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Abstract. Cholera is an infection of the small intestine by some strains of the bacterium Vibrio Cholerae. This 

disease is a deadly disease that necessitates efficient prevention and control measures. In this research, the optimal 

control of the cholera spread model with variations of three control variables is discussed. There are four controls 

to minimize the spread of diseases such as sanitation, treatment consisting of quarantine, increased education, and 

chlorination. The dynamic system is formed with three controls variation. Then it is compared and analyzed for the 

most effective result. The optimal control solution is derived using the Pontryagin Minimum Principle and solved 

using the Runge-Kutta method. 
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1. INTRODUCTION 

Cholera remains a global public health problem, especially related to the lack of access to clean water 

and proper sanitation [1]. Cholera is a diarrheal disease caused by the infection in the intestine caused by 

Vibrio cholerae bacteria [2]. Cholera does not infect people by chance; more precisely, cholera affects 

people with physical burdens, lack of immunity, poor health systems, and malnutrition [3]. Vibrio cholerae 

has been discovered in the environment, food and beverages, aquaculture, and clinical settings, according to 

investigations. Contaminated food and drink are linked to hygiene and sanitation, and people are frequently 

infected after consuming contaminated food or drink [13]. The means of spreading cholera are through 

unhygienic food or drinks contaminated with V. cholerae bacteria. Severe diarrhea, vomiting, and leg 

cramps are the most common cholera symptoms, and if not treated immediately can lead to severe illness, 

such as collapse, and death [4].  

Extraordinary events of cholera that have been reported in Indonesia were recorded from April to 

August 2008 in Paniai Regency and Nabire Regency, Papua Province. This incident claimed 105 lives [5]. 

Proper environmental health services, such as increased access to clean water, adequate sewage and 

drinking water treatment, and cholera treatment, are required for effective prevention and control strategies. 

Many studies have been carried out on the spread of cholera, namely mathematical spread of cholera 

and analysis of cholera stability epidemic model through basic reproduction numbers [7]. In 2016, Lemos-

Paiao et al explain the best cholera control treatment is by treating affected people [8]. In 2019, Subchan et 

al explored the cholera spread model by offering therapy and intervention on sanitation, education, and 

quarantine [9]. Furthermore, in 2019 another research was carried out by Hasanah regarding optimal control 

of preventing the spread of cholera by controlling treatment and chlorination [10]. Research on the spread 

of cholera using the SIR model was also carried out by Hidayati, et al (2021) with vaccination control [11]. 

Another study looked at the stability of cholera as a result of bacterial growth and mobility as measured by 

basic reproduction numbers [12]. 

Munaqib et. al. (2021) has also conducted research on controlling the spread of disease. In his 

research, he took cases of the spread of the Covid-19 disease with the lockdown and quarantine treatment. 

As a result, the spread of the virus can be suppressed if intensive quarantine treatment is carried out and the 

lockdown area is prolonged [14]. The treatment considering vaccination and disinfection as an action to 

control the spread of cholera has also been carried out by Sun, et al (2017), with vaccination and 

disinfection proven to be able to suppress the spread of cholera [15]. Meanwhile, vaccine research has been 

conducted mathematically by studying the endemic equilibrium point of the cholera model based on the 

SIR model and changing it with various control strategies based on the fundamental reproduction number 

[16]. In addition, Pramesti (2020) claims that the Pontryagin minimal principle approach is used to tackle 

the problem of control variables in the mathematical model of cholera transmission via vaccination [19].  

Referring to the existing research, in this paper the optimal controls used are sanitation improvement, 

quarantine treatment, education improvement, and chlorination. The purpose of optimal control in this 

paper is to reduce the populations of infected human and bacterial and the costs of preventing cholera 

transmission. Then from the four controls, a dynamic system variation containing three controls was formed 

and the results were compared to find which one was more effective. The model in this paper reconstructs 

the model that has been developed by Subchan, et al, [4], [9]. The first model contains optimal control of 

sanitation improvements, quarantine treatment, and increased education. The second model contains 

quarantine treatment, increased education, and chlorination. The third model contains improved sanitation, 

increased education, and chlorination. The fourth model contains improved sanitation, quarantine treatment, 

and chlorination. 

 

 

2. RESEARCH METHODS 

2.1 Mathematical Model 

The mathematical model used in this paper is based on Subchan, et al,  [4]. The model is built by 

human population and bacterial population with SEIIQRB type (Susceptible, Educated, Infected 

Asymptomatic, Infected Symptomatic, Quarantined, Recovered, Bacteria) and does not consider age and 
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(a) (b)  

   

(c) (d)  
Figure 1. Compartment scheme  

 

  

 

gender. The controls are sanitation improvement (𝑢1), quarantine treatment (𝑢2), education improvement 

(𝑢3), and chlorination (𝑢4). The interpretation of the mathematical model into the compartment diagram can 

be seen in Figure 1. Here are the four mathematical models based on the compartment diagram that has 

been given: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a. The first model contains optimal control of sanitation improvements (𝑢1), quarantine treatment (𝑢2), and 

increased education (𝑢3). 

�̇�(𝑡) = Λ + 𝑣𝑅 + 𝜖𝐸 − 𝜇𝑆 − 𝑢3𝜓𝑆 − (1 − 𝑢1)𝛽
𝐵

𝑘+𝐵
𝑆  

�̇�(𝑡) = 𝑢3𝜓𝑆 − 𝜖𝐸 − 𝜇𝐸 − (1 − 𝑢1)𝛾𝐸  

𝐼�̇�(𝑡) = (1 − 𝑢1)𝑝𝛽
𝐵

𝜅+𝐵
𝑆 + (1 − 𝑢1)𝑝𝛾𝐸 − 𝜇𝐼𝐴 − 𝛼2𝐼𝐴  

𝐼�̇�(𝑡) = (1 − 𝑢1)(1 − 𝑝)𝛽
𝐵

𝜅+𝐵
𝑆 + (1 − 𝑢1)(1 − 𝑝)𝛾𝐸 − 𝜇𝐼𝑆 − 𝜇𝑆𝐼𝑆 − 𝑢2𝛿𝐼𝑆  

�̇�(𝑡) = 𝑢2𝛿𝐼𝑆 − 𝜇𝑄 − 𝜇𝑄𝑄 − 𝛼1𝑄  

�̇�(𝑡) = 𝛼1𝑄 + 𝛼2𝐼𝐴 − 𝜇𝑅 − 𝑣𝑅  

�̇�(𝑡) = 𝜂𝜃𝐼𝐴 + 𝜂𝜃𝐼𝑆 − 𝑑𝐵  

b. The second model contains quarantine treatment (𝑢2), increased education (𝑢3), and chlorination (𝑢4). 

�̇�(𝑡) = Λ + 𝑣𝑅 + 𝜖𝐸 − 𝜇𝑆 − 𝑢3𝜓𝑆 − 𝛽
𝐵

𝑘+𝐵
𝑆  

�̇�(𝑡) = 𝑢3𝜓𝑆 − 𝜖𝐸 − 𝜇𝐸 − 𝛾𝐸  

𝐼�̇�(𝑡) = 𝑝𝛽
𝐵

𝜅+𝐵
𝑆 + 𝑝𝛾𝐸 − 𝜇𝐼𝐴 − 𝛼2𝐼𝐴  

𝐼�̇�(𝑡) = (1 − 𝑝)𝛽
𝐵

𝜅+𝐵
𝑆 + (1 − 𝑝)𝛾𝐸 − 𝜇𝐼𝑆 − 𝜇𝑆𝐼𝑆 −𝑢2𝛿𝐼𝑆 
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�̇�(𝑡) = 𝑢2𝛿𝐼𝑆 − 𝜇𝑄 − 𝜇𝑄𝑄 − 𝛼1𝑄  

�̇�(𝑡) = 𝛼1𝑄 + 𝛼2𝐼𝐴 − 𝜇𝑅 − 𝑣𝑅  

�̇�(𝑡) = 𝜂𝜃𝐼𝐴 + 𝜂𝜃𝐼𝑆 − 𝑑𝐵 − 𝑢4𝐵  

  

c. The third model contains improved sanitation (𝑢1), increased education (𝑢3), and chlorination (𝑢4). 

�̇�(𝑡) = Λ + 𝑣𝑅 + 𝜖𝐸 − 𝜇𝑆 − 𝑢3𝜓𝑆 − (1 − 𝑢1)𝛽
𝐵

𝑘+𝐵
𝑆  

�̇�(𝑡) = 𝑢3𝜓𝑆 − 𝜖𝐸 − 𝜇𝐸 − (1 − 𝑢1)𝛾𝐸  

𝐼�̇�(𝑡) = (1 − 𝑢1)𝑝𝛽
𝐵

𝜅+𝐵
𝑆 + (1 − 𝑢1)𝑝𝛾𝐸 − 𝜇𝐼𝐴 −𝛼2𝐼𝐴 

𝐼�̇�(𝑡) = (1 − 𝑢1)(1 − 𝑝)𝛽
𝐵

𝜅+𝐵
𝑆 + (1 − 𝑢1)(1 − 𝑝)𝛾𝐸 − 𝜇𝐼𝑆 − 𝜇𝑆𝐼𝑆 − 𝛼1𝐼𝑆  

�̇�(𝑡) = 𝛼1𝐼𝑆 + 𝛼2𝐼𝐴 − 𝜇𝑅 − 𝑣𝑅  

�̇�(𝑡) = 𝜂𝜃𝐼𝐴 + 𝜂𝜃𝐼𝑆 − 𝑑𝐵 − 𝑢4𝐵  

d. The fourth model contains improved sanitation (𝑢1), quarantine treatment (𝑢2), and chlorination (𝑢4). 

�̇�(𝑡) = Λ + 𝑣𝑅 − 𝜇𝑆 − (1 − 𝑢1)𝛽
𝐵

𝑘+𝐵
𝑆  

𝐼�̇�(𝑡) = (1 − 𝑢1)𝑝𝛽
𝐵

𝜅+𝐵
𝑆 − 𝜇𝐼𝐴 − 𝛼2𝐼𝐴  

𝐼�̇�(𝑡) = (1 − 𝑢1)(1 − 𝑝)𝛽
𝐵

𝜅+𝐵
𝑆 − 𝜇𝐼𝑆 − 𝜇𝑆𝐼𝑆 − 𝑢2𝛿𝐼𝑆  

�̇�(𝑡) = 𝑢2𝛿𝐼𝑆 − 𝜇𝑄 − 𝜇𝑄𝑄 − 𝛼1𝑄  

�̇�(𝑡) = 𝛼1𝑄 + 𝛼2𝐼𝐴 − 𝜇𝑅 − 𝑣𝑅  

�̇�(𝑡) = 𝜂𝜃𝐼𝐴 + 𝜂𝜃𝐼𝑆 − 𝑑𝐵 − 𝑢4𝐵  

 

Table 1. Variable and parameter 

Variable and 

Parameter 
Description 

Variable and 

Parameter 
Description 

𝑆(𝑡) Susceptible population 𝛽 Rate of consumption of cholera 

bacteria 

𝐸(𝑡) Educated population 𝑘 Constant of the bacterial population 

𝐼𝐴(𝑡) Infected population with mild 

symptoms 
𝛽

𝐵

𝑘 + 𝐵
 

Rate of movement of susceptible 

populations into infected populations 

𝐼𝑆(𝑡) Infected population with severe 

symptoms 

𝛾 Infection rate of educated population 

𝑄(𝑡) Quarantined population 𝑝 Proportion of infected individuals with 

mild symptoms 

𝑅(𝑡) Population cured 1 − 𝑝 Proportion of infected individuals with 

severe symptoms 

𝐵(𝑡) Bacterial population 𝛼1 Cure rate of infected people with mild 

symptoms 

Λ Increase in vulnerable population due 

to natural birth 

𝛼2 Cure rate of infected people with 

severe symptoms 

𝑣 Rate of loss of immunity of 

individuals recovering so that they are 

vulnerable again 

𝜇𝑆 Death rate due to cholera infection 

with severe symptoms 

𝜖 Rate of educated population stopping 

taking preventive measures 
𝜇𝑄 Death rate due to cholera when 

quarantined 

𝜇 Rate of natural death 𝜂 Bacterial growth rate 

𝜓 Rate of increase in individual 

education 

𝛿 Individual quarantine rate 

𝑑 Bacterial death rate 𝜃𝐼 Infected population disposal rate 
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2.2 Optimal Control Problem 

Based on the dynamic system model of cholera transmission, it can be expressed mathematically 

through the following equation, 

�̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡) 

with the state variable as follows, 

𝑥(𝑡) = (𝑆(𝑡), 𝐸(𝑡), 𝐼𝐴(𝑡), 𝐼𝑆(𝑡), 𝑄(𝑡), 𝑅(𝑡), 𝐵(𝑡))
𝑇

; 𝑢(𝑡) = (𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡), 𝑢4(𝑡)) 

with the initial state 𝒙(𝑡0) = 𝒙0.  

Furthermore, utilizing Pontryagin's Minimum Principle, this part provides the solution to the optimal 

control problem [17]. The types of optimal control problems are fixed-final time and free-final time [6]. 

The purpose of the problem is to find an optimal control that aims to reduce the  infected human and 

bacterial populations, and the preventing cholera transmission. Mathematically, the objective function 

(performance index) can be defined as follows: 

𝑚𝑖𝑛 𝐽 =
1

2
∫ [𝐶1𝐼𝑆

2(𝑡) + 𝐶2𝐼𝐴
2(𝑡) + 𝐶3𝐵2(𝑡) + 𝐶4𝑢1

2(𝑡) + 𝐶5𝑢2
2(𝑡) + 𝐶6𝑢3

2(𝑡) + 𝐶7𝑢4
2(𝑡)]

𝑡𝑓

𝑡0

𝑑𝑡 

where 𝑡0 is the initial time and 𝑡𝑓 is the final time, and 𝐶𝑖 is the day's weight parameter or price coefficient 

assigned to each control, where 𝐶𝑖 > 0 for each 𝑖 = 1,2,3,4,5,6 ,7. 

 

 

3. RESULT AND DISCUSSION 

The following are the steps to use Pontryagin's Minimum Principle to solve the optimal control 

problem by giving an example of the third model and for the other models the same steps are carried out. 

The first step to solving is to form the Hamiltonian function as follows: 

ℋ =
1

2
(𝐶1𝐼𝑆

2(𝑡) + 𝐶2𝐼𝐴
2(𝑡) + 𝐶3𝐵2(𝑡) + 𝐶4𝑢1

2(𝑡) + 𝐶6𝑢3
2(𝑡) + 𝐶7𝑢4

2(𝑡))            

+ 𝜆𝑆 (Λ + 𝑣𝑅 + 𝜖𝐸 −  𝜇𝑆 − 𝑢3𝜓𝑆 − (1 − 𝑢1)𝛽
𝐵

𝑘 + 𝐵
𝑆)

+ 𝜆𝐸(𝑢3𝜓𝑆 − 𝜖𝐸 − 𝜇𝐸 − (1 − 𝑢1)𝛾𝐸)

+ 𝜆𝐼𝐴
((1 −  𝑢1)𝑝𝛽

𝐵

𝜅 + 𝐵
𝑆 + (1 − 𝑢1)𝑝𝛾𝐸 − 𝜇𝐼𝐴 − 𝛼2𝐼𝐴)  

+ 𝜆𝐼𝑆
((1 − 𝑢1)(1 − 𝑝)𝛽

𝐵

𝜅 + 𝐵
𝑆 + (1 − 𝑢1)(1 −  𝑝)𝛾𝐸 − 𝜇𝐼𝑆 − 𝜇𝑆𝐼𝑆

− 𝛼1𝐼𝑆) + 𝜆𝑅(𝛼1𝐼𝑆 + 𝛼2𝐼𝐴 − 𝜇𝑅 − 𝑣𝑅)

+ 𝜆𝐵(𝜂𝜃𝐼𝐴 + 𝜂𝜃𝐼𝑆 − 𝑑𝐵 − 𝑢4𝐵)     

(1) 

 

where 𝜆𝑖 for 𝑖 = 1,2,3,4,5,6,7 is a costate vector or a state-dependent Lagrange multiplier. 

The second step is to minimize ℋ in the first step for each variable u shown as follows: 

𝑢1
∗ =

1

𝐶4
(𝛽

𝐵

𝑘+𝐵
𝑆(𝜆𝐼𝐴

𝑝 + 𝜆𝐼𝑆
(1 − 𝑝) − 𝜆𝑆) + 𝛾𝐸(𝜆𝐼𝐴

𝑝 + 𝜆𝐼𝑆
(1 − 𝑝) − 𝜆𝐸))  

𝑢3
∗ =

𝜓𝑆(𝜆𝑆−𝜆𝐸)

𝐶6
                    

𝑢4
∗ =

𝜆𝐵𝐵

𝐶7
           (2) 

The optimal control 𝑢∗ is acquired from 
𝜕ℋ

𝜕𝑢
 and has the following characteristics 

𝑢1
∗ = 𝑚𝑖𝑛 (𝑢1𝑚𝑖𝑛, 𝑚𝑎𝑥(�̂�1

∗ , 𝑢1𝑚𝑎𝑥)) 

𝑢2
∗ = 𝑚𝑖𝑛 (𝑢2𝑚𝑖𝑛, 𝑚𝑎𝑥(�̂�2

∗ , 𝑢2𝑚𝑎𝑥)) 
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𝑢3
∗ = 𝑚𝑖𝑛 (𝑢3𝑚𝑖𝑛

, 𝑚𝑎𝑥(�̂�3
∗ , 𝑢3𝑚𝑎𝑥)) 

𝑢4
∗ = 𝑚𝑖𝑛 (𝑢4𝑚𝑖𝑛, 𝑚𝑎𝑥(�̂�4

∗ , 𝑢4𝑚𝑎𝑥)) 

 

The third step is to substitute the optimal control equation (2) into the Hamiltonian equation (1) to 

obtain the optimal Hamiltonian ℋ∗. Then ℋ∗ is used to find the fourth step, namely the state equation as 

follows: 

𝑥∗(𝑡) = (
𝜕ℋ

𝜕𝜆
)  

𝑆 ∗̇ = Λ + 𝑣𝑅 + 𝜖𝐸 − 𝜇𝑆 − 𝑢3
∗𝜓𝑆 − (1 − 𝑢1

∗)𝛽
𝐵

𝑘+𝐵
𝑆  

𝐸∗̇ = 𝑢3
∗𝜓𝑆 − 𝜖𝐸 − 𝜇𝐸 − (1 − 𝑢1

∗)𝛾𝐸  

𝐼𝐴
∗̇ = (1 − 𝑢1

∗)𝑝𝛽
𝐵

𝜅+𝐵
𝑆 + (1 − 𝑢1

∗)𝑝𝛾𝐸 − 𝜇𝐼𝐴 − 𝛼2𝐼𝐴  

𝐼𝑆
∗̇ = (1 − 𝑢1

∗)(1 − 𝑝)𝛽
𝐵

𝜅+𝐵
𝑆 + (1 − 𝑢1

∗)(1 − 𝑝)𝛾𝐸 − 𝜇𝐼𝑆 − 𝜇𝑆𝐼𝑆 − 𝑢2
∗𝛿𝐼𝑆  

𝑅∗̇ = 𝛼1𝐼𝑆 + 𝛼2𝐼𝐴 − 𝜇𝑅 − 𝑣𝑅  

 𝐵∗̇ = 𝜂𝜃𝐼𝐴 + 𝜂𝜃𝐼𝑆 − 𝑑𝐵 − 𝑢4
∗𝐵 

 
The optimal Hamiltonian ℋ∗ is also used to find the fifth step, which is the costate equation as follows: 

𝜆∗(𝑡) = − (
𝜕ℋ

𝜕𝑥
)  

𝜆𝑆
∗ = − (−𝜇𝜆𝑆 − 𝑢3

∗𝜓𝜆𝑆 − (1 − 𝑢1
∗)𝛽

𝐵

𝑘+𝐵
𝜆𝑆 + 𝑢3

∗ 𝜓𝜆𝐸 + (1 − 𝑢1
∗)𝑝𝛽

𝐵

𝜅+𝐵
𝜆𝐼𝐴

+ (1 − 𝑢1
∗)(1 −

                 𝑝)𝛽
𝐵

𝜅+𝐵
𝜆𝐼𝑆

)  

𝜆𝐸
∗ = −(𝜖𝜆𝑆 − 𝜖𝜆𝐸 − 𝜇𝜆𝐸 − (1 − 𝑢1

∗)𝛾𝜆𝐸 + (1 − 𝑢1
∗)𝑝𝛾𝜆𝐼𝐴

+ (1 − 𝑢1
∗)(1 − 𝑝)𝛾𝜆𝐼𝑆

)  

𝜆𝐼𝐴

∗ = −(𝐶2𝐼𝐴 − 𝜇𝜆𝐼𝐴
− 𝛼2𝜆𝐼𝐴

+ 𝛼2𝜆𝑅 + 𝜂𝜃𝜆𝐵)   

𝜆𝐼𝑆

∗ = −(𝐶1𝐼𝑆 − 𝜇𝜆𝐼𝑆
− 𝜇𝑆𝜆𝐼𝑆

− 𝛼1𝜆𝐼𝑆
+ 𝛼1𝜆𝑅 + 𝜂𝜃𝜆𝐵)  

𝜆𝑅
∗ = −(𝑣𝜆𝑆 − 𝜇𝜆𝑅 − 𝑣𝜆𝑅)   

𝜆𝐵
∗ = − (𝐶3𝐵 − (1 − 𝑢1

∗)𝛽
𝑆𝑘

(𝑘+𝐵)2 𝜆𝑆 + (1 − 𝑢1
∗)𝑝𝛽

𝑆𝑘

(𝑘+𝐵)2 𝜆𝐼𝐴
+ (1 − 𝑢1

∗)(1 − 𝑝)𝛽
𝑆𝑘

(𝑘+𝐵)2 𝜆𝐼𝑆
− 𝑑𝜆𝐵 −

                  𝑢4
∗𝜆𝐵). 

Table 2. Variable and parameter values 

Parameter Parameter Value Parameter Parameter Value Parameter Parameter Value 

𝑆(0) 5750 [1] 𝐶6 0.5 (assumption) 𝑝 0.78 [1] 

𝐸(0) 0 [1] 𝐶7 0.5 (assumption) 𝛼2 0.2 [1] 

𝐼𝐴(0) 1000 [1] 𝑢1 0.001 – 0.4 [5] 𝛿 0.15 [5] 

𝐼𝑆(0) 700 [1] 𝑢2 0 – 1 [1] 𝜇
𝑆
 0.00127 [1] 

𝑄(0) 0 [1] 𝑢3 0 – 1 [1] 𝜇
𝑄

 0.0001 [5] 

𝑅(0) 0 [1] 𝑢4 0 – 1 [1] μ 2.2493 × 10−5 [5] 

𝐵(0) 275000 [1] Λ 
24.4𝑁(0)

365000
 [5] 𝑣 

0.4

365
 [5] 

𝐶1 1 (assumption) β 0.08 [5] 𝜂 50 [1] 

𝐶2 0.1 (assumption) k 106 [1] 𝜖 0.003 [1] 

𝐶3 0.5 (assumption) 𝑑 
1

30
 [5] 𝛾 0.0005 [1] 

𝐶4 0.5 (assumption) 𝑡𝑓 100 days [5]   

𝐶5 1 (assumption) 𝜓 0.008 [1]   
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The optimal state and the optimal costate have been acquired by considering the boundary conditions 

𝑥(0) = 𝑥0 and 𝜆𝑡𝑓
= 0. The optimal state and costate solution were obtained using Forward-Back Sweep 

Runge-Kutta order 4. Table 2 lists the parameter values utilized in the simulation [18]. 

Figure 2 shows the simulation based on the four cases. The first case shows that the decline in the 

infected population with mild or severe symptoms did not show a significant number, but the concentration 

of bacteria increased. This shows that chlorination control is needed. The decrease in the infected 

population with mild symptoms, severe symptoms, and the highest concentration of bacteria occurred in the 

third case. The final time showed that in the third model there were no infected individuals and the 

concentration of bacteria decreased to 46.0578 cells/ml. 

 

 
4. CONCLUSIONS 

Based on the results of numerical simulations that have been carried out, the third model with control 

of improved sanitation, increased education, and chlorination is able to minimize the infected individuals, 

both with mild symptoms and severe symptoms with the bacterial concentrations at the end to 46.0578 

cells/ml. In addition, the third model can minimize the cost of preventing the spread of cholera. This shows 

that quarantine treatment can be avoided if the control of sanitation and chlorination improvement is carried 

out optimally. 

 
 

 
(a) (b) 

  
(c) (d) 

 

Figure 2. (a) Infected Asymptomatic, (b) Infected Symptomatic, (c) and (d) Bacteria. 
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