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Abstract. Rice is one of the staple foods produced from the rice plant. Rice productivity is increased by carrying out
efforts to control diseases that usually attack rice plants. Tungro is one of the most destructive diseases of rice plants.
Mathematical models can help solve problems in the spread of plant diseases. In this paper, the development of a
mathematical model for the spread of tungro disease in rice plants with 6 compartments is developed involving rice
in the vegetative and generative phases. Furthermore, stability analysis is carried out on the obtained model by using
the Basic Reproduction Number (R,) search through the matrix method, especially through the search for transition
matrices and transmission matrices. The analytical results show that when Ry <1 the non-endemic equilibrium point
is stable and when Ry>1 the endemic equilibrium point is stable. Numerical results showed that rice plants in the
generative phase were more infected than rice plants in the vegetative phase.
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1. INTRODUCTION

One of the goals of the Sustainable Development Goals (SDGS) is to achieve food security and promote
sustainable agriculture. To meet food security, one of which is the availability of staple foods, such as rice
which is a staple food derived from rice plants. Therefore, efforts need to be made to achieve this target, by
controlling the spread of certain diseases in rice plants, one of which is tungro disease. Green leafhopper is a
vector that is the primary mediator of the transmission of tungro disease to the rice plant population. If the
infection occurs at the nursery stage, tungro symptoms will appear on plants aged 2-3 weeks after planting.
Infected young rice plants are a source of primary inoculum after rice is planted in the field. During one
period of rice plant growth there were two peaks of infected plants. The first peak of infection was caused by
immigrant insects, while the second peak of infection was caused by infection with descendants of immigrant
insects.

The field of mathematics can contribute to solving these problems; one way is through mathematical
modeling. Mathematical modeling can provide significant in-sight into population behavior and is essential
in understanding plant disease dynamics. Research on mathematical modeling of the spread of plant diseases
has been carried out, one of which is the development of mathematical models for vector infection dynamics
[1]. There are researchers who make epidemic models that describe the dynamics of the spread of plant
diseases transmitted by vectors by building the Lyapunov function for global stability [2]. Other researchers
have modeled the spread of disease in maize [3].

To see the effectiveness of a model made, a very important step is to analyze the stability of the model.
The asymptotically stable equilibrium state of a model is called a particular property of interest [4]. Examples
of research that performs model stability analysis include modeling and stability analysis as well as optimal
control of vector-borne diseases with nonlinear incidents [5]. Research that creates and analyzes a plant
disease epidemic model with monotonic and bilinear cases [6]. In addition, researchers who analyze plant
disease models that are transmitted through vectors using fractional derivatives [7]. Researchers who create
and analyze mathematical models of insect-borne dispersion diseases with regard to climate change [8],
followed by performing numerical simulations to understand the behavior of the mathematical model [9].
Other researchers, carried out mathematical modeling of the spread of diseases specifically on rice plants.
They performed an analysis of the insecticidal effect for infected plants and briefly discussed the stability
analysis of the model, and presented optimal control via Pontryagin's Maximum Principle [10]. The following
year researchers continued to study plant epidemic models involving fungicides with curative treatments [11],
and determine the optimal control of the mathematical model of plant diseases to see the effectiveness of the
application of fungicides [12]. Furthermore, in 2020, researchers will create and analyze the stability of a
mathematical model of the spread of diseases in rice by involving vectors transmitted by green leafhoppers
by considering predator-prey interactions between green leafhoppers and ladybugs [13] and researchers who
analyzed the mathematical model of the spread of the yellow virus on red chili plants through insect vectors
with logistic functions [14].

All of the above plant disease distribution models use stability analysis with various methods. The
most widely used method for stability analysis of plant disease distribution models is the method that involves
the Jacobian matrix, which is to find the roots of the characteristic equation of the formed Jacobian matrix.
This method uses a separate step between stability analysis and finding the Ro value. In addition, for models
with a large number of compartments, this method requires the assistance of other methods in determining
the roots of the characteristic equations.

For this reason, a method that can directly determine the value of Ro and analyze the stability of the
model is needed, without the help of other methods. The basic reproduction number (R,) is a key parameter
in plant disease epidemiology, which largely determines whether or not an epidemic will occur in a plant
population. Research on methods for finding Ro in plant disease distribution models has been carried out,
namely research that calculates the basic reproduction number of vector-borne plant virus epidemics, using
the Next Generation Matrix approach [15]. However, this research has only reached the stage of finding Ro,
it has not been used further for model stability analysis.

We developed a mathematical model for the spread of tungro disease in rice plants, which is a
development of the previous model [10], by adding rice compartments in the vegetative and generative
phases. Furthermore, stability analysis was carried out on the obtained model by using the Basic Reproduction
Number (R,) search through the matrix method. The matrix method referred to in this study is to utilize the
properties of the matrix formed, by separating the transition and transmission matrices [16]. Basically, the
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matrix method is commonly used in stability analysis of disease distribution models. However, the matrix
method that is commonly used is only at the stage of forming the Jacobian matrix, and has not yet separated
and used the properties of the transition and transmission matrices. So that the matrix method used in this
paper can be an effective alternative to analyze the stability of the model for the spread of tungro disease in
rice plants.

2. RESEARCH METHODS

2.1. Basic of Algebra[16]
In this section, some algebraic concepts will support the discussion of the problem.

Definition 1

Let A be a p x p real matrix, and p = {1,2, ..., p}. Then the following properties are satisfied.
1. A isthe M-matrix if A; =0, A;; < 0; Vi, j(# i) €p.

2. A isaMetzler matrix denoted by A e MgP*? if A;; > 0; Vi, j(# i) € P.

Theorem 1

Assume that A € R™ " then the following properties apply.

(i) Aisan M-matrix if and only if (—A4) € MP*"

(ii) A isnonsingular with A~ > 0 if and only if A is an M-matrix

(iii) A is nonsingular with A~ > 0 if and only if (—A) € MF*™ is the stability matrix.

Definition 2
Let A be ap x q real matrix, and p = {1,2, ...,p} , § = {1,2, ..., q}. Then A is a nonnegative (4 > 0) if
Aij = 0;Vv;€e D, Vje q,

Definition 3
Let = (4;;) € RP*? ,and p = {1,2,...,p}, g = {1,2,...,q}. Then A is a positive matrix (A > 0) if A;; >
0; ViE ﬁ, V]E C_[

Theorem 2: Local Stability Disease-free equilibrium point

Let F is the transmission matrix and V is the transition matrix at the disease-free equilibrium point. The
linearized system around the disease-free equilibrium point is unstable if some of the conditions given below
hold:

1) (F—V) e Mg* is not a stability matrix

2) (F=V)eMP™and (V—F) 1 either does not exist or if it exists is not positive.

3) (—V) € ME* and it exists as V~1 which is not positive, F =0 and p(FV™1) > 1.

This theorem is equivalent to the Theorem 3 below

Theorem 3: Local Stability Disease-free equilibrium point

Let F € R™™ is the transmission matrix and ¥V € R™"™ is the transition matrix at the disease-free
equilibrium point. The linearized system around the disease-free equilibrium point is stable if all the
conditions given below apply:

1) (F—V) e Mg*™ isa stability matrix

2) (F—V)eMg™and (V—F) ! existand positive matrix

3) (-V)eMpP™ Vv1>0,F =0 dan p(FV1) <1.

A joint sufficiency-type condition or any of the above conditions (1)-(2) to hold is condition 3.

Theorem 4: Local Stability and Existence of Disease Equilibrium Point

Let F € R™™ and V € R™™ are transmission matrix and transition matrix at disease-free equilibrium point,

respectively. While F, € R™™ and I/, € R™" are respectively transmission matrix and transition matrix at

disease equilibrium point, following properties apply:

1) Transition matrix at disease equilibrium point and free from disease is (I},) and (V) identical and does
not depend on a reproduction number, and (=V) € Mg*" is stability matrix.

2) Disease equilibrium points and disease free equilibrium points exist and are unique to all R, € [0, +o0]

3) Disease-free transmission matrix and disease-transmission matrix are non-negative, i.e. F = F(R,) >0,
F, = F,(Ry) =0and R, = p(FV~1) is areproduction number.
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4) IfRy<1then F<F,,if Ry >1then>F,,and if R, = 1then F = F, . Then asymptotically stable
local disease equilibrium point if R, = 1 and unstable if R, < 1.

2.2. Analysis of Stability Differential Equation Systems using Matrix Method

The flow of the analysis of the stability of the system of differential equations using the matrix method
is as follows:

1. Determine disease-free equilibrium point and disease equilibrium point from the model.

2. Model is constructed into a matrix by performing a linearization process to obtain the Jacobian matrix
from the system. This matrix consists of a noninfective (disease-free) Jacobian matrix and an infective
Jacobian matrix.

3. Matrix F € R™™ and matrix (V) € R™" are disease transmission matrix and transition matrix of
linearized system around a disease-free equilibrium point, respectively. Matrix F, € R™"™ and matrix
(V) € R™"™ are disease transmission matrix and transition matrix of linearized system around a disease
equilibrium point, respectively. Matrix F, F, and V, V, are determined by partitioning matrix.

4. Analysis of characteristics of transition matrix with its stability properties is related to properties of
Metzler matrix and M-matrix. Analysis of transmission matrix, so that transmission matrix is not
negative. This transition matrix and transmission matrix will define an auxiliary matrix (Next Generation
Matrix), namely V~1 . The largest eigenvalue of the Next Generation Matrix is a parameter relevant to
the system's stability and determines the sum of a basic reproduction number of diseases.

5. Furthermore, a linearized system around a disease-free equilibrium point is locally stable if this auxiliary
matrix (Next Generation Matrix) has a maximum positive eigenvalue and less than one. The basic
reproduction number coincides with the spectral radius of the disease spread model.

3. RESULTS AND DISCUSSION

3.1. Formulation of Mathematical Model

Assume that the plant population is divided into four classes. The population of healthy rice plants in
the vegetative phase is denoted by S,,, the population of infected rice plants in the vegetative phase is denoted
by I,,, the population of susceptible rice plants in the generative phase is denoted S, and the population of
infected rice plants in the generative phase is denoted I,. Then there is the vector that carries the tungro
disease, namely the green leafhopper. The population of green leafhoppers is divided into two classes,
susceptible green leafhoppers are denoted by Sy, and infected green leafhoppers are denoted by I,. The
rate of recruitment of rice plants is denoted and the rate of vector recruitment is denoted which is constant
and each population enters the vulnerable compartment. Healthy plant S, S, infected through an infected
vector Iy that carries the tungro disease virus. Furthermore, the susceptible vector Sy, is infected by
sucking the rice plants affected by the disease. Infected plants and vectors cannot recover. Dimensions of
time used in days. Model designed based on host vector model. Another assumption is that there is no
influence of environmental factors and climatic factors.

Based on the above assumptions, schematic diagrams and flowcharts of the spread of tungro disease
in rice plants can be seen in Figure 1 and Figure 2

Rice Crop Natural death Natural death Natural death
Population t T
Requisition Infection

Rice Plants Growth rate Rice Plants Rate Rice Plants
»  Susceptible to +  Susceptible to — ul Infected in
Vegetative Phase Generative Phase Generative Phase

Green Leafhopper

. Infected Infection Rate| Susceptible Population Recruitment
Infection Green = Green -
Rate Leafhopper Leafhopper
I v
Natural death Natural death

Rice Plants
Infected with
Vegetative Phase

v
Natural death

Figure 1. Schematic diagram of model spread tungro disease in rice plants with vector transmission
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Figure 2. Flowchart of model spread tungro disease in rice plants

From Figure 1 and Figure 2, a model can be constructed in the form of a differential equation as follows:
ds,

=A—aS, — B1Sulwn — .upSv

dt
dl

— = B1Svlwr — .uplv

g:

dt ,BZSgIWH _.uplg

dSwh

dt

The parameters contained in this model are described in Table 1

—=as, — ﬁZSgIWH - .upsg

ey

=w — Y1 L,Swu — VngSWH — USwn

= V1ilySwu + V2lgSwn — ilwn

Table 1. Definition of variables and parameters

Variables/ Definition Unit
Parameters
N, Rice plant population (N, =S, + Individual Plant
I+ S+ 1)
Ny Green Leafhopper Population (N,,, = Individual Vector
Swa + lwu)
Sy Healthy rice plant population in the Individual Plant
vegetative phase
Iy Infected rice plant population in the Individual Plant
vegetative phase
Sy Healthy rice plant population in the Individual Plant
generative phase
Iy Infected rice plant population in the Individual Plant
generative phase
Swi Healthy Green Leafhopper Population Individual Vector
| Infected Green Leafhopper Population Individual Vector
A Rice plant recruitment rate 1
day
1) Green planthopper recruitment rate 1
day
a Rice plant growth rate from 1
vegetative to generative phase @
B The rate of infection of rice plants in 1

the vegetative phase

individual X day
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%?Z%ZES!S Definition Unit
B, The infection rate of rice plants in the 1
generative phase individual X day
Y1 Green planthopper infection rate 1
when taking food from infected rice individual X day
plants in the vegetative phase
Y Green planthopper infection rate 1
when taking food from infected rice individual X day
plants in the generative phase
Up Rice plant death rate 1
day
W Green planthopper natural death rate 1
day

3.2. Equilibrium Point

Based on model (1), we have two equilibrium point there are the disease-free equilibrium point
(Eq4f) and the endemic equilibrium point (E,.,q)

Ear = ((ar Uar: Sdar Udap Gwidag, Cwdar) = (2 0,255,020 ()

atpp " pp(atup)’

A Aa w
(Sv)ar = T ()ar =0,(Sg)ar = o ariy) Uglar =0, Swrdar = Uwn)as =0
Eend = ((SV)endr (IV)end: (Sg)end' (Ig)end' (SWH)end: (IWH)end) (3)
_ A _ AB1lwH _Aa _ AaBrlwH
(SV)end - a+Brlwn+ip ’ (IV)end - #p(a+B1IWH+Mp)'(Sg)end a4 (Ig end — LpA
wipA
(SwH)ena =

Aprpp+MwaUwHB1B2v1+aB2v2+ 1y B1Y1)
with A = Iyu’B1Bs + aPalwy + IwuBiby + Iwuitp Bz + apy + p,? (4)

3.3. The Construction of Matrix Model

The first step in constructing the model to be a matrix is the linearization process. The linearization
process is the process of forming the Jacobian matrix of the system. The Jacobian matrix was divided into a
non-infectious (a disease-free) Jacobian matrix and an infective Jacobian matrix.
The noninfective Jacobian matrix of the tungro disease spread model is as follows.

—a—pu, 0 0 0 0 ACHE
0 —H, 0 0 0 :Bl(sv )df
I(df) = a 0 —H, 0 0 -5 (Sg ) 5)
0 0 0 —Hy 0 5 (Sg Dar
0 ACTT I 72 (Swm e —H4 0
0 JACT P 0 72 (S s 7200 ) g +72(|g)df —H

The infective Jacobian matrix of the tungro disease spread model is as follows.

==l e 0 0 0 0 B8 e
il ~Hy 0 0 0 A5 s
: a 0 _ﬂZIWH ~Hp 0 0 _ﬂz(sg)end
0=, 0 Bl om0 b6 |
0 (S )es 0 oS dens (0 g _72(|g)nd -4 0
0 JACT VoG )as 710 g 17201 ) —H

From matrik (5) we partition of matrix the matrikx to be F — V' as follows.
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—Hp 0 ﬂl(sv )df
F-V= 0 —Hp 5, (Sg )t )
JACT P A G —H,
0 0 ACr -, 0 0
F= 0 0 Bo(Sy)y | @and -V = 0 —x, 0 | ®)
7Sw)ar 72 (Sum ar 0 0 0 -4
o o PAA
a+ m 0 0
-l o pro_ | A y_lg 4 0 )
(a+ up) pp 0 0 g
ne pe
L H H |

Where

F, is the transmission matrix at the disease-free equilibrium point
V. is the transition matrix at the disease-free equilibrium point.
We define that |V| is determinant of V, where :

u 0
4 0 u1| = wp (Hpts) = 12ty (10)
L 0 O ]
Hp
11
vizlo I o0 (D
Hp
0 0 1
H J
From matrix (6) we partition the matrix into a matrix £, — V,_e as follows
—Hp 0 ﬁl (S )end
Fe _Ve = 0 —Hp ﬁz (S )end (12)
7/1 (SWH )nd 7/2 (SWH end
0 0 ﬂl(sv )end
FE=| 0 0 By(S )y |andV, = o u 0. (13)
71w dens 72 (S Deng 0 0 0 g

Where

F, is the transmission matrix at the disease equilibrium point

V. is the transition matrix at the disease equilibrium point

The transition matrix of the disease equilibrium equal to the transition matrix the disease free equilibrium
point, as in equation (14)

Mo 0 0 4 0 0
V,=| 0 w ol|9v_lo 4 o (14
0 0 g 0 0 px

3.4. Matrix Analysis

Based on definition 1, from the matrix (F —V) obtained (F —V) € Mg>** with the following
process.
(F-=V)ijz0;vij(x)€ep p= {12}

_ B
(F=V)12=0, (F— V)13—a+ﬂ >0,

B2A Y1 Y2w
F-V =0 (F-V =—>0,(F-V =—>0,(F-V =—>0
( )21 ( )23 @+ )i ( )31 " ( )32 "

Based on definition 1, from the matrix VV obtained —V € M3*3 with the following process.
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(Vi z0viji)ep p= {13}
(—V)12=0, (=V)13=0 (=V)21=0 (V)23 =0 (V)31 =0 (V)32 =0
Based on definition 2, from the matrix V! obtained V~1> 0, with the following process.
V'l =20;Vep,Vieq p=q= {13}
y-l, = i >0,Vl,=0V"15=0,V"1,,=0V"1,= i >0,V =0,

V_131 = 0, V_132 = 0, V_133 = [.ll > 0,
1

Based on definition 3 from the matrix F obtained F > 0, with the following process.
Fij > 0; V€ p, VjE qp=q~= {1,3}

_ _ _ B _ Bav _ _ BiA e
Fi1 =0, F12—0F13—a+uP>OF21— B >0;F22—0F23——(a+ﬂp)#P>0,F31— py

M>0,F33:O
1238

> 0,F32 =

Based on definition 3 from the matrix F, obtained F, > 0, with the following process
(F)ij=0;ViED,Vi€Eq.p=q= {1,3}.
(Fe)11 =0, (Fe)12 =0 (Fe)13 = B1(Sp)ena > 0 (Fe)21 = 0, (Fe)22 = 0 (Fe)23 = .BZ(Sg)end >0,
(Fe)z1 = Y1(Swh)ena > 0, (Fe)32 = V2(Swn)ena > 0, (Fe)33 =0

S, )en a+u a+u
(S, )eng = P < (S, =(Sv)df—p>0
Sa  (a+uy)+ Bl (@ +p,) + Bl
(Sglena (@ + ;)1 (o + p)
g d — p p = (Sg )end — (Sg )df ) p P > 0
(Sg )df A
St Den A Myt A
) _ Ly & Sumdoa = ot - >0
(Sw D lulﬂpA_'_j“IWH (\ By + a7, +ﬂpﬂ171)

ty iy A+ Ay (g BBors + By, + 1, i)

3.5. Basic Reproduction Number (Ry)

Matrix F and matrix (V) define the next generation matrix, i.e matrix FVV 1. The maximum modulus
FV~1 is a relevant parameter to characterize the stability of the infective compartment and determine the
disease reproduction number or basic reproduction number (R,) . The basic reproduction number (R)

associated with the maximum eigenvalues of the auxiliary matrix (FV 1), which coincides with its spectral
radius. Next written:

Ry=p (FV71) (15)
_ . i
0 0 p—
)
16
Fvi=| 0 0o B A (16)
(o + wp ) 14y 11p
o V2@ 0
LM Hp M Hp J
The eigenvalues of the matrix (FV 1) are
J@@+pp)io(aBzyz+B1yv141)
= =+ . 1
g1 =0andq;3 =+ (@) i1ty 17)

Basic reproduction number (Ry) is obtained from the spectral radius of the FV~1 matrix, so that

_ (a+up)Aw(afzy2+B1YV1l1)
Ry, = p(FV~1 CATE . 18
0 =p( ) (a+up)uipp (18)
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3.6. The Construction Matrix F(Ry) and Matrix F.(Ry)
The construction matrix F = F(Ry), F, = F,(Ry), With F = F(Ry) = 0and F, = F,(Ry) > 0
0 0 B e 19
F=F(R,)=(-R,).B. 0 0 m (19)
nows (@ + up)  y,0u (a+ 1) 0
with B = [(atpp)ppp+y/(@+up)iw(aBzy2+B1v1ip)] (20)
(@t ) [(11tp)” (@t ) ~Aw(@B2 2+ B1y1tp)]
F=F(Ry) =0
sothatobtained Ry = p(FV-1) < 1 with 22@Be¥etbivie) 4 (21)
(CH'.up)(IiIHp)
And we have
[ S
0 0 s g 211,
(Sv)df (22)
S
F.(R)=(R,-1)C. 0 0 Oodes s 204
(Sg)m
(SWH )end (SWH )end
ol hous (@t gp) S y,0u (a+ pp) 0
| Gudar BECH VRS |
. [(a+pp)prip+/(@+up)Aw(aBzyz+B1v14p)]
with C = 23
[Aw(aB2v2+B1v1p)—(@+ip) (Hipp) 2] (a+itp) (23)
F, > 0,then F,(Ry) =0
sothat obtained Ry = p(FV-1) > 1 with 22&beretbinin) o 4 (24)

(a+l~lp)(llllip)2

3.7. Stability Analysis
3.7.1 Stability at the disease-free equilibrium point

Based on theorem 3 concerning the local stability of the disease-free equilibrium point, the system (1)
is linearized around the disease-free equilibrium point giving several conditions that fulfill the necessary and
sufficient conditions for the asymptotically stable local disease-free equilibrium point, namely:
(F-V)eM3, (-V)eMz3,V1>0,F>0
and p(FV™1) <1 with F = F(R,) =0, where Ry = Ry(F) = p(FV~1) is the reproduction number, and
p(FV™) < 1with (up, + a)(.ul.up)z > Aw(aBzyz + Bryiup) or Aw(aﬁzy#ﬂlhlép) <1

(up+a)(uimp)
Proof: Based on the results of the analysis of the transition matrix and the transmission matrix at the disease-
free equilibrium point and forming the transmission matrix at the disease-free equilibrium point in the Basic
Reproduction Number (R,), namely F = F(R,) th following results are obtained

_—u 0 BA 1, 01
P
o+, 3x3 —1p 0 0 s Hp
EME™, v - €Mg™ , . 1 =0
Fvo| o A vel 0 4 o vl 3
(a+ﬂp)ﬂp 0 0 — 1, .
ho 70 —u 0 o 1
H H, : i I ,Lllj
| pi ]
o o P~
“rfe |20 and Ry = p(FV™1) < 1with 2@beratbinie) oy
F = 0 A (“"'l‘p)(lllﬂp)
(o + ) ttp
no pe
L 4 H

It is evident that the disease-free equilibrium point is locally stable asymptotic.
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3.7.2 Stability at the endemic equilibrium point

Based on theorem 4 regarding the local stability of the endemic equilibrium point, the system (1) is
linearized around the endemic equilibrium point giving several conditions that meet the necessary and
sufficient conditions for asymptotically stable local endemic equilibrium points, namely:

(V) € M3*3, is said to be a transition matrix at the endemic equilibrium point, where (1) = (V) € M3*3 is

the stability matrix, F,>0,and p(FV™1) > 1 with (u, + a)(,ulup)z < Aw(afyy, + B1yiup) OF

Aw(aB2y2+B1y1lp)
ip) 1,
(up+a)(minp)

Proof: Based on the results of the analysis of the transition matrix and the transmission matrix at the disease
equilibrium point and forming the transmission matrix at the disease equilibrium point in the Basic
Reproduction Number (Ry), namely F, = F,(R,) , the following results are obtained

Up 0 0 0 0 BI(SV)end
L=V=|[0 u O0[eM* E = 0 0 B2(Sg)ena |=0
0 0 wu Y1Swrdna Y2(Swr)end 0
dan Ry = p(FV~1) >1 with  2e@Perethinin) o 4
(a+pp)(1itp)

It is evident that the disease equilibrium point is locally stable asymptotically.

3.8. Numerical Simulation

Numerical simulations were carried out to show the population dynamics in the model (1). The
population dynamics that are made include model simulation when the value of R, < 1 and model simulation
when the value of R, > 1.

The dynamics of the spread of tungro disease are shown in Figures 3 and 4 with initial values and
parameter values in Table 3.

Table 3. Initial Values and Parameters

Variables/ Value Variables/ Value
Parameters Re<1) Re>1) Parameters Ro<1) Ro>1)
A 100 100 a 0.7 0.7
w 100 100 B1 0.0005 0.001
Sy 500 500 B> 0.0005 0.001
Iy 100 100 Y1 0.007 0.025
S, 300 300 Y2 0.005 0.02
I, 100 100 Uy 0.3 0.3
Swu 400 400 U 0.7 0.7
Iy 150 150

400 H

Rice Population SV

GL Population i 5 v
200 IWH —SG

200 —IG

100 4
100 4

0- 0 T T J
0 10 20 30 40 50 0 10 20 30
Time (t) Time (t)

Population Dynamics of Green Leathopper when R, = 0,7968 < 1 Dynamics Population of Rice when R, = 0,7968 < 1
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Figure 3. Dynamics Population of Green Leafhoppers (a) and (b) rice when Ro=0.7968 <1
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Figure 4. Dynamics Population of Green Leafhoppers (a) and (b) rice when Ry,=2.208 > 1

From Figure 3(a), it can be seen that the Green Leafhopper population is vulnerable when R, = 0.7968
< 1. Therefore, from the beginning, it will continue to decline, then the next day, it will increase and tend to
be constant. As for the Green Leafhopper population that was infected initially, the population increased but
then continued to decline and experience extinction.

From Figure 3(b), Also, we can see the plant population in the vegetative and generative phases when
R, = 0,7968 < 1. Therefore, the population of susceptible rice plants in the vegetative and generative phases
will decrease and become constant. The rice plants infected by the vegetative phase decrease from the
beginning until it was extinct. Meanwhile, the rice plants infected by the generative phase are increasing at
the beginning and are also extinct at some point. This occurs because the reduced number of infected plants
causes a reduction of infection levels in susceptible rice plants.

From Figure 4(a) and Figure 4(b), it can be seen that the Green Leafhopper population as a vector
didn't become extinct. It means, when 2,208 > 1, the spread of Green Leafhopper in rice plants will continue
to occur.

Furthermore, the results showed that the population of rice plants infected by the generative phase was
higher than the vegetative phase.

4. CONCLUSIONS

The matrix method can be used to determine the stability of the system of differential equations and
the Basic Reproduction Number (R,) on the model of the spread of tungro disease in rice plants with the
vector of migrating green leafthoppers. In the analysis of the system’s stability, it was found that the non-
endemic and endemic equilibrium points were asymptotically stable. Numerical simulation results can
strengthen the analytical results. The population of rice plants infected by the generative phase is more than
by the vegetative phase.
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