THE ENTIRE FACE IRREGULARITY STRENGTH OF A BOOK WITH POLYGONAL PAGES

Meilin I. Tilukay ${ }^{1}$, Venn Y. I. Ilwaru ${ }^{2}$
${ }^{1,2}$ Jurusan Matematika FMIPA Universitas Pattimura
Jl. Ir. M. Putuhena, Kampus Unpatti, Poka-Ambon, Indonesia
e-mail: ${ }^{1}$ meilin.tilukay@fmipa.unpatti.ac.id

Abstract

A face irregular entire labeling is introduced by Baca et al. recently, as a modification of the well-known vertex irregular and edge irregular total labeling of graphs and the idea of the entire colouring of plane graph. A face irregular entire k-labeling $\lambda: V \cup E \cup F \rightarrow\{1,2, \cdots, k\}$ of a 2 -connected plane graph $G=(V, E, F)$ is a labeling of vertices, edges, and faces of G such that for any two different faces f and g, their weights $w_{\lambda}(f)$ and $w_{\lambda}(f)$ are distinct. The minimum k for which a plane graph G has a face irregular entire k-labeling is called the entire face irregularity strength of G, denoted by efs (G).

This paper deals with the entire face irregularity strength of a book with m-polygonal pages, where embedded in a plane as a closed book with n-sided external face.

Keywords and phrases: Book, entire face irregularity strength, face irregular entire \boldsymbol{k}-labeling, plane graph, polygonal page.

NILAI KETAKTERATURAN SELURUH MUKA GRAF BUKU SEGI BANYAK

Abstract

Abstrak Pelabelan tak teratur seluruh muka diperkenalkan oleh Baca et al. baru-baru ini, sebagai suatu modifikasi atas pelabelan total tak teratur titik dan tak teratur sisi suatu graf serta ide tentang pewarnaan lengkap pada graf bidang. Pelabelan k - tak teratur seluruh muka $\lambda: V \cup E \cup F \rightarrow\{1,2, \cdots, k\}$ dari suatu graf bidang 2-connected $G=(V, E, F)$ adalah suatu pelabelan seluruh titik, sisi, dan muka internal dari G sedemikian sehingga untuk sebarang dua muka f and g berbeda, bobot muka $w_{\lambda}(f)$ and $w_{\lambda}(f)$ juga berbeda. Bilangan bulat terkecil k sedemikian sehingga suatu graf bidang G memiliki suatu pelabelan k-tak teratur seluruh muka disebut nilai ketakteraturan seluruh muka dari G, dinotasikan oleh efs (G).

Kami menentukan nilai eksak dari nilai ketakteraturan seluruh muka graf buku segi- n, dimana pada bidang datar dapat digambarkan seperti suatu buku tertutup.

Kata Kunci: Graf bidang, graf buku segi-n, nilai ketakteraturan seluruh muka, pelabelan lengkap \boldsymbol{k}-tak teratur muka.

1. Introduction

Let G be a finite, simple, undirected graph with vertex set $V(G)$ and edge set $E(G)$. A total labeling of G is a mapping that sends $V \cup E$ to a set of numbers (usually positive or nonnegative integers). According to the condition defined in a total labeling, there are many types of total labeling have been investigated.

Baca, Jendrol, Miller, and Ryan in [1] introduced a vertex irregular and edge irregular total labeling of graphs. For any total labeling $f: V \cup E \rightarrow\{1,2, \ldots, k\}$, the weight of a vertex v and the weight of an edge $e=x y$ are defined by $w(v)=f(v)+\sum_{u v \in E} f(u v)$ and $w(x y)=f(x)+f(y)+f(x y)$, respectively. If all the vertex weights are distinct, then f is called a vertex irregular total k-labeling, and if all the edge weights are distinct, then f is called an edge irregular total k-labeling. The minimum value of k for which there exist a vertex (an edge) irregular total labeling $f: V \cup E \rightarrow\{1,2, \ldots, k\}$ is called the total vertex (edge) irregularity
strength of G and is denoted by $\operatorname{tvs}(G)(\operatorname{tes}(G))$, respectively. There are several bounds and exact values of $t v s$ and tes were determined for different types of graphs given in [1] and listed in [2].

Furthermore, Ivanco and Jendrol in [3] posed a conjecture that for arbitrary graph G different from K_{5} and maximum degree $\Delta(G)$,

$$
\operatorname{tes}(G)=\max \left\{\left\lceil\frac{|E(G)|+2}{3}\right\rceil,\left\lceil\frac{\Delta(G)+1}{2}\right\rceil\right\}
$$

Combining previous conditions on irregular total labeling, Marzuki et al. [4] defined a totally irregular total labeling. A total k-labeling $f: V \cup E \rightarrow\{1,2, \ldots, k\}$ of G is called a totally irregular total k-labeling if for any pair of vertices x and y, their weights $w(x)$ and $w(y)$ are distinct and for any pair of edges $x_{1} x_{2}$ and $y_{1} y_{2}$, their weights $w\left(x_{1} x_{2}\right)$ and $w\left(y_{1} y_{2}\right)$ are distinct. The minimum k for which a graph G has totally irregular total labeling, is called total irregularity strength of G, denoted by $t s(G)$. They have proved that for every graph G,

$$
\begin{equation*}
t s(G) \geq \max \{\operatorname{tes}(G), \operatorname{tvs}(G)\} \tag{6}
\end{equation*}
$$

Several upper bounds and exact values of $t s$ were determined for different types of graphs given in [4], [5], [6], and [7].

Motivated by this graphs invariants, Baca et al. in [8] studied irregular labeling of a plane graph by labeling vertices, edges, and faces then considering the weights of faces. They defined a face irregular entire labeling.

A 2-connected plane graph $G=(V, E, F)$ is a particular drawing of planar graph on the Euclidean plane where every face is bound by a cycle. . Let $G=(V, E, F)$ be a plane graph.

A labeling $\lambda: V \cup E \cup F \rightarrow\{1,2, \cdots, k\}$ is called a face irregular entire k-labeling of the plane graph G if for any two distinct faces f and g of G, their weights $w_{\lambda}(f)$ and $w_{\lambda}(f)$ are distinct. The minimum k for which a plane graph G has a face irregular entire k-labeling is called the entire face irregularity strength of G, denoted by efs (G). The weight of a face f under the labeling λ is the sum of labels carried by that face and the edges and vertices of its boundary. They also provided the boundaries of efs (G).
Teorema A. Let $G=(V, E, F)$ be a 2 -connected plane graph G with $n_{i} i$-sided faces, $i \geq 3$. Let $a=\min \left\{i \mid n_{i} \neq 0\right\}$ and $b=\max \left\{i \mid n_{i} \neq 0\right\}$. Then

$$
\left\lceil\frac{2 a+n_{3}+n_{4}+\cdots+n_{b}}{2 b+1}\right\rceil \leq e f s(G) \leq \max \left\{n_{i} \mid 3 \leq i \leq b\right\}
$$

For $n_{b}=1$, they gave the lower bound as follow
Teorema B. Let $G=(V, E, F)$ be a 2 -connected plane graph G with $n_{i} i$-sided faces, $i \geq 3$. Let $a=\min \left\{i \mid n_{i} \neq 0\right\}, b=\max \left\{i \mid n_{i} \neq 0\right\}, n_{b}=1$ and $c=\max \left\{i \mid n_{i} \neq 0, i<b\right\}$. Then

$$
\text { efs }(G) \geq\left\lceil\frac{2 a+|F|-1}{2 c+1}\right]
$$

Moreover, by considering the maximum degree of a 2-connected plane graph G, they obtained the following theorem.

Theorem C. Let $G=(V, E, F)$ be a 2-connected plane graph G with maximum degree Δ. Let x be a vertex of degree Δ and let the smallest (and biggest) face incident with x be an a-sided (and a b-sided) face, respectively. Then

$$
e f s(G) \geq\left\lceil\frac{2 a+\Delta-1}{2 b}\right\rceil
$$

They proved that Theorem B is tight for Ladder graph $L_{n}, n \geq 3$, and its variation and Theorem C is tight for wheel graph $W_{n}, n \geq 3$. In this paper, we determine the exact value of efs of a book with m n-polygonal pages which is greater than the lower bound given in Theorem A-C.

2. Main Results

Considering Theorem C, efs $\left(W_{n}\right)$, and a condition where every face of a plane graph shares common vertices or edges, our first result provide a lower bound of the entire face irregularity strength of a graph with this condition. This can be considered as generalization of Theorem A, B, and C.

Lemma 2.1. Let $G=(V, E, F)$ be a 2 -connected plane graph with $n_{i} i$-sided faces, $i \geq 3$. Let $a=\min \left\{i \mid n_{i} \neq 0\right\}, b=\max \left\{i \mid n_{i} \neq 0\right\}, c=\max \left\{i \mid n_{i} \neq 0, i<b\right\}$, and d be the number of common labels of vertices and edges which have bounded every face of G. Then

$$
\operatorname{efs}(G) \geq \begin{cases}\left\lceil\frac{2 a+|F|-d-1}{2 c-d+1}\right\rceil, & \text { for } n_{b}=1 \\ \left\lceil\frac{2 a+|F|-d}{2 b-d+1}\right\rceil, & \text { otherwise }\end{cases}
$$

Proof. Let $\lambda: V \cup E \cup F \rightarrow\{1,2, \cdots, k\}$ be a face irregular entire k-labeling of 2 -connected plane graph $G=(V, E, F)$ with efs $(G)=k$. Our first proof is for $n_{b} \neq 1$. By Theorem A, the minimum face-weight is at least $2 a+1$ and the maximum face-weight is at least $2 a+|F|$. Since G is 2 -connected, each face of G is a cycle. It implies that every face might be bounded by common vertices and edges.
Let d be the number of common labels of vertices and edges which have bounded every face of G and D be the sum of all common labels. Then the face-weights $w_{\lambda}\left(f_{1}\right), w_{\lambda}\left(f_{1}\right), \cdots, w_{\lambda}\left(f_{|F|}\right)$ are all distinct and each of them contains D, implies the variation of face-weights is depend on $2 a-d+2 \leq i \leq 2 b-d+1$ labels. Without adding D, the maximum sum of a face label and all vertices and edges-labels surrounding it is at least $2 a+|F|-d$. This is the sum of at most $2 b-d+1$ labels. Thus, we have efs $(G) \geq\left\lceil\frac{2 a+|F|-d}{2 b-d+1}\right\rceil$.
For $n_{b}=1$, it is a direct consequence from Theorem B with the same reason as in the result above.

This lower bound is tight for ladder graphs and its variation and wheels given in [8].
A book with m n-polygonal pages $B_{m}^{n}, m \geq 1, n \geq 3$, is a plane graph obtained from m-copies of cycle C_{n} that share a common edge. There are many ways drawing B_{m}^{n} for which the external face of B_{m}^{n} can be an n-sided face or a $(2 n-2)$-sided face.

By considering that topologically, B_{m}^{n} can be drawn on a plane as a closed book such that B_{m}^{n} has an n-sided external face, an n-sided internal face, and $m-1$ number of $(2 n-2)$-sided internal faces, the entire face irregularity strength of B_{m}^{n} is provided in the next theorem.

Theorem 2.2. For $B_{m}^{n}, m \geq 1, n \geq 3$, be a book with $m n$-polygonal pages whose an n-sided external face, an n-sided internal face, and $m-1(2 n-2)$-sided internal faces, we have

$$
\text { efs }\left(B_{m}^{n}\right)= \begin{cases}2, & \text { for } m \in\{1,2\} \\ \left\lceil\frac{4 n+m-7}{4 n-5}\right\rceil, & \text { otherwise }\end{cases}
$$

Proof. Let $B_{m}^{n}, m \geq 1, n \geq 3$, be a 2 -connected plane graph. For $m \in\{1,2\}$, by Lemma 2.1 , we have ef $s\left(B_{m}^{n}\right) \geq 2$. Labeling the n-sided external face by label 2 and all the rests by label 1 , then all face-weights are distinct. Thus, efs $\left(B_{m}^{n}\right)=2$.
Now for $m>2$, let $z=\operatorname{efs}\left(B_{m}^{n}\right)$. Since every internal face of B_{m}^{n} shares 2 common vertices, $a=n$, $b=2 n-2$, and $n_{b}>1$, by Lemma 2.1, we have $z \geq\left\lceil\frac{2 a+|F|-2}{2 b-1}\right\rceil=\left\lceil\frac{2 n+m-1}{4 n-5}\right\rceil$. Consider that $z=\left\lceil\frac{2 n+m-1}{4 n-5}\right\rceil$ is not valid, since for $m \leq 2 n-4$, the maximum label is 1 .

Moreover, since B_{m}^{n} has at least 2 face-weights which are contributed by the same number of labels, there must be 2 faces of the same weight. Then the divisor must be at least $4 n-4$. Thus we have $z \geq\left\lceil\frac{4 n+m-7}{4 n-5}\right\rceil$.

Next, to show that z is an upper bound for entire face irregularity strength of B_{m}^{n}, let $B_{m}^{n}, m \geq 1, n \geq 3$, be the 2 -connected plane graph with an n-sided internal face $f_{i n t}^{n}, m-1(2 n-2)$-sided internal faces and an external n-sided face $f_{\text {ext }}^{n}$.
Let $m_{1}=\left\lceil\frac{m}{2}\right\rceil$ and $m_{2}=m-m_{1}$. Our goal is to have m_{1} distinct even face-weights and m_{2} distinct odd face-weights such that $m(2 n-2)$-sided face-weights are distinct and form an arithmetic progression.
Let $z=\left\lceil\frac{4 n+m-7}{4 n-5}\right\rceil$. It can be seen that B_{m}^{n} has m different paths of length $(n-1)$. Next, we divide m_{1} paths into $S=\left\lceil\frac{m_{1}}{4 n-5}\right\rceil$ parts, where part s-th consists of $(4 n-5)$ paths, for $1 \leq s \leq S-1$, and part S-th consists of $r_{1}=m_{1}-(S-1)(4 n-5)$ paths. Also, we divide m_{2} paths into $T=\left\lceil\frac{m_{2}+1}{4 n-5}\right\rceil$ parts, where the first part consists of $(4 n-6)$ paths, part t-th consists of $(4 n-5)$ paths, for $2 \leq t \leq T-1$, and part T-th consists of $r_{2}=m_{2}-(T-1)(4 n-5)$ paths.

Let

```
\(V\left(B_{m}^{n}\right)=\left\{x, y, u(s)_{i}^{2 j}, u(S)_{k}^{2 j}, v(t)_{i}^{2 j} \neq v(1)_{1}^{2 j}, v(T)_{l}^{2 j} \mid 1 \leq s \leq S-1,1 \leq t \leq T-1,1 \leq i \leq 4 n-\right.\)
    \(\left.5,1 \leq j \leq 2 n-2,1 \leq k \leq r_{1}, 1 \leq l \leq r_{2}\right\} ;\)
```

$E\left(B_{m}^{n}\right)=\{x y\} \cup$
$\left\{u(s)_{i}^{1}=x u(s)_{i}^{2}, u(s)_{i}^{2 j-1}=u(s)_{i}^{2 j-2} u(s)_{i}^{2 j}, u(s)_{i}^{2 n-3}=u(s)_{i}^{2 n-4} y \mid 1 \leq s \leq S-1,1 \leq\right.$ $i \leq 4 n-5,2 \leq j \leq n-2\} \cup$
$\left\{u(S)_{i}^{1}=x u(S)_{i}^{2}, u(S)_{i}^{2 j-1}=u(S)_{i}^{2 j-2} u(S)_{i}^{2 j}, u(S)_{i}^{2 n-3}=u(S)_{i}^{2 n-4} y \mid 1 \leq i \leq r_{1}, 2 \leq j \leq\right.$ $n-2\} \cup$
$\left\{v(t)_{i}^{1}=x v(t)_{i}^{2}, v(t)_{i}^{2 j-1}=v(t)_{i}^{2 j-2} v(t)_{i}^{2 j}, v(t)_{i}^{2 n-3}=v(t)_{i}^{2 n-4} y \mid 1 \leq t \leq T, 1 \leq i \leq 4 n-\right.$ $5,2 \leq j \leq n-2\} \cup$
$\left\{v(T)_{i}^{1}=x v(T)_{i}^{2}, v(T)_{i}^{2 j-1}=v(T)_{i}^{2 j-2} v(T)_{i}^{2 j}, v(T)_{i}^{2 n-3}=v(T)_{i}^{2 n-4} y \mid 1 \leq i \leq r_{2}, 2 \leq j \leq\right.$ $n-2\}$;

```
\(F\left(B_{m}^{n}\right)=\left\{f_{e x t}^{n}, f_{i n t}^{n}, u(s)_{i}^{2 n-2}, u(S)_{k}^{2 n-2}, v(t)_{i}^{2 n-2} \neq v(1)_{1}^{2 n-2}, v(T)_{j}^{2 n-2} \mid 1 \leq s \leq S-1,1 \leq t \leq T-\right.\)
    \(\left.1,1 \leq i \leq 4 n-5,1 \leq k \leq r_{1}, 1 \leq l \leq r_{2}\right\} ;\)
```

Where $f_{\text {ext }}^{n}$ is bounded by cycle $x v(1)_{2}^{2} v(1)_{2}^{4} \cdots v(1)_{2}^{2 n-4} y x$;
$f_{i n t}^{n}$ is bounded by cycle $x u(1)_{1}^{2} u(1)_{1}^{4} \cdots u(1)_{1}^{2 n-4} y x$;
$u(s)_{i}^{2 n-2}$ is bounded by cycle $x u(s)_{i}^{2} u(s)_{i}^{4} \cdots u(s)_{i}^{2 n-4} y u(s)_{i+1}^{2 n-4} u(s)_{i+1}^{2 n-6} \cdots u(s)_{i+1}^{2} x$, for $1 \leq s \leq S, i \neq r_{1}$;
$u(S)_{r_{1}}^{2 n-2}$ is bounded by cycle $x u(S)_{r_{1}}^{2} u(S)_{r_{1}}^{4} \cdots u(S)_{r_{1}}^{2 n-4} y v(T)_{r_{2}}^{2 n-4} v(T)_{r_{2}}^{2 n-6} \cdots v(T)_{r_{2}}^{2} x$; and
$v(t)_{i}^{2 n-2}$ is bounded by cycle $x v(t)_{i}^{2} v(t)_{i}^{4} \cdots v(t)_{i}^{2 n-4} y v(t)_{i+1}^{2 n-4} v(t)_{i+1}^{2 n-6} \cdots v(t)_{i+1}^{2} x$, for $1 \leq t \leq T, i \neq r_{2}$;

Our notations above imply that, without losing generality, for $v(t)_{i}^{j}$, we let $2 \leq i \leq 4 n-5$ for $t=1$. It means that there is no vertex or edge or face $v(1)_{1}^{j}$.

Now, we divide our labeling of B_{m}^{n} into 2 cases as follows:
Case 1. For odd m with $2 \leq r_{2} \leq 2 n-1$ or even m;
Define an entire k-labeling $\lambda: V \cup E \cup F \rightarrow\{1,2, \cdots, k\}$ of B_{m}^{n} as follows.
$\lambda(x)=\lambda(y)=\lambda(x y)=\lambda\left(f_{\text {ext }}^{n}\right)=1 ;$
$\lambda\left(f_{i n t}^{n}\right)=2 ;$
$\lambda\left(u(s)_{i}^{j}\right)= \begin{cases}2 s-1 & \text { for } 1 \leq s \leq S, 1 \leq i \leq \min \left\{r_{1}, 2 n-2\right\} \text { and } 1 \leq j \leq 2 n-i-1 \\ 2 s & \text { for } 1 \leq s \leq S, 1 \leq i \leq \min \left\{r_{1}, 2 n-2\right\} \text { and } 2 n-i \leq j \leq 2 n-2 \\ 2 s & \text { for } 1 \leq s \leq S, 2 n-1 \leq i \leq \min \left\{r_{1}, 4 n-5\right\} \text { and } 1 \leq j \leq 2 n-2\left\lfloor\frac{i-2 n+2}{2}\right]-2 \\ 2 s+1 & \text { for } 1 \leq s \leq S, 2 n-1 \leq i \leq \min \left\{r_{1}, 4 n-5\right\} \text { and } 2 n-2\left[\frac{i-2 n+2}{2}\right]-1 \leq j \leq 2 n-2\end{cases}$
$\lambda\left(v(t)_{i}^{j}\right)=\left\{\begin{array}{cl}2 t-1, & \text { for } 1 \leq t \leq T, 1 \leq i \leq \min \left\{r_{2}, 2 n-2\right\} \text { and } 1 \leq j \leq 2 n-i-2 ; \\ 2 t, & \text { for } 1 \leq t \leq T, 1 \leq i \leq \min \left\{r_{2}, 2 n-2\right\} \text { and } 2 n-i-1 \leq j \leq 2 n-3 ; \\ 2 t, & \text { for } 1 \leq t \leq T, 2 n-1 \leq i \leq \min \left\{r_{2}, 4 n-5\right\} \text { and } 1 \leq j \leq 2 n-2\left\lfloor\frac{i-2 n+2}{2}\right\rfloor-3 ; \\ 2 t+1, & \text { for } 1 \leq t \leq T, 2 n-1 \leq i \leq \min \left\{r_{2}, 4 n-5\right\} \text { and } 2 n-2\left\lfloor\frac{i-2 n+2}{2}\right\rfloor-2 \leq j \leq 2 n-3 ; \\ 2 t-2, & \text { for } 1 \leq t \leq T, i=1 \text { and } j=2 n-2 ; \\ 2 t-1, & \text { for } 1 \leq t \leq T, 2 \leq i \leq \min \left\{r_{2}, 2 n-1\right\} \text { and } j=2 n-2 ; \\ 2 t, & \text { for } 1 \leq t \leq T-1,2 n \leq i \leq 4 n-5 \text { and } j=2 n-2 . \\ 2 t, & \text { for } t=T, 2 n-1 \leq i \leq \min \left\{r_{2}-1,4 n-6\right\} \text { and } j=2 n-2\end{array}\right.$
Case 2. For odd m with $r_{2}=1$ or $2 n \leq r_{2} \leq 4 n-5 ;$
Define an entire k-labeling $\lambda^{*}: V \cup E \cup F \rightarrow\{1,2, \cdots, k\}$ of B_{m}^{n} as follows.
$\lambda^{*}(x)=\lambda^{*}(y)=\lambda^{*}(x y)=\lambda^{*}\left(f_{e x t}^{n}\right)=1$;
$\lambda^{*}\left(f_{i n t}^{n}\right)=2 ;$
$\lambda^{*}\left(u(s)_{i}^{j}\right)=\lambda\left(u(s)_{i}^{j}\right)$
$\lambda^{*}\left(v(t)_{i}^{j}\right)= \begin{cases}2 T-2, & \text { for } r_{2}=1, t=T, i=1, j=1 ; \\ 2 T-1, & \text { for } r_{2}=1, t=T-1, i=4 n-5, j=2 n-2 ; \\ \lambda\left(v(t)_{i}^{j}\right)+1, & \text { for } r_{2} \text { odd, } 2 n \leq r_{2} \leq 4 n-5, t=T, i=r_{2}, j=1 ; \\ \lambda\left(v(t)_{i}^{j}\right)-1, & \text { for } r_{2} \text { odd, } 2 n \leq r_{2} \leq 4 n-5, t=T, i=r_{2}-1, j=2 n-2 ; \\ \lambda\left(v(t)_{i}^{j}\right)-1, & \text { for } r_{2} \text { even, } 2 n \leq r_{2} \leq 4 n-5, t=T, i=r_{2}-1, j=2 n-3 ; \\ \lambda\left(v(t)_{i}^{j}\right)+1, & \text { for } r_{2} \text { even, } 2 n \leq r_{2} \leq 4 n-5, t=T, i=r_{2}-1, j=2 n-2 ; \\ \lambda\left(v(t)_{i}^{j}\right), & \text { for otherwise. }\end{cases}$
It is easy to check that the labeling λ is an entire z-labeling. Then we have evaluate the face - weights set $\left\{w\left(f_{e x t}^{n}\right), w\left(f_{\text {int }}^{n}\right), w\left(u(s)_{i}^{2 n-2}\right), w\left(v(t)_{i}^{2 n-2}\right) \mid 1 \leq s \leq S, 1 \leq t \leq T, 1 \leq i \leq 4 n-5\right\}$ as follows.
$w\left(f_{\text {ext }}^{n}\right)=2 n+1 ;$
$w\left(f_{i n t}^{n}\right)=2 n+2 ;$
$w\left(u(s)_{i}^{2 n-2}\right)= \begin{cases}(2 s-1)(4 n-5)+2 i, & \text { for } 1 \leq s \leq S-1,1 \leq i \leq 4 n-5 ; \\ (2 s-1)(4 n-5)+2 i, & \text { for } s=S-1,1 \leq i \leq r_{1} ; \\ (2 s-1)(4 n-5)+2 r_{1}, & \text { for even } m, s=S-1, i=r_{1} ; \\ (2 s-1)(4 n-5)+2 r_{1}-1, & \text { for odd } m, s=S-1, i=r_{1} .\end{cases}$
$w\left(v(t)_{i}^{2 n-2}\right)= \begin{cases}(2 t-1)(4 n-5)+2 i+1, & \text { for } 1 \leq t \leq T-1,1 \leq i \leq 4 n-5 ; \\ (2 T-1)(4 n-5)+2 i+1, & \text { for } t=T, 1 \leq i \leq r_{2}-1 .\end{cases}$
Since all face-weights are distinct, then λ is a face irregular entire z-labeling of B_{m}^{n} where m is odd with $2 \leq r_{2} \leq 2 n-1$ or m is even; and λ^{*} is a face irregular entire z-labeling of B_{m}^{n} where m is odd with $r_{2}=1$ or $2 n \leq r_{2} \leq 4 n-5$. Thus, $z=\left\lceil\frac{4 n+m-7}{4 n-5}\right\rceil$ is the entire face irregularity strength of B_{m}^{n}.

Note that our result in Theorem 2.2 show that the efs $\left(B_{m}^{n}\right)$ is greater than the lower bound in Lemma 2.1.
Hence, we propose the following open problem.

Open Problems

1. Find a class of graph which satisfy a condition where the lower bound in Lemma 2.1 is sharp;
2. Generalize the lower bound for any condition.

References

[1] M. Baca, S. Jendrol, M. Miller and J. Ryan, "On Irregular Total Labelings," Discrete Mathematics, vol. 307, pp. 1378-1388, 2007.
[2] J. A. Galian, "A Dynamic Survey of Graph Labeling," Electronic Journal of Combinatorics, vol. 18 \#DS6, 2015.
[3] J. Ivanco and S. Jendrol, "The Total Edge Irregularity Strength of Trees," Discuss. Math. Graph Theory, vol. 26, pp. 449-456, 2006.
[4] C. C. Marzuki, A. N. M. Salman and M. Miller, "On The Total Irregularity Strengths of Cycles and Paths," Far East Journal of Mathematical Sciences, vol. 82 (1), pp. 1-21, 2013.
[5] R. Ramdani and A. N. M. Salman, "On The Total Irregularity Strengths of Some Cartesian Products Graphs," AKCE Int. J. Graphs Comb., vol. 10 No. 2, pp. 199-209, 2013.
[6] R. Ramdani, A. N. M. Salman, H. Assiyatun, A. Semanicova-Fenovcikova and M. Baca, "Total Irregularity Strength of Three Family of Graphs," Math. Comput. Sci, vol. 9, pp. 229-237, 2015.
[7] M. I. Tilukay, A. N. M. Salman and E. R. Persulessy, "On The Total Irregularity Strength of Fan, Wheel, Triangular Book, and Friendship Graphs," Procedia Computer Science, vol. 74, pp. 124-131, 2015.
[8] M. Baca, S. Jendrol, K. Kathiresan and K. Muthugurupackiam, "Entire Labeling of Plane Graphs," Applied Mathematics and Information Sciences, vol. 9, no. 1, pp. 263-207, 2015.

