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Abstract. Correspondence analysis has been widely applied in various fields as a graphical method to depict the 

association structure between two categorical random variables on a low-dimensional plot. This study built a simple 

algorithm to determine the principal coordinates and construct the circular confidence regions on the correspondence 

plot. In this algorithm, the determination of the standard residual matrix and the principal coordinates is built directly 
from the contingency table (without calculating a correspondence matrix). The algorithm was developed using R and 

applied to data on Covid-19 cases in West Java. 
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1. INTRODUCTION 

Data visualization is an essential and critical aspect in the big data era. It helps effectively communicate 

data to readers, so it should be clear and simple. Various developments are performed to get a graphical 

method that is simpler and more informative. One of the exciting methods to be developed and researched is 

correspondence analysis (CA). CA is a graphical method that displays the association structure between two 

categorical random variables on a low-dimensional plot [1]. Therefore, CA is known as a method for reducing 

dimensions. 

The reduction process involves the decomposition of singular values from the standard residual matrix 

that represents the values of the dependencies between variables. The decomposition of the standard residual 

matrix by singular-value decomposition (SVD) produces two orthogonal matrices and a diagonal matrix of 

singular values as a scale factor. These three matrices play a role in determining the vectors that represent 

each row and column category, called the principal coordinates of the rows and columns. These coordinates 

are depicted on a low-dimensional space and known as a correspondence plot [2]. The exciting aspect about 

CA is how this method can transform data in a table to produce a data visualization. The transformation 

process involves matrix operations, the role of eigenvalues, and matrix decomposition.  

In the last five years, the investigation of principal coordinates has attracted the attention of many 

researchers [1], [3]–[6]. In contrast, examination of the relative position of a coordinate point to the origin 

tends to be excluded [7], [8]. Therefore, this study aims to identify the relative position of a principal 

coordinate to the origin by constructing statistical inference of circular confidence regions. 

 

 

2. RESEARCH METHODS 

The research method is divided into three stages: initiation, development, and case studies. A literature 

study related to the circular confidence regions was carried out at the initiation stage. In the development 

stage, we generated an algorithm to construct the circular confidence regions. This algorithm was built under 

R code and applied to real data as a case study. The data used is data on Covid-19 cases in West Java obtained 

through the website www.pikobar.jabarprov.go.id. Data analysis was performed using correspondence 

analysis to investigate the dependence structure between involved variables. The following notations are 

summarized from several literatures for determining principal coordinates in correspondence analysis [1]–

[3], [9]–[11]. 

 

2.1 Correspondence Analysis 

Consider two categorical random variables 𝑋 and 𝑌. Suppose 𝑋  consists of 𝔩 category, denoted 

𝑋1, 𝑋2, ⋯ , 𝑋𝔩, and 𝑌 consists of 𝒥 category, denoted 𝑌1, 𝑌2, ⋯ , 𝑌𝒥 .  If a random sample of 𝑛 individuals or 

objects is selected, which is classified based on the categories of variables 𝑋 and 𝑌. The results of the cross-

classification can be presented in the 𝔩 × 𝒥 two-way contingency table. In matrix notation, such a contingency 

table is expressed as a cross-tabulation matrix 𝐍 = (𝑛𝑖𝑗). The (𝑖, 𝑗)th element of 𝐍 is denoted by 𝑛𝑖𝑗, so that 

𝑛 = ∑ ∑ 𝑛𝑖𝑗
𝒥
𝑗=1

𝔩
𝑖=1 . Let the 𝑖th row marginal frequency and the 𝑗th column marginal frequency respectively 

as 𝑛𝑖∙ = ∑ 𝑛𝑖𝑗
𝒥
𝑗=1  and 𝑛∙𝑗 = ∑ 𝑛𝑖𝑗

𝔩
𝑖=1 . The vector of row (and column) marginal frequencies are denoted by 

𝐛 = (𝑛1∙, 𝑛2∙, ⋯ , 𝑛𝔩∙)
T    and   𝐤 = (𝑛∙1, 𝑛∙2, ⋯ , 𝑛∙𝒥)

T
.                       (1) 

Here, the non-singular matrices 𝐃𝑏 and 𝐃𝑘, respectively, represent the diagonal matrix of the marginal 

frequencies of rows and columns, 

𝐃𝑏 = diag (𝐛)  and   𝐃𝑘 = diag (𝐤).                                              (2) 

The association between rows and columns in a contingency table are represented by a standard residual 

matrix  𝐒 = (𝑠𝑖𝑗), where 𝑠𝑖𝑗 =
𝑛𝑖𝑗−

𝑛𝑖∙𝑛∙𝑗

𝑛

√𝑛𝑖∙𝑛∙𝑗
. The element 𝑠𝑖𝑗  represents the dependency of 𝑝𝑖𝑗 ≠ 𝑝𝑖∙𝑝∙𝑗 .  

In the matrix operation expressed as 

𝐒 = 𝐃𝑏
−1 2⁄

(𝐍 − 𝑛−1𝐛𝐤T)𝐃𝑘
−1 2⁄

.                                                         (3) 

The principal coordinates of row 𝐅 and column 𝐆 are determined by   
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𝐅 =  √𝑛 𝐃𝑏
−1 2⁄

𝐔𝐃𝜎    and    𝐆 = √𝑛 𝐃𝑘
−1 2⁄

𝐕𝐃𝜎,                                (4) 

where 𝐃𝜎, 𝐔, and 𝐕 are obtained from the SVD of 𝐒 and respectively referred to as the diagonal matrix of the 

singular values of 𝐒, the matrix in which each column is the left and right singular vectors of 𝐒. 

 

Each column of matrices 𝐅 and 𝐆 represent the principal axes or dimensions. The first column of X 

and Y are covered the largest variance, the second column covers the second largest variance and so on, such 

that the low-dimensional plot absorbs the larger variance. Mapping the column vectors of 𝐅 and 𝐆 produces 

a correspondence plot [12]. 
 

 
2.2 Circular Confidence Regions 

Some researchers have used circular confidence regions to identify whether a category is statistically 

consistent with what would be expected based on the independence hypothesis [8], [13]–[17]. These regions 

are derived algebraically based on singular values and vectors from the transformed contingency table. The 

confidence regions can also be considered parametric since they are based on Pearson's chi-square statistic 

assumptions.  

Based on Equation (3), the difference between the observed cell frequency and the estimated cell 

frequency (under the assumption that H0 is independent) is zero. It shows the configuration position of the 

coordinate points representing each category on the contingency table centred at the origin. The coordinate 

points close to the origin indicate that the category represented by the coordinate point does not explain the 

association between variables. Therefore, a measure is needed to find out how close (or far) a coordinate is 

from the origin so that it is said to contribute significantly in describing the association between categorical 

variables. It can be known through the circular confidence regions construction [7]. This construction is 

important to determine which categories contribute significantly to the structure of dependence between 

variables. Lebart [9] defined circular confidence regions for the principal coordinates of row (𝑟𝑖,𝛼) and column 

(𝑟𝑗,𝛼) as follows 

𝑟𝑖 = √
𝑛 ∙ 𝜒𝛼

2

𝑛𝑖.
 dan 𝑟𝑗 = √

𝑛 ∙ 𝜒𝛼
2

𝑛.𝑗
.                                                                (5) 

Here 𝜒𝛼
2 is the (1 − 𝛼)th percentile of the chi-square distribution with degrees of freedom 2. For the two-

dimensional plot on ℝ2 with a significance level 𝛼 = 5%, the value of 𝜒𝛼
2 = 5.99 is obtained. Additionally, 

𝑟𝑖,𝛼 and 𝑟𝑗,𝛼  are the radius length of the 100 (1 − 𝛼)% circular confidence region for the 𝑖th row and 𝑗th 

column categories in the contingency table, respectively. 

Taking into the theory underlying the construction of the 100 (1 − 𝛼)% confidence region of a 

coordinate point in a correspondence plot, one can estimate the p-value of this point in relation to its proximity 

to the origin. The p-value can be used to assess the statistical significance of the row (or column) categories 

on the association between variables. The approximation is determined and derived algebraically based on 

the circular region [14]. 

The p-value approximation is determined by firstly formulating the null hypothesis and its alternatives. 

Considering the relative distance of a row (or column) principal coordinate from the origin on a 

correspondence plot reflects the variation of the category corresponding to that coordinate under the 

assumption that 𝐻0 is independent. Thus, a contribution to the chi-square statistic of the ith row category or 

jth column category can be determined by considering proximity from the origin. The following is the 

formulation of the null and alternative hypotheses 

𝐻0:  𝑓𝑖𝑚 = 0,   𝑣𝑠.   𝐻1:  𝑓𝑖𝑚 ≠ 0,                                                        (6) 

𝐻0:  g𝑖𝑚 = 0,   𝑣𝑠.   𝐻1:  g𝑖𝑚 ≠ 0.                                                        (7) 

where 𝑚 = 1, 2, ⋯ , ℳ∗.  

 Based on the hypothesis above, consider the following statistics 

𝛸𝑖ℳ∗
2 = 𝑛𝑝𝑖∙ ∑ 𝑓𝑖𝑚

2ℳ∗

𝑚=1 ,                                                                          (8) 

𝛸𝑗ℳ∗
2 = 𝑛𝑝∙𝑗 ∑ g𝑗𝑚

2ℳ∗

𝑚=1                                                                           (9) 

Generally, the plot dimensions used to represent the association between the row and column 

categorical variables are less than ℳ∗ = min {𝐼, 𝐽} − 1. The plot dimensions used are commonly 𝐷 = 2 on 
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ℝ2 or 𝐷 = 3 on ℝ3. Therefore, the p-value approximation of the principal coordinates of the ith row and jth 

column in the m-dimensional correspondence plot to be calculated by 

𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑖𝐷 = 𝑃{𝜒𝛼
2 > 𝜒𝑖𝐷

2 } ≈ 𝑃{𝜒2 > 𝑛𝑝𝑖∙ ∑ 𝑓𝑖𝑚
2𝐷

𝑚=1 }                      (10) 

𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑗𝐷 = 𝑃{𝜒𝛼
2 > 𝜒𝑗𝐷

2 } ≈ 𝑃{𝜒2 > 𝑛𝑝∙𝑗 ∑ 𝑔𝑗𝑚
2𝐷

𝑚=1 }                    (11) 

Equations (10) and (11) consider the proximity of a coordinate point from the origin and ignore the 

principal inertia for each axis in the correspondence map. Based on the sample in the contingency table, this 

p-value represents the opportunity to get the coordinates of the ith line as the observed extreme point from 

the contingency table. Thus, a p-value less than a certain significance level provides evidence that the 

category has a statistically significant contribution in describing the association structure since a certain point 

in the configuration is assumed inconsistent. 

 

 

3. RESULTS AND DISCUSSION 

This section presents the results obtained at the development stage and case studies. The results at the 

development stage are in the form of algorithms and R code to determine the circular confidence regions in 

the correspondence analysis. The algorithm is applied to the real data. Data on Covid-19 cases in West Java 

Province was used as a case study. 

 

3.1. Simple Algorithm for Circular Confidence Regions 

From equations (3), (4), and (5), the following algorithm is obtained 

Algorithm 1. Circular confidence regions construction 

Step 1: Calculate the standard residual matrix, 𝐒.   
Step 2: Determine the SVD of the standard residual matrix, 𝐒 = 𝐔𝐃𝜎𝐕T. 

Step 3: Determine the principal coordinates of row 𝐅 and column 𝐆. 

Step 4: Construct circular confidence regions for the principal coordinates of row 𝑟𝑖,𝛼 and column 𝑟𝑗,𝛼 . 

Step 5: Plotting correspondence plot and circular confidence regions. 

 

Algorithm 1 was obtained by modifying Beh and Lombardo's algorithm [14]. The main difference 

between this algorithm and previous research lies in determining the standard residual matrix and the 

principal coordinates built directly from the contingency table (without involving the correspondence matrix). 

The advantages of working from this contingency table include (1) reducing long computational processes; 

(2) minimizing the rounding process such that computational errors can be minimized and the principal 

coordinates produced are more precise than the classical method; and (3) the algorithm is simpler. The 

algorithm is presented in R code with input parameters as follows 

(1) Contingency table or cross-tabulation matrix 𝐍. 

(2) M, the number of dimensions considered to construct circular confidence regions or calculate p-values. 

From an algebraic perspective, M is the rank of the cross-tabulation matrix 𝐍. On the other side, from 

the correspondence analysis point of view, M referred to the minimum dimensions required to obtain an 

optimal correspondence plot. It is usually set as 𝑀 = min(𝐼, 𝐽) − 1, where 𝐼 and 𝐽 are the number of 

rows and columns of 𝐍. 

(3) alpha, significance level considered for constructing circular confidence regions.  By default, set 

alpha=0.05. 

(4) scaleplot, a function that scales the principal axis to provide the best visualization of principal 

coordinates or circular confidence regions. By default, set scaleplot=1.2. 

(5) a1 and a2, dimensions used to construct a two-dimensional correspondence plot. By default, set a1=1 

and a2=2 to construct a plot on ℝ2. 

(6) cols, the colors used to draw principal coordinates, labels, and circular confidence regions. By default, 

the red is choose to the row features, and blue to the column features. 
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Here is an R script to construct circular confidence regions by applying Algorithm 1. 

 
#Input parameters of contingency table 

N<-matrix(c(10554,2349,1747,4903,4812,1012,1779,477,5653,1570,608,2178,2171,638,2937, 

6330,2281,602,4213,920,14052,2467,20293,28089,3914,1805,572,27511,5677,639

1,24123,19430,4296,8819,11570,15545,7497,7275,10651,6101,10548,34682,37987

,12983,3438,26162,6452,23307,8530,58950,52717,6420,10096,3350,138,66,14,50

1,987,189,237,90,274,184,124,449,120,388,1578,83,205,88,400,248,213,85,383

,1085,125,434,95),ncol = 3) 

dimnames(N)<-list(paste(c("Bogor","Sukabumi","Cianjur","Bandung","Garut", 

"Tasikmalaya","Ciamis","Kuningan","Cirebon","Majalengka","Sumedang", 

"Indramayu","Subang","Purwakarta","Karawang","Bekasi","West Bandung", 

"Pangandaran","Bogor City","Sukabumi City", "Bandung City","Cirebon City ", 

"Bekasi City","Depok City","Cimahi City","Tasikmalaya City","Banjar 

City")),paste(c("Isolated","Healed", "Died"))) 

city<- dimnames(N)[[1]]          #row category label 

case<- dimnames(N)[[2]]            #columncategory label 

 

##Contingency table 

N 

 

#1# CALCULATE THE STANDARD RESIDUAL MATRIX 

n <- sum(N)                        #number of observation 

I <- nrow(N)                       #number of row 

J <- ncol(N)                       #number of column 

b <- as.matrix(apply(N, 1, sum))   #row marginal frequencies vector 

k <- as.matrix(apply(N, 2, sum))   #column marginal frequencies vector 

Db<-diag(b[1:I])                   #diagonal matrix of row marginal frequencies 

Dk<-diag(k[1:J])                   #diagonal matrix of column marginal frequencies 

 

##The standard residual matrix 

S<-(diag((b^(-0.5))[1:I]))%*%(N-((1/n)*(b %*% t(k))))%*%(diag((k^(-0.5))[1:J])) 

S 

 

#2# DETERMINE THE SVD OF THE STANDARD RESIDUAL MATRIX       

dns <- svd(S) 

dns 

 

#3# DETERMINE THE PRINCIPAL COORDINATES OF ROW AND COLUMN 

f<-((n^(0.5))*(diag((b^(-0.5))[1:I])))%*%(dns$u)%*%(diag(dns$d)) 

f 

g<-((n^(0.5))*(diag((k^(-0.5))[1:J])))%*%(dns$v)%*%(diag(dns$d)) 

g 

 

#4# CONSTRUCT CIRCULAR CONFIDENCE REGIONS 

#Input parameter M 

M =min(nrow(N), ncol(N))-1 

#Input parameter alpha 

alpha<-0.05 

 

##Inertia 

Inersia.Principal<- diag(t(f[, 1:min(I-1, J-1)])%*% ((1/n)*Db)%*% f[, 1:min(I-1,J-1)]) 

Inertia.Total<- sum(Inersia.Principal) 

Percentage.Inertia <- (Inersia.Principal/Inertia.Total) * 100 

Total.Perc.Inertia.M <- sum(Inersia.Principal [1:M]) 

 

##Circular convidence regions 

chi.squared.stat<- qchisq(1-alpha, df = (I - 1) * (J - 1)) 

radii <- sqrt(qchisq(1 - alpha, 2)/(b)) 

radij <- sqrt(qchisq(1 - alpha, 2)/(k)) 

 

#Approximate p-values 

pvalrowcircle <- vector(mode = "numeric", length = I) 

pvalcolcircle <- vector(mode = "numeric", length = J) 

 

for (i in 1:I){ 

 #P-value approximation for the circular confidence regions of the row category 

  pvalrowcircle[i] <- 1 - pchisq(b[i] * (f[i, 1]^2 + f[i, 2]^2),df = (I-1)*(J-1)) 

} 
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for (j in 1:J){ 

  # P-value approximation for the circular confidence regions of the column category 

  pvalcolcircle[j] <- 1 - pchisq(k[i] * (g[j, 1]^2 + g[j, 2]^2),df = (I - 1) * (J - 1)) 

} 

 

#5# PLOTTING CORRESPONDENCE PLOT AND CIRCULAR CONFIDENCE REGIONS 

 

par(pty = "s") 

 

#Input parameter scaleplot,a1,a2,cols 

scaleplot<-1.2 

a1<-1 

a2<-2 

cols=c(2,4) 

 

##Correspondence plot 

plot(0, 0, pch = " ", xlim = scaleplot * range(f[, 1:M], g[, 1:M]), 

     ylim = scaleplot * range(f[, 1:M], g[, 1:M]), 

     xlab = paste("Principal Axis", a1, "(",round(Percentage.Inertia[a1],digits = 2), 

"%)"),  

     ylab = paste("Principal Axis", a2, "(",round(Percentage.Inertia[a2], digits = 2), 

"%)")) 

text(f[,1], f[,2], labels = city, adj = 0, col = cols[1]) 

points(f[, a1], f[, a2], pch = "*", col = cols[1]) 

text(g[,1], g[,2], labels = case, adj = 1, col = cols[2]) 

points(g[, a1], g[, a2], pch = "#", col = cols[2]) 

abline(h = 0, v = 0) 

 

##Circular confidence regions 

title(main = paste(100 * (1 - alpha), "% Confidence Regions")) 

symbols(f[,a1], f[,a2], circles = radii, add = T, fg = cols[1]) 

symbols(g[,a1], g[,a2], circles = radij, add = T, fg = cols[2]) 

 

#SUMMARRY# 

summ.name <- c("Radius","P-value-circle") 

row.summ <- cbind(radii,pvalrowcircle) 

col.summ <- cbind(radij,pvalcolcircle) 

dimnames(row.summ) <- list(paste(city), paste(summ.name)) 

dimnames(col.summ) <- list(paste(case), paste(summ.name)) 

 

list(Row.Summary = round(row.summ, digits = 4), Column.Summary = 

       round(col.summ, digits = 4)) 

 

3.2. Case Study 

This case study presented the analysis of Covid-19 data in West Java Province. The data records the total 

confirmed cases of Covid-19 in 27 Cities/Regencies of West Java on July 28, 2021. The analysis involves 

two categorical variables, covering Cities/Regencies in West Java, with a nominal scale consisting of 27 

categories, and the other variable is confirmed Covid-19 cases, which has a nominal scale and consists of 

three categories. The attributes of each variable are presented in Table 1 

 
Table 1. Categorical variables attributes 

Variable 
Category 

 

City/Regency 

1= Bogor 

2= Sukabumi 

3= Cianjur 

4= Bandung 

5= Garut 

6= Tasikmalaya 

7= Ciamis 

  8= Kuningan 

  9= Cirebon 

10= Majalengka 

11= Sumedang 

12= Indramayu 

13= Subang 

14= Purwakarta 

15= Karawang 

16= Bekasi 

17= West Bandung  

18= Pangandaran 

19= Bogor 

20= Sukabumi 

21= Bandung City 

22= Cirebon City 

23= Bekasi City 

24= Depok City 

25= Cimahi City 

26= Tasikmalaya City 

27= Banjar City 

Confirmed Case 

of Covid-19 

1= Isolated 

2= Healed 

3= Died 
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By running the previous R code on the Covid-19 data obtained the correspondence plot and circular 

confidence regions as follows 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Correspondence Plot and Circular Confidence Regions for the Covid-19 Data in West Java 

 

The association structure between Cities/Regencies in West Java based on the type of confirmed cases 

of Covid-19 is visualized through Figure 1(a). The figure suggests that the coordinates which represent the 

"died" category are located farthest from the origin (0,0). It shows that the "died" column category has the 

largest contribution to the association structure among variables. If the scaleplot=0.5 is set up, we can 

observe the "Bandung" coordinate is closest to the "healed" coordinates than other coordinates, and the 

coordinates with relatively close to "isolated" are the "Bandung City", "Depok City" and "Cimahi City" 

coordinates". It indicates that there is a strong association between the number of recovered cases and 

Bandung Regency and the number of isolated cases in Bandung City, Depok City and Cimahi City. 

How close (or far) a coordinate from the origin such that it is said to contribute significantly in 

describing the association between categorical variables can be known by its circular confidence region as 

shown in Figure 1(b). If its circular confidence region contains the origin (0,0), then the category represented 

by this coordinate does not significantly explain the association between variables. 

The circular confidence regions for each row and column principal coordinate are presented separately 

in Figures 1(c) and 1(d). It addressed to get a better interpretation about which categories contribute to the 

(a) (b) 

(c) (d) 



72  Lestari , et. al.    Simple Algorithm to Construct Circular Confidence....…  

association structure between variables. Figure 1(c) shows that the confidence region of the "Cirebon City" 

coordinate contains the point (0,0). It indicates that "Cirebon City" does not contribute significantly to the 

association structure such that if the Covid-19 cases in Cirebon City are excluded, it will not affect the 

analysis. Furthermore, Figure 1(d) shows that the confidence region of each column category does not contain 

a point (0,0). It indicates that each of these categories contributes significantly to the association structure 

among variables. In addition, this figure exhibit that the coordinates of the "isolated", "healed", and "died" 

categories lie on different quadrants. Therefore, the column categories can be said to be mutually independent. 

Generally, the observed categories significantly contribute to the association between variables, except 

for the "Cirebon City" category, which is not significant. For more details, the p-value for each category is 

presented in Table 2. 

  
Table 2. Radius and p-value of circular confidence regions for the Covid-19 data in West Java 

Category Radius p-value Category Radius p-value Category Radius p-value 

Row Category         

Bogor 0,0125 0,0000 Majalengka 0,0254 0,0000 Bogor City 0,0140 0,0000 

Sukabumi 0,0272 0,0000 Sumedang 0,0274 0,0000 Sukabumi City 0,0280 0,0000 

Cianjur 0,0271 0,0001 Indramayu 0,0212 0,0000 Bandung City 0,0126 0,0000 

Bandung 0,0142 0,0000 Subang 0,0267 0,0149 Cirebon City 0,0233 0,8891 

Garut 0,0154 0,0000 Purwakarta 0,0228 0,0000 Bekasi City 0,0087 0,0000 

Tasikmalaya 0,0330 0,0000 Karawang 0,0124 0,0000 Depok City 0,0086 0,0000 

Ciamis 0,235 0,0000 Bekasi 0,0116 0,0000 Cimahi City 0,0239 0,0000 

Kuningan 0,0222 0,0000 West Bandung  0,0197 0,0000 Tasikmalaya City 0,0220 0,0000 

Cirebon 0,0167 0,0000 Pangandaran 0,0381 0,0000 Banjar City 0,0386 0,0000 

Column Category         

Isolated 0,0068 0,0000 Healed 0,0036 0,0000 Died 0,0261 0,0000 

 
 

4. CONCLUSIONS 

The circular confidence regions algorithm proposed is built directly from the contingency table 

(without involving the correspondence matrix). Some of the advantages of working from a contingency table 

include: 

(1) Reduce long computational processes. 

(2) Minimize the rounding process to reduce computational errors and obtain the principal coordinates that 

are more precise than the classical method. 

(3) The algorithm is simpler than in previous literature. 
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