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Abstract. The nature of the steel slag concrete experiment followed a mixture process variable (MPV) design. In this 

study, the concrete is composed of five mixture components, cement, fine aggregate, coarse aggregate, percentage 
steel slag replaced the fine aggregate and water, and process variable was the size of steel slag. Due to the constraints 

of the components, the experimental region was not a simplex. The standard MPV of a quadratic model produces 

large experimental runs. In this paper, D-optimal design with split- plot MPV approach was proposed. The five 

mixture components were assigned as the subplot factors and the process variable was assigned as the whole plot 
factors. The main objective of this information is a modified point exchange algorithm was developed to generate the 

D-optimal design. In addition, the paper investigates related issue namely, the estimation of the covariant matrix in 

MPV split-plot design. The final design consisted of 18 whole plots each of size 2 and experiment design with 36 

observations. 
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1. INTRODUCTION 

In mixture experiments, the response depends on the proportion of each component and not the total 

amount [1], [2]. There are two main constraints of mixture experiments. First, the proportion of a component 

is between 0 and 1. Second, the sum of proportions of all components is unity. Both features of the mixture 

experiment are the main constraints and its affect to the experimental region.  In addition, sometimes the 

constraints have lower and/or upper bounds.  

Due to the additional constraints on the components, the experimental region can be change to the 

irregular shaped region. To determine the design points of an irregular shaped region are needed a 

computational approach. The XVERT algorithm can be used for selecting a subset of extreme vertices when 

the number of candidate vertices is large. XVERT algorithm to find the design points in the quadratic model 

[3]. The centroids are calculated by averaging various subsets of vertices. The software in R available to 

compute extreme vertices and other points in irregular shape region in R using mixexp [4]. 

In the real situation, many factors affect the response of the experiments. A combination between a 

process variable(s) and a mixture design is called mixture process variable (MPV). The process variable(s) 

affect the combination of mixtures at the different levels.   

The steel slag experiments consisted of five components and a process variable. The classical mixture 

process variable for a quadratic model produce large experimental runs. Of course, it will affect the cost of 

the experiment. Furthermore, the experiment is hard to run a complete randomization because the process 

variable is not as easy as to change to another level for the next run.  This experiment has a tendency following 

a split-plot structure [5]. Previous studied split plot design[6], [7].  Basic experimental designs for split-plot 

mixture process variable designs (SPMPV) [8]. Previous studied using SPMPV [9], [10].  

As the standard MPV design resulted in large experimental runs, optimal designs can be an alternative 

solution because the experimental runs can be controlled. The D-optimal designs for SPMPV [11]. One 

approach to compute D-optimal is to take a point-exchange algorithm [12]–[14]. The exchange algorithm to 

accommodate the restrictions on the number of whole plots [15]. This paper discussed the benefits of increase 

the number of whole plots. More whole-plots tend to the designs have a higher D-efficiency. 

The goal of the research in this paper was to determine the D-optimal design on steel slag concrete 

using a split-plot mixture process variable experimental design. We modified the algorithm [15]. 

 

 

2. RESEARCH METHODS 

2.1 Split Plot Models and Estimation  

The factors in split-plot design in industrial experiment consists of two type of classes, i.e. the factors 

that are not easy to change and the factors are easy to change [16]. The hard to change factors are called the 

whole-plot variables (𝐯)  and the easy to change factor are called the subplot variables (𝐦). The split-plot 

design of the 𝑗 th observations ,(𝑗 = 1,2,…, 𝑘𝑖), within the 𝑖(𝑖 = 1,2, … , 𝑏) can be described as 

𝑦𝑖𝑗 = f 𝑇(𝐯𝑖, 𝐦𝑖𝑗) 𝜶 + 𝜏𝑖 + 𝜀𝑖𝑗                                                                  (1) 

where f 𝑇(𝐯𝑖, 𝐦𝑖𝑗) represent the model extensions of the whole-plot and sub plot variables, 𝜶 is the 𝑝 × 1 
 

parameter vector, 𝜏𝑖 is the random  effect of the 𝑖 th whole-plot and 𝜀𝑖𝑗  is the subplot error. 

Equation (1) can be expressed in matrix form and can be written as:  

𝐲 = 𝐖𝜶 + 𝐙𝝉 + 𝜺                                                                        (2) 

where y  is the  𝑛 × 1 vector of responses, 𝐖 is the 𝑛 × 𝑝 model matrix containing the setting of both the 

whole-plot and the subplot variables. Z  is an 𝑛 × 𝑏 matrix of zeroes and ones assigning the 𝑛 observations 

to the 𝑏 whole plots. The  𝝉 and 𝜺 are the random effects and each terms is assumed that 𝝉~𝑁(0, 𝜎𝛾
2𝐈𝑏) and 

𝜺~𝑁(0, 𝜎𝜺
2𝐈𝑛), respectively.  

 

The variance covariance matrix of Equation (2) is: 

𝐕 = 𝜎𝛾
2𝐙𝐙′ + 𝜎𝜺

2 𝐈𝑛 = 𝜎𝜺
2(𝐈𝑛 + 𝜂𝐙𝐙′)                                         (3) 
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where V  is a 𝑛 × 𝑛   matrix and the variance ratio 𝜂 = 𝜎𝛾
2 𝜎𝜀

2⁄  is a measure for the autocorrelation among 

observations within the same whole-plot. The value of 𝜂 is expected largely because the autocorrelations of 

the observation within a whole-plot is high [11].   

The matrix of variance covariance  of the 𝑘𝑖 observations within the 𝑖 th whole plot  can be expressed as: 

𝐕𝑖 =  𝜎𝜺
2(𝐈𝑘𝑖×𝑘𝑖

+ 𝜂𝟏𝑘𝑖
𝟏𝑇

𝑘𝑖
)                                                                  (4) 

The  𝑖 th matrix on the diagonal is given by 

    𝐕𝑖
−1 =

1

σ𝜀
2 (𝐈𝑘𝑖×𝑘𝑖

−
𝜂

1+𝑘𝑖𝜂
𝟏𝑘𝑖

𝟏𝑘𝑖

𝑇)                                                         (5) 

Generalized Least Square (GLS) used for estimating the parameter. The parameter estimation of GLS 

approach can be defined as :  

     𝜶 ̂  = (𝐖𝑇𝐕−𝟏𝐖)
−𝟏

 𝐖𝑇𝐕−𝟏𝐲                                                              (6) 

And the variance of parameter estimation can be expressed as   

var(𝜶 ̂) = (𝐖𝑇𝐕−𝟏𝐖)
−𝟏

= σ𝜀
2 {𝐖𝑇(𝐈𝑛 + 𝜂𝐙𝐙𝑇)−𝟏𝐖}

−𝟏
                      (7) 

Furthermore, the information matrix is given by  

𝐌 = 𝐖𝑇𝐕−𝟏𝐖 = 𝜎𝜺
−2 𝐖𝑇(𝐈𝑛 + 𝜂𝐙𝐙𝑇)−𝟏𝐖                                            (8) 

Therefore variance of 𝜶  is minimized by maximizing determinant of 𝐖𝑇𝐕−𝟏𝐖.  

 

2.2 D-Optimality Criterion 

The optimal designs are the branch of experimental designs that optimizing the designs by a certain 

criterion. The D-optimality criterion in which it focuses on precision of the parameter estimation.  The D-

optimality criterion is defined as   

            𝐷 = max |𝐌| = max|𝐖𝑇𝐕−𝟏𝐖|                                          (9) 

A measure to compare the quality of designs with the information matrices 1M and 2M  used the D-efficiency. 

The D-efficiency is given by  

                           𝐷𝑒𝑓𝑖𝑠𝑖𝑒𝑛𝑠𝑖 = {
|𝐌1|

|𝐌2|
}

1/𝑝
                                                      (10) 

A  D-efficiency greater than one  indicates that Design 1 is better than Design 2 in terms of the D-optimality 

criterion [17]. 

 

2.3 The Steel Slag Concrete Experiment 

The steel slag concrete experiment consisted of five mixture components, i.e. water, cement, coarse 

aggregate, fine aggregate, and percentage steel slag. In this experiment, the steel slag substitutes the aggregate 

fine around 10-30% [18].  The constrained of the components are shown in Table 1. 

 
Table 1. Mixture Components on Steel Slag Concrete 

Component Minimum Maximum 

Water (𝒎𝟏)  0.14 0.21 

Cement (𝒎𝟐)   0.07 0.15 

coarse aggregate (𝒎𝟑) 0.36 0.48 

fine aggregate (𝒎𝟒)   0.21 0.22 

percentage steel slag (𝒎𝟓) 0.03 0.10 

 

In this case, the size of steel slag was a process variable. There were three levels of the size of steel slag : 1.2 

mm, 2.4 mm, and 4.8 mm.  The process variable was variable 𝑣 and the values of the variable 𝑣 were -1, 0, 

and 1 which each values of variable 𝑣 represents each size of the steel slag, respectively. The steel slag 

concrete experiment was run using a split-plot mixture process variable (SPMPV) design.  
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The model is combination between the quadratic Scheff’e model for mixture components and the 

quadratic model for a process variable.  The quadratic Scheff’e model of mixture model is written as 

�̂�(𝐦) = ∑ 𝛼𝑖𝑚𝑖
5
𝑖=1 + ∑ ∑ 𝛼𝑖𝑗

5
𝑗=𝑖+1

4
𝑖=1 𝑚𝑖𝑚𝑗                                             (11) 

and model for the process variable is written as  

    �̂�(𝐯) = 𝛽𝑜 + 𝛽1𝑣 + 𝛽11𝑣2                                                                      (12) 

Combination equation (11) and (12) resulting the model SPMPV is given by 

�̂�(𝐦, 𝐯) = ∑ 𝛼𝑖𝑚𝑖
5
𝑖=1 + ∑ ∑ 𝛼𝑖𝑗

5
𝑗=𝑖+1

4
𝑖=1 𝑚𝑖𝑚𝑗 + ∑ 𝛾𝑖𝑚𝑖

5
𝑖=1 𝑣 + 𝛽11𝑣2    (13) 

Equation (13) involves 15 parameters of the quadratic mixture terms, 5 parameter 𝑚𝑖𝑥𝑡𝑢𝑟𝑒 × 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 

interactions terms, and a parameter of the process variable model.  In total, there are 21 parameters in model. 

This is shown that at least 21 runs should be run in this experiment. 

 

2.4 Method 

1. Examine the estimation of the variance of the SPMPV model. 

a. Determine the SPMPV model 

b. Estimating the variance component of the main plot (�̂�𝛾
2)  of the SPMPV model using the Bayes 

method with 𝒚~𝑁(𝐗𝜷, 𝐕) and each main plot 𝐲𝒊~𝑁(𝜇, 𝜎𝛾
2). The steps are as follows:  

i. Determine the probability function of the normal distribution as an sample distribution 

ii. Determine the non-informative prior distribution for �̂�𝛾
2 of the normal distribution using Jeffrey's    

method: 1) determine Fisher's information 2) determine the prior distribution �̂�𝛾
2 

iii. Estimating the posterior distribution �̂�𝛾
2 

iv. Determine the posterior marginal distribution  

c. Determine the value of the variance component of the main plot and sub-plot.  

i. Determining the empirical estimated value of �̂�𝛾
2obtained by the MCMC method using the 

Metropolis-Hastings algorithm. Using software R. The package used is MCMCpack. Using the 

Laplace approximation for Bayesian inference. The package used is Laplaces Demon with 1000 

iterations.  

ii. Determine the empirical value of �̂�𝜀
2 using �̂�𝜀

2 = 
�̂�𝛾

2

𝜂
 . 

2. The optimal design of SPMPV with D-optimal criteria using a modified point-exchange [15].  

a. Determine the ratio of variance (𝜂).   

The value of this variance ratio will affect the value of the elements in the variance matrix of the 

SPMPV   design. Determines �̂�𝛾
2 and �̂�𝜀

2 based on the variance ratio.  

b. Determine the variance matrix in the SPMPV design (𝐕).  

c. Determine the candidate set that contains all the combinations of the levels of the factors based on    

the MPV design points.  

d. Generate the initial design according to the desired number of trials. Choose randomly design points   

in the candidate set.  

e. Determine the design matrix (𝐗)  by entering the design points selected in step d.  

f. Determine the information matrix (𝐌) and calculate the value of the criteria 𝒟 = |𝐌| = |𝐗𝑇𝐕−𝟏𝐗| 

of the plan.  

g. Perform design improvement iteratively, until there is no further increase in the value of 𝒟. Carry out 

the best exchange for sub-plots in the initial design. Each design point is exchanged for a point from 

the candidate set that has the same whole plot level (z). Calculate the value of the determinant of the 

information matrix at each point exchange. Save the design that produces the largest value of the 

determinant of the information matrix. 

3. D-Optimal Design of the Steel Slag Concrete 

Generating initial design to get D0. Next, improve the design to get D1. D0 and D1 were repeated 1000 

times and the highest D-efficiency was selected. 
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3. RESULTS AND DISCUSSION 

3.1 Estimation the Covariance Matrix in SPMPV 

The SPMPV model in Equation (1). The covariance matrix structure of split-plot design is different 

with completely randomized design. The covariance matrix of split-plot design is not a diagonal matrix.  

Equation (3) shows the structure of the covariance matrix  (𝐕).  The matrix 𝐕 consists of 𝜂 = 𝜎𝛾
2 𝜎𝜀

2⁄ ,which 

the values cannot define if the response does not exist. Normally, �̂�𝜀
2 is assumed unity in the optimal design 

approach. The new invented in this paper, the ratio �̂�𝜀
2  is estimated by the Bayesian approach.  

The variance component 𝜎𝛾
2  is obtained by finding a posterior distribution based on the prior 

information.  In this case, non-informative prior is used. The formula of the non-informative prior is (𝜇, 𝜎𝛾
2) ∝

1

𝜎𝛾
2  [19]. 

The posterior distribution is defined as multiplication between the function of the prior information 

and the likelihood function.  The steps of derivation the posterior distribution are shown below 

𝑝(𝜇, 𝜎𝛾
2|𝑦) ∝ 𝑝(𝜗) × 𝐿(𝜇, 𝜎𝛾

2) 

                   ∝
1

𝜎𝛾
2 × ((2𝜋𝜎𝛾

2)
−𝑛/2

 𝑒𝑥𝑝 (
−1

2𝜎𝛾
2 ∑ (𝑦𝑖 − 𝜇)2𝑛

𝑖=1 )) 

 

                  ∝ (2𝜋)−𝑛/2𝜎𝛾
−2−𝑛 𝑒𝑥𝑝 (

−1

2𝜎𝛾
2 ∑ (𝑦𝑖 − 𝜇)2𝑛

𝑖=1 ) 

 

                  ∝ 𝜎𝛾
−2−𝑛 𝑒𝑥𝑝 (

−1

2𝜎𝛾
2 (∑ (𝑦𝑖 − �̅�)2𝑛

𝑖=1 + 𝑛(�̅� − 𝜇)2)) 

                   ∝ 𝜎𝛾
−2−𝑛 𝑒𝑥𝑝 (

−1

2𝜎𝛾
2 ((𝑛 − 1)𝑠2 + 𝑛(�̅� − 𝜇)2))                                         (14) 

where  𝑠2 =
1

𝑛−1
∑ (𝑦𝑖 − �̅�)2𝑛

𝑖=1 . 

The posterior marginal distribution for 2

  is obtained by integrating (14) with respect to   such as the 

following: 

𝑝(𝜎𝛾
2|𝑦) = ∫ 𝑝(𝜇, 𝜎𝛾

2|𝑦)𝑑𝜇 

     = ∫ 𝜎𝛾
−2−𝑛 𝑒𝑥𝑝 (

−1

2𝜎𝛾
2 ((𝑛 − 1)𝑠2 + 𝑛(�̅� − 𝜇)2)) 𝑑𝜇 

      =  𝜎𝛾
−2−𝑛 𝑒𝑥𝑝 (

−1

2𝜎𝛾
2

(𝑛 − 1)𝑠2) 𝜎𝛾√
2𝜋

𝑛
∫

1

√2𝜋𝜎𝛾
2/𝑛

𝑒𝑥𝑝 (−
1

2
(

�̅� − 𝜇

𝜎𝛾
2/𝑛

)

2

) 𝑑𝜇 

 

   =  𝜎𝛾
−1−𝑛 𝑒𝑥𝑝 (

−1

2𝜎𝛾
2 (𝑛 − 1)𝑠2) √

2𝜋

𝑛
  

 

    ∝ 𝜎𝛾
−1−𝑛 𝑒𝑥𝑝 (

−1

2𝜎𝛾
2 (𝑛 − 1)𝑠2)  

 

         ∝ (𝜎𝛾
2)

−(𝑛+1)

2  𝑒𝑥𝑝 (
−(𝑛 − 1)𝑠2

2𝜎𝛾
2 ) 

 

  The final results is  𝜎𝛾
2~𝑖𝑛𝑣𝜒(𝑛−1, 𝑠2)

2 .                                                                      (15) 
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The value of empirical estimates 2ˆ
  is obtained MCMC (Markov Chain Monte Carlo) based on the posterior 

distribution. The value of empirical estimates �̂�𝜀
2 is obtained by  �̂�𝜀

2 = 
�̂�𝛾

2

𝜂
.  In the problem in this paper, four 

values of 𝜂 are chosen 𝜂 = 0.1,1,5,10. Larger value of 𝜂  represents that the split plot design is needed because 

the variance of main plot is higher than the variance of sub plot.   In many practical instances, 𝜂 is assumed 

to be around one [28, 11]. The vinyl thickness experiment obtained �̂� = �̂�𝛾
2 �̂�𝜀

2⁄  = 1.5876/1.947 = 0.82 [8]. 

Furthermore, smaller or larger 𝜂 can be obtained in the experiment, obtain  �̂� = �̂�𝛾
2 �̂�𝜀

2⁄  = 1.0801/0.1562 

=6.91 [17]. For this reason, we also report relative efficiencies using 𝜂 values as extreme as 0.1 and 10. The 

estimation of �̂�𝛾
2 and �̂�𝜀

2 in various values of𝜂 can be seen in Table 2. Table 2 shows that larger 𝜂 resulted 

smaller (�̂�𝜀
2) when �̂�𝛾

2 is fixed.  

 

Table 2. Statistics   �̂�𝜸
𝟐 and  �̂�𝜺

𝟐  with  𝜼 =0.1,1,5,10. 

�̂�𝜸
𝟐 and  �̂�𝜺

𝟐 𝜼 = 0.1 𝜼 = 1 𝜼 = 5 𝜼 = 10 

 Varian whole plot (�̂�𝜸
𝟐) 13.9573 13.7256 13.9740 13.8060 

  Varian sub plot  (�̂�𝜺
𝟐) 139.573 13.7256   2.7948   1.3806 

 

3.2 The optimal design of SPMPV with D-optimal criteria 

Defining A Candidate Set 

In this paper, the point-exchange algorithm was used to find the optimal design.  In the point-exchange 

algorithm, the candidate set must be defined.  The candidate set involves a set of possible design points. For 

designing a SPMPV experiment, the candidate set can be defined by crossing a {q, m} simplex-lattice design 

or a {q, m} simplex-centroid design of the mixture components and a factorial design for the process variable.  

However, defining the candidate set of the constrained mixture problem is more challenging.  The 

constrained mixture experiment effects the experimental region. For the irregular region, the candidate set is 

constructed by the XVERT algorithm. The XVERT algorithm computes the vertices of the experimental 

region so the edges of the region can be defined as well.  

The case of steel slag concrete experiments is complex because there are lower and upper bound on 

the mixture components. For quadratic model, the candidate set involves 113 design points which consists of 

22 extreme vertices, 54 edge centroid, 36 constraint plane centroids, and 1 overall centroid. The process 

variable consists of three levels, hence there are 339 points in the candidate set.   

 

The Algorithm for constructing the SMPV design 

The algorithm has two parts: generating the starting design and improving it. The criterion used in this 

case is the D-optimality criterion which is focused on precision of parameter model. For simplicity, 𝑏  refers 

to the size of whole plot, 𝑘 refers to the size of sub plot, and 𝑛 refers to the total number of experimental runs.   

The starting design was generated by chosen randomly n points of candidate points. Afterwards, the n 

points were divided into 𝑏 whole plots randomly with size 𝑘.  Further detail about the algorithm can be seen 

in Algorithm 1.  

 

Algorithm 1. Generating the starting design 

1. Generate the candidate set with size l . Define as matrix G  

2. Choose randomly 𝑛 candidate points, 𝑛 < l.  

3. Divide 𝑛 design points into 𝑏 whole plots randomly with size 𝑘.  

4. Save as matrix S 

5. Define 𝜂 and implement the Bayesian approach to find �̂�𝛾
2 and �̂�𝜀

2 

6. Calculate 𝐷 = max |𝐌| = max|𝐖𝑇𝐕−𝟏𝐖|   

7. If D = 0 then 𝐷 = max |𝐌 + ω𝐈| , ω is a very small constant. 

8. Save D as Dbest and S as Design_ best 

 

The improvement phase of the point-exchange algorithm starts by exchanging the first point of the 

starting design with the first candidate point and calculating the D-optimality criterion of the new design. The 

next process is exchanging the first point of the starting design with the second candidate point and 
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determining the new D-optimality criterion. The process continues until the first design point is exchanging 

with the last candidate point. For this process, the largest D-optimality criterion and the related design are 

saving as the best one.  

The algorithm that using in this paper was modified from the point-exchange algorithm [15]. The 

modification that made in this paper was only one strategy used for improving the design i.e exchanging a 

design point with a candidate point.  A strategy considered to improve the starting design is the design point 

(𝐯𝑖 , 𝐦𝑖𝑗) can only be replaced by a point with  a point from the candidate set of the same  level 𝐯 of the whole 

plot factors.The point-exchange algorithm that was used in this paper is shown in Algorithm 2. As the 

algorithm cannot guarantee that the algorithm will find the global optimal for an iteration, Algorithm 2 was 

run ℎ times.  

Algorithm 2. The modified point-exchange algorithm 

1. Set i = 1, j = 1 

2. For i = 1 to n,  

a. For j = 1 to l  

i. Replace S[i] = G[j] 

ii. Update D 

iii. If D > Dbest then Dbest = D and Desain_best = S 

3. End 

4. End 

 

3.3 D-Optimal Design of the Steel Slag Concrete 

The steel slag experiment involved five components mixtures as sub-plot factors and a process variable 

as a whole plot factor. In this case, 𝑛 = 36 runs were specified and the Scheff’e quadratic model was 

considered.  The combination of 𝑏 and 𝑘 could be (18, 2), (12, 3), and (9, 4) in order to have 36 runs in total. 

The results of ℎ = 1000 times are shown in Table 3. 𝐷0 represents the D-optimality criterion of the starting 

design and 𝐷1 represent the D-optimality criterion of the optimal design. To evaluate the two designs, the D-

efficiency was used. If D-efficiency > 1, it shows that the final design was better than the starting design.  

 
Table 3. D-Efficiency of the Steel Slag Concrete 

Split plot D-opt criterion      𝜼 = 1     𝜼 = 5    𝜼 = 10  

b = 18   

k = 2 

D0 1.4412e-101 6.2507e-92 1.7593e-80 

D1 1.7023e-96 2.3040e-85 4.1260e-86 

D-eff 1.7440 2.0544 2.0107 

b = 12   

k = 3 

D0 1.6094e-100 4.7174e-90 5.0255e-83 

D1 8.8831e-96 1.2775e-83 7.1028e-78 

D-eff  1.6819 2.0245 1.7589 

b = 9   D0 4.2524e-99 2.4453e-89 1.1344e-82 

k = 4 D1 1.5955e-95 5.6628e-83 2.1514e-77 

 D-eff  1.4798 2.0090 1.7837 

 

In general, the point-exchange algorithm was success to find the D-optimal design. It can be seen that 

all D-efficiencies were greater than 1.  The largest D-efficiency value was the design with 𝑏=18, 𝑘 = 2, and 

𝜂 =5 with the D-efficiency of 2.0544 . It was shown that the algorithm worked well. However, the largest D-

optimality criterion was found when 𝑏= 9, 𝑘 = 4, and 𝜂 =10 with D-optimality criterion 0f 2.1514e-77.  D-

efficiency of the design compared to the design with the same size but  𝜂 = 5 was 2.0090.  
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Figure 1. D-efficiency in steel slag 

 

The design structure b = 18, k = 2, 𝜂 = 5 and 𝜂 = 10 obtained D-efficiency of 205% and 201%, 

respectively. The design structure b = 12, k = 3 and b = 9, k = 4 is highest 𝜂 = 5 with and D- efficiency of 

202% and 200% this can be seen in Figure 1. 

The best design based on the largest D-optimality criterion was shown in Table 4. The optimal design 

consists of 18 whole plots each of size 2 and experiment design with 36 observations.  In this case, quadratic 

model 36 design points are 18 extreme vertices, 13 edge centroid and 5 constraint plane centroids of the 

mixture design region. 
 

Table 4. The Best Design of The Steel slag Concrete Experiments 

Whole     plot Sub     plot 𝒎𝟏 𝒎𝟐 𝒎𝟑 𝒎𝟒 𝒎𝟓 𝒗 Point 

1 1 0.1400 0.1500 0.4350 0.2100 0.0650 1 2 

 2 0.1750 0.0700 0.4350 0.2200 0.1000 1 2 

2 1 0.1400 0.1500 0.4700 0.2100 0.0300 0 1 

 2 0.1800 0.0700 0.4600 0.2200 0.0700 0 3 

3 1 0.1400 0.1300 0.4800 0.2200 0.0300 -1 1 

 2 0.2100 0.0700 0.4000 0.2200 0.1000 -1 1 

4 1 0.1400 0.1500 0.4000 0.2100 0.1000 -1 1 

 2 0.1400 0.0700 0.4700 0.2200 0.1000 -1 1 

5 1 0.2000 0.0700 0.4800 0.2200 0.0300 -1 1 

 2 0.2100 0.0700 0.4100 0.2100 0.1000 -1 1 

6 1 0.2100 0.0700 0.4100 0.2100 0.1000 0 1 

 2 0.2100 0.1500 0.3950 0.2150 0.0300 0 2 

7 1 0.1400 0.0700 0.4800 0.2100 0.1000 1 1 

 2 0.2100 0.1100 0.4400 0.2100 0.0300 1 2 

8 1 0.1400 0.1500 0.3900 0.2200 0.1000 -1 2 

 2 0.2100 0.0700 0.4800 0.2100 0.0300 -1 2 

9 1 0.2100 0.0700 0.4800 0.2100 0.0300 1 1 

 2 0.2100 0.1500 0.3600 0.2200 0.0600 1 1 

10 1 0.1400 0.1300 0.4800 0.2200 0.0300 1 1 

 2 0.2100 0.0700 0.4100 0.2100 0.1000 1 2 

11 1 0.1400 0.1500 0.3950 0.2150 0.1000 1 2 

 2 0.1750 0.0700 0.4800 0.2100 0.0650 1 2 

12 1 0.1400 0.1500 0.4250 0.2200 0.0650 0 2 

 2 0.1950 0.1350 0.3600 0.2100 0.1000 0 2 

13 1 0.2100 0.1500 0.3600 0.2200 0.0600 -1 1 

 2 0.1400 0.0700 0.4800 0.2100 0.1000 -1 1 

14 1 0.2100 0.1500 0.3900 0.2200 0.0300 0 1 

 2 0.1725 0.0700 0.4800 0.2150 0.0625 0 3 

15 1 0.2100 0.1100 0.3600 0.2200 0.1000 0 1 

 2 0.1750 0.1500 0.4300 0.2150 0.0300 0 3 

16 1 0.2100 0.0700 0.4700 0.2200 0.0300 1 1 

 2 0.1760 0.1120 0.4020 0.2100 0.1000 1 3 

17 1 0.1700 0.1500 0.3600 0.2200 0.1000 0 1 

 2 0.1400 0.1100 0.4400 0.2100 0.1000 0 2 

18 1 0.2100 0.1500 0.3800 0.2100 0.0500 -1 2 

 2 0.2100 0.0925 0.3825 0.2150 0.1000 -1 3 

point 1= Vertices, 2 = edge centroid, 3= constraint plane centroid 
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4. CONCLUSIONS 

In this paper, We proposed design points modified point exchange algorithms [15]. We discuss 

Bayesian estimation the covariance matrix in SPMPV and calculate the information matrix. We showed how 

to compute D-optimal SPMPV design on the development of the steel slag concrete. The efficient small 

design experiments involving mixture components of steel slag concrete and process variable.  
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