

KARAKTERISTIK RELASI KONGRUENSI PADA SEMIGRUP

Characterization of Congruence Relation on Semigrup

ELVINUS RICHARD PERSULESSY

Staf Jurusan Matematika Fakultas MIPA Universitas Pattimura Jl. Ir. M. Putuhena, Kampus Unpatti, poka-Ambon e-mail: richardelvinus@yahoo.com

ABSTRAK

Diberikan semigrup *S* dan *R* adalah suatu relasi ekuivalensi pada *S*. Relasi ekuivalensi *R* disebut relasi kongruensi pada *S* jika *R* kompatibel. Penelitian ini akan menjelaskan beberapa karakeristik yang dimiliki oleh relasi kongruensi *R* pada semigrup *S*.

Keywords: Kompatibel, Relasi Ekuivalensi, Kongruensi.

PENDAHULUAN

Himpunan $S \neq \emptyset$ yang dilengkapi dengan operasi biner "•", ditulis (S, \bullet) atau disingkat S, disebut semigrup jika terhadap operasi biner yang sama S memenuhi sifat asosiatif.

Jika pada S didefinisikan suatu relasi ekuivalensi R yang memenuhi sifat kompatibel kiri dan kompatibel kanan, maka relasi ekuivalensi R menjadi relasi kongruensi pada S.

Karena relasi kongruensi juga merupakan relasi ekuivalensi, maka S akan terpartisi menjadi kelas-kelas yang saling asing. Himpunan $xR = \{y \in S \mid (x,y) \in R\}$ adalah kelas ekuivalensi yang memuat x. Himpunan kelas-kelas ekuivalensi yang saling asing ini, selanjutnya disebut himpunan kuosen dari S dan dinotasikan dengan S/R.

Penelitian ini akan menjelaskan secara detail beberapa karakteristik relasi kongruensi pada semigrup *S*.

TINJAUAN PUSTAKA

Untuk menjelaskan karakteristik relasi kongruensi pada semigrup diperlukan beberapa konsep dasar tentang homomorfisma, kompatibilitas, dan kekongruenan yang dikaji dari Howie [1] dan Thierrin (1995). Selanjutnya, dalam buka *An Introduction to Semigroup Theory*, J. M Howie memberikan landasan teori tentang karakteristik relasi kongruensi pada semigrup yang dilengkapi oleh Spitznagel (1997) lewat

tulisannya *Structure in Semigroup II*. [2] Berikut ini adalah beberapa definisi dan teorema yang melandasi penelitian ini.

Definisi 1.

Diberikan himpunan $S \neq \emptyset$ yang dilengkapi dengan operasi biner "•".

 (S, \bullet) , selanjutnya ditulis S, disebut semigrup terhadap operasi biner (S, \bullet) jika S memenuhi sifat asosiatif

$$(\forall s_1, s_2 \in S) [(s_1 \bullet s_2) \bullet s_3 = s_1 \bullet (s_2 \bullet s_3)]$$

Definisi 2.

Misalkan (S, \bullet) dan (S', *) adalah dua semigrup.

- a. Fungsi $\alpha: S \to S'$ dinamakan homomorfisma jika $(\forall x, y \in S) \lceil \alpha(x \cdot y) = \alpha(x) \cdot \alpha(y) \rceil$
- b. Jika α homomorfisma yang surjektif, maka α disebut epimorfisma.
- c. Jika α homomorfisma yang injektif, maka α disebut monomorfisma.
- d. Jika α homomorfisma yang surjektif dan injektif, maka α disebut isomorfisma.

Definisi 3.

Suatu relasi R pada semigrup S disebut

i. Kompatibel kiri, jika

$$(\forall s, t, a \in S) \lceil (s, t) \in R \implies (as, at) \in R \rceil$$
.

ii. Kompatibel kanan, jika

$$(\forall s,t,a\in S)\lceil (s,t)\in R \Rightarrow (sa,ta)\in R\rceil.$$

iii. Kompatibel, jika $(\forall s, t, s', t' \in S)$

$$\lceil (s,s') \in R \& (t,t') \in R \implies (st,s't') \in R \rceil$$
.

Relasi ekuivalensi yang kompatibel kiri disebut relasi kongruensi kiri.

Relasi ekuivalensi yang kompatibel kanan disebut relasi kongruensi kanan.

Relasi ekuivalensi yang kompatibel disebut relasi kongruensi.

Teorema 1

Relasi *R* pada semigrup *S* merupakan relasi kongruensi jika dan hanya jika R merupakan relasi kongruensi kiri dan relasi kongruensi kanan.

HASIL DAN PEMBAHASAN

Teorema 2

Diberikan S dan T semigrup.

Jika $\beta: S \to T$ adalah homomorfisma, maka $\beta \circ \beta^{-1}$ adalah relasi kongruensi pada S. Selanjutnya, $\beta \circ \beta^{-1} = \ker \beta$.

Bukti:

Karena
$$\beta: S \to T$$
, maka $\beta \circ \beta^{-1}: S \to S$. Akibatnya
$$\beta \circ \beta^{-1} = \left\{ (x, y) \in S \times S \mid (\exists z \in T), (x, z) \in \beta \text{ dan } (z, y) \in \beta^{-1} \right\}$$
$$= \left\{ (x, y) \in S \times S \mid (\exists z \in T), (x, z) \in \beta \text{ dan } (y, z) \in \beta \right\}$$
$$= \left\{ (x, y) \in S \times S \mid x\beta = y\beta \right\}$$

Selanjutnya akan ditunjukkan $\beta \circ \beta^{-1}$ adalah relasi kongruensi.

- i). Ambil sebarang $x \in S$. Karena $x\beta = y\beta$, maka jelas $(x, x) \in \beta \circ \beta^{-1}$. Jadi $\beta \circ \beta^{-1}$ refleksif.
- ii). Ambil sebarag $x, y \in S$ dengan $(x, y) \in \beta \circ \beta^{-1}$. Akan ditunjukkan $(y, x) \in \beta \circ \beta^{-1}$. Karena $(x, y) \in \beta \circ \beta^{-1}$, maka $x\beta = y\beta$ atau $y\beta = x\beta$.
- Ini berarti $(y,x) \in \beta \circ \beta^{-1}$. Jadi $\beta \circ \beta^{-1}$ simetris.
- iii). Ambil $x, y, z \in S$ dengan $(x, y), (y, z) \in \beta \circ \beta^{-1}$. Akan ditunjukkan $(x, z)\beta \circ \beta^{-1}$. Karena $(x, y), (y, z) \in \beta \circ \beta^{-1}$, maka $x\beta = y\beta$ dan $y\beta = z\beta$. Akibatnya $x\beta = z\beta$ atau $(x, z)\beta \circ \beta^{-1}$. Jadi $\beta \circ \beta^{-1}$ transitif.
- iv). Ambil sebarang $x, y, z, t \in S$ dengan $(x, y), (z, t) \in \beta \circ \beta^{-1}$. Karena $(x, y), (z, t) \in \beta \circ \beta^{-1}$, maka $x\beta = y\beta$ dan

Karena β homomorfisma, maka

$$(xz)\beta = (x\beta)(z\beta)$$
$$= (y\beta)(t\beta)$$
$$= (yt)\beta$$
Akibatnya $(xz, yt) \in \beta \circ \beta^{-1}$.

Dibentuk himpunan S_{α} dengan α adalah relasi kongruen pada semigrup S. Jika didefinisikan operasi biner "*" pada S_{α} dengan aturan $(a\alpha)^*(b\alpha) = (ab)\alpha a$, untuk setiap $a\alpha,b\alpha \in S_{\alpha}$, diperoleh teorema berikut.

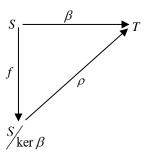
Teorema 3

- a. $\left(\frac{S}{\alpha}, *\right)$ adalah semigrup.
- b. Fungsi $\gamma: S \to \frac{S}{\alpha}$ dengan aturan

$$(\forall a \in S) [\gamma(a) = a\alpha]$$

merupakan homomorfisma.

c. Jika S dan T semigrup, dengan $\beta: S \to T$ homomorfisma, maka $\ker \beta = \beta \circ \beta^{-1}$ adalah relasi kongruensi pada S dan $\rho: \frac{S}{\ker \beta} \to T$ monomorfisma serta diagram berikut komutatif.



Bukti:

a. (i). Akan ditunjukkan $\frac{S}{\alpha}$ well-defined.

Ambil sebarang $a\alpha, b\alpha, a'\alpha, b'\alpha \in S/\alpha$ dengan $a\alpha = a'\alpha$ dan $b\alpha = b'\alpha$.

Karena $a\alpha = a'\alpha$ dan $b\alpha = b'\alpha$, maka $(a, a') \in \alpha$ dan $(b, b') \in \alpha$.

Karena $a,b,a',b' \in S$ dan α relasi kongruensi, maka $(ab,a'b') \in \alpha$.

Akibatnya $(ab)\alpha = (a'b')\alpha$ atau $\frac{S}{\alpha}$.

(ii). Ambil sebarang $a\alpha, b\alpha, c\alpha \in S/\alpha$. Akibatnya

$$((a\alpha)^*(b\alpha))^*(c\alpha) = (ab)\alpha^*(c\alpha)$$
$$= (abc)\alpha$$
$$= (a\alpha)^*(bc)\alpha$$
$$= (a\alpha)^*((b\alpha)^*(c\alpha))$$

Berlaku sifat asosiatif.

b. Akan ditunjukkan $\gamma: S \to \frac{S}{\alpha}$ adalah homomorfisma. Ambil sebarang $a,b \in S$. Diperoleh,

$$\gamma(ab) = (ab)\alpha$$
$$= (a\alpha)*(b\alpha)$$
$$= \gamma(a)*\gamma(b)$$

Jadi γ adalah homomorfisma.

- c. Definisikan $\rho: \frac{S}{\ker \beta} \to T$ dengan aturan perkawanan $(\forall s \in S) \rho(a \ker \beta) = a\beta$.
 - c.1. Akan dibuktikan $\rho: \frac{S}{\ker \beta} \to T$ monomorfisma.
 - (i). Ambil sebarang $a \ker \beta$, $b \ker \beta \in \frac{S}{\ker \beta}$ dengan

$$a \ker \beta = b \ker \beta$$
.

Karena $a \ker \beta = b \ker \beta$, maka $(a,b) \in \ker \beta$ atau $a\beta = b\beta$ atau $\rho(a \ker \beta) = \rho(b \ker \beta)$. Jadi ρ well-defined.

(ii). Ambil sebarang $a \ker \beta$, $b \ker \beta \in \frac{S}{\ker \beta}$. $\rho(a \ker \beta \ b \ker \beta) = \rho(ab) \ker \beta$ $= (ab)\beta$ $= (a\beta)(b\beta)$ $= \rho(a \ker \beta)\rho(b \ker \beta)$

Jadi ρ homomorfisma.

(iii). Ambil sebarang $a \ker \beta$, $b \ker \beta \in \frac{S}{\ker \beta}$ dengan $\rho(a \ker \beta) = \rho(b \ker \beta)$.

Karena $\rho(a \ker \beta) = \rho(b \ker \beta)$, maka $a\beta = b\beta$ atau $(a,b) \in \ker \beta$ atau $a \ker \beta = b \ker \beta$.

Jadi ρ injektif.

Berdasarkan (i) – (iii) terbukti ρ monomorfisma.

c.2. Ambil sebarang
$$a \in S$$
. Diperoleh $(\rho \circ f)(a) = \rho(f(a))$

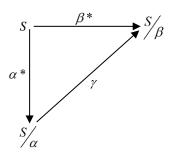
$$= \rho \big(a \ker \beta \big)$$

 $=a\beta$

Terbukti diagram komutatif.

Teorema 4

Jika α dan β adalah relasi-relasi kongruensi pada semigrup S dan $\alpha \subseteq \beta$, maka terdapat homomorfisma $\gamma: S/_{\alpha} \to S/_{\beta}$ sehingga diagram berikut komutatif.



Bukti

i). Didefinisikan $\gamma: S/\alpha \to S/\beta$ dengan aturan perkawanan $\gamma(a\alpha) = a\beta$.

Akan ditunjukkan γ well-defined.

Ambil sebarang $a\alpha$, $b\alpha \in \frac{S}{\alpha}$ dengan $a\alpha = b\alpha$

Karena $a\alpha=b\alpha$, maka $(a,b)\in\beta$ atau $a\beta=b\beta$ atau $\gamma(a\alpha)=\gamma(b\alpha)$.

Terbukti γ well-defined.

ii). Ambil sebarang $a\alpha$, $b\alpha \in S/\alpha$.

Berdasarkan $\gamma(a\alpha) = a\beta$ dan Teorema 3, diperoleh

$$\gamma((ab)\alpha) = (ab)\beta$$
$$= (a\beta)*(b\beta)$$
$$= \gamma(a\alpha)*\gamma(b\alpha)$$

Jadi terbukti $\gamma: S/_{\alpha} \to S/_{\beta}$ adalah

homomorfisma.

iii). Ambil sebarang $a \in S$.

$$(\gamma \circ \alpha^*)(a) = \gamma(\alpha^*(a))$$
$$= \gamma(a\alpha)$$
$$= a\beta$$
$$= \beta^*(a)$$

Terbukti diagram komutatif.

Teorema 5

Jika ρ_i , $i \in I$ adalah relasi kongruensi pada semigrup S, maka $\cap \left\{ \rho_i \mid i \in I \right\}$ juga merupakan relasi kongruensi pada S.

Bukti

Ambil sebarang $s,t,s',t' \in S$ dengan $(s,t) \in \bigcap_{i \in I} \rho_i$ dan $(s',t') \in \bigcap_{i \in I} \rho_i$.

Akibatnya $(s,t) \in \rho_i$ dan $(s',t') \in \rho_i$ untuk setiap $i \in I$.

Karena ρ_i relasi kongruensi pada semigrup S, maka $(ss',tt') \in \rho_i$.

Akibatnya $(ss',tt') \in \bigcap_{i \in I} \rho_i$.

Terbukti $\cap \left\{ \rho_i \mid i \in I \right\}$ merupakan relasi kongruensi pada S.

KESIMPULAN

- 1. Relasi kongruensi pada semigrup *S* akan membentuk struktur yang sama dengan subgrup normal pada grup dan ideal di ring.
- 2. Irisan relasi-relasi kongruensi pada semigrup *S* juga membentuk relasi kongruensi.

DAFTAR PUSTAKA

- [1] Howie, J. M. (1976) *Introduction to Semigroup Theory*. Academic Press. London.
- [2] Spitznagel, C. R. (1997) *Strucutre in Semigroup II*. Seminar Notes.
- [3] Spitznagel, C. R. (2000) *Congruence Lattices*. http://www.jcu.edu/math.pdf