
          https://doi.org/10.30598/barekengvol16iss4pp1139-1146 

 

December 2022     Volume 16 Issue 4 Page 1139–1146 

P-ISSN: 1978-7227   E-ISSN: 2615-3017 

 

BAREKENG: Journal of Mathematics and Its Application 

  

 

1139 
 https://ojs3.unpatti.ac.id/index.php/barekeng/     bareeng.math@yahoo.com  

ANALYSIS OF OPTIMUM CONTROL ON THE 

IMPLEMENTATION OF VACCINATION AND QUARANTINE 

ON THE SPREAD OF COVID-19 
 

Agusyarif Rezka Nuha1*, Novianita Achmad2, Gusti Arviana Rahman3, Syarif Abdullah4,  

Sri Istiyarti Uswatun Chasanah5, Nina Valentika6, La Ode Nashar7 

 
1.2,7 Mathematics Department, Gorontalo State University,  

Jl. Prof. Dr. Ing. BJ Habibie, Bone Bolango Regency, Gorontalo 
3 Mathematics Department, Halu Oleo University,  

Jl. HEA Mokodompit, Kendari City 
4 Mechanical Engineering Department, University of Sultan Ageng Tirtayasa,  

Jl. Jenderal Sudirman KM 03, Banten 
5 Mathematics Department, UIN Sunan Kalijaga,  

Jl. Marsda Adisucipto, Yogyakarta 55281 

 6 Mathematics Department, Pamulang University,  

Jl. Raya Puspiptek, South Tangerang City, Banten 

 

Corresponding author’s e-mail: 1*agusyari@ung.ac.id 

 

 
Abstract. This study constructs an SVIR-type COVID-19 spread model into a model with control variables or optimum 

control problems. In the formulation of the model with controls, we set four control variables, namely vaccination 
strategy, quarantine, reduction of vaccine shrinkage, and treatment. Pontryagin 's maximum principle is applied in 

the model as a sufficient condition to achieve optimum conditions for minimizing the objective function 𝐽(𝑋(∙), 𝑈(∙)). 

This study uses a numerical solution to describe the theoretical results. The results showed that the control model 

could accelerate the decrease in the number of individuals in the infected population class. We found that vaccination 

is a top priority that needs to be done to reduce the number of cases of COVID-19 infection. In addition, the 
implementation of quarantine can also be considered to accelerate the decrease in the number of individuals infected 

with COVID-19. 
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1. INTRODUCTION 

Since its first appearance in Wuhan City (China), the coronavirus or known as Coronavirus Disease-

2019 (COVID-19) has shocked people all over the world [1]. This virus can survive on solid objects for 

several hours according to ambient temperature conditions [2]. This makes it easy for COVID-19 to spread 

and infect every susceptible individual. 

A person who has been infected with COVID-19 can initially experience clinical symptoms such as 

fever, cough, loss of smell, and shortness of breath. The time taken from the onset of infection until clinical 

symptoms appear is 14 days. If the patient is not treated immediately, it will result in death for the patient [3]. 

However, in some cases reported there are also infected individuals without clinical symptoms. 

Several efforts to implement health protocols by the government to tackle the spread of the COVID-

19 outbreak, ranging from large-scale social restrictions (PSBB) to the implementation of restrictions on 

community activities (PPKM), policies on the use of masks, and checking body temperature when entering 

areas or locations of public facilities. In addition, the government has also implemented a COVID-19 

vaccination policy which began on January 13, 2021. This vaccination program has been running for one 

year, but cases of COVID-19 infection in Indonesia are still occurring. Nevertheless, efforts by the 

government and all levels of Indonesian society continue to be made to reduce the number of infection cases 

and stop the spread of COVID-19. No exception from academics, especially mathematicians. 

Mathematical practitioners develop mathematical models to study the nature, dynamics, and effects of 

the spread of COVID-19. Mathematical models continue to be developed by the development of the 

characteristics of COVID-19 found in the field, both in terms of the pattern of spread and ways to anticipate 

its transmission. Several mathematical models of the spread of COVID-19 that have been developed can be 

found in [4]–[8]. The analysis of some of these models will provide an overview of the dynamics or the 

number of infection cases in the future based on mathematical rules. So that countermeasures or anticipatory 

steps can be taken earlier. 

The model developed by [4] divides the human population into three subpopulation classes, namely: 

suspected (S), infected (I), and recovered (R). These four populations each represent a class of susceptible, 

infected, and cured individuals. One of the assumptions of the model built is that every individual who has 

recovered from COVID-19 will not be infected again a second time. In addition, this model has also 

considered the parameters of vaccination, as an effort to prevent the spread. 

Next, we reconstructed the mathematical model of the spread of COVID-19 by adding the vaccinated 

population class (V) which can be seen in [9]. Individuals in the vaccinated population class state that 

individuals who have received the vaccine but still have the possibility of being infected with COVID-19 and 

at a certain time will be susceptible to the virus again. The model with the vaccinated population is constructed 

based on the facts found in the field that, individuals who have received the vaccine still have the possibility 

of being infected with COVID-19 [10]. Then the stability of the model is analyzed along with the level of 

sensitivity of the parameters to the basic reproduction number of the model. However, the completion of this 

model is still based on the assumption that all parameter values are constant. So in this study, the model is 

constructed into a model with optimum control or control problems. Several models of the spread of COVID-

19 that apply the optimum control problem can be seen in [11]–[18]. 

The control model in this study has four control variables consisting of vaccination strategy, 

quarantine, reduction of vaccine shrinkage, and treatment. This control variable is the development of the 

previous model parameters which were declared constant. We apply the Pontryagin maximum principle as a 

necessary and sufficient condition to obtain the optimum conditions for the optimum control problem [19], 

[20]. In solving the optimum control problem, we make a numerical simulation as an illustration of the 

theoretical results that can be taken into consideration in setting policies to suppress the number of COVID-

19 infection cases. 

 

 

 

2. RESEARCH METHOD 

The mathematical model of the spread of COVID-19, the SVIR type, represents the process of virus 

transmission by involving the administration of vaccines to a class of susceptible individuals. We calculated 
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with the consideration that the efficacy of vaccines in forming antibodies could at any time decrease, and 

someone who has been vaccinated still has the potential to be infected with COVID-19. 

This study divides the human population into four subpopulation classes, each susceptible population 

class (S), the vaccinated population class (V), the infected population class (I), and the recovered population 

class from COVID-19 (R). The total population is calculated by adding up all individuals in each population 

class, which is expressed by 𝑵 = 𝑺 + 𝑽 + 𝑰 + 𝑹. The dynamics of the human population in this model begin 

with the birth of new individuals who enter the vulnerable population class at a rate of 𝜦. Some of the 

individuals in the vulnerable population class will be vaccinated and enter the vaccinated population class at 

a rate of 𝝉. Individuals in the vaccinated population class are less likely to contract COVID-19 than 

individuals in the susceptible population class. This depends on the level of effectiveness of the vaccine given. 

In this model, we formulate the rate of decline in vaccine effectiveness as 𝝈. Individuals in the vaccinated 

population class at any time can also be re-entered into the susceptible population class if the vaccine antibody 

in the body decreases at a rate of 𝜼. 

Transmission of COVID-19 will occur if individuals in the susceptible population class and the 

vaccinated population class each come in contact with individuals in the infected population class. This 

resulted in the entry of individuals in the susceptible population class and individuals in the vaccinated 

population class respectively into the infected population class at a rate equal 𝜷to for susceptible individuals 

and 𝜷𝝈 for vaccinated individuals. Individuals in the infected population class have the possibility of 

recovering through treatment at a rate of 𝜽, recovering naturally at a rate of 𝜸, or dying from disease at a rate 

of 𝝃. Every individual who recovers naturally or through treatment will be included in the cured population 

class. Individuals in the recovered population class are assumed not to be re-infected. All individuals in each 

population class have a probability of dying at a rate of 𝝁. 

Furthermore, in this model, we define control variables 𝒖𝟏, 𝒖𝟐, 𝒖𝟑, and 𝒖𝟒 which each represent a 

vaccination strategy to increase antibodies, a quarantine strategy to reduce contact with individuals in the 

infected population class, a vaccine shrinkage reduction strategy to maintain antibodies, and a treatment 

strategy to increase the number of infected individuals. individuals in the population class recovered. All 

control variables are dynamic and depend on changes in time. 

Based on the explanation above, a system of differential equations is formulated which is a model for 

the spread of COVID-19 type SVIR with the following controls: 

𝑑𝑆

𝑑𝑡
= Λ + 𝜂(1 − 𝑢3)𝑉 −

𝛽(1 − 𝑢2)𝐼 𝑆

𝑁
− (𝑢1 + 𝜇)𝑠           

𝑑𝑉

𝑑𝑡
= 𝑢1𝑆 −

𝜎𝛽(1 − 𝑢2)𝐼 𝑉

𝑁
− (𝜂(1 − 𝑢3) + 𝜇)𝑉                (1)

𝑑𝐼

𝑑𝑡
=

𝛽(1 − 𝑢2)𝐼 𝑆

𝑁
+

𝜎𝛽(1 − 𝑢2)𝐼 𝑉

𝑁
− (𝛾 + 𝜇 + 𝜉 + 𝑢4)𝐼

𝑑𝑅

𝑑𝑡
= (𝑢4 + 𝛾)𝐼 − 𝜇𝑅                                                                   

 

 

To obtain optimum results in suppressing the spread of COVID-19, we used Pontryagin's maximum 

principle in model completion. 

 

 

 

3. RESULTS AND DISCUSSION 

3.1. Optimum Control Problem 

The optimum control problem which is the main focus of this research is to determine the control 

function 𝑈 = {𝑢𝑖 | 𝑖 = 1,2,3,4} to achieve the desired goal. The objective function in this study is formulated 

as follows: 

𝐽(𝑋(∙), 𝑈(∙)) = ∫ (𝐴 𝐼 +
𝐵1

2
𝑢1

2 +
𝐵2

2
 𝑢2

2 +
𝐵3

2
𝑢3

2 +
𝐵4

2
𝑢4

2)
𝑇

0

𝑑𝑡 (2) 
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where 𝐴 states the weights of individuals in the infected population class, while 𝐵1, 𝐵2, 𝐵3, and 𝐵4 state the 

weights for the parameters that are subject to control. Meanwhile  
𝐵1

2
𝑢1

2, 
𝐵2

2
𝑢2

2, 
𝐵3

2
𝑢3

2, and 
𝐵4

2
𝑢4

2, respectively, 

state the costs of vaccination, quarantine, reduction of vaccine depreciation, and treatment. In addition, the 

square of each control variable shows that the relationship between costs incurred on each control variable 

has a nonlinear relationship with the number of cases of COVID-19 infection. In this study, costs are assumed 

to be limited, so the control function is 𝑢𝑖(𝑖 = 1,2,3,4) limited according to 

𝒰 = {𝑈(∙) ∈ 𝐿∞([0, 𝑇]; ℝ4|0 < 𝑢𝑖 ≤ 𝑢𝑖 𝑚𝑎𝑥 < 1), ∀𝑡 ∈ [0, 𝑇]} (3) 

Define a set 𝒳 = {𝑋(∙) ∈ 𝑊1,1([0, 𝑇]; ℝ4)|𝑋(∙)} where 𝑋 = (𝑆, 𝑉, 𝐼, 𝑅), then the optimum control problem 

to be solved is to bring the state into an optimum condition 𝑋∗(∙) = (𝑆∗(∙), 𝑉∗(∙), 𝐼∗(∙), 𝑅∗(∙)) ∈ 𝒳 at the 

time interval [0, 𝑇] by minimizing the objective function which can be written as follows: 

 

𝐽(𝑋∗(∙), 𝑈∗(∙)) = min
𝑋(∙),𝑈(∙) ∈ 𝒳×𝒰

𝐽(𝑋(∙), 𝑈(∙))                                            (4) 

 
as well as the constraint function: 

𝑑𝑆

𝑑𝑡
= Λ + 𝜂(1 − 𝑢3)𝑉 −

𝛽(1 − 𝑢2)𝐼 𝑆

𝑁
− (𝑢1 + 𝜇)𝑠                                                                      

𝑑𝑉

𝑑𝑡
= 𝑢1𝑆 −

𝜎𝛽(1 − 𝑢2)𝐼 𝑉

𝑁
− (𝜂(1 − 𝑢3) + 𝜇)𝑉                                                                           (5)

𝑑𝐼

𝑑𝑡
=

𝛽(1 − 𝑢2)𝐼 𝑆

𝑁
+

𝜎𝛽(1 − 𝑢2)𝐼 𝑉

𝑁
− (𝛾 + 𝜇 + 𝜉 + 𝑢4)𝐼                                                         

𝑑𝑅

𝑑𝑡
= (𝑢4 + 𝛾)𝐼 − 𝜇𝑅                                                                                                                             

𝑆(0) ≥ 0, 𝑉(0) ≥ 0, 𝐼(0) ≥ 0, 𝑅(0) ≥ 0.                                                                                          

 

 

Based on equations (2) and (5) the Hamilton Function is defined as follows: 

𝐻(𝑋, 𝑈, 𝜆) = 𝐴 𝐼 +
𝐵1

2
𝑢1

2 +
𝐵2

2
 𝑢2

2 +
𝐵3

2
𝑢3

2 +
𝐵4

2
𝑢4

2  

+𝜆1 [Λ + 𝜂(1 − 𝑢3)𝑉 −
𝛽(1−𝑢2)𝐼 𝑆

𝑁
− (𝑢1 + 𝜇)𝑠]  

+𝜆2 [𝑢1𝑆 −
𝜎𝛽(1−𝑢2)𝐼 𝑉

𝑁
− (𝜂(1 − 𝑢3) + 𝜇)𝑉]  

+𝜆3 [
𝛽(1−𝑢2)𝐼 𝑆

𝑁
+

𝜎𝛽(1−𝑢2)𝐼 𝑉

𝑁
− (𝛾 + 𝜇 + 𝜉 + 𝑢4)𝐼]  

+𝜆4[(𝑢4 + 𝛾)𝐼 − 𝜇𝑅].  
 

By applying Pontryagin's maximum principle, we get the adjoin function 

 
𝑑𝜆1

∗

𝑑𝑡
= 𝜆1

∗ (𝑢1 + 𝜇) +
𝐼(𝜆1

∗ −𝜆3
∗ )(1−𝑢2)𝛽

(𝑆+𝑉+𝐼+𝑅)
− 𝜆2

∗ 𝑢1;  

𝑑𝜆2
∗

𝑑𝑡
= 𝜆2

∗ (𝜂 − 𝜂𝑢3 + 𝜇) +
(𝜆2

∗ −𝜆3
∗ )(1−𝑢2)𝛽𝜎𝐼

𝑆+𝑉+𝐼+𝑅
− 𝜆1

∗ (1 − 𝑢3)𝜂;   

 (6) 
𝑑𝜆3

∗

𝑑𝑡
= 𝜆3

∗ (𝑢4 + 𝛾 + 𝜇 + 𝜉) −
(1−𝑢2)[(𝜆3

∗ −𝜆2
∗ )𝜎𝑉+(𝜆3

∗ −𝜆1
∗ )𝑆 ]𝛽

𝑆+𝑉+𝐼+𝑅
− 𝜆4

∗ (𝑢4 + 𝛾) − 𝐴;  
𝑑𝜆4

∗

𝑑𝑡
= 𝜆4

∗ 𝜇, 

 

and control function 

𝑢𝑖
∗ = max[0, min(�̃�𝑖, 𝑢𝑖 𝑚𝑎𝑥)] 

or 

𝑢𝑖
∗ = {

0 ; �̃�𝑖 ≤ 0
�̃�𝑖 ; 0 < �̃�𝑖 ≤ 𝑢𝑖 𝑚𝑎𝑥

𝑢𝑖 𝑚𝑎𝑥 ; �̃�𝑖 > 𝑢𝑖 𝑚𝑎𝑥

 

where: 
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�̃�1 =
(𝜆1

∗ −𝜆2
∗ )𝑆∗

𝐵1
, �̃�2 = 𝛽

𝐼∗[(𝜆3
∗ −𝜆2

∗ )𝜎 𝑉∗+𝜆3
∗  𝑆∗−𝜆1

∗  𝑆∗]

𝐵2(𝑆∗+𝑉∗+𝐼∗+𝑅∗)
 

�̃�3 =
(𝜆1

∗ −𝜆2
∗ )𝜂 𝑉∗

𝐵3
 ,  �̃�4 =

(𝜆3
∗ −𝜆4

∗ )𝐼∗

𝐵4
. 

 

Since 𝑆(𝑇), 𝑉(𝑇), 𝐼(𝑇) and 𝑅(𝑇) are arbitrary, the optimum condition must satisfy the following 

transversality conditions: 

𝜆1(𝑇) = 0, 𝜆2(𝑇) = 0, 𝜆3(𝑇) = 0, 𝜆4(𝑇) = 0. 
 

 

3.2. Numerical Simulation 

Equations (5) and (6), each of which state and co-state equations, are in the form of a system of 

nonlinear differential equations. Therefore, a numerical approach is needed to obtain a solution to the 

equation. In this study, we use the Runge-Kutta approach of order 4 with a forward scheme for solving state 

equations and a backward scheme for solving co-state equations. The initial value of each population model 

used in this study is 𝑆(0) = 268.777.880, 𝑉(0) = 0, 𝐼(0) = 126.313, 𝑅(0) = 695.807. The parameter 

values can be seen in Table 1. 

 
Table 1 . Parameter value 

Parameter Symbol  Mark Source 

Birth rate Λ  2,4 × 106/year [21] 

Natural death rate 𝜇  6,25 × 10−3/day [9] 

Vaccine shrinkage rate 𝜂  0,0027/day [9] 

Infection rate 𝛽  0,084/day [9] 

Rate of decline in vaccine effectiveness 𝜎  0,6 [9] 

The death rate due to COVID-19 𝜉  2,2114 × 10−4/day [9] 

Natural healing rate 𝛾  1,042 × 10−3/day [9] 

 
The calculation results show that over time, the number of susceptible individuals has decreased from 

the initial number, as shown in Figure 1. The number of vaccinated individuals continues to increase from 
the original number. However, there was a difference between the number of individuals who were given 
control and the number of individuals without control. The decrease in the number of susceptible individuals 
who were given control was greater than the number of susceptible individuals without being given control. 
In addition, it can be seen that the number of vaccinated individuals who were given control experienced a 
greater increase compared to the number of individuals vaccinated without being given control. This shows 
that vaccination strategies and reducing vaccine shrinkage are optimum in reducing the potential for 
transmission or spread of COVID-19. 

 
Figure 1. Dynamics of Vulnerable Population Class and Vaccinated Population Class 
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In addition, there are also differences in the results of giving control and without control between the 

number of infected individuals and recovered individuals. Figure 2 shows that, without control, the number 

of infected individuals increased, followed by an increase in the number of recovered individuals. However, 

the number of infected cases is still higher than the number of recovered cases. The provision of control can 

reduce the number of infected individuals until finally there are no more individuals infected with COVID-

19. The decline in infection cases was followed by a decrease in the number of recovered individuals, due to 

the reduced number of individuals requiring treatment due to contracting COVID-19. This shows that 

quarantine and treatment strategies are optimum in reducing the number of COVID-19 cases until they reach 

a condition where there are no additional cases of infection. 

 
Figure 2. Dynamics of Infected Population Class and Cure Population Class 

 

Furthermore, the calculation is carried out by applying three conditions to the model with control. The 

three conditions consisted of the use of a model with all control strategies, a model without a vaccination 

strategy, and a model without a quarantine strategy. Based on Figure 3, the three conditions applied still have 

an impact in the form of a decrease in the number of individuals in the infected population class. However, 

without a vaccination strategy, this decline was slower than for the other two conditions. The results of this 

calculation indicate that the vaccination strategy can be made a top priority in handling cases of the spread of 

COVID-19 cases. Nevertheless, a quarantine strategy is still needed to accelerate the decline in the number 

of individuals infected with COVID-19. 

 
Figure 3. Dynamics of Infected Population Class Based on the Effect of Vaccination and Quarantine 

 

The final part of the numerical simulation explains how the steps must be taken to obtain the optimum 
control strategy. Due to high medical costs and vaccine limitations, we set the maximum limit of the 
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vaccination strategy and reduce vaccine shrinkage to 0.5 per day. Based on Figure 4, vaccination strategies 
and reducing vaccine shrinkage need to be carried out optimumly. If at the beginning of time each strategy 
can reach its maximum value, after 10 days running, both strategies can be periodically reduced which will 
later help in saving costs. Quarantine strategies need to be implemented from the start of the spread of the 
disease, at a rate of 0.58 per day. After 90 days, the quarantine can be lowered gradually until there are no 
more cases of COVID-19 infection. The same thing applies to the treatment strategy which has a constant 
rate of 0.5-8 per day and is then stopped until no more individuals infected with COVID-19 are found in the 
population. 

 

 
Figure 4. Dynamics of Vaccination Strategy, Quarantine, Vaccine Depreciation Reduction, and Treatment 

 
 
 

 

4. CONCLUSIONS 

The application of a controlled model may help reduce the number of cases of COVID-19 infection 

which is characterized by no more individuals in the infected population class at the end of the period. In 

addition, the implementation of the four control strategies needs to be carried out maximally at the beginning 

so that over time each strategy can be relaxed or reduced gradually. This can help save costs in the COVID-

19 spread control program. 
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