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Abstract. Bessel functions find many applications in Physics and Engineering fields. Some of these applications are 

in the analysis of extended surface heat transfer where the cross-sections vary. Tables of various kinds of Bessel 

functions are available in most handbooks of mathematics. However, the use of tables is not always convenient, 

particularly for applications where many values must be computed. In the applications of Bessel functions in 

extended surface heat transfer, graphs are also available to provide quick evaluations of the values needed. 

However, reading these graphs always needs interpolation; this will be cumbersome and time-consuming if there 

are many readings to be taken. Mathematical formulas for Bessel functions are available but they are usually 

complicated. Software to calculate values of Bessel functions is also available. Excel, Maple, and Mathematica can 

also be used to compute the values of Bessel functions. A user can write a program for an application that involves 

Bessel functions. However, the use of Bessel functions in Excel is limited while Maple and Mathematica are 

expensive commercial software. In this paper, formulas for Bessel functions of 𝐼0(𝑥) and 𝐼1(𝑥) are simplified with 

adequate accuracy that can be used to easily compute values needed in the extended surface heat transfer analysis. 

It is found that errors for 𝐼0(𝑥) and 𝐼1(𝑥) are relatively small (maximum errors are 0.004% and 0.003%, 

respectively) in the range of 0.05 to 3.75 while the maximum error for 𝐼2(𝑥) is 3.678% for the same range. 

However, the maximum error for 𝐼2(𝑥) is reduced to 0.166 if the range is from 0.25 to 3.75. 
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1. INTRODUCTION 

Bessel functions are special functions which have many applications in engineering and science. The 

applications include problem solving in stationary problems in quantum mechanics to those of spherical and 

cylindrical wave propagation [1], transversal motion of a circular membrane [4], thermal stress and 

elasticity and plasticity [8], [14] and electromagnetics [11]. In heat transfer, applications of Bessel functions 

include conduction problems and extended surface heat transfer with variable cross-sections such as cones 

and hyperbolic; see [6], [9], [12], [13],[20], [21], for example.  A rather short but useful exploration of the 

use of Bessel functions in the fin analysis is given by [16]. Various authors have analyzed heat conduction 

using Bessel functions; see [12], for example. Analysis of some fluid problems using which involves Bessel 

functions is given by [21].  

 

A body or a structure at a high temperature must have its heat removed continuously due to different 

purposes such as for reducing thermal stress of the material at high temperature and heating a cooler fluid in 

a heat exchanger. Extended surfaces (or fins) are commonly utilized to increase the heat removal between a 

structure and a surrounding ambient fluid. Here, they are attached to the primary surface [12], [13], [16]. 

The primary surface is one at high temperature where the heat will be removed to the surrounding fluid 

through the fins by convection. There are many various shapes of fins and different arrangements employed 

in engineering applications such as longitudinal fins, traverse fins, spine- or stud-type fins. The type of fin 

chosen and its arrangement will affect the heat transfer performance, resistance to the flow of the 

surrounding fluid, cost of materials and the ease of fabrication [13]. Most fins have a uniform cross-section 

such as rectangular. The cross-section can also vary such as trapezoidal with rounded edges. Analysis for 

variable cross-sections is more difficult compared to that of uniformed cross-sections. 

 

 

2. RESEARCH METHODS 

2.1 Conduction−Convection Systems  

An example of extended surfaces can be seen in a motor cycle; see Figure 1. The hot engine is cooled 

by air using an array of fins. If the heat is not removed, the engine temperature will be very high and the 

pistons will be stuck in the cylinder, making it damaged. 

  

 
Figure 1. an air-cooled engine 

(Source: https://faculty.virginia.edu/ribando/modules/ExtendedSurface/). 

 

A simple extended surface with a uniform cross section area is shown in Figure 2. The extended surface which 

protrudes from a wall (called the base) will release heat to the surrounding fluid (which can be a gas or a liquid). Here, 

the heat is conducted by some convection process. Since the heat is conducted through the body and finally released or 

dissipated to the surrounding by convection, the combination is called conduction-convection systems. Heat transfer in 

this system is assumed to be one dimension (1-D) where exact solution can be sought. If system is 2-D or 3-D, we 

must resort to numerical solution. Moreover, if the surrounding is a gas or air, radiation may involve; this makes the 

analysis quite very complicated. In this paper, only conduction-convection system is treated. 

 

 

https://faculty.virginia.edu/ribando/modules/ExtendedSurface/
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Figure 2. 1-D conduction and convection through a rectangular fin 

 

The differential equation for the energy balance is given by 
𝑑2𝑇

𝑑𝑥2 −
ℎ𝑃

𝑘𝐴
(𝑇 − 𝑇𝑠) = 0      (1) 

 

Here, A is cross-sectional area and P is perimeter of the fin. Other variables are described in Section 3.1. 

 

Let θ = T – Ts. Then Equation (1) becomes 

 
𝑑2𝜃

𝑑𝑥2 −
ℎ𝑃

𝑘𝐴
𝜃 = 0      (2) 

Let m2 = hP/kA. Then Equation (2) becomes 

 
𝑑2𝜃

𝑑𝑥2 − 𝑚2𝜃 = 0      (3) 

 

The general solution for Equation (3) is given by 

𝜃(𝑥) = 𝐶1𝑒−𝑚𝑥 + 𝐶2𝑒𝑚𝑥      (4) 

 

Constants C1 and C2 can be found from the boundary conditions at the base and at the fin tip. At the base or 

x = 0, T = Tb. Here, θ(0) = Tb – Ts = θb. At the fin tip, there are four possible cases. Interested readers are 

referred to textbooks in heat transfer such as [9], [13] and [16]. However, we will not discuss them because 

we are interested in the extended heat transfer in which the cross-sectional areas are not uniform. 

 

There are two situations where fin cross-section areas are not uniform. First when we need to save 

material costs by reducing cross section area in the direction of the conduction. Second when the fin is 

attached to a circular tube, forming an annulus fin. Here, the heat conduction through the fin is still one 

dimension but with variable cross-sectional area. See [9], [12], [16], [20], [21] for various shapes of fins 

with variable cross-sectional area. When the cross-sectional area varies along the thickness of the fin, it is 

found that the solution for the temperature distribution along the fin (or θ(x)) involves Bessel functions, 

which are the topic of this paper. 

 

2.2 A Short Intoduction to Bessel Functions 

Bessel functions come from the solution of second order differential equation 

   𝑥2 𝑑2𝑦

𝑑𝑥2 + 𝑥
𝑑𝑦

𝑑𝑥
+ (𝑥2 − 𝑛2)𝑦 = 0    (5) 

Equation (5) is called Bessel equation of order 𝑛. If n is not an integer, the solution is given by 

𝑦 = 𝐶1𝐽𝑛(𝑥) + 𝐶2𝐽−𝑛(𝑥)     (6) 

and when 𝑛 is an integer, 

𝑦 = 𝐶1𝐽𝑛(𝑥) + 𝐶2𝑌𝑛(𝑥)      (7) 

𝐶1 and 𝐶2 are constants while 𝐽𝑛(𝑥) is the Bessel function of the first kind, of order 𝑛 and argument 𝑥, and 

𝑌𝑛(𝑥) is the Bessel function of the second kind, of order 𝑛 and argument 𝑥. 
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A modified Bessel equation which resembles Equation (5) is given by 

𝑥2 𝑑2𝑦

𝑑𝑥2 + 𝑥
𝑑𝑦

𝑑𝑥
− (𝑥2 + 𝑛2)𝑦 = 0    (8) 

If 𝑛 is not an integer, the solution is given by  

𝑦 = 𝐶1𝐼𝑛(𝑥) + 𝐶2𝐼−𝑛(𝑥)     (9) 

and when 𝑛 is an integer, 

𝑦 = 𝐶1𝐼𝑛(𝑥) + 𝐶2𝐾𝑛(𝑥)     (10) 

Here, 𝐼𝑛(𝑥) the modified Bessel function of the first kind, of order 𝑛 and argument 𝑥, and 𝐾𝑛(𝑥) is the 

modified Bessel function of the second kind, of order 𝑛 and argument 𝑥. 

A general formula of Bessel’s equation is given by 

   𝑥2 𝑑2𝑦

𝑑𝑥2 + 𝑥
𝑑𝑦

𝑑𝑥
+ (𝜆2𝑥2 − 𝑛2)𝑦 = 0    (11) 

which has the general solution 

𝑦 = 𝐶1𝐽𝑛(𝜆𝑥) + 𝐶2𝑌𝑛(𝜆𝑥)     (12) 

Similarly, a general formula of modified Bessel’s equation is given by 

   𝑥2 𝑑2𝑦

𝑑𝑥2 + 𝑥
𝑑𝑦

𝑑𝑥
− (𝜆2𝑥2 + 𝑛2)𝑦 = 0    (13) 

which has the general solution 

𝑦 = 𝐶1𝐼𝑛(𝜆𝑥) + 𝐶2𝐾𝑛(𝜆𝑥)     (14) 

Equations (11) and (13) arise in many applications; examples will be given in the next section. 

Complete treatments of Bessel functions are given by [2] and [18]. Various relationships involving Bessel 

functions are given in [3], [17]. Readable analysis of Bessel functions as applied in extended surface heat 

transfer are presented in [13]. 

Solutions of Bessel functions are given in infinite series, which may not be convenient for 

applications which need quick solutions. Tables of Bessel functions which list values of arguments are 

therefore preferable. Short tables of Bessel functions are given by [10], [13]. 

We can also use software to compute Bessel functions for arbitrary order. Here, we can use Maple, 
Excel or Scilab. Scilab is very useful for evaluating Bessel functions of arbitrary orders. Moreover, the 
software can be freely downloaded; see [18] which has also many mathematical functions apart from Bessel 
functions. Excel can also compute Bessel functions but the orders are limited; they are just integer. Maple 
and Mathematica have excellent libraries to compute Bessel functions. However, Maple and Mathematica 
are commercial software which are quite expensive. 

 

 
3 RESULTS AND DISCUSSION 

3.1 Applications of Bessel Functions in Extended Surface Heat Transfer 

Since there are almost unlimited configurations of extended surfaces (or often called fins), we will 

only take two examples which can be analyzed using Bessel functions; other examples will be presented in 

different paper. All formulas are given without derivation. Interested readers can see the derivations in most 

textbooks in mathematical physics and higher engineering mathematics [3-4][17][19]. Figure 3 shows a 

straight fin with triangular cross section or profile. Here, 

𝑏 = height of the fin 

𝛿𝑏 = thickness of the fin 

𝐿 = width of the fin 
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Figure 3. a straight fin with triangular profile 

 

We will seek temperature of the fin at a distance x from the tip, 𝑇(𝑥); look at the coordinate of the 

system. Let 𝑇𝑠 be the surrounding temperature. We will then work with the temperature excess defined by 

𝜃(𝑥) = 𝑇(𝑥) − 𝑇𝑠. Without derivation, the governing differential equation for the temperature excess is 

given by 

 𝑥
𝑑2𝜃

𝑑𝑥2 +
𝑑𝜃

𝑑𝑥
− 𝑚2𝑏𝜃 = 0         (15) 

where 

𝑚 = (2ℎ/𝑘𝛿)1/2       (16) 

Here, h: heat-transfer coefficient (W/m2.°C, k: conductivity of the fin (W/m.°C), b: the height of the fin (m) 

and δ: the thickness of the fin (m). 

The general solution of Equation (15) is given by 

𝜃(𝑥) = 𝐶1𝐼0(2𝑚√𝑏𝑥) + 𝐶2𝐾0(2𝑚√𝑏𝑥)        (17) 

Since temperature excess at the tip (𝑥 = 0) is finite, 𝐶2 must be zero since 𝐾0(0) is unbounded. So, we 

have 

𝜃(𝑥) = 𝐶1𝐼0(2𝑚√𝑏𝑥)          (18) 

Initial condition: at 𝑥 = 𝑏, 𝜃 = 𝜃𝑏. So, 𝐶1 is found and substituting 𝐶1 back to Equation (18) yields 

𝜃(𝑥) =
𝜃𝑏𝐼0(2𝑚√𝑏𝑥)

𝐼0(2𝑚𝑏)
           (19) 

The heat dissipated by the fin is given by 

𝑞𝑏 =
𝑘𝐴𝑑𝑇

𝑑𝑥
|

𝑥=𝑏
=

2ℎ𝐿𝜃𝑏𝐼1(2𝑚𝑏)

𝑚𝐼0(2𝑚𝑏)
        (20) 

while efficiency of the fin is given by 

𝜂 =
𝐼1(2𝑚𝑏)

𝑚𝑏𝐼0(2𝑚𝑏)
        (21) 

As the second example, consider a conical spine as shown in Figure 4. 
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Figure 4. a conical spine 

 

Without derivation, the governing differential equation for the temperature excess, 𝜃(𝑥) = 𝑇(𝑥) − 𝑇𝑠, is 

given by 

𝑥2 𝑑2𝜃

𝑑𝑥2 + 2𝑥
𝑑𝜃

𝑑𝑥
− 𝑀2𝑥𝜃 = 0       (22) 

where  

𝑀 = (2𝑚2𝑏)1/2       (23) 

and M is given by Equation (16). 

𝜃(𝑥) = 𝑥−1/2[𝐶1𝐼1(2𝑀√𝑥) + 𝐶2𝐾1(2𝑀√𝑥)]      (24) 

Since temperature excess at the tip i.e. x = 0 is finite, C2 must be zero since 𝐾1(2𝑀√𝑥)/√𝑥  is unbounded 

at x = 0. Initial condition: at x = 0, θ = θb. So, 𝐶1 is found and substituting 𝐶1 back to Equation (18) yields 

𝜃(𝑥) = 𝜃𝑏 (
𝑏

𝑥
)

1

2
 
𝐼1(2𝑀√𝑥)

𝐼1(2𝑀√𝑏)
        (25) 

The heat flow through the base is given by 

𝑞𝑏 =
𝜋𝑘𝛿𝑏

2𝜃𝑏𝑀

4√𝑏

𝐼2(2𝑀√𝑏)

𝐼1(2𝑀√𝑏)
         (26) 

while efficiency of the fin is given by 

𝜂 =
𝑞𝑏

𝑞𝑖𝑑
=

√2𝐼2(2√2𝑚𝑏)

(𝑚𝑏)𝐼1(2√2𝑚𝑏)
        (27) 

 

3.2 Approximations of Bessel Functions 

Values of Bessel functions 𝐽𝑛(𝑥), 𝑌𝑛(𝑥), 𝐼𝑛(𝑥) and 𝐾𝑛(𝑥) for 𝑛 = {0,1} can be computed using 

approximated polynomials given by [2][5][15]. Bessel functions for other orders can be computed using 

recurrence relations. We will only list approximation functions for I0(x) and I1(x)which are relevant to 

extended surfaces described in the previous section.  

Let 𝑢 be 
𝑥

3.75
 and 𝑣 be 

1

𝑢
 (or 

3.75

𝑥
). We then have the following approximation functions for I0(x) and I1(x) 

 𝐼0(𝑥) = ∑ 𝑎𝑖
6
𝑖=0 𝑢2𝑖 + 𝜀        (28) 

Where −3.75 ≤ x ≤ 3.75 and │ε│ < 1.6×10−7. 

𝑥½𝑒−𝑥𝐼0(𝑥) = ∑ 𝑏𝑖
8
𝑖=0 𝑢𝑖 + 𝜀       (29) 

where 3.75 ≤ x < ∞ and │ε│ < 1.9×10−7. 

𝑥−1𝐼1(𝑥) = ∑ 𝑐𝑖
6
𝑖=0 𝑢2𝑖 + 𝜀       (30) 

where −3.75 ≤ x ≤ 3.75 and │ε│ < 8×10−9. 

𝑥½𝑒−𝑥𝐼1(𝑥) = ∑ 𝑑𝑖
8
𝑖=0 𝑢𝑖 + 𝜀        (31) 



BAREKENG: J. Il. Mat. & Ter., vol. 16(2), pp. 507- 514, June, 2022.     513 

 

where 3.75 ≤ x < ∞ and │ε│ < 2.2×10−7. 

 

3.3 Simplified Formulas for Bessel Functions 

We have developed simplified formulas which are less accurate to that used to develop standard 

tables of Bessel functions such as in [10][13] but still acceptable for engineering purposes particularly for 

the extended surface heat transfer problems.  

Using 𝐼0(𝑥) values from 0 to 3.75, 𝐼0(𝑥) has been regressed into 

𝐼0(𝑥) = ∑ 𝑎𝑖
3
𝑖=0 𝑢2𝑖 +

𝑎4

2.1061−𝑢
        (32) 

where 𝑢 = (
𝑥

3.75
)

2
. Constants a1 to a4 are given as follow: a0 = -4.41575916E+01, a1 = -2.14395508E+01, 

a2 = -6.70459742E+00, a3 = -4.56248175E+00, and a4 = 9.51063985E+01. 

Relative errors for that equation are as follow: maximum = 0.004 %, average = 0.002%, standard 

deviation = 0.001%. At first, it was planned to regressed to I0(x) to a quartic. However, the errors found 

were bigger. 

Using I1(x) values from 0 to 3.75, I1(x) has been regressed into 

𝐼1(𝑥) = ∑ 𝑏𝑖
4
𝑖=0 𝑢2𝑖 +

𝑏5

2.3613−𝑢
       (33) 

where 𝑢 = (
𝑥

3.75
)

2
. Constants 𝑏1 to 𝑏5 are given as follow: b0 = -1.01670E+02, b1 = -4.11823E+01 , b2 = -

1.82262E+01, b3 = -4.49396E+00, b4 = -3.00366E+00 , and b5 = 2.40074E+02. 

Relative errors for that equation are as follow: maximum = 0.003 %, average = 0.000%, standard deviation 

= 0.001%.  

Formulas for a conical spine need the value of I2(x). However, it is not necessary to develop a 

separate function for I2(x) since for 𝑛 > 1, In(x)can be computed from the recurrence relation (see [9] or 

any book on Bessel functions) 

2𝑛

𝑥
𝐼𝑛(𝑥) = 𝐼𝑛−1(𝑥) − 𝐼𝑛+1(𝑥)       (34) 

For n = 1, 𝐼2(𝑥) = 𝐼0(𝑥) −
2𝐼1(𝑥)

𝑥
. Knowing I0(x) and I1(x), I2(x) can then be easily computed. Relative 

errors for I2(x) are found to be maximum = 3.678 %, average = 0.132%, standard deviation = 0.535%. 

Admittedly, the errors are relatively big. However, big errors are found at low values of 𝑥. If we limit 

the argument from 0.25 to 3.75, the relative errors are much smaller as follow: maximum = 0.166 %, 

average = 0.024%, standard deviation = 0.040%. 

Now, we will compute errors for efficiency of a triangular fin. From Equation (21) we see that the 

efficiency is proportional to I1(2mb) / I0(2mb). Rather than just computing one particular value of the 

argument 2mb,  we will take it from 0.05 to 3.75 with an interval of 0.05 and we find that relative errors are 

as follow: 

Maximum = 0.262 %, Average = 0.043%, Standard deviation = 0.058%. 

These errors are relatively small and acceptable for most engineering applications! Errors for the heat 

dissipated by the fin are the same for those of the efficiency of the fin because both of them are proportional 

to I1(2mb) / I0(2mb). 

For the spine, the efficiency is proportional to I2(2mb√2) / I1(2mb√2) .So, we will compute the ratio 

from 0.25 to 3.75 because we limit the lowest argument to be 0.25. we find that relative errors are as 

follow: 

Maximum = 0.167 %, Average = 0.024%, Standard deviation = 0.040%. 

These errors are relatively small and acceptable for most engineering applications! Errors for the heat 

dissipated by the fin are the same for those of the efficiency of the fin because both of them are proportional 

to I2(2mb√2) / I1(2mb√2) 
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Approximation functions for I0(x) and I1(x) for x > 3.75 will be treated in another paper, together 

with approximation functions for K0(x) and K1(x) The latter two Bessel functions will be needed for radial 

fins. 

 

 

4 CONCLUSIONS 

Bessel functions find numerous applications in various engineering and physics fields. One of 

practical application is in extended surface heat transfer which needs evaluation of modified Bessel 

functions. Simplified functions have been developed to compute those Bessel functions which are less 

accurate than given in [10][13] but still acceptable for most engineering applications.  For I0(x) in the range 

of 0.05 to 3.75, relative errors are as follow: Maximum = 0.004 %, Average = 0.002% and Standard 

deviation = 0.001%. For I1(x) in the same range, relative errors are as follow: Maximum = 0.003 %, 

Average = 0.000% and Standard deviation = 0.001%. Values for I2(x) are computed by using recurrence 

relations between I0(x) and I1(x). The errors incurred are much bigger. However, when the range for I2(x)is 

from 0.25 to 3.75, the errors become smaller (Maximum = 0.166 %, Average = 0.024% and Standard 

deviation = 0.040%). When applied to the computation of fin efficiencies, their errors are still relatively 

small (maximum errors are less than 0.3% for a triangular fin and less than 0.2% for a spine). It is therefore 

concluded that simplified formulas developed in this paper are acceptable for most engineering 

applications, at least for extended surface heat transfer discussed here. 
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