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Abstract. Rice is one of the staple foods produced from the rice plant. Rice productivity is increased by carrying out 

efforts to control diseases that usually attack rice plants. Tungro is one of the most destructive diseases of rice plants. 

Mathematical models can help solve problems in the spread of plant diseases. In this paper, the development of a 

mathematical model for the spread of tungro disease in rice plants with 6 compartments is developed involving rice 
in the vegetative and generative phases. Furthermore, stability analysis is carried out on the obtained model by using 

the Basic Reproduction Number (𝑅0) search through the matrix method, especially through the search for transition 

matrices and transmission matrices. The analytical results show that when 𝑅0 <1   the non-endemic equilibrium point 

is stable and when 𝑅0>1   the endemic equilibrium point is stable. Numerical results showed that rice plants in the 
generative phase were more infected than rice plants in the vegetative phase. 
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1. INTRODUCTION 

One of the goals of the Sustainable Development Goals (SDGs) is to achieve food security and promote 

sustainable agriculture. To meet food security, one of which is the availability of staple foods, such as rice 

which is a staple food derived from rice plants. Therefore, efforts need to be made to achieve this target, by 

controlling the spread of certain diseases in rice plants, one of which is tungro disease. Green leafhopper is a 

vector that is the primary mediator of the transmission of tungro disease to the rice plant population. If the 

infection occurs at the nursery stage, tungro symptoms will appear on plants aged 2-3 weeks after planting. 

Infected young rice plants are a source of primary inoculum after rice is planted in the field. During one 

period of rice plant growth there were two peaks of infected plants. The first peak of infection was caused by 

immigrant insects, while the second peak of infection was caused by infection with descendants of immigrant 

insects. 

The field of mathematics can contribute to solving these problems; one way is through mathematical 

modeling. Mathematical modeling can provide significant in-sight into population behavior and is essential 

in understanding plant disease dynamics. Research on mathematical modeling of the spread of plant diseases 

has been carried out, one of which is the development of mathematical models for vector infection dynamics 

[1]. There are researchers who make epidemic models that describe the dynamics of the spread of plant 

diseases transmitted by vectors by building the Lyapunov function for global stability [2]. Other researchers 

have modeled the spread of disease in maize [3].  

To see the effectiveness of a model made, a very important step is to analyze the stability of the model. 

The asymptotically stable equilibrium state of a model is called a particular property of interest [4]. Examples 

of research that performs model stability analysis include modeling and stability analysis as well as optimal 

control of vector-borne diseases with nonlinear incidents [5]. Research that creates and analyzes a plant 

disease epidemic model with monotonic and bilinear cases [6]. In addition, researchers who analyze plant 

disease models that are transmitted through vectors using fractional derivatives [7]. Researchers who create 

and analyze mathematical models of insect-borne dispersion diseases with regard to climate change [8], 

followed by performing numerical simulations to understand the behavior of the mathematical model [9]. 

Other researchers, carried out mathematical modeling of the spread of diseases specifically on rice plants. 

They performed an analysis of the insecticidal effect for infected plants and briefly discussed the stability 

analysis of the model, and presented optimal control via Pontryagin's Maximum Principle [10]. The following 

year researchers continued to study plant epidemic models involving fungicides with curative treatments [11], 

and determine the optimal control of the mathematical model of plant diseases to see the effectiveness of the 

application of fungicides [12]. Furthermore, in 2020, researchers will create and analyze the stability of a 

mathematical model of the spread of diseases in rice by involving vectors transmitted by green leafhoppers 

by considering predator-prey interactions between green leafhoppers and ladybugs [13] and researchers who 

analyzed the mathematical model of the spread of the yellow virus on red chili plants through insect vectors 

with logistic functions [14]. 

All of the above plant disease distribution models use stability analysis with various methods. The 

most widely used method for stability analysis of plant disease distribution models is the method that involves 

the Jacobian matrix, which is to find the roots of the characteristic equation of the formed Jacobian matrix. 

This method uses a separate step between stability analysis and finding the Ro value. In addition, for models 

with a large number of compartments, this method requires the assistance of other methods in determining 

the roots of the characteristic equations. 

For this reason, a method that can directly determine the value of Ro and analyze the stability of the 

model is needed, without the help of other methods. The basic reproduction number (𝑅0) is a key parameter 

in plant disease epidemiology, which largely determines whether or not an epidemic will occur in a plant 

population. Research on methods for finding Ro in plant disease distribution models has been carried out, 

namely research that calculates the basic reproduction number of vector-borne plant virus epidemics, using 

the Next Generation Matrix approach [15]. However, this research has only reached the stage of finding Ro, 

it has not been used further for model stability analysis. 

We developed a mathematical model for the spread of tungro disease in rice plants, which is a 

development of the previous model [10], by adding rice compartments in the vegetative and generative 

phases. Furthermore, stability analysis was carried out on the obtained model by using the Basic Reproduction 

Number (𝑅0) search through the matrix method. The matrix method referred to in this study is to utilize the 

properties of the matrix formed, by separating the transition and transmission matrices [16]. Basically, the 
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matrix method is commonly used in stability analysis of disease distribution models. However, the matrix 

method that is commonly used is only at the stage of forming the Jacobian matrix, and has not yet separated 

and used the properties of the transition and transmission matrices. So that the matrix method used in this 

paper can be an effective alternative to analyze the stability of the model for the spread of tungro disease in 

rice plants. 

 

 

2. RESEARCH METHODS 

2.1. Basic of Algebra[16] 

In this section, some algebraic concepts will support the discussion of the problem. 

Definition 1   

Let 𝐴 be a 𝑝 × 𝑝 real matrix, and �̅� = {1,2, … , 𝑝}. Then the following properties are satisfied. 

1. 𝐴  is the M-matrix if 𝐴𝑖𝑖 ≥ 0, 𝐴𝑖𝑗 ≤ 0; ∀𝑖, 𝑗(≠ 𝑖) ∈ �̅�.  

2. 𝐴  is a Metzler matrix denoted by 𝐴 𝜖 𝑀𝐸
𝑝𝑥𝑝

 if 𝐴𝑖𝑗 ≥ 0; ∀𝑖, 𝑗(≠ 𝑖) ∈ �̅�. 

Theorem 1 

Assume that 𝐴 ∈ 𝑹𝑛×𝑛,then the following properties apply. 

(i) 𝐴 is an M-matrix if and only if (−𝐴) ∈ 𝑀𝐸
𝑛×𝑛  

(ii) 𝐴 is nonsingular with   𝐴−1 ≻ 0 if and only if 𝐴 is an M-matrix 

(iii) 𝐴 is nonsingular with   𝐴−1 ≻ 0 if and only if  (−𝐴) ∈ 𝑀𝐸
𝑛×𝑛 is the stability matrix. 

Definition 2   

Let  𝐴  be a 𝑝 × 𝑞 real matrix, and �̅� = {1,2, … , 𝑝} , �̅� = {1,2, … , 𝑞}. Then 𝐴 is a nonnegative (𝐴 ≽ 0)  if 

𝐴𝑖𝑗 ≥ 0; ∀𝑖∈ �̅�, ∀𝑗∈ �̅�,   

Definition 3  

Let = (𝐴𝑖𝑗) ∈ 𝑹𝑝×𝑞 , and �̅� = {1,2, … , 𝑝} , �̅� = {1,2, … , 𝑞}. Then  𝐴 is a positive matrix (𝐴 ≻ 0)  if 𝐴𝑖𝑗 >

0; ∀𝑖∈ �̅�, ∀𝑗∈ �̅�. 

Theorem 2: Local Stability Disease-free equilibrium point 

Let 𝐹 is the transmission matrix and 𝑉 is the transition matrix at the disease-free equilibrium point. The 

linearized system around the disease-free equilibrium point is unstable if some of the conditions given below 

hold: 

1) (F − V) ∈ ME
nxn  is not a stability matrix 

2) (F − V) ∈ ME
nxn and  (V − F) −1   either does not exist or if it exists is not positive. 

3) (−V) ∈ ME
nxn  and it exists as V−1 which is not positive, F  ⪰0   and   ρ(FV−1) > 1. 

This theorem is equivalent to the Theorem 3 below  

Theorem 3: Local Stability Disease-free equilibrium point 

Let 𝐹 ∈ 𝑹𝑛𝑥𝑛 is the transmission matrix and 𝑉 ∈ 𝑹𝑛𝑥𝑛 is the transition matrix at the disease-free 

equilibrium point. The linearized system around the disease-free equilibrium point is stable if all the 

conditions given below apply: 

1) (F − V) ∈ ME
nxn  is a stability matrix 

2) (F − V) ∈ ME
nxn and  (V − F) −1  exist and positive matrix 

3) (−V) ∈ ME
nxn, V−1 ≻ 0, F  ⪰0   dan   ρ(FV−1) < 1. 

A joint sufficiency-type condition or any of the above conditions (1)-(2) to hold is condition 3. 

Theorem 4: Local Stability and Existence of Disease Equilibrium Point 

Let 𝐹 ∈ 𝑹𝑛𝑥𝑛 and 𝑉 ∈ 𝑹𝑛𝑥𝑛 are transmission matrix and transition matrix at disease-free equilibrium point, 

respectively. While 𝐹𝑒 ∈ 𝑹𝑛𝑥𝑛 and 𝑉𝑒 ∈ 𝑹𝑛𝑥𝑛 are respectively transmission matrix and  transition matrix at  

disease equilibrium point,  following properties apply: 

1) Transition matrix at  disease equilibrium point and free from disease is (𝑉𝑒) and (𝑉)   identical and does 

not depend on a reproduction number, and  (−𝑉) ∈ 𝑀𝐸
𝑛𝑥𝑛   is  stability matrix.  

2) Disease equilibrium points and disease free equilibrium points exist and are unique to all  𝑅0 ∈ [0, +∞] 
3) Disease-free transmission matrix and disease-transmission matrix are non-negative, i.e. 𝐹 = 𝐹(𝑅0) ⪰0, 

𝐹𝑒 = 𝐹𝑒(𝑅0) ⪰ 0 and  𝑅0 = 𝜌(𝐹𝑉−1)  is a reproduction number. 
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4) If 𝑅0 < 1 then   𝐹 ≺ 𝐹𝑒 , if  𝑅0 > 1 then ≻ 𝐹𝑒 , and  if  𝑅0 = 1 then 𝐹 = 𝐹𝑒 . Then  asymptotically stable 

local disease equilibrium point if  𝑅0 ≥ 1 and unstable if 𝑅0 < 1. 

 

2.2. Analysis of Stability Differential Equation Systems using Matrix Method 

The flow of the analysis of the stability of the system of differential equations using the matrix method 

is as follows: 

1. Determine disease-free equilibrium point and disease equilibrium point from the model. 

2. Model is constructed into a matrix by performing a linearization process to obtain the Jacobian matrix 

from the system. This matrix consists of a noninfective (disease-free) Jacobian matrix and an infective 

Jacobian matrix. 

3. Matrix 𝐹 ∈ 𝐑𝑛𝑥𝑛 and matrix (𝑉) ∈ 𝐑𝑛𝑥𝑛   are disease transmission matrix and transition matrix of  

linearized system around a disease-free equilibrium point, respectively. Matrix 𝐹𝑒 ∈ R𝑛𝑥𝑛 and matrix 

(𝑉𝑒) ∈ R𝑛𝑥𝑛  are disease transmission matrix and transition matrix of  linearized system around a disease 

equilibrium point, respectively. Matrix 𝐹, 𝐹𝑒 and 𝑉, 𝑉𝑒  are determined by partitioning matrix. 

4. Analysis of characteristics of transition matrix with its stability properties is related to properties of 

Metzler matrix and M-matrix. Analysis of transmission matrix, so that transmission matrix is not 

negative. This transition matrix and transmission matrix will define an auxiliary matrix (Next Generation 

Matrix), namely 𝑉−1 . The largest eigenvalue of the Next Generation Matrix is a parameter relevant to 

the system's stability and determines the sum of a basic reproduction number of diseases. 

5. Furthermore, a linearized system around a disease-free equilibrium point is locally stable if this auxiliary 

matrix (Next Generation Matrix) has a maximum positive eigenvalue and less than one. The basic 

reproduction number coincides with the spectral radius of the disease spread model. 

 

 

3. RESULTS AND DISCUSSION 

3.1. Formulation of Mathematical Model 

Assume that the plant population is divided into four classes. The population of healthy rice plants in 

the vegetative phase is denoted by 𝑆𝑣, the population of infected rice plants in the vegetative phase is denoted 

by 𝐼𝑣, the population of susceptible rice plants in the generative phase is denoted 𝑆𝑔   and the population of 

infected rice plants in the generative phase is denoted 𝐼𝑔. Then there is the vector that carries the tungro 

disease, namely the green leafhopper. The population of green leafhoppers is divided into two classes, 

susceptible green leafhoppers are denoted by  𝑆𝑊𝐻 and infected green leafhoppers are denoted by  𝐼𝑊𝐻. The 

rate of recruitment of rice plants is denoted and the rate of vector recruitment is denoted which is constant 

and each population enters the vulnerable compartment. Healthy plant 𝑆𝑣  , 𝑆𝑔 infected through an infected 

vector 𝐼𝑊𝐻  that carries the tungro disease virus. Furthermore, the susceptible vector 𝑆𝑊𝐻 is infected by 

sucking the rice plants affected by the disease. Infected plants and vectors cannot recover. Dimensions of 

time used in days. Model designed based on host vector model. Another assumption is that there is no 

influence of environmental factors and climatic factors.  

Based on the above assumptions, schematic diagrams and flowcharts of the spread of tungro disease 

in rice plants can be seen in Figure 1 and Figure 2 

.  

 
Figure 1. Schematic diagram of model spread tungro disease in rice plants with vector transmission 
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Figure 2. Flowchart of model spread tungro disease in rice plants 

 

From Figure 1 and Figure 2, a model can be constructed in the form of a differential equation as follows:     

𝑑𝑆𝑣

𝑑𝑡
= 𝜆 − 𝛼𝑆𝑣 − 𝛽1𝑆𝑣𝐼𝑊𝐻 − 𝜇𝑝𝑆𝑣 

𝑑𝐼𝑣

𝑑𝑡
=  𝛽1𝑆𝑣𝐼𝑊𝐻 − 𝜇𝑝𝐼𝑣 

               
𝑑𝑆𝑔

𝑑𝑡
= 𝛼𝑆𝑣 − 𝛽2𝑆𝑔𝐼𝑊𝐻 − 𝜇𝑝𝑆𝑔                                                 (1) 

𝑑𝐼𝑔

𝑑𝑡
= 𝛽2𝑆𝑔𝐼𝑊𝐻 − 𝜇𝑝𝐼𝑔 

𝑑𝑆𝑊𝐻

𝑑𝑡
= 𝜔 − 𝛾1𝐼𝑣𝑆𝑊𝐻 − 𝛾2𝐼𝑔𝑆𝑊𝐻 − 𝜇𝐼𝑆𝑊𝐻 

𝑑𝐼𝑊𝐻

𝑑𝑡
= 𝛾1𝐼𝑣𝑆𝑊𝐻 + 𝛾2𝐼𝑔𝑆𝑊𝐻 − 𝜇𝐼𝐼𝑊𝐻 

The parameters contained in this model are described in Table 1 

Table 1. Definition of variables and parameters 

Variables/ 

Parameters 
Definition 

 

Unit 

𝑁𝑝 Rice plant population  (𝑁𝑝 = 𝑆𝑣 +

𝐼𝑣 + 𝑆𝑔 + 𝐼𝑔) 

Individual Plant 

𝑁𝑊𝐻 Green Leafhopper Population (𝑁𝑤ℎ =
𝑆𝑊𝐻 + 𝐼𝑊𝐻) 

Individual Vector 

𝑆𝑉 Healthy rice plant population in the 

vegetative phase 

Individual Plant 

𝐼𝑉 Infected rice plant population in the 

vegetative phase 

Individual Plant 

𝑆𝑔 Healthy rice plant population in the 

generative phase 

Individual Plant 

𝐼𝑔 Infected rice plant population in the 

generative phase 

Individual Plant 

𝑆𝑊𝐻 Healthy Green Leafhopper Population Individual Vector 

𝐼𝑊𝐻 Infected Green Leafhopper Population Individual Vector 

𝜆 Rice plant recruitment rate 1

𝑑𝑎𝑦
 

𝜔 Green planthopper recruitment rate 1

𝑑𝑎𝑦
 

𝛼 Rice plant growth rate from 

vegetative to generative phase 

1

𝑑𝑎𝑦
 

𝛽1 The rate of infection of rice plants in 

the vegetative phase 

1

𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 × 𝑑𝑎𝑦
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Variables/ 

Parameters 
Definition 

 

Unit 

𝛽2 The infection rate of rice plants in the 

generative phase 

1

𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 × 𝑑𝑎𝑦
 

𝛾1 Green planthopper infection rate 

when taking food from infected rice 

plants in the vegetative phase 

1

𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 × 𝑑𝑎𝑦
 

𝛾2 Green planthopper infection rate 

when taking food from infected rice 

plants in the generative phase 

1

𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 × 𝑑𝑎𝑦
 

𝜇𝑃 Rice plant death rate 1

𝑑𝑎𝑦
 

𝜇𝐼 Green planthopper natural death rate 1

𝑑𝑎𝑦
 

 

3.2. Equilibrium Point 

Based on  model (1), we have two equilibrium point there are the disease-free equilibrium point 

(𝐸𝑑𝑓) and the endemic equilibrium point (𝐸𝑒𝑛𝑑)   

               𝐸𝑑𝑓 = ((𝑆𝑉)𝑑𝑓, (𝐼𝑉)𝑑𝑓, (𝑆𝑔)𝑑𝑓, (𝐼𝑔)𝑑𝑓, (𝑆𝑊𝐻)𝑑𝑓, (𝐼𝑊𝐻)𝑑𝑓) = (
𝜆

𝛼+𝜇𝑝
 ,0,

𝜆𝛼

𝜇𝑝(𝛼+𝜇𝑝)
, 0,

𝜔

𝜇𝐼
, 0)          (2) 

(𝑆𝑉)𝑑𝑓 =
𝜆

𝛼+𝜇𝑝
, (𝐼𝑉)𝑑𝑓 = 0 , (𝑆𝑔)𝑑𝑓 =

𝜆𝛼

𝜇𝑝(𝛼+𝜇𝑝)
 , (𝐼𝑔)𝑑𝑓 = 0, (𝑆𝑊𝐻)𝑑𝑓 =

𝜔

𝜇𝐼
, (𝐼𝑊𝐻)𝑑𝑓 = 0 

 

   𝐸𝑒𝑛𝑑 = ((𝑆𝑉)𝑒𝑛𝑑 , (𝐼𝑉)𝑒𝑛𝑑 , (𝑆𝑔)𝑒𝑛𝑑 , (𝐼𝑔)𝑒𝑛𝑑, (𝑆𝑊𝐻)𝑒𝑛𝑑 , (𝐼𝑊𝐻)𝑒𝑛𝑑)                                                       (3) 

 

(𝑆𝑉)𝑒𝑛𝑑 =
𝜆

𝛼+𝛽1𝐼𝑊𝐻+𝜇𝑝
 , (𝐼𝑉)𝑒𝑛𝑑 =

𝜆𝛽1𝐼𝑊𝐻

𝜇𝑝(𝛼+𝛽1𝐼𝑊𝐻+𝜇𝑝)
, (𝑆𝑔)𝑒𝑛𝑑 =

𝜆𝛼

𝐴
 ,  (𝐼𝑔)𝑒𝑛𝑑 =

𝜆𝛼𝛽2𝐼𝑊𝐻

𝜇𝑝𝐴
   

 (𝑆𝑊𝐻)𝑒𝑛𝑑 =
𝜔𝜇𝑝𝐴

𝐴𝜇𝐼𝜇𝑝+𝜆𝐼𝑊𝐻(𝐼𝑊𝐻𝛽1𝛽2𝛾1+𝛼𝛽2𝛾2+𝜇𝑝𝛽1𝛾1)
   

 

        with     𝐴 = 𝐼𝑊𝐻
2𝛽1𝛽2 + 𝛼𝛽2𝐼𝑊𝐻 + 𝐼𝑊𝐻𝛽1𝜇𝑝 + 𝐼𝑊𝐻𝜇𝑝𝛽2 + 𝛼𝜇𝑝 + 𝜇𝑝

2                                           (4)         

 

3.3. The Construction of Matrix Model  

The first step in constructing the model to be a matrix is the linearization process. The linearization 

process is the process of forming the Jacobian matrix of the system. The Jacobian matrix was divided into a 

non-infectious (a disease-free) Jacobian matrix and an infective Jacobian matrix.  

The noninfective Jacobian matrix of the tungro disease spread model is as follows. 

                       

1

1

2

2

1 2

1 2 1 2

0 0 0 0 ( )

0 0 0 0 ( )

0 0 0 ( )
( ) .

0 0 0 0 ( )

0 ( ) 0 ( ) 0

0 ( ) 0 ( ) ( ) ( )

p V df

p V df

p g df

p g df

WH df WH df I

WH df WH df V df g df I

S

S

S
J df

S

S S

S S I I

  

 

  

 

  

    

   
 

 
  

  
 

   
 
   

             (5) 

The infective Jacobian matrix of the tungro disease spread model is as follows. 

    

1 1

1 1

2 2

2 2

1 2 1 2

1 2 1 2

0 0 0 0 ( )

0 0 0 ( )

0 0 0 ( )
( )

0 0 0 ( )

0 ( ) 0 ( ) ( ) ( ) 0

0 ( ) 0 ( ) ( ) ( )

WH p V end

WH p V end

WH p g end

WH p g end

WH end WH end V end g nd I

WH end WH end V end g end I

I S

I S

I S
J end

I S

S S I I

S S I I

   

  

   

  

    

    

    
 

 
   

 


     

   

.







     (6) 

From matrik (5) we partition of matrix the matrikx to be 𝐹 − 𝑉  as follows. 
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1

2

1 2

0 ( )

0 ( )

( ) ( )

P V df

P g df

WH df WH df I

S

F V S

S S

 

 

  

 
 

   
  

                                              (7)    

                                          
1

2

1 2

0 0 ( ) 0 0

0 0 ( ) 0 0 .

( ) ( ) 0 0 0

V df p

g df p

WH df WH df I

S

F S and V

S S

 

 

  

   
   

      
     

                         (8) 

                                        

1

2

1 2

0 0

0 0
( )

0

P

P P

I I

F

 

 

 

  

   

 

 
 

 
 

  
 

 
 
  

    and     
0 0

0 0

0 0

P

P

I

V







 
 


 
  

                                   (9) 

Where 

𝐹𝑒 is the transmission matrix at the disease-free equilibrium point 

𝑉𝑒   is the transition matrix at the disease-free equilibrium point. 

We define that |𝑉| is determinant of  𝑉, where : 

                                                |𝑉| = 𝜇𝑝 |
𝜇𝑝 0

0 𝜇𝐼
| = 𝜇𝑝(𝜇𝑝𝜇𝐼) = 𝜇𝑝

2𝜇𝐼                                                     (10) 

                                     
1

1
0 0

1
0 0

1
0 0

P

P

I

V









 
 
 
 

  
 
 
 
 

                                                                                              (11) 

From matrix (6) we partition the matrix into a matrix 𝐹𝑒 − 𝑉𝑒_e as follows        

           
1

2

1 2

0 ( )

0 ( )

( ) ( )

P V end

e e P g end

WH nd WH end I

S

F V S

S S

 

 

  

 
 

  
 
  

                                                                  (12) 

   
1

2

1 2

0 0 ( ) 0 0

0 0 ( ) and 0 0 .

( ) ( ) 0 0 0

V end p

e g end e p

WH end WH end I

S

F S V

S S

 

 

  

   
   

 
   
      

                                                     (13) 

Where 

𝐹𝑒 is the transmission matrix at the disease equilibrium point 

𝑉𝑒   is the transition matrix at the disease equilibrium point 

The transition matrix of the disease equilibrium equal to the transition matrix the disease free equilibrium 

point, as in equation (14) 

0 0

0 0

0 0

P

e P

I

V







 
 


 
  

 dan 
0 0

0 0

0 0

P

P

I

V







 
 


 
  

                                                              (14) 

 

3.4. Matrix Analysis  

Based on definition 1, from the matrix (𝐹 − 𝑉)  obtained (𝐹 − 𝑉) ∈  𝑴𝑬
3𝑥3

 with the following 

process. 

(𝐹 − 𝑉)𝑖𝑗 ≥ 0; ∀𝑖, 𝑗(≠ 𝑖) ∈ �̅�   �̅� =  {1,2} 

(𝐹 − 𝑉)12 = 0,  (𝐹 − 𝑉)13 =
𝛽1𝜆

𝛼+𝜇𝑃
> 0, 

(𝐹 − 𝑉)21 = 0  (𝐹 − 𝑉)23 =
𝛽2𝜆

(𝛼 + 𝜇𝑃)𝜇𝑃
> 0, (𝐹 − 𝑉)31 =

𝛾1𝜔

𝜇𝐼
> 0 , (𝐹 − 𝑉)32 =

𝛾2𝜔

𝜇𝐼
> 0 

Based on definition 1, from the matrix 𝑉 obtained  −𝑉 ∈ 𝑀𝐸
3𝑥3 with the following process. 
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(−𝑉)𝑖𝑗 ≥ 0; ∀𝑖, 𝑗(≠ 𝑖) ∈ �̅�   �̅� =  {1,3} 

(−𝑉)12 = 0,  (−𝑉)13 = 0         (−𝑉)21 = 0   (−𝑉)23 = 0     (−𝑉)31 = 0   (−𝑉)32 = 0 

Based on definition 2, from the matrix 𝑉−1 obtained  𝑉−1≻ 0, with the following process.  

𝑉−1
𝑖𝑗 ≥ 0; ∀𝑖∈ �̅�, ∀𝑗∈ �̅�.   �̅� = �̅� =  {1,3} 

𝑉−1
11 =

1

𝜇𝑃
> 0, 𝑉−1

12 = 0, 𝑉−1
13 = 0  , 𝑉−1

21 = 0, 𝑉−1
22 =

1

𝜇𝑃
> 0, 𝑉−1

23 = 0, 

𝑉−1
31 = 0,   𝑉−1

32 = 0, 𝑉−1
33 =

1

𝜇𝐼
> 0, 

Based on definition 3 from the matrix 𝐹 obtained  𝐹 ≽ 0, with the following process. 

𝐹𝑖𝑗 ≥ 0; ∀𝑖∈ �̅�, ∀𝑗∈ �̅�. �̅� = �̅� =  {1,3} 

𝐹11 = 0,   𝐹12 = 0 𝐹13 =
𝛽1𝜆

𝛼+𝜇𝑃
> 0 𝐹21 =  

𝛽2𝜈

𝜇
> 0, 𝐹22 = 0 𝐹23 =

𝛽1𝜆

(𝛼+𝜇𝑃)𝜇𝑃
> 0, 𝐹31 =  

𝛾1𝜔

𝜇𝐼
> 0, 𝐹32 =

 
𝛾2𝜔

𝜇𝐼
> 0, 𝐹33 = 0 

Based on definition 3 from the matrix 𝐹𝑒 obtained  𝐹𝑒 ≽ 0,  with the following process 

(𝐹𝑒)𝑖𝑗 ≥ 0; ∀𝑖∈ �̅�, ∀𝑗∈ �̅�. �̅� = �̅� =  {1,3} . 

(𝐹𝑒)11 = 0,   (𝐹𝑒)12 = 0 (𝐹𝑒)13 = 𝛽1(𝑆𝑣)𝑒𝑛𝑑 > 0 (𝐹𝑒)21 =  0, (𝐹𝑒)22 = 0 (𝐹𝑒)23 = 𝛽2(𝑆𝑔)𝑒𝑛𝑑 > 0, 

(𝐹𝑒)31 =  𝛾1(𝑆𝑤ℎ)𝑒𝑛𝑑 > 0, (𝐹𝑒)32 =  𝛾2(𝑆𝑤ℎ)𝑒𝑛𝑑 > 0, (𝐹𝑒)33 = 0 

1 1

( )
( ) ( ) 0

( ) ( ) ( )

p pv end

v nd v df

v df p WH p WH

S
S S

S I I

   

     

 
   

   
 

( ) ( ) ( )
( ) ( ) . 0

( )

g end p p p p

g end g df

g df

S
S S

S A A

      
     

1 2 1 2 2 1 1 1 2 1 2 2 1 1

( )
( ) ( ) . 0

( ) ( ) ( )

I p I pWH end

WH end WH df

WH df I p WH WH p I p WH WH p

A AS
S S

S A I I A I I

   

                     
   

     

 

 

3.5. Basic Reproduction Number (𝑹𝟎) 

Matrix 𝐹 and matrix (𝑉) define the next generation matrix, i.e matrix 𝐹𝑉−1. The maximum modulus 

𝐹𝑉−1  is a relevant parameter to characterize the stability of the infective compartment and determine the 

disease reproduction number or basic reproduction number (𝑅0) . The basic reproduction number (𝑅0)  
associated with the maximum eigenvalues of the auxiliary matrix (𝐹𝑉−1), which coincides with its spectral 

radius. Next written: 

𝑅0 = 𝜌 (𝐹𝑉−1)                                                                                                           (15) 

 

1

1

2

1 2

0 0
( )

0 0
( )

0

P I

P I P

I P I P

FV




  




   

   

   



 
 

 
 

  
 

 
 
  

                                                                                (16)   

The eigenvalues of the matrix (𝐹𝑉−1) are  

       𝑞1 = 0 𝑎𝑛𝑑 𝑞2,3 = ±
√(𝛼+𝜇𝑝)𝜆𝜔(𝛼𝛽2𝛾2+𝛽1𝛾1𝜇𝐼)

(𝛼+𝜇𝑝)𝜇𝐼𝜇𝑝
.                                             (17) 

Basic reproduction number (𝑅𝟎) is obtained from the spectral radius of the 𝐹𝑉−1 matrix, so that  

                    𝑅0 = 𝜌(𝐹𝑉−1) =
√(𝛼+𝜇𝑝)𝜆𝜔(𝛼𝛽2𝛾2+𝛽1𝛾1𝜇𝐼)

(𝛼+𝜇𝑝)𝜇𝐼𝜇𝑝
.                                                     (18) 
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3.6. The Construction Matrix 𝑭(𝑹𝟎)  and Matrix 𝑭𝒆(𝑹𝟎)  

The construction matrix  𝐹 = 𝐹(𝑅0), 𝐹𝑒 = 𝐹𝑒(𝑅0), with 𝐹 = 𝐹(𝑅0) ⪰ 0 and  𝐹𝑒 = 𝐹𝑒(𝑅0) ⪰ 0 

 

 
1

0 0 2

1 2

0 0

( ) (1 ). . 0 0

( ) ( ) 0

I P

I

P P P P

F F R R B

  

 

       

 
 

  
 
   

                                (19) 

 

                     with   𝐵 =
[(𝛼+𝜇𝑝)𝜇𝐼𝜇𝑝+√(𝛼+𝜇𝑝)𝜆𝜔(𝛼𝛽2𝛾2+𝛽1𝛾1𝜇𝑃)]

(𝛼+𝜇𝑝)[(𝜇𝐼𝜇𝑝)
2

(𝛼+𝜇𝑝)−𝜆𝜔(𝛼𝛽2𝛾2+𝛽1𝛾1𝜇𝑃)]
                                          (20) 

 

𝐹 = 𝐹(𝑅0) ⪰ 0 

 

             so that obtained       𝑅0 = 𝜌(𝐹𝑉−1)   < 1 with  
𝜆𝜔(𝛼𝛽2𝛾2+𝛽1𝛾1𝜇𝑃) 

(𝛼+𝜇𝑝)(𝜇𝐼𝜇𝑝)
2 < 1                    (21)                                     

    And we have   

       

1

0 0 2

1 2

( )
0 0

( )

( )
( ) ( 1). . 0 0

( )

( ) ( )
( ) ( ) 0

( ) ( )

v end

I P

v df

g end

e I

g df

WH end WH end

P P P P

WH df WH df

S

S

S
F R R C

S

S S

S S

  

 

       

 
 
 
 
  
 
 
  
 
 

           (22)                                              

                                      with  𝐶 =
[(𝛼+𝜇𝑝)𝜇𝐼𝜇𝑝+√(𝛼+𝜇𝑝)𝜆𝜔(𝛼𝛽2𝛾2+𝛽1𝛾1𝜇𝑃)]

[𝜆𝜔(𝛼𝛽2𝛾2+𝛽1𝛾1𝜇𝑃)−(𝛼+𝜇𝑝)(𝜇𝐼𝜇𝑝)2](𝛼+𝜇𝑝)
                                             (23) 

𝐹𝑒 ⪰ 0, then  𝐹𝑒(𝑅0) ⪰ 0 

            so that obtained      𝑅0 = 𝜌(𝐹𝑉−1)   > 1  with   
𝜆𝜔(𝛼𝛽2𝛾2+𝛽1𝛾1𝜇𝐼) 

(𝛼+𝜇𝑝)(𝜇𝐼𝜇𝑝)
2 > 1                    (24)     

 

3.7. Stability Analysis 

3.7.1 Stability at the disease-free equilibrium point 

Based on theorem 3 concerning the local stability of the disease-free equilibrium point, the system (1) 

is linearized around the disease-free equilibrium point giving several conditions that fulfill the necessary and 

sufficient conditions for the asymptotically stable local disease-free equilibrium point, namely: 

(𝐹 − 𝑉) ∈ 𝑀𝐸
3𝑥3 ,  (−𝑉) ∈ 𝑀𝐸

3𝑥3 ,  𝑉−1 ≻ 0 , 𝐹⪰0   

and   𝜌(𝐹𝑉−1) < 1 with 𝐹 = 𝐹(𝑅0) ⪰0, where 𝑅0 = 𝑅0(𝐹) = 𝜌(𝐹𝑉−1)  is the reproduction number, and   

ρ(FV−1) < 1 with  (𝜇𝑝 + 𝛼)(𝜇𝐼𝜇𝑝)
2

> 𝜆𝜔(𝛼𝛽2𝛾2 + 𝛽1𝛾1𝜇𝑃) or  
𝜆𝜔(𝛼𝛽2𝛾2+𝛽1𝛾1𝜇𝑃) 

(𝜇𝑝+𝛼)(𝜇𝐼𝜇𝑝)
2 < 1.  

Proof: Based on the results of the analysis of the transition matrix and the transmission matrix at the disease-

free equilibrium point and forming the transmission matrix at the disease-free equilibrium point in the Basic 

Reproduction Number (𝑅0), namely 𝐹 = 𝐹(𝑅0) th following results are obtained 

1

2

1 2

0

0
( )

P

p

P

p p

I

I I

F V

 


 

 


  

   


 

 
 

 
 

   
 

 
 
  

∈ 𝑀𝐸
3𝑥3 ,  

0 0

0 0

0 0

P

P

I

V







 
 

  
 
  

∈ 𝑀𝐸
3𝑥3  ,  

1

1
0 0

1
0 0

1
0 0

P

P

I

V









 
 
 
 

  
 
 
 
 

≻ 0 

               

1

2

1 2

0 0

0 0
( )

0

P

P P

I I

F

 

 

 

  

   

 

 
 

 
 

  
 

 
 
  

⪰0  and  𝑅0 = 𝜌(𝐹𝑉−1)   < 1 with  
𝜆𝜔(𝛼𝛽2𝛾2+𝛽1𝛾1𝜇𝑃) 

(𝛼+𝜇𝑝)(𝜇𝐼𝜇𝑝)
2 < 1 

It is evident that the disease-free equilibrium point is locally stable asymptotic. 
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3.7.2 Stability at the endemic equilibrium point 

Based on theorem 4 regarding the local stability of the endemic equilibrium point, the system (1) is 

linearized around the endemic equilibrium point giving several conditions that meet the necessary and 

sufficient conditions for asymptotically stable local endemic equilibrium points, namely: 

(𝑉𝑒) ∈ ME
3x3, is said to be a transition matrix at the endemic equilibrium point, where  (𝑉𝑒) = (V) ∈ ME

3x3 is 

the stability matrix,  𝐹𝑒⪰0 , and ρ(FV−1) > 1 with  (𝜇𝑝 + 𝛼)(𝜇𝐼𝜇𝑝)
2

< 𝜆𝜔(𝛼𝛽2𝛾2 + 𝛽1𝛾1𝜇𝑃) or 

 
𝜆𝜔(𝛼𝛽2𝛾2+𝛽1𝛾1𝜇𝑃) 

(𝜇𝑝+𝛼)(𝜇𝐼𝜇𝑝)
2 > 1.   

Proof: Based on the results of the analysis of the transition matrix and the transmission matrix at the disease 

equilibrium point and forming the transmission matrix at the disease equilibrium point in the Basic 

Reproduction Number (𝑅0), namely 𝐹𝑒 = 𝐹𝑒(𝑅0) , the following results are obtained 

𝑉𝑒 = 𝑉 = [

𝜇𝑃 0 0
0 𝜇𝑃 0
0 0 𝜇𝐼

] ∈ 𝑀𝐸
3𝑥3 , 𝐹𝑒 = [

0 0 𝛽1(𝑆𝑉)𝑒𝑛𝑑

0 0 𝛽2(𝑆𝑔)𝑒𝑛𝑑

𝛾1(𝑆𝑊𝐻)𝑛𝑑 𝛾2(𝑆𝑊𝐻)𝑒𝑛𝑑 0

]⪰0  

dan  𝑅0 = 𝜌(𝐹𝑉−1)   > 1  with        
𝜆𝜔(𝛼𝛽2𝛾2+𝛽1𝛾1𝜇𝐼) 

(𝛼+𝜇𝑝)(𝜇𝐼𝜇𝑝)
2 > 1 

It is evident that the disease equilibrium point is locally stable asymptotically. 

 

3.8. Numerical Simulation 

Numerical simulations were carried out to show the population dynamics in the model (1). The 

population dynamics that are made include model simulation when the value of ℜ0 < 1 and model simulation 

when the value of ℜ0 > 1.  

The dynamics of the spread of tungro disease are shown in Figures 3 and 4 with initial values and 

parameter values in Table 3.  
 

Table 3. Initial Values and Parameters 

 

 

 

 

 

 

 

 

                        

 
Figure 3. Dynamics Population of Green Leafhoppers (a) and (b) rice when Ro= 0.7968 < 1 

Variables/ 

Parameters 

Value Variables/ 

Parameters 

Value 

(𝕽𝟎 < 𝟏) (𝕽𝟎 > 𝟏) (𝕽𝟎 < 𝟏) (𝕽𝟎 > 𝟏) 

𝝀 100 100 𝜶 0.7 0.7 

𝝎 100 100 𝜷𝟏 0.0005 0.001 

𝑺𝑽 500 500 𝜷𝟐 0.0005 0.001 

𝑰𝑽 100 100 𝜸𝟏 0.007 0.025 

𝑺𝒈 300 300 𝜸𝟐 0.005 0.02 

𝑰𝒈 100 100 𝝁𝒑 0.3 0.3 

𝑺𝑾𝑯 400 400 𝝁𝑰 0.7 0.7 

𝑰𝑾𝑯 150 150    
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Figure 4. Dynamics Population of Green Leafhoppers (a) and (b) rice when 𝑹𝟎= 2.208 > 1 

 

From Figure 3(a), it can be seen that the Green Leafhopper population is vulnerable when 𝑅𝑜 = 0.7968 

< 1. Therefore, from the beginning, it will continue to decline, then the next day, it will increase and tend to 

be constant. As for the Green Leafhopper population that was infected initially, the population increased but 

then continued to decline and experience extinction. 

From Figure 3(b), Also, we can see the plant population in the vegetative and generative phases when  

𝑅𝑜 = 0,7968 < 1. Therefore, the population of susceptible rice plants in the vegetative and generative phases 

will decrease and become constant. The rice plants infected by the vegetative phase decrease from the 

beginning until it was extinct. Meanwhile, the rice plants infected by the generative phase are increasing at 

the beginning and are also extinct at some point. This occurs because the reduced number of infected plants 

causes a reduction of infection levels in susceptible rice plants. 

From Figure 4(a) and Figure 4(b), it can be seen that the Green Leafhopper population as a vector 

didn't become extinct. It means, when  2,208 > 1, the spread of Green Leafhopper in rice plants will continue 

to occur.                                     

Furthermore, the results showed that the population of rice plants infected by the generative phase was 

higher than the vegetative phase. 

 

 
4. CONCLUSIONS 

The matrix method can be used to determine the stability of the system of differential equations and 

the Basic Reproduction Number (𝑅0) on the model of the spread of tungro disease in rice plants with the 

vector of migrating green leafhoppers. In the analysis of the system’s stability, it was found that the non-

endemic and endemic equilibrium points were asymptotically stable. Numerical simulation results can 

strengthen the analytical results. The population of rice plants infected by the generative phase is more than 

by the vegetative phase.  
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