1 𝑎0 ⋯ 𝑎𝑛−4 𝑎𝑛−3

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝑎1 𝑎2 𝑎3 ⋯ 𝑎𝑛−1 𝑎0 ]

 
 
 
 

 

The circulant matrix is definitively a square matrix that has the properties  binary operations that apply the 

same the ordinary matrix. Circulant matrix satisfies the definition of the ring over addition and multiplication 

operations[3]. 

 

Proposition 1. [ℂ𝕀ℝℕ𝑛(𝑎), +,×] is a ring. 

Proof. see in [4 - 6] 

 

In this paper will be shown that the definition of a field is satisfied by set of the circulant matrix ℂ𝕀ℝℕ𝑛
∗ (𝑎). 

 

 

2. RESULT AND DISCUSSION 

Generally, the matrix set satisfies the axiom of the abelian group over addition, but this is not the case 

for multiplication, especially in the commutative properties of multiplication. In the circulant matrix, the 

multiplicative commutative properties are well-defined, as are the closed properties. To prove the 

multiplication properties of a circulant matrix we need information about the diagonalization and determinant 

of the circulant matrix. 

Eigenvalues, eigenvectors, and matrix diagonalization on the circulant matrix are related to 

diagonalization with the cyclic permutation matrix [𝑊𝑛] and the Fourier matrix [𝐹𝑛]. The definition of cyclic 

permutation matrix [𝑊𝑛] and Fourier matrix has been defined by Davis [4].  

A matrix can be diagonalized by a matrix with its columns in the form of eigenvectors on the matrix 

[1]. The 𝑊𝑛 matrix can be diagonalized by a 𝑄𝑛 matrix with the following form: 
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𝑄𝑛 = [

1 1 ⋯ 1
1 𝜔1 ⋯ 𝜔𝑛−1

⋮ ⋮ ⋱ ⋮
1 𝜔𝑛−1 ⋯ 𝜔(𝑛−1)(𝑛−1)

] 

 

 
matrix 𝑄𝑛 has the following inverse: 

𝑄𝑛
−1 =

1

𝑛
[

1 1 ⋯ 1
1 𝜔−1 ⋯ 𝜔−(𝑛−1)

⋮ ⋮ ⋱ ⋮
1 𝜔−(𝑛−1) ⋯ 𝜔−(𝑛−1)(𝑛−1)

] 

 

to prove it, it will be shown that 𝑄𝑛𝑄𝑛
−1 = 𝐼𝑛: 

 

𝑄𝑛𝑄𝑛
−1 = [

1 1 ⋯ 1
1 𝜔1 ⋯ 𝜔𝑛−1

⋮ ⋮ ⋱ ⋮
1 𝜔𝑛−1 ⋯ 𝜔(𝑛−1)(𝑛−1)

]
1

𝑛
[

1 1 ⋯ 1
1 𝜔−1 ⋯ 𝜔−(𝑛−1)

⋮ ⋮ ⋱ ⋮
1 𝜔−(𝑛−1) ⋯ 𝜔−(𝑛−1)(𝑛−1)

] 

 

𝑄𝑛𝑄𝑛
−1 =

1

𝑛
[

1 1 ⋯ 1
1 𝜔1 ⋯ 𝜔𝑛−1

⋮ ⋮ ⋱ ⋮
1 𝜔𝑛−1 ⋯ 𝜔(𝑛−1)(𝑛−1)

] [

1 1 ⋯ 1
1 𝜔−1 ⋯ 𝜔−(𝑛−1)

⋮ ⋮ ⋱ ⋮
1 𝜔−(𝑛−1) ⋯ 𝜔−(𝑛−1)(𝑛−1)

] 

 

𝑄𝑛𝑄𝑛
−1 =

1

𝑛
[

1 + 1 + ⋯+ 1 1 + 𝜔−1 + ⋯+ 𝜔−(𝑛−1)

1 + 𝜔1 + ⋯+ 𝜔(𝑛−1) 1 + 𝜔𝜔−1 + ⋯+ 𝜔(𝑛−1)𝜔−(𝑛−1)

⋮ ⋮

1 + 𝜔(𝑛−1) + 𝜔(𝑛−1)(𝑛−1) 1 + 𝜔(𝑛−1)−1 + ⋯+ 𝜔(𝑛−1)((𝑛−1)−1)

 

 

⋯ 1 + 𝜔−(𝑛−1) + 𝜔−(𝑛−1)(𝑛−1)

⋯ 1 + 𝜔1−(𝑛−1) + ⋯+ 𝜔(𝑛−1)(1−(𝑛−1))

⋱ ⋮

⋯ ⋯ 1 + 𝜔(𝑛−1)𝜔−(𝑛−1) + ⋯ + 𝜔(𝑛−1)2𝜔−(𝑛−1)2

] 

 

Brown and Churchill [2] stated in their book the results of the matrix above relate to the theorem of 

complex number identity equations, so that: 

𝑄𝑛𝑄𝑛
−1 =

1

𝑛
[

1 + 1 + ⋯+ 1 0 ⋯ 0
0 1 + 1 + ⋯+ 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1 + 1 + ⋯+ 1

] 
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𝑄𝑛𝑄𝑛
−1 =

[
 
 
 
 
 
 
1 + 1 + ⋯+ 1

𝑛
0 ⋯ 0

0
1 + 1 + ⋯+ 1

𝑛
⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯
1 + 1 + ⋯ + 1

𝑛 ]
 
 
 
 
 
 

 

𝑄𝑛𝑄𝑛
−1 = [

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

] = 𝐼𝑛. 

 

it is proven that 𝑄𝑛𝑄𝑛
−1 = 𝐼𝑛. So the diagonalization of the 𝑊𝑛 matrix by the 𝑄𝑛 matrix is as follows: 

𝑄𝑛
−1𝑊𝑛𝑄𝑛 = 𝐷 (1) 

 

where 𝐷 is a diagonal matrix  [10].The matrix in Equation (1) are similar [11], so the diagonal matrix 𝐷 which 

is a matrix with consecutive diagonal entries, the eigenvalue associated with the 𝒖𝑘 eigenvector in the matrix 

𝑊𝑛. The eigenvalue matrix 𝑊𝑛 is the 𝑛 −square root of units, so that the 𝐷 matrix is a matrix with the  

following form: 

 

𝐷 = [

1 0 ⋯ 0
0 𝜔 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜔𝑛−1

] = 𝑑𝑖𝑎𝑔(1, 𝜔,⋯ ,𝜔𝑛−1) 

 

RECALL the matrix form in Equation (1): 

 

𝑄𝑛
−1𝑊𝑛𝑄𝑛 = 𝐷 

 

 

1

𝑛
[

1 1 ⋯ 1
1 𝜔−1 ⋯ 𝜔−(𝑛−1)

⋮ ⋮ ⋱ ⋮
1 𝜔−(𝑛−1) ⋯ 𝜔−(𝑛−1)(𝑛−1)

]𝑊𝑛 [

1 1 ⋯ 1
1 𝜔1 ⋯ 𝜔𝑛−1

⋮ ⋮ ⋱ ⋮
1 𝜔𝑛−1 ⋯ 𝜔(𝑛−1)(𝑛−1)

] = 𝐷 (2) 

 

by factoring 
1

𝑛
 in to 

1

√𝑛

1

√𝑛
 so that the matrix form in Equation (2), can be written as follows: 

 

1

√𝑛
[

1 1 ⋯ 1
1 𝜔−1 ⋯ 𝜔−(𝑛−1)

⋮ ⋮ ⋱ ⋮
1 𝜔−(𝑛−1) ⋯ 𝜔−(𝑛−1)(𝑛−1)

] 𝑊𝑛
1

√𝑛
[

1 1 ⋯ 1
1 𝜔1 ⋯ 𝜔𝑛−1

⋮ ⋮ ⋱ ⋮
1 𝜔𝑛−1 ⋯ 𝜔(𝑛−1)(𝑛−1)

] = 𝐷 (3) 

  

Equation (3) satisfies the Fourier matrix form, it can be expressed in following form: 

𝐹𝑛
−1𝑊𝑛𝐹𝑛 = 𝐷  
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𝑊𝑛 = 𝐹𝑛𝐷𝐹𝑛
−1 (4) 

with applyingthe polynomial function in (4), then: 

 

𝑃(𝑊𝑛) = 𝑃(𝐹𝑛𝐷𝐹𝑛
−1)  

𝑃(𝑊𝑛) = 𝐹𝑛𝑃(𝐷)𝐹𝑛
−1

 (5) 

 

Zhang [12] stated that equations in (5) is theorem of polynomial diagonalization. 

 

Among the permutation matrix, the matrix 𝑊𝑛 plays a fundamental role in the theory of circulants. Goldberg 

[8] state that  𝐶𝐼𝑅𝐶𝑛(𝑎) = 𝑃(𝑊𝑛), then Equation (4) and Equation (5) can be related, such that:  

 

𝐶𝐼𝑅𝐶𝑛(𝑎) = 𝑃(𝑊𝑛) 

𝐶𝐼𝑅𝐶𝑛(𝑎) = 𝐹𝑛 𝑃(𝐷)𝐹𝑛
−1

 

𝐹𝑛
−1𝐶𝐼𝑅𝐶𝑛(𝑐)𝐹𝑛 = 𝑃(𝐷) (6) 

 

matrix 𝑃(𝐷) symbolized by matrix Λ then equation (6) can be expressed in following form: 

 

𝐹𝑛
−1𝐶𝐼𝑅𝐶𝑛(𝑐)𝐹𝑛 = Λ (7) 

 

such that, 

 

𝐹𝑛
−1𝐶𝐼𝑅𝐶𝑛(𝑎)𝐹𝑛 = [

𝜆0 0 ⋯ 0
0 𝜆1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜆𝑛−1

] 

 

 

Goldberg [8] stated in their book that 𝜆𝑘 is eigenvalues on permutation matrix 𝑊𝑛 was using to 

decomposition of circulant matrix,therefore the circulant matrix 𝐶𝐼𝑅𝐶𝑛(𝑎) can be diagonalized by a Fourier 

matrix. Equation (7) can also be expressed in following form: 

 

𝐶𝐼𝑅𝐶𝑛(𝑎)  = 𝐹𝑛 ∙ Λ ∙ 𝐹𝑛
−1

 (8) 

where Λ is a diagonal matrix.To prove the distributive properties in 𝐶𝐼𝑅𝐶𝑛(𝑎), the following theorem are 

obtained. 

 

Theorem 1. Twodistributive laws hold in[ℂ𝕀ℝℕ𝑛(𝑎), +,×]. 
Proof. Let circulant matrix: 

𝐴 = 𝐶𝐼𝑅𝐶𝑛(𝑎); 𝐵 = 𝐶𝐼𝑅𝐶𝑛(𝑏) ; 𝐶 = 𝐶𝐼𝑅𝐶𝑛(𝑐) 

to prove the circulant matrix set satisfies the distributive properties, it will be shown that 𝐴(𝐵 +  𝐶) =
𝐴𝐵 +  𝐴𝐶. The matrix 𝐴,𝐵, and 𝐶 can be expressed in the following form: 

𝐴 = 𝐹 Λ𝐴 𝐹
−1    ;     𝐵 = 𝐹 Λ𝐵 𝐹

−1     ;      𝐶 = 𝐹 Λ𝐶𝐹−1 

will be proven: 

𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶 

First side: 

𝐴(𝐵 + 𝐶) = 𝐹 Λ𝐴 𝐹
−1(𝐹 Λ𝐵 𝐹

−1 + 𝐹 Λ𝐶𝐹−1) 

𝐴(𝐵 + 𝐶) = 𝐹 Λ𝐴 𝐹
−1(𝐹(Λ𝐵 + Λ𝐶)𝐹−1) 
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𝐴(𝐵 + 𝐶) = 𝐹 Λ𝐴  𝐼 (Λ𝐵 + Λ𝐶)𝐹−1 

𝐴(𝐵 + 𝐶) = 𝐹 Λ𝐴 (Λ𝐵 + Λ𝐶)𝐹−1 

with the diagonal matrix properties, then: 

 

𝐴(𝐵 + 𝐶) = 𝐹( Λ𝐴 Λ𝐵 +  Λ𝐴 Λ𝐶)𝐹−1 (9) 

In the second side: 

𝐴𝐵 + 𝐴𝐶 = (𝐹 Λ𝐴 𝐹
−1𝐹 Λ𝐵 𝐹

−1) + (𝐹 Λ𝐴 𝐹
−1𝐹 Λ𝐶𝐹−1) 

𝐴𝐵 + 𝐴𝐶 = (𝐹 Λ𝐴 Λ𝐵 𝐹
−1) + (𝐹 Λ𝐴 Λ𝐶𝐹−1) 

𝐴𝐵 + 𝐴𝐶 = 𝐹 Λ𝐴 Λ𝐵 𝐹
−1 + 𝐹 Λ𝐴 Λ𝐶𝐹−1 

𝐴𝐵 + 𝐴𝐶 = 𝐹( Λ𝐴 Λ𝐵 +  Λ𝐴 Λ𝐶)𝐹−1 (10) 

 

since 𝐴 (𝐵 +  𝐶)  =  𝐴𝐵 +  𝐴𝐶, this means that circulant matrix satisfies the distributive property of 

multiplication with addition.  ∎ 

 

Furthermore, in field formation over a set of matrix it will also show the inverse properties of the circulant 

matrix.Let multiplication identity matrix: 

 

𝐼𝑛 = [

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

] 

 

which can be written as a circulant matrix 𝐶𝐼𝑅𝐶𝑛(1,0,0,⋯0), so that the matrix 𝐼𝑛 = 𝐶𝐼𝑅𝐶𝑛(1,0,0, ⋯0) ∈
ℂ𝕀ℝℕ𝑛(𝑎), 𝑎 ∈ ℝ is unity of ring [ℂ𝕀ℝℕ𝑛(𝑎),+,×]. In this section, will be shown that the inverse 

multiplication of the circulant matrix is also a circulant matrix. 

 

Theorem 2. Theinverse of an invertible element of ℂ𝕀ℝℕ𝑛(𝑎) also belongs to ℂ𝕀ℝℕ𝑛(𝑎) 

Proof. Based on Equation (8) if V is a non-singular circulant matrix, then: 

 

𝑉 = 𝐹𝑛Λ𝑣𝐹𝑛
−1 (11) 

 

so that: 

 

𝑉−1 = 𝐹𝑛(Λ𝑣)
−1𝐹𝑛

−1 (12) 

 

Furthermore, to prove this theorem it will be shown that the diagonal matrix (Λ𝑣)
−1 = Λ𝑉−1. Based on 

Equation (12) it appears that the inverse of the circulant matrix can be diagonalized by the matrix 𝐹𝑛, based 

on equation (11), the equation (12) can be written in the form: 

 

𝑉−1 = 𝐹𝑛Λ𝑉−1𝐹𝑛
−1

 (13) 

 

so it is proven (Λ𝑣)
−1 = Λ𝑉−1 ∎ 

 

Theorem 2 states that not all circulant matrix have an inverse, this can happen because there are 

circulant matrix that have zero determinants, for example a circulant matrix has zero determinants is the 

matrix 𝐶𝐼𝑅𝐶𝑛(𝑎, 𝑎, 𝑎, ⋯𝑎), 𝑎 ∈ ℝ.Then another example is a circulant matrix whose elements have a pattern 
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on the first row, such that 𝒂 = (𝒂𝟎, 𝒂𝟏,⋯ , 𝒂𝒏−𝟏) then the elements in even order are always the same 𝒂𝟎 =
𝒂𝟐 = 𝒂𝟒 = ⋯ and the odd order always the same 𝒂𝟏 = 𝒂𝟑 = 𝒂𝟓 = ⋯. 

Furtheremore, field formation. Based on Theorem 2 states that eachcirculant matrix will have an 

inverse if and only if the matrix have a determinant value which is not zero.In this paper, will be defined a 

set ℂ𝕀ℝℕ𝑛
∗ (𝑎) is a set of circulant matrix where the determinant of each circulant matrix is not zero with zero 

matrix. Based on the properties of the circulant matrix described in Theorem 1 and Theorem 2, the set 

ℂ𝕀ℝℕ𝑛
∗ (𝑎)for the binary operations addition and multiplication is a field if and only if the set is 

ℂ𝕀ℝℕ𝑛
∗ (𝑎)satisfies the commutative property of multiplication.  

Distinguishing matrix generally with a circulant matrix is on the results of a commutative and well-

defined multiplication. The following proposition is proven: 

 

Proposition 2.Multiplication in ℂ𝕀ℝℕ𝑛(𝑎) is commutative. 

Proof. Let matrix circulant:  

𝐴 = 𝐶𝐼𝑅𝐶𝑛(𝑎)dan 𝐵 = 𝐶𝐼𝑅𝐶𝑛(𝑏) 

to prove that the circulant matrix set satisfies the distributive properties, it will be shown that 𝐴𝐵 =  𝐵𝐴. 

Matrix 𝐴 and 𝐵 can be expressed in the following form: 

𝐴 = 𝐹 Λ𝐴 𝐹
−1    ;     𝐵 = 𝐹 Λ𝐵 𝐹

−1 

then: 

 

𝐴𝐵 = (𝐹 Λ𝐴 𝐹
−1)(𝐹 Λ𝐵 𝐹

−1) 

𝐴𝐵 = 𝐹 Λ𝐴 𝐹
−1𝐹 Λ𝐵 𝐹

−1 

𝐴𝐵 = 𝐹 Λ𝐴  𝐼Λ𝐵 𝐹
−1 

𝐴𝐵 = 𝐹 Λ𝐴 Λ𝐵 𝐹
−1 

 

with the diagonal matrix properties then: 

 

𝐴𝐵 = 𝐹Λ𝐵  Λ𝐴 𝐹
−1 

𝐴𝐵 = 𝐹Λ𝐵  I Λ𝐴 𝐹
−1 

𝐴𝐵 = (𝐹Λ𝐵 𝐹
−1)(𝐹Λ𝐴 𝐹

−1) 

𝐴𝐵 = 𝐵𝐴 

 

Since 𝐴𝐵 = 𝐵𝐴, thus ℂ𝕀ℝℕ𝑛(𝑎) is commutative. ∎ 

 

 

3. CONCLUSION 

Matrix set ℂ𝕀ℝℕ𝑛(𝑎)  is a set of circulant matrix that can statisfies the commutative ring properties 

of addition and multiplication operations. In order for the matrix set satisfy the field axioms, it is necessary 

to impose restrictions on the matrix ℂ𝕀ℝℕ𝑛(𝑎). ℂ𝕀ℝℕ𝑛
∗ (𝑎) is a set of non-singular circulant matrix with zero 

matrix, such that each element of the matrix set ℂ𝕀ℝℕ𝑛
∗ (𝑎) has a multiplicative inverse and statify the 

commutative properties. 

ℂ𝕀ℝℕ𝑛
∗ (𝑎)  is a set of matrix that satisfies the axioms of a field for binary operations of addition 

and multiplication, with the addition identity is a zero matrix (𝐶𝐼𝑅𝐶𝑛(0, 0,⋯ , 0)) and the 

multiplication identity (unit)  is the matrix 𝐼𝑛 = (𝐶𝐼𝑅𝐶𝑛(1, 0,⋯ , 0)). 
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