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Abstract. A graph with the labeling properties of odd harmonious is called an odd harmonious graph. The purpose 

of this research was to get labeling properties of odd harmonious on the class of string graphs. The research used 
was a qualitative research method. The result of the research was that the definition and construction of a string 

graph, the union of a string graph, and the multiple string graph are obtained. Furthermore, it has been proved that 

a string graph, the union of a string graph, and the multiple string graph is an odd harmonious graph. 
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1. INTRODUCTION 

Graph labeling is one of the research topics on graph theory that has developed very rapidly in recent 

years. In 2019, Liang and Bai construct the definition of an odd harmonious graph as follows. For example, 

𝐺(𝑝, 𝑞) is a graph with the set of vertices 𝑉(𝐺) and the set of edges 𝐸(𝐺) with order 𝑝 = |𝑉(𝐺)| and size 

𝑞 = |𝐸(𝐺)|. If the graph 𝐺(𝑝, 𝑞) fulfills the injective 𝑓: 𝑉(𝐺) → {0,1,2,3,4,5, … ,2𝑞 − 1} that induces 

𝑓∗: 𝐸(𝐺) → {1,3,5,7,9, … ,2𝑞 − 1} which is bijective with the definition of 𝑓∗(𝑥, 𝑦) = 𝑓(𝑥) + 𝑓(𝑦) so the 

graph 𝐺(𝑝, 𝑞) is an odd harmonious graph [1]. 

Gallian in 2019 collected all the research on graph labeling theory and its applications [2]. There are 

several classes of odd harmonious graphs that have been found, including: Srividya and Govindarajan in 2020 

found a circular graph with parallel chord [3]. Ferbriana and Sugeng in 2020 found a squid graph [4], Jeyanthi 

and Philo in 2020 found a ladder graph [5]. Mumtaz et al in 2021 found a matting graph [6], Mumtaz and 

Silaban in 2021 found that the snake hair graph [7]. Pujiwati et al in 2021 found two star graphs [8]. Other 

relevant research results can be seen in [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], and  [20]. 

In 2017, Firmansah and Yuwono found a snake net graph [21], and Firmansah, in 2020, found a 

multiple net snake graph which is an odd harmonious graph [22]. The two results in this paper are the basis 

for research to obtain new class constructions in the form of string graphs, the union of string graphs, and 

multiple string graphs. This research aimed to find the labeling properties of odd harmonious in several 

classes of string graphs. The research method used was qualitative research. In this study, the construction 

and definition of the string graph 𝑅(𝑠) with 𝑠 ≥ 1, the union of a string graph 𝑅(𝑠) ∪ 𝑅(𝑠) with 𝑠 ≥ 1, and 

the multiple string graph 𝑅(𝑠, 𝑡) with 𝑠 ≥  1 and 𝑡 ≥ 1 will be given. Next, we will prove that the string graph 

𝑅(𝑠) with 𝑠 ≥ 1, the union of a string graph 𝑅(𝑠) ∪ 𝑅(𝑠) with 𝑠 ≥ 1, and the multiple string graph 𝑅(𝑠, 𝑡) 

with 𝑠 ≥ 1 and 𝑡 ≥ 1 fulfill the labeling properties of odd harmonious such that it is an odd harmonious 

graph. Furthermore, the results of this study also add new properties of odd harmonious graphs from previous 

studies. 

 

 

2. RESEARCH METHOD 

This research is a type of qualitative research that focuses on developing new properties of odd 

harmonious graphs. The research stages were as follows: Data collection stage, looking for relevant reference 

sources to obtain new graph class constructions in the form of graph class definitions and graph class images 

to obtain vertex notation and edge notation from the graph class. The data analysis stage will be given the 

construction of a set of vertices, a set of edges, labeling vertices that are injective, and labeling edges that are 

bijective. Stages of theorem construction and proof, at this stage, the construction of the theorem and its proof 

will be given. Then, the theorem was proven using the direct proof method, namely by showing that the 

labeling function of the vertices that have been constructed fulfills the injective properties to induce a bijective 

edge labeling function. 

 

 

3. RESULTS AND DISCUSSION 

In this chapter, odd harmonious labelling will be given to several classes of string graphs, namely string 

graphs, the union of a string graphs and multiple string graphs.  

3.1 Odd Harmonious Labeling on String Graphs 

Definition 1.  String graph 𝑅(𝑠) with 𝑠 ≥ 1 is a graph with 

𝑉(𝑅(𝑠)) = {𝑢𝑖|0 ≤ 𝑖 ≤ 𝑠 + 1} ∪ {𝑣𝑖
𝑗|1 ≤ 𝑖 ≤ 𝑠 + 1, 𝑗 = 1,2} ∪ {𝑤𝑖

𝑗|1 ≤ 𝑖 ≤ 𝑠, 𝑗 = 1,2} and  

𝐸(𝑅(𝑠)) = {𝑢𝑖𝑣(𝑖+1)
𝑗|0 ≤ 𝑖 ≤ 𝑠, 𝑗 = 1,2} ∪ {𝑣𝑖

𝑗𝑢𝑖|1 ≤ 𝑖 ≤ 𝑠 + 1, 𝑗 = 1,2}  ∪

{𝑣𝑖
𝑗𝑤𝑖

𝑗
|1 ≤ 𝑖 ≤ 𝑠, 𝑗 = 1,2} ∪ {𝑤𝑖

𝑗𝑣(𝑖+1)
𝑗

|1 ≤ 𝑖 ≤ 𝑠, 𝑗 = 1,2}.  
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In Figure 1 given the construction of a string graph 𝑅(𝑠) with 𝑠 ≥ 1.  
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Figure 1. String graph 𝑹(𝒔)  

 

Next, we will prove that the string graphs 𝑅(𝑠) with 𝑠 ≥ 1 is an odd harmonious graph expressed in 

Theorem 2.  

Theorem 2.  The string graph 𝑅(𝑠) with 𝑠 ≥ 1 is odd harmonious graph 

Proof. Based on Definition 1 obtained p= |𝑉(𝑅(𝑠))| = 5𝑠 + 4 and 𝑞 = |𝐸(𝑅(𝑠))| = 8𝑠 + 4. given  

𝑓: 𝑉(𝑅(𝑠)) → {0,1,2,3, 4, 5, … ,16𝑠 + 7}  

 𝑓(𝑢𝑖) = 4𝑖, 0 ≤ 𝑖 ≤ 𝑠 + 1      (1) 

𝑓(𝑣𝑖
𝑗) = 4𝑖 + 2𝑗 − 5, 𝑗 = 1,2 and 0 ≤ 𝑖 ≤ 𝑠 + 1   (2) 

𝑓(𝑤𝑖
𝑗) = 16𝑘 − 12𝑖 − 4𝑗 + 18, 𝑗 = 1,2 and 1 ≤ 𝑖 ≤ 𝑠   (3) 

Based on (1), (2), and (3) it is obtained that each vertices has a different table and 𝑉(𝑅(𝑠)) ⊆

{0,1,2,3, 4, 5, … ,16𝑠 + 7} so 𝑓 is injective. Given 𝑓∗: 𝐸(𝑅(𝑠)) → {1, 3, 5, 7,9, … ,16𝑠 + 7}.  

𝑓∗(𝑢𝑖𝑣(𝑖+1)
𝑗) = 2𝑗 + 8𝑖 − 1, 𝑗 = 1,2 and  0 ≤ 𝑖 ≤ 𝑠   (4) 

𝑓∗(𝑣𝑖
𝑗𝑢𝑖) = 2𝑗 + 8𝑖 − 5, 𝑗 = 1,2 and 1 ≤ 𝑖 ≤ 𝑠 + 1   (5) 

𝑓∗(𝑣𝑖
𝑗𝑤𝑖

𝑗
) = 16𝑘 − 2𝑗 − 8𝑖 + 13, 𝑗 = 1,2 and 1 ≤ 𝑖 ≤ 𝑠  (6) 

𝑓∗ (𝑤𝑖
𝑗𝑣(𝑖+1)

𝑗
) = 16𝑘 − 2𝑗 − 8𝑖 + 17, 𝑗 = 1,2 and 1 ≤ 𝑖 ≤ 𝑠  (7) 

According to (4), (5), (6) and (7) It is obtained that each edges has a different label and 𝐸(𝑅(𝑠)) =
{1,3,5,7,9, … ,16𝑠 + 7} so 𝑓∗ is bijective. Therefore, the string graph 𝑅(𝑠) with 𝑠 ≥ 1 is an odd harmonious 

graph  

Here is an example of a string graph: 𝑅(6) in Figure 2 which is an odd harmonious graph.  
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Gambar 2. String Graph 𝑹(𝟔)  

 

3.2 Odd Harmonious Labeling on The Union of a String Graphs 

Definition 3.  The union of a string graphs 𝑅(𝑠) ∪ 𝑅(𝑠) with 𝑠 ≥ 1 is a graph with 

𝑉(𝑅(𝑠) ∪ 𝑅(𝑠)) = {𝑢𝑖|0 ≤ 𝑖 ≤ 𝑠 + 1} ∪ {𝑣𝑖
𝑗|1 ≤ 𝑖 ≤ 𝑠 + 1, 𝑗 = 1,2} ∪ {𝑤𝑖

𝑗|1 ≤ 𝑖 ≤ 𝑠, 𝑗 = 1,2} ∪

{𝑥𝑖|0 ≤ 𝑖 ≤ 𝑠 + 1} ∪ {𝑦𝑖
𝑗|1 ≤ 𝑖 ≤ 𝑠 + 1, 𝑗 = 1,2} ∪ {𝑧𝑖

𝑗|1 ≤ 𝑖 ≤ 𝑠, 𝑗 = 1,2}  and  
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𝐸(𝑅(𝑠) ∪ 𝑅(𝑠)) = {𝑢𝑖𝑣(𝑖+1)
𝑗|0 ≤ 𝑖 ≤ 𝑠, 𝑗 = 1,2} ∪ {𝑣𝑖

𝑗𝑢𝑖|1 ≤ 𝑖 ≤ 𝑠 + 1, 𝑗 = 1,2}  ∪

{𝑣𝑖
𝑗𝑤𝑖

𝑗
|1 ≤ 𝑖 ≤ 𝑠, 𝑗 = 1,2} ∪ {𝑤𝑖

𝑗𝑣(𝑖+1)
𝑗

|1 ≤ 𝑖 ≤ 𝑠, 𝑗 = 1,2} ∪ {𝑥𝑖𝑦(𝑖+1)
𝑗|0 ≤ 𝑖 ≤ 𝑠, 𝑗 = 1,2} ∪

{𝑦𝑖
𝑗𝑥𝑖|1 ≤ 𝑖 ≤ 𝑠 + 1, 𝑗 = 1,2}  ∪ {𝑦𝑖

𝑗𝑧𝑖
𝑗
|1 ≤ 𝑖 ≤ 𝑠, 𝑗 = 1,2} ∪ {𝑧𝑖

𝑗𝑦(𝑖+1)
𝑗

|1 ≤ 𝑖 ≤ 𝑠, 𝑗 = 1,2}.  

In Figure 3, construction the union of a string graph is given 𝑅(𝑠) ∪ 𝑅(𝑠) with 𝑠 ≥ 1.  
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Figure 3. The union of a string graphs 𝑹(𝒔) ∪ 𝑹(𝒔)  

 

Furthermore, it will be proved that the union of a string R(s)∪R(s) is an odd harmonious graph which is 

stated in Theorem 4. 

Theorem 4.  The union of  a string graphs 𝑅(𝑠) ∪ 𝑅(𝑠) with 𝑠 ≥ 1 is odd harmonious graph 

Proof. Based on Definition 3 obtained p= |𝑉(𝑅(𝑠) ∪ 𝑅(𝑠))| = 10𝑠 + 8 and 𝑞 = |𝐸(𝑅(𝑠) ∪ 𝑅(𝑠))| =

16𝑠 + 8. Given  𝑓: 𝑉(𝑅(𝑠) ∪ 𝑅(𝑠)) → {0,1,2,3, 4, 5, … ,32𝑠 + 15}.  

 𝑓(𝑢𝑖) = 4𝑖, 0 ≤ 𝑖 ≤ 𝑠 + 1      (8) 

𝑓(𝑣𝑖
𝑗) = 4𝑖 + 2𝑗 − 5, 𝑗 = 1,2 and 0 ≤ 𝑖 ≤ 𝑠 + 1   (9) 

𝑓(𝑤𝑖
𝑗) = 16𝑘 − 12𝑖 − 4𝑗 + 18, 𝑗 = 1,2 and 1 ≤ 𝑖 ≤ 𝑠   (10) 

𝑓(𝑥𝑖) = 4𝑖 + 2, 0 ≤ 𝑖 ≤ 𝑠 + 1       (11) 

𝑓(𝑦𝑖
𝑗) = 16𝑘 + 4𝑖 + 2𝑗 + 1, 𝑗 = 1,2 and 0 ≤ 𝑖 ≤ 𝑠 + 1    (12) 

𝑓(𝑧𝑖
𝑗) = 16𝑘 − 12𝑖 − 4𝑗 + 20, 𝑗 = 1,2 and 1 ≤ 𝑖 ≤ 𝑠   (13) 

According to (8), (9), (10), (11), (12), and (13)    it is obtained that each vertices has a different label and 

𝑉(𝑅(𝑠) ∪ 𝑅(𝑠)) ⊆ {0,1,2,3, 4, 5, … ,32𝑠 + 15} so 𝑓 is injective. Defined edges labeling function 

𝑓∗: 𝐸(𝑅(𝑠) ∪ 𝑅(𝑠)) → {1, 3, 5, 7,9, … ,32𝑠 + 15}.  

𝑓∗(𝑢𝑖𝑣(𝑖+1)
𝑗) = 8𝑖 + 2𝑗 − 1, 𝑗 = 1,2 and 0 ≤ 𝑖 ≤ 𝑠   (14) 

𝑓∗(𝑣𝑖
𝑗𝑢𝑖) = 8𝑖 + 2𝑗 − 5, 𝑗 = 1,2 and 1 ≤ 𝑖 ≤ 𝑠 + 1   (15) 

𝑓∗(𝑣𝑖
𝑗𝑤𝑖

𝑗
) = 16𝑘 − 8𝑖 − 2𝑗 + 13, 𝑗 = 1,2 and 1 ≤ 𝑖 ≤ 𝑠  (16) 

𝑓∗ (𝑤𝑖
𝑗𝑣(𝑖+1)

𝑗
) = 16𝑘 − 8𝑖 − 2𝑗 + 17, 𝑗 = 1,2 and 1 ≤ 𝑖 ≤ 𝑠   (17) 

𝑓∗(𝑥𝑖𝑦(𝑖+1)
𝑗) = 16𝑘 + 8𝑖 + 2𝑗 + 7, 𝑗 = 1,2 and 0 ≤ 𝑖 ≤ 𝑠  (18)  

𝑓∗(𝑦𝑖
𝑗𝑥𝑖) = 16𝑘 + 8𝑖 + 2𝑗 + 3, 𝑗 = 1,2 and 1 ≤ 𝑖 ≤ 𝑠 + 1  (19) 

𝑓∗(𝑦𝑖
𝑗𝑧𝑖

𝑗
) = 32𝑘 − 8𝑖 − 2𝑗 + 21, 𝑗 = 1,2 and 1 ≤ 𝑖 ≤ 𝑠  (20) 

𝑓∗ (𝑧𝑖
𝑗𝑦(𝑖+1)

𝑗
) = 32𝑘 − 8𝑖 − 2𝑗 + 25, 𝑗 = 1,2 and 1 ≤ 𝑖 ≤ 𝑠  (21) 
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Based on (14), (15), (16), (17), (18), (19), (20), and (21) it is obtained that each edges  has a different label 

and 𝐸(𝑅(𝑠) ∪ 𝑅(𝑠)) = {1,3,5,7,9, … ,32𝑠 + 15} so 𝑓∗ is bijective. Therefore, the union of a graph of 𝑅(𝑠) ∪

𝑅(𝑠) with 𝑠 ≥ 1 is an odd harmonious graph.  

The following is an example of the union of a string graph 𝑅(4) ∪ 𝑅(4) in Figure 4 which is an odd 

harmonious graph.  
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Figure 4. The union of a string graphs 𝑹(𝟒) ∪ 𝑹(𝟒)  

 

3.3 Odd Harmonious Labeling on a Multiple String Graph 

Definition 5. Multiple string graph 𝑅(𝑠, 𝑡) with 𝑠 ≥ 1 and 𝑡 ≥ 1 is a graph with 𝑉(𝑅(𝑠, 𝑡)) =

{𝑢𝑖|0 ≤ 𝑖 ≤ 𝑠 + 1} ∪ {𝑣𝑖
𝑗|1 ≤ 𝑖 ≤ 𝑠 + 1, 𝑗 = 1,2} ∪ {𝑤𝑙

𝑖,𝑗|1 ≤ 𝑖 ≤ 𝑠, 1 ≤ 𝑙 ≤ 𝑡, 𝑗 = 1,2} and 

𝐸(𝑅(𝑠, 𝑡)) = {𝑢𝑖𝑣(𝑖+1)
𝑗|0 ≤ 𝑖 ≤ 𝑠, 𝑗 = 1,2} ∪ {𝑣𝑖

𝑗𝑢𝑖|1 ≤ 𝑖 ≤ 𝑠 + 1, 𝑗 = 1,2}  ∪

{𝑣𝑖
𝑗𝑤𝑙

𝑖,𝑗
|1 ≤ 𝑖 ≤ 𝑠, 1 ≤ 𝑙 ≤ 𝑡, 𝑗 = 1,2} ∪ {𝑤𝑙

𝑖,𝑗𝑣(𝑖+1)
𝑗

|1 ≤ 𝑖 ≤ 𝑠, 1 ≤ 𝑙 ≤ 𝑡, 𝑗 = 1,2}.  

In Figure 5, the construction of a multiplied string graph is given 𝑅(𝑠, 𝑡) with 𝑠 ≥ 1 and 𝑡 ≥ 1 
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Figure 5. The multiple string graph 𝑹(𝒔, 𝒕)  
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Next, it will be proved that the multiple string graph 𝑅(𝑠, 𝑡) with 𝑠 ≥ 1 and 𝑡 ≥ 1 is an odd harmonious 

graph expressed in Theorem 6.  

Theorem 6.  The multiple string graph 𝑅(𝑠, 𝑡) with 𝑠 ≥ 1 and 𝑡 ≥ 1 is odd harmonious graph. 

Proof. Based on Definition 5, it is obtained 𝑝 = |𝑉(𝑅(𝑠, 𝑡))| = 2𝑠𝑡 + 5𝑠 + 4 and 𝑞 = |𝐸(𝑅(𝑠))| = 4𝑠𝑡 +

8𝑠 + 4. Given 𝑓: 𝑉(𝑅(𝑠, 𝑡)) → {0,1,2,3, 4, 5, … ,8𝑠𝑡 + 16𝑠 + 7}.  

𝑓(𝑢𝑖) = 4𝑖, 0 ≤ 𝑖 ≤ 𝑠 + 1           (23) 

𝑓(𝑣𝑖
𝑗) = 4𝑖 + 2𝑗 − 5, 0 ≤ 𝑖 ≤ 𝑠 + 1, 𝑗 = 1,2          (24) 

𝑓(𝑤𝑙
𝑖,𝑗) = (8𝑡 + 16)𝑠 + 8𝑙 − (8𝑡 + 12)𝑖 − 4𝑗 + 10, 1 ≤ 𝑖 ≤ 𝑠, 1 ≤ 𝑙 ≤ 𝑡 + 1, 𝑗 = 1,2     (25) 

Based on (23), (24), (25) it is obtained that each vertices has a different label and 𝑉(𝑅(𝑠, 𝑡)) ⊆

{0,1,2,3, 4, 5, … ,8𝑠𝑡 + 16𝑠 + 7} so 𝑓 is injective. Given 𝑓∗: 𝐸(𝑅(𝑠)) → {1, 3, 5, 7,9, … ,8𝑠𝑡 + 16𝑠 + 7}.  

𝑓∗(𝑢𝑖𝑣(𝑖+1)
𝑗) = 8𝑖 + 2𝑗 − 1, 0 ≤ 𝑖 ≤ 𝑠, 𝑗 = 1,2            (26) 

𝑓∗(𝑣𝑖
𝑗𝑢𝑖) = 8𝑖 + 2𝑗 − 5, 1 ≤ 𝑖 ≤ 𝑠 + 1, 𝑗 = 1,2           (27) 

𝑓∗(𝑣𝑖
𝑗𝑤𝑙

𝑖,𝑗
) = (8𝑡 + 16)𝑠 + 8𝑙 − (8𝑡 + 8)𝑖 − 2𝑗 + 5, 1 ≤ 𝑖 ≤ 𝑠, 1 ≤ 𝑙 ≤ 𝑡, 𝑗 = 1,2       (28) 

𝑓∗ (𝑤𝑙
𝑖,𝑗𝑣(𝑖+1)

𝑗
) = (8𝑡 + 16)𝑠 + 8𝑙 − (8𝑡 + 8)𝑖 − 2𝑗 + 9, 1 ≤ 𝑖 ≤ 𝑠, 1 ≤ 𝑙 ≤ 𝑡 + 1, 𝑗 = 1,2  (29) 

Based on (26), (27), (28) and (29) it is obtained that each edges  has a different label and 𝐸(𝑅(𝑠)) =
{1,3,5,7,9, … ,8𝑠𝑡 + 16𝑠 + 7} so 𝑓∗ is bijective. Therefore, multiple string graph 𝑅(𝑠, 𝑡) with 𝑠 ≥ 1 and 𝑡 ≥
1 is an odd harmonious graph.   

The following is an example of the multiple string graph 𝑅(4,3) in Figure 6 which is an odd 

harmonious graph.  
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Figure 6. The multiple string graph 𝑹(𝟒, 𝟑)  

 

Based on the results in Theorem 2, Theorem 4 and Theorem 6, it has been proved that the string graph 

𝑅(𝑠) with 𝑠 ≥ 1, the union of a string graph 𝑅(𝑠) ∪ 𝑅(𝑠) with 𝑠 ≥ 1, and the multiple string graph 𝑅(𝑠, 𝑡) 

with 𝑠 ≥ 1 and 𝑡 ≥ 1 are odd harmonious graphs. The results and discussion show that this research is a 

development of previous studies [21] and [22], namely the addition of family graph classes from odd 

harmonious graphs. 
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4. CONCLUSION 

Based on the results and discussion, it is obtained that the construction of the definition of the string 

graph 𝑅(𝑠) with 𝑠 ≥ 1, the union of a string graph 𝑅(𝑠) ∪ 𝑅(𝑠) with 𝑠 ≥ 1, and the multiple string graph 

𝑅(𝑠, 𝑡) with 𝑠 ≥ 1 and 𝑡 ≥ 1. Furthermore, it has been proved that the string graph 𝑅(𝑠) with 𝑠 ≥ 1, the 

union of a string graph 𝑅(𝑠) ∪ 𝑅(𝑠) with 𝑠 ≥ 1, and the multiple string graph 𝑅(𝑠, 𝑡) with 𝑠 ≥ 1 and 𝑡 ≥ 1 

fulfils the labelling properties of odd harmonious such that it is an odd harmonious graph.  

This research can be continued by looking for odd harmonious labelling on the union of multiple string 

graphs 𝑅(𝑠, 𝑡) ∪ 𝑅(𝑠, 𝑡) with 𝑠 ≥ 1 and 𝑡 ≥ 1.  
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