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Abstract. Noise reinforced Brownian motion appears as the universal limit of the step reinforced random 

walk. This article aims to study some basic properties of the noise reinforced Brownian motion. As main 

results, we prove integral representation, series expansion, Markov property, and martingale property 

of the noise reinforced Brownian motion. 
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1. INTRODUCTION 

Stochastic processes with reinforcement has been an active research area in the last two decades. A 

survey on various stochastic processes with reinforcement as well as their applications has been given by 

Pemantle in [1]. The paper [2] contains some recent results in this area. In  [3] Bertoin proved a version of 

the Donsker invariance principle: every step reinforced random walk with reinforcement parameter 𝑝, 

whose every step has finite second order moment, converges to a stochastic process called noise reinforced 

Brownian motion. Previously invariance principle for step reinforced random walk has been studied in the 

case of elephant random walk, that is one with steps follow Rademacher distribution, see [4] and [5]. 

Elephant random walk is a simple random walk which was introduced by Schütz dan Trimper in [6] and has 

attracted many researchers to study, see e.g. [5], [7], [8], [9], dan [10]. Some results on random walk with 

memory were given in [11] dan [12]. 

The noise reinforced Brownian motion 𝐵𝑝 = (𝐵𝑡
𝑝

)
𝑡≥0

 is a real valued centered Gaussian process 

with covariance function 

    𝔼(𝐵𝑡
𝑝

𝐵𝑠
𝑝

) =
1

1−2𝑝
(𝑡 ∨ 𝑠)𝑝(𝑡 ∧ 𝑠)1−𝑝,      𝑠, 𝑡 ≥ 0         (1) 

with 𝑡 ∨ 𝑠 = 𝑚𝑎𝑥{𝑡, 𝑠}, 𝑡 ∧ 𝑠 = 𝑚𝑖𝑛{𝑡, 𝑠}, and  𝑝 ∈ (0,
1

2
) is a reinforcement parameter. By letting 𝑝 → 0 

in equation (1), one gets 

𝔼(𝐵𝑡
𝑝

𝐵𝑠
𝑝

) = 𝑡 ∧ 𝑠. 

In other words, if one drops the reinforcement parameter, then 𝐵𝑝 is nothing else the standard 

Brownian motion. In this paper we will prove some basic properties of the noise reinforced Brownian 

motion including the Wiener integral representation, series expansion, Markov property, and martingale 

property. Having the basic properties will provide foundations for further research on the noise reinforced 

Brownian motion such as the study of the sample paths (continuity, differentiability), stochastic calculus 

with respect to noise reinforced Brownian motion, local time and self-intersection local time, asset 

modeling etc.   

 

 

2. RESEARCH METHODS 

The research method used here is a literature study. We study articles related to the noise reinforced 

Brownian motion and books related to probability theory and stochastic processes. The research begins by 

determining the topic, objectives to be achieved, the title of the research and is followed by collecting 

library resources. In particular, basic properties of the noise reinforced Brownian motion were investigated 

and analyzed in detail together with their proofs. The study ended with drawing conclusions based on 

literature review and research results. 

 

 

3. RESULTS AND DISCUSSION 

3.1. Noise Reinforced Brownian Motion 

A standard Brownian motion can be constructed as a limit of simple random walks, see e.g. [13]. A 
similar construction of the noise reinforced Brownian motion has been proved in [3]. We summarize it as 

follows. We fix a reinforcement parameter 𝑝 ∈ (0,
1

2
). For every discrete time step reinforced random walk 

repeats one of its previous steps randomly and uniformly with probability 𝑝, otherwise it has independent 

increments with the same distributions with probability 1 − 𝑝. More precisely, consider a sequence of 

random variables 𝑌1, 𝑌2, …  which consists of independent copies of the real valued random variables 𝑌 with 

identical distribution. Next, we define a sequence of random variables 𝑋1, 𝑋2, …  recursively as follows. Let 
(𝜀𝑖)𝑖≥2 be an independent sequence of Bernoulli random variables with parameter 𝑝. We define 𝑋1 = 𝑌1 

and for 𝑖 ≥ 2 𝑋𝑖 = 𝑌𝑖 if 𝜀𝑖 = 0 while 𝑋𝑖  is a uniform random sampling of  𝑋1, … , 𝑋𝑖−1 if 𝜀𝑖 = 1. The 

sequence of partial sums (𝑆𝑛)𝑛∈ℕ with 
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𝑆𝑛 = ∑ 𝑋𝑖

𝑛

𝑖=1

 

is called step reinforced random walk. In general, (𝑆𝑛)𝑛∈ℕ does not satisfy the Markov property. 

Theorem 1. ( [3], Theorem 3.3) Let 𝑝 ∈ (0,
1

2
) and 𝑌 ∈ 𝐿2(ℙ). For 𝑛 → ∞ the sequence of random 

variables 

𝑆⌊𝑡𝑛⌋ − 𝑡𝑛𝔼(𝑌)

√𝑛 𝑣𝑎𝑟(𝑌)
,     𝑡 ≥ 0 

converges in distribution with respect to the Skorokhod topology to the noise reinforced  Brownian motion 

(𝐵𝑡
𝑝

)
𝑡≥0

 with reinforcement parameter 𝑝. 

 

In [3] the following basic properties of the noise reinforced Brownian motion are also mentioned. The 

notation =
𝑑

 means equality in the distribution. 

1. Scaling property: for every 𝑐 > 0 

(𝐵𝑡
𝑝

)
𝑡≥0

=
𝑑

(𝑐−1𝐵
𝑐2𝑡
𝑝

)
𝑡≥0

 

2. Time inversion property: 

(𝐵𝑡
𝑝

)
𝑡≥0

=
𝑑

(𝑡𝐵1

𝑡

𝑝
)

𝑡>0

 

3. The law of iterated logarithm: with probability one 

limsup
𝑡→∞

𝐵𝑡
𝑝

 √2𝑡 ln ln 𝑡
= limsup

𝑡→0+

𝐵𝑡
𝑝

 √2𝑡 ln ln
1

𝑡

=
1

√1 − 2𝑝
 . 

4. For different reinforcement parameter 𝑝, the distribution of the noise reinforced Brownian motion, say 

in the interval  [0,1], yields probability distributions on the space of continuous function C[0,1] which 

are mutually singular and are also singular to the Wiener measure. 

 

For  𝑛 ∈ ℕ the 𝑛-th moment of the noise reinforced Brownian motion is given by  

𝔼((𝐵𝑡
𝑝

)
𝑛

) = { (
2

1 − 2𝑝
)

𝑘 1

√𝜋
Γ (𝑘 +

1

2
) 𝑡𝑘 , 𝑛 = 2𝑘

                               0                         , 𝑛 = 2𝑘 − 1

 

where Γ is the Euler gamma function. To prove this, we start with observing that 

𝔼((𝐵𝑡
𝑝

)
𝑛

) =
√1 − 2𝑝

√2𝜋𝑡
∫ 𝑥𝑛𝑒−

1−2𝑝

2𝑡
𝑥2

 𝑑𝑥.
ℝ

 

If 𝑛 = 2𝑘 − 1 for some 𝑘 ∈ ℕ, then the integrand in the above integral is an odd function and hence the 

value of integral is zero. If 𝑛 = 2𝑘 for some 𝑘 ∈ ℕ, then 

 

𝔼 ((𝐵𝑡
𝑝

)
2𝑘

) =
2√1 − 2𝑝

√2𝜋𝑡
∫ 𝑥2𝑘𝑒−

1−2𝑝

2𝑡
𝑥2

𝑑𝑥.

∞

0
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By using substitution 𝑥 = √
2𝑡

1−2𝑝
 𝑦, we get 

𝔼 ((𝐵𝑡
𝑝

)
2𝑘

) =
2

√𝜋
(

2

1 − 2𝑝
)

𝑘

𝑡𝑘 ∫ 𝑦2𝑘𝑒−𝑦2
𝑑𝑦 = (

2

1 − 2𝑝
)

𝑘
∞

0

1

√𝜋
Γ (𝑘 +

1

2
) 𝑡𝑘 . 

Some properties of the standard Brownian motion which do not hold for the noise reinforced 

Brownian motion include stationarity of increments, independence of increments, dan time reversion 

property. 

a. A stochastic process (𝑋𝑡)𝑡≥0 has the stationary increment property if for every 0 ≤ 𝑠 < 𝑡 𝑋𝑡 −

𝑋𝑠 =
𝑑

𝑋𝑡−𝑠 . Since  (𝐵𝑡
𝑝

)
𝑡≥0

 is a Gaussian process, we only need to check its first two moments. 

It is clear that 𝔼(𝐵𝑡
𝑝

− 𝐵𝑠
𝑝

) = 𝔼(𝐵𝑡−𝑠
𝑝

) = 0. For the variance we have 

 

𝑣𝑎𝑟(𝐵𝑡
𝑝

− 𝐵𝑠
𝑝

) = 𝔼 ((𝐵𝑡
𝑝

)
2

) − 2𝔼(𝐵𝑡
𝑝

𝐵𝑠
𝑝

) + 𝔼 ((𝐵𝑠
𝑝

)
2

) 

              =
1

1−2𝑝
𝑡 − 2

1

1−2𝑝
𝑡𝑝𝑠1−𝑝 +

1

1−2𝑝
𝑠 

                                                                        =
1

1−2𝑝
(𝑡 − 𝑠 − 2𝑠 (

1

2
)

𝑝
) 

               ≠
1

1−2𝑝
(𝑡 − 𝑠) 

             = 𝑣𝑎𝑟(𝐵𝑡−𝑠
𝑝

). 

This shows that the increments of the noise reinforced Brownian motion is not stationary. 

b. Recall that Gaussian random vectors (𝑍1, … , 𝑍𝑛) are independent if and only if 𝑐𝑜𝑣(𝑍𝑖 , 𝑍𝑗) = 0 

for every 𝑖 ≠ 𝑗. Let 𝑛 ∈ ℕ be arbitrary and consider the collection of random variables 

𝐵𝑡1

𝑝
, 𝐵𝑡2

𝑝
− 𝐵𝑡1

𝑝
, … , 𝐵𝑡𝑛

𝑝
− 𝐵𝑡𝑛−1

𝑝
. Next, if 𝑗, 𝑘 ∈ {1,2, … , 𝑛} with 0 ≤ 𝑡𝑗−1 < 𝑡𝑗 < 𝑡𝑘−1 < 𝑡𝑘, then 

it holds 

 

𝔼 ((𝐵𝑡𝑗

𝑝
− 𝐵𝑡𝑗−1

𝑝
) (𝐵𝑡𝑘

𝑝
− 𝐵𝑡𝑘−1

𝑝
)) 

                                            = 𝔼 (𝐵𝑡𝑗

𝑝
𝐵𝑡𝑘

𝑝
) − 𝔼 (𝐵𝑡𝑗

𝑝
𝐵𝑡𝑘−1

𝑝
) − 𝔼 (𝐵𝑡𝑗−1

𝑝
𝐵𝑡𝑘

𝑝
) + 𝔼 (𝐵𝑡𝑗−1

𝑝
𝐵𝑡𝑘−1

𝑝
) 

                                            =
1

1−2𝑝
𝑡𝑘

𝑝
𝑡𝑗

1−𝑝
−

1

1−2𝑝
𝑡𝑘−1

𝑝
𝑡𝑗

1−𝑝
−

1

1−2𝑝
𝑡𝑘

𝑝
𝑡𝑗−1

1−𝑝
+

1

1−2𝑝
𝑡𝑘−1

𝑝
𝑡𝑗−1

1−𝑝
 

=
1

1 − 2𝑝
(𝑡𝑘

𝑝
− 𝑡𝑘−1

𝑝
)(𝑡𝑗

1−𝑝
− 𝑡𝑗−1

1−𝑝
) 

         ≠ 0. 

It is proved that the increments of the noise reinforced Brownian motion is not independent.  

c. To show that the time reversion property does not hold, we show that the distribution of 𝐵1
𝑝

−

𝐵1−𝑡
𝑝

 is not same with the distribution of 𝐵𝑡
𝑝

, 0 ≤ 𝑡 ≤ 1. Here it is sufficient to show that the 

variances are different. It can be checked easily that 

𝑣𝑎𝑟(𝐵1
𝑝

− 𝐵1−𝑡
𝑝

) =
1

1 − 2𝑝
(1 − 2(1 − 𝑡)1−𝑝 + (1 − 𝑡)). 

On the other hand, 𝑣𝑎𝑟(𝐵1
𝑝

− 𝐵1−𝑡
𝑝

) = 𝑣𝑎𝑟(𝐵𝑡
𝑝

) if and only if 𝑡 ∈ {0,1}. We see that noise 

reinforced Brownian motion does not satisfy the time reversion property.  

 

3.2. Integral Represention and Series Expansion 

A representation of the noise reinforced Brownian motion as a Wiener integral was mentioned briefly 

in [3]. Here we will look into it in more details. 

Lemma 2. The noise reinforced Brownian motion (𝐵𝑡
𝑝

)
𝑡≥0

 can be written as a Wiener integral 
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𝐵𝑡
𝑝

= 𝑡𝑝 ∫ 𝑠−𝑝

𝑡

0

 𝑑𝐵𝑠  ,   𝑡 ≥ 0 

with (𝐵𝑡)𝑡≥0 is a standard Brownian motion. 

 
Proof. The above stochastic integral is well defined as a Wiener integral since the integrand is a Lebesgue 
square integrable, that is 
 

∫ 𝑡2𝑝𝑠−2𝑝

𝑡

0

𝑑𝑠 < ∞, 

since 0 < 𝑝 <
1

2
. According to Theorem 2.3.4 in [14],  (𝐵𝑡

𝑝
)

𝑡≥0
 is a Gaussian process with mean 0 and 

variance 
 

∫ 𝑡2𝑝𝑠−2𝑝

𝑡

0

 𝑑𝑠 =
1

1 − 2𝑝
𝑡. 

 
It is left to show that the covariance function is identical with the expression in the right hand side of (1). 
From Corollary 2.3.5 in [14] 
 

𝑐𝑜𝑣(𝐵𝑡
𝑝

, 𝐵𝑠
𝑝

) = ∫ 𝑡𝑝𝑢−𝑝𝑠𝑝𝑢−𝑝𝑑𝑢 =
1

1 − 2𝑝

𝑡

0

(𝑡 ∨ 𝑠)𝑝(𝑡 ∧ 𝑠)1−𝑝. 
 

 
 

 
From the integral representation in Lemma 2 we see that 𝐵𝑝 is an integral with respect to time of the 

noise reinforced white noise. This justifies the name noise reinforced Brownian motion. In this context, 
reinforcement means that the noise tends to repeat itself infinitesimally as time passes. In other words, the 
parameter 𝑝 represents the probability that an infinitesimal part of the noise is a repetition. The above 

integral representation allows us to derive the series expansion of the noise reinforced Brownian motion.  

Theorem 3. With probability one the noise reinforced Brownian motion (𝐵𝑡
𝑝

)
𝑡≥0

 can be represented as 

𝐵𝑡
𝑝

= ∑〈𝑓, 𝜙𝑛〉 ∫ 𝜙𝑛(𝑠) 𝑑𝐵𝑠

ℝ

∞

𝑛=1

, 

where 〈⋅,⋅〉 is the standard inner product on 𝐿2(ℝ), 𝑓(𝑠) = (
𝑡

𝑠
)

𝑝
1[0,𝑡](𝑠) , 𝜙𝑛 is the 𝑛 –th Hermite function 

which is defined via the Rodrigues formula  

 

𝜙𝑛(𝑥) = (−1)𝑛
1

√𝑛!
(2𝜋)−

1

4𝑒
𝑥2

4
𝑑𝑛

𝑑𝑥𝑛
𝑒−

𝑥2

2  ,     𝑛 ≥ 0 

 

and the convergence of the random series is almost surely. 

 
Proof. From Lemma 2 we have  
 

𝐵𝑡
𝑝

= ∫ 𝑡𝑝𝑠−𝑝1[0,𝑡] 𝑑𝐵𝑠

ℝ

, 
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where 1𝐴 is the indicator function of the set 𝐴 ⊂ ℝ. If we define   𝑓(𝑠) = (
t

s
)

p
1[0,t](s), then 𝑓(𝑠) ∈ 𝐿2(ℝ). 

Recall the fact that the family of Hermite functions {𝜙𝑛: 𝑛 = 0,1,2, … } forms an orthonormal basis for 

𝐿2(ℝ). Finally, Theorem 2.6.2. in [14] delivers the desired result.  

Let (Ω, ℱ, ℙ) be a probability space on which the noise reinforced Brownian motion is defined. From 

Theorem 3 for every 𝜔 ∈ Ω it holds  
 

𝐵𝑡
𝑝(𝜔) = ∑ ∫ 𝑡𝑝𝑠−𝑝𝜙𝑛(𝑠)𝑑𝑠 ∫ 𝜙𝑛(𝑠) 𝑑𝐵𝑠(𝜔)

ℝ

.

𝑡

0

∞

𝑛=1

 

From the last formula we obtain the representation of the noise reinforced Brownian motion as the series  

𝐵𝑡
𝑝(𝜔) = ∑  𝜉𝑛(𝜔)

∞

𝑛=1

∫ 𝑡𝑝𝑠−𝑝𝜙𝑛(𝑠)𝑑𝑠,

𝑡

0

 

where (𝜉𝑛)𝑛∈ℕ is an independent and identically distributed sequence of Gaussian random variables with 

mean 0 and variance 1. 
 

3.3. Markov Property and Martingale Property 

In order to show the Markov property we will use the following characterization result.  

Proposition 4. ( [15], Proposition 14.7) Real valued Gaussian process 𝑋 = (𝑋𝑡)𝑡≥0 is a Markov process if 

and only if its covariance function is triangular: 

 

𝑐𝑜𝑣(𝑋𝑠, 𝑋𝑡) =
𝑐𝑜𝑣(𝑋𝑠, 𝑋𝑟)𝑐𝑜𝑣(𝑋𝑟 , 𝑋𝑡)

𝑐𝑜𝑣(𝑋𝑟, 𝑋𝑟)
,     0 < 𝑠 ≤ 𝑟 ≤ 𝑡. 

 

Proposition 5. The noise reinforced Brownian motion (𝐵𝑡
𝑝

)
𝑡≥0

 is a Markov process. 

Proof. Since (𝐵𝑡
𝑝

)
𝑡≥0

 is a Gaussian process we employ Proposition 4 to prove the Markov property. For 

any  𝑠, 𝑟, 𝑡 > 0 with 0 < 𝑠 ≤ 𝑟 ≤ 𝑡 it holds 

 

𝑐𝑜𝑣(𝐵𝑠
𝑝

, 𝐵𝑟
𝑝

)𝑐𝑜𝑣(𝐵𝑟
𝑝

, 𝐵𝑡
𝑝

)

𝑐𝑜𝑣(𝐵𝑟
𝑝

, 𝐵𝑟
𝑝

)
=

1

1−2𝑝
𝑟𝑝𝑠1−𝑝 1

1−2𝑝
𝑡𝑝𝑟1−𝑝 

1

1−2𝑝
𝑟𝑝𝑟1−𝑝

=
1

1 − 2𝑝
𝑡𝑝𝑠1−𝑝 = 𝑐𝑜𝑣(𝐵𝑠

𝑝
, 𝐵𝑡

𝑝
). 

 

 

 

 
Specifically, Proposition 5 shows that a non-Markovian stochastic process may converge in distribution to a 
Markov process.  
 

Proposition 6.  The noise reinforced Brownian motion 𝐵𝑝 = (𝐵𝑡
𝑝

)
𝑡≥0

 is a martingale with respect to the 

natural filtration induced by the standard Brownian motion.  

Proof. The statement in the theorem is a corollary of the Wiener integral representation of 𝐵𝑝 (Lemma 2) 

and Theorem 2.5.4 in [14] by observing that 𝑠−𝑝 ∈ 𝐿2[0, 𝑡] for 𝑝 ∈ (0,
1

2
). To be more precise, since 𝐵𝑡

𝑝
=

𝑡𝑝 ∫ 𝑠−𝑝𝑡

0
𝑑𝐵𝑠 , 𝑡 ≥ 0, then according Theorem 2.5.4. in [14], the stochastic process (𝐵𝑡

𝑝
)

𝑡≥0
 is a martingale 

with respect to the natural filtration of the standard Brownian motion ℱ𝑡 = 𝜎(𝐵𝑠: 0 ≤ 𝑠 ≤ 𝑡).     

 

The importance of Proposition 6 is that the noise reinforced Brownian motion can be used to model a 
fair game. From stochastic calculus point of view, Proposition 6 also gives the existence of the stochastic 
integral with respect to the noise reinforced Brownian motion as an Itô integral. Another possible application in 
this direction is an asset modeling using the noise reinforced Brownian motion. 
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4. CONCLUSIONS 

The noise reinforced Brownian motion 𝐵𝑝 = (𝐵𝑡
𝑝

)
𝑡≥0

 is a stochastic process which appears as the 

universal limit of the step reinforced random walk. Some of its basic properties are as follow: 

1. By letting the reinforcement parameter 𝑝 → 0 in the definition of 𝐵𝑝 one reveals the standard 

Brownian motion. 

2. There are some properties of the standard Brownian motion that are not satisfied by noise 

reinforced Brownian motion including stationary increments property and independent increments 

property.  

3. 𝐵𝑝 has a Wiener integral representation since the integral kernel is a Lebesgue square integrable 

function.  

4. 𝐵𝑝 can be expanded in the form of random series involving the Hermite functions.  

5. 𝐵𝑝 is a Markov process although it is a limit of a non-Markov process.  

6. 𝐵𝑝 is a martingale with respect to the natural filtration generated by the standard Brownian motion.  
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