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Abstract. The variant of Chebyshev-Halley’s method is an iterative method used for solving a nonlinear equation
with third order of convergence. In this paper, we present some new variants of three steps Chebyshev-Halley’s
method free from second derivative with two parameters. The proposed methods have eighth-order of convergence
for = 1 and A € R and require four evaluations of functions per iteration with index efficiency equal to 8%/* ~

1.681792. Numerical simulation will be presented by using several functions to show the performance of the
proposed methods.
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1. INTRODUCTION

Solving nonlinear equation is one of the important problems in numerical analysis. The most of the
nonlinear equation can’t be solved analytically. So, the numerical solving becomes alternative solution by
using iterative computation.

In this paper, we consider iterative method to find a simple root of a nonlinear equation in the form
f(x) =0, (1)
where f : D € R — R for an open interval D is a scalar function.

The classical iterative method that known widely for single nonlinear with a simple algorithm written
as:

_ _ f(xn)
Xn+1 = Xn f’(xn) ' (2)

The Equation (2) is known as Newton’s method which converges quadratically with efficiency indexes
equal to 21/2 ~ 1.41421356, see [1].

Several modifications of the iterative method have been proposed. A family of iterative methods with
third order of convergence is written as [2], [3]:
Ly (xn) > f ()

Xni1 = Xn <1 20— BL G ) F Y

©)

where
£ Gen)f (xn)
Tt @
The Equation (3) is known as Chebyshev-Halley method, and for some B then the Equation (3) becomes
special cases: Chebyshev’s method (B = 0), Halley’s method (B = %), and super Halley’s method (8 = 1),
see [4].

The Equation (3) still requires the second derivative of f which maybe itself is a difficult problem in
some cases. In order to avoid the second derivative, some authors have modified and developed a technique
to reduce the second derivative by using several approximations, such as: Taylor series expansion

[5].[6],[7], finite different quotient [8],[9],[10], cubic polynomial [11], quadratic function [9], linear
combination [12], and hyperbolic [13].

Lf(xn) =

In this paper, we study the variant of classical Chebyshev Halley’s method with free second
derivative by using Taylor’s series. The two steps method of (3) has one parameter 3 and requires three
evaluation of functions f(x,), f'(x,) and f(y,), with third-order convergence. Furthermore, to improve
the local order of convergence of (1.3), we combine a Newton method at the third step and reduce the
evaluation of its first function by Hermite interpolation, see [14],[15],[16],[17]. This main idea is very
important, because the proposed method causes some special cases for § = 1 and several A € R. In the end
of this section, we show numerical simulation by comparing several methods.

2. RESEARCH METHODS

To find a new iteration formula, we consider the Chebyshev-Halley’s method with third order of

convergence as
_ " @) f () fCxn)
Ynt1 = Xn <1 2 ) - ﬁf”(xn)f(xn)))f () ©

Equation (5) contains a second derivative that sometime makes a problem. So, we will reduce the second
derivative by using Taylor series.

Furthermore, we firstly consider two second iterative methods as following

S
Xn+1 = Xn — f’(xn) ’ (6)
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and
Xn+1 = Xn — J () . @)
f'(en) = Af (xn)
By using Equation (6) and Equation (7), we obtain a new family of second iterative method with parameter
A that is given by

f(xn) ()\f(xn) - Zf’(xn))

Xn41 = Xp — . (8)
T2 ) (W () = £ ()
Moreover, we also use a Taylor series to expand a function of f(y;,,) at neighbourhood x,,,
, £ (xn)
f(yn) ~ f(xn) + f (xn)(yn - xn) + Tn(yn - xn)zr (9)

Where y,, is defined by Equation (8).
Substitute y,, as defined by Equation (8) into Equation (9) and simplify it, then we will get an explicit form
of " (x,,) as following

f”(x ) ~ 4(/1f(xn) — f’(xn))(Zf(yn)(;{f(xn) _ f,(xn)) _ Af(xn)z) f’(xn)z
n (A GO) = 2f7(en)) f ()2

173 4‘Tf(2Tff(yn) - Af(xn)z) f,(xn)z
/() = >
(Af () = 2f" (%)) " f ()

Tf = Af(xn) - f,(xn)-

(10)

or

(11)

where

Substitute (11) into (5), we get a new variant of Chebyshev-Halley’s method as
215 (2T7 f () = Af (x)*) )f(xn)
2 li '
FO)(Af o) = 2" () = 4BT7(2T7f ) — Af (xn)?)/ [ ()
In order to improve order-convergence of (12), we combine a Newton’s method at the third step that is
written as
f(zy)

Xn+1 = Zpn — m
n

(13)
where z, is defined by (12).

Equation (13) contains f(z,) and f'(z,) that implies increasing of the number of functional evaluations.
Based on [1], the three steps iterative method will be optimal if the functional evaluation number is four.
So, we will reduce f'(z,) by using an approximation of third-order Hermite interpolation.

We give a third-order Hermite interpolation that interpolated (xy,f(x4)), (vn f(n)), and
(xn, f'(zy)) that is given by:

H3 (.X') — (x=yn)(x—2p) (1 _ (x_Yn)(an_Yn_Zn)) f(xn)-

(cn=yn)(xn—2n) (Xn=Yn) (xn—2n)?

- - 2 - 2(x—
I () + 2 f (z)

n=xn)(Yn—2n) Zn—%n)2(Zn—Yn) (14)
(x=xp) (x=Yn) (x=2pn) £/
(en=yn) (xn—2,) f (xn).
If the first derivative of Equation (14) was substituted by z,,, we will have
(3xn - Zyn - Zn) (Yn - Zn) (xn - Zn)z
H3(z,) = — fxn) + fm)
s (xn - Yn)z(x - Zn) " (yn - xn)z(yn - Zn) " (15)

Xn—=2Yn—32Zn Yn—Zn g/
B (zn—xn)(Zn—yn) f(Zn) B Yn—Xn f (xn).
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Simplify of Equation (15), we obtain

h Hé (Zn) = Zf[xn; Zn] + f[y'nr Zn] - Zf[xnIYn] + (Yn - Zn)f[)’nr Xn» xn]a (16)
whnere
fltg, 2] = LEw=Llm), (17)
Fltn ) = Flon %] = % (18)
f o, 7] = L0 (19)
_ [l 0] = f'(xn)
f X, xn] = Vo — xp (20)

If f'(z,) = H3(z,), then we have a new three steps iterative method,

) (A =2 ()

Yn = Xn 2f" ()T ' @)
2T (2T pf (Yn)—Af (x)?) f ()
Zy = Xy — 1 + L 7 ’ 22
o < f(xn>(Af(xn)—2f'(xn)f—4BTf(2Tff(yn>-lf(xn)2)>f Gm) )
_ _ f(zn)
Tn+1 = Zn 2f [Xnznl+ [V 2] =2 f [0, Yn]+ On—20) f [V XnXn] (23)

3. RESULTS AND DISCUSSION

In here we discuss about an order of convergence from the propose method above. We create a
theorem to claim the propose method has an eight order of convergence for some value.

3.1. Convergence Analysis

Theorem 1. Suppose f is a real function and differentiable in open interval I. If we give an initial value x
that close to o, then Equation (21)—(23) has an eighth order of convergence for B =1 and A € R with
error equation written as

eyl = i(/lc3 + 2¢,(c2 — c3)) (2c2(c2 — c3) + (2¢4 + Ac3)cy, — Acy)ed + +0(ey). (24)
Proof:
Suppose «a is the root of a nonlinear Equation f(x) = 0, then f(a) = 0 Furthermore, if e,, = x,, — @ and
1 fi(a) . . .
¢ = ﬁf'(Z) then expansion f(x,,) at neighbor « is
) = F/(@) (en + cae? + czel + caet + 0(ef)). (25)
Then, we obtain
£ () = f(@)(1+ 2coen + 3cze2 + 4cqed + 0(e)), (26)
and
f(xn)? = f'(@)[ef + 2cze5 + (c5 + 2¢3)ex + (2cp¢3 + 2¢4)en + 0(ey). (27)

Use Equation (25) and (26), and then we can compute
Ty = Af (xn) — f'(xn) = f'(@[=1+ 2 — 2c)e, + (Ac; — 3cs)e

+((es = 4cp)ed + (Aey — 5csdet + 0(ed)), (28)
A () = 2f"(xn) = f'(@)[=2 + (A — 4cz)en + (Ac, — 6¢3)ey;
+((es — 8cped + (Aey — 10¢5)ef +0(e)], (29)
and
j{,((’;’;)) = e, — cye? + 2(c2 — cy)ed + 0(ed). (30)

So, we can compute
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(Af(xn)_zf,(xn)) fxn) _ 1 2, 1 2 27 .3
2T 1 Gen) =en+5(A—c)eq +7(B8(=Acy + ¢ —c3) +1%)ey

+%(—8023 + 5Ac2 + (14c3 — 3A%)c, — 64 — 4Ac3 + A2)eft + 0(e).
By using Equation (31) and x,, = a + e,,, we will get y,, in form
Yo =a—3(A—cp)ed + 7 (8(=Acy + ¢ — ¢3) + A2)e}
—%(—803 + 5Ac2 + (14c3 — 34%)cy — 6¢4 — 43 + A%t + 0(e).
By expanding f (y,,) around a and using (32), we can write f(y,,) as

fOm) = f(@f (cz = N)ed — 7 (8(=Acy + ¢} — c3) + 12)e]
—%(5/1022 — 8¢5 + (14c3 — 3A%)c, — 64 — 4Ac3 + A2)eft + 0(e)).

535

(31)

(32)

(33)

From (26), (27) and (33), we able to find 2T; (2T f (v,) — Af (x,)?) and f () (Af (xn) — 2/‘”’(xn))2 are

written respectively as

2T (2T f () — Af (xn)?) = f'(@)3[4czef + 4(2c, + 23 — Acy)es
+(4c3 — 4¢3 + (28¢5 + A2)c, — 10Ac3 + 12¢,)ep
+ -+ 0(ep)]
and

FO)(Af n) = 2 (00))” = 4BTr (2T f () — Af (X)2) = f'(@)?[4e,
+((20 — 8B)c, — 42)e?

+((32-168)c3 + (88 — 16)Ac, + (28 — 16f)cs + 1) e
+(208 — 20)Ac3 + (36 — 24B)cy)eq + -+ 0(e))].
Substitute (34) and (35) into (23), yield
Zn=a+ (2c22(1 - ﬁ)) es — ((4ﬂ2 —14B +9)c3 + (88 — 7)cyc3 — %ACg) en
+--+0(eq).

Furthermore, by expending f(z,) around a and using (36), then f(z,,) can be written as

F) = £@)] (2631 = ))et = (457 = 148 + 9)c3 + (8F — T)escs — 3¢5 ) e+ + 0(ed)]

flxn zn] = 1+ cen + csef +(c3(2 — 2B) + ca)en + (=9 + 148 — 48%)cy
+(=108 + 9)c3c2 + c5) et + -+ 0(e)),

flvn, 2ol = 1+ c2e2 + (2c3 — 2c3)ce3 — (3¢2 + 7cyc3 — 3c4) e + -+ 0(e)),

fln ynl = 1+ cren + (c3 + ¢5)eir + (cq + 3ca¢3 — 3¢3)ess
+(cy —14c2c3 + cs + 2¢3 + 4cych)ef + -+ 0(e)),

FVn %y %] = €3 + 2038, + cpc3e2 + (2¢2 — 2¢2c3)e3 + (—4c3 — 7cyc5 + 3¢,) et
+-+ 0(ep).
Based on the equation of (38) - (41), we obtain

Ln) _ (2 — 28)c2ed + ((—4ﬁ2 + 148 —9)cf + (7 - 85)62%) en

H'(zy) N
((28B% — 288 + 1)cy + (—24B% + 76 — 56)c3c2
—12fBcycy + 4cg — 8Bc)es + -+ 0(e)).

Finally, by substituting (36) and (42) into (23), we have
en+1 = 4(B —1)?c5eS + (B — 1)(Acyc? + (2Acs + 204)023/1+ 4(8B — 7)czcy + 4A.c)e]
+(A,¢] + Ascscs + (AAgcs + Ascy)cy + (A6c§ + §A7c4 +4(B — 1)c5> c3

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)
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+((7 = 8B)AcZ + (11 — 12B)cacy + (B — 1)(A2cy + 24c5) ) cF
+%(/12€3? + (168 — 12)Aczcy)cy — i)tzc3c4)e§ + 0(ey),
Where:

Ay =4B% — 14 +9,

A, = 486* — 30463 — 6922 — 6368 + 201,

A; = 16083 — 68082 — 8208 + 302,

Ay = —12B% + 34p — 21,

As = 4082 — 62 + 23,

Ag = 963% — 168 + 73,

A, = 4B% — 268 + 21.

Equation (43) is an error of (23) with two parameters § and A and it has sixth order of convergence. We can

see that the order convergence of the Equation (43) will increase if coefficient of e$ and e equal to zero.
So, by taking 8 = 1 and A € R, we can write Equation (43) in form

eni1 = i()lc3 + 2¢,(c2 — c3)) (2c2(c2 — c3) + (2c4 + Acz)c, — Acy)el + 0(ey). (44)

Equation (44) has eighth order of convergence and requires four functional evaluations, then it obtained
efficiency index equals to 8'/% ~ 1.6817928. This completes the proof. m

The proposed method appear some eighth-order methods for § = 1 and several values of A as following,
For A = 0, we obtain three steps Ostrowski’s method [16] as following

_ _ f(xn)
o f'“é”)S )\ £
_ _ fxn)—f(n fxn
Zn = Xn (focn)—zr(yn)) ' Gn)’

_ f(zn) (45)
2f [xn.zn )+ f [yn.2n] = 2f (%0, Y]+ On—2) f [ynXn.%n]

Xn+1 = Zn

For A = 1/2, we obtain another eighth-order method,
FOen)(FGen)=4f" () )
I = X T S e (f e —21 (o))’
o <(f'(xn)—Zf'(xn))z(3f(xn)—4f(yn))+4f(xn)f'2(xn)) F o)
oo 2(f Cen)=2f" () (FOem)=2f )+ () | ! Cen)’
f (zn)

Tnt1 = Zn T Zf[xnvzn]+f[3’n'zn]_2f[xnryn]+(Yn_zn)f[ynrxn:xn]. (46)
For A = 1, we obtain another eighth-order method,
e FOe)(FOen)=2f ()
In = T S e (F o)~ )’
2

oy (FOm)=F"(n)) (BF o) =4 )+ FCen)F 2 (in) \ F ()

noon 4(f(en)=2fF" (xn)* (F ) -2 ) +F (x)? ) o)’

— _ f(Zn)

Tn+1 = Zn 2f[xnvzn]+f[Yn:Zn]_zf[xnryn]+(Yn_zn)f[3’nrxnrxn]. (47)

3.2.  Numerical Simulation

In this section, we present some numerical simulations to compare the number of iteration (IT), the
order of convergence (COC) and the absolute value of function (|f(x)|) of the proposed method in (21) -
(23) with Newton method (N2) [1], Chebysev-Halley’s method with f = 1/2 (CH3) [2],[4], Ostrowski’s
method (O4) [18], and third-order iterative method (MPG6) [19].

All of computation here use Maple software with 850 digits floating arithmetic and the computed
approximate zeros a of the test function was displayed 28th decimal places. Some test functions and the
roots (a) of each function were given as following:
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fi =X *7%730 _ 1,4 = 3,0000000000000000000000000000,
fr = ¥ —4x% a = 4.3065847282206992983381983001,

fz =sin(x) —e* 4+ 3x,a = 0.3604217029603244013693295158,
fa=(x—-1)>3-1,a=2.0000000000000000000000000000,

fo =x3+4x* —10,a = 1.3652300341409684576080682898,

fo = e X HxYZ _ cos(x+1)+x3+1,a =—1.0000000000000000000000000000,

f7 = cos(x) —x,a = 0.739085133215160641655312087.

Next, we provide the Table 1 and Table 2, which is the number of iteration and its COC, and the accuracy
of the proposed method respectively.

Table 1. The number of iteration and COC

. CH3 M-6 M-8

Function Xo N2 B =1/2) 04 MPG6 B=1/2) B=1
fi 2.9 10(1.9999)  5(2.9999) 5(3.9999) 4(6.0000) 4(5.9999)  3(7.9999)
3.2 10(1.9999)  6(3.0000) 5(3.9999) 4(6.0000) 4(5.9999)  4(7.9895)

1> 4.0 8(1.9999) 5(3.0000) 4(3.9999) 3(6.0000) 3(5.9999)  3(7.9999)
45 7(1.9999) 5(2.9999) 4(3.9999) 3(6.0000) 3(5.9999)  3(7.9999)

f3 -1.1 7(1.9999) 6(3.0000) 4(3.9999) 3(5.9999) 3(5.9999)  3(7.9999)
1.0 8(1.9999) 6(3.0000) 5(3.9999) 4(5.9999) 4(5.9999)  3(7.9984)

fa 15 10(1.9999)  6(3.0000) 5(3.9999) 4(5.9999) 4(5.9999)  3(7.9971)
3.0 9(1.9999) 6(2.9999) 5(3.9999) 4(5.9999) 4(5.9999)  3(7.9989)

fs 11 7(1.9999) 5(3.0000) 4(3.9999) 3(5.9999) 3(5.9999)  3(7.9999)
2.3 8(1.9999) 5(2.9999) 4(3.9999) 3(5.9999) 3(5.9999)  3(7.9999)

fe -1.6  7(1.9999) 5(3.0000) 4(3.9999) 3(6.0000) 3(5.9999)  3(7.9999)
0.1 7(1.9999) 6(3.0000) 4(3.9999) 4(5.9999) 3(5.9999)  3(8.0002)

fy -0.3  8(1.9999) 6(3.0000) 5(3.9999) 4(5.9999) 4(5.9999)  3(8.0002)

17 7(1.9999)  5(2.9999)  4(3.9999)  3(6.0000)  3(5.9999)  3(7.9996)

Table 2. The absolute value of f(x,) for TNFE =12
CH3 M-6 M-8

B=12 MPC (p=2)  @=1)

£, 29 4.24(e-09) 9.68(e-37) 1.78(e-077)  6.51(e-042) 9.44(e-028)  1.61(e-123)
32  4.47(e-07) 3.26(e-16) 1.87(e-043)  9.70(e-039)  4.32(e-021)  1.07(e-055)
f, 40 505(-33) 211(e-53) 3.56(e-158)  7.25(e-147)  5.06(e-114)  1.11(e-305)
45 3.19(e-52) 5.24(e-76) 1.46(e-232)  1.12(e-219)  3.60(e-178)  1.10(e-451)
£ 11 249(e-77) 6.66(e-29) 4.78(e-194)  2.49(e-096)  4.56(e-220)  1.48(e-385)
1.0 1.39(e-26)  2.43(e-19)  1.54(e-071)  5.03(e-070)  5.79(e-084)  6.70(e-149)
£, 15 1.80(e-11) 6.39(e-24)  9.72(e-060)  2.29(e-062)  3.76(e-035)  1.23(e-115)
30 4.64(e-15) 6.39(e-24)  1.10(e-071)  1.62(e-068)  1.48(e-053)  2.65(e-139)
£ 11 411(e-53) 7.18(e-73)  4.01(e-226)  3.10(e-198)  4.00(e-181)  5.07(e-450)
23  211(e-29) 2.55(e-41) 1.37(e-128)  2.26(e-114)  4.25(e-101)  5.66(e-255)
£, -16 517(e-61) 8.28(e-41) 6.24(e-146)  1.96(e-107)  4.37(e-220)  3.35(e-286)
0.1 3.05(-64) 126(e-22) 6.18(e-137)  9.28(e-090)  2.19(e-101)  8.10(e-148)
£, 03 4.47(e-32) 291(e-29)  3.09(e-092)  7.44(e-084)  1.63(e-087)  2.15(e-210)
17 5.44(e-65) 3.77(e-44)  4.35(e-192)  7.37(e-148)  1.00(e-117)  2.79(e-204)

fx) xg N2

Table 1 shows the number iteration (IT) that satisfies stopping criteria as following formula
IXp41 = xnl <, (48)

where e = 107°% and the computational order convergence (COC) in the parentheses were obtained by
using as following formula

_ Inl(xp41—a)/(xp—a) | (49)

T In|(xp—a)/(xp_1—a)|’

Based on Table 1, we can see that order of the proposed method is six for or g # 1 and eight for g = 1.
Comparison of the accuracy of the proposed method and several other methods based on total number
functional evaluations (TNFE) are shown at Table 2. Table 2 shows that the accuracy of the proposed
method is better than others methods.
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4. CONCLUSIONS

We have obtained a class of three-step methods both of sixth and eighth for § =1 and f =1

respectively. The proposed method requires three evaluations of functions and one evaluation of its first
derivative. The optimal of order of convergence has been found when g = 1 with efficiency index equal
to 81/4 ~ 1.68179283.
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