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Abstract. This research develops a mathematical model of three species of food chains between prey, predator, and 

top predator by adding intraspecific competition and harvesting factors. Interaction between prey with predator 

and interaction between predator with top predator uses the functional response type II. Model formation begins 

with creating a diagram food chain of three species compartments. Then a nonlinear differential equation system is 

formed based on the compartment diagram. Based on this system four equilibrium points are obtained. Analysis of 

local stability at the equilibrium points by linearization shows that there is one unstable equilibrium point and three 

asymptotic stable local equilibrium points. Numerical simulations at equilibrium points show the same results as 

the results of the analysis. Then numerical simulations on several parameter variations show that intraspecific 

competition has little effect on population changes in predator and top predator. While the harvesting parameter 

predator affects the population of predator and top predator. 
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1. INTRODUCTION 

Every living thing and its environment in an ecosystem interact with each other. The existence of 

these interactions will maintain the balance, stability, and productivity of an ecosystem. One form of 

interaction in an ecosystem is predation, which is the interaction between prey and predator[1]. One of the 

goals of this interaction is to stabilize the number of prey and predator populations in an ecosystem. 

Without predators, the amount of prey will increase and will damage the food chain below. Conversely, 

without prey, a predator will lose food for survival. 

Predation in an ecosystem does not only involve two species but some predations involve more than 

two species. Predations involving more than two species are known as food chains[2]. The food chain is the 

process of eating and being eaten between living things. One example of the food chain is in the marine 

ecosystem. Predations in these ecosystems occur at trophic levels II, III, and IV [3]. At the trophic level II, 

a herbivorous animal, namely Zooplankton, preyed on a trophic level III (predator) like Sardines, and 

subsequently preyed on a trophic level IV (top predator) such as a dolphin. Living creatures at trophic level 

III namely Sardines is one type of fish that is widely traded as food so that the fishermen harvest it. 

Each predator population (predator and top predator) in real life will interact with each other. Besides 

cooperating, it can happen that living things in predator populations will compete in capturing their prey. 

Competition between living things in a population is called intraspecific competition. This interaction can 

also affect efficiency in finding and killing prey known as the response function or consumption rate of 

predators. This intraspecific competition disruption can be formed with a type II response function, where it 

is assumed that each encounter between predators is wasted time, this is the same as the time process of 

handling prey [4]. 

Research on predation has been carried out, not only in the field of biology, in the field of 

mathematics, a Predator-Prey Model has also been developed. The Predator-Prey Model was first 

introduced by Alfred J. Lotka and Vito Volterra, so it is often called the Lotka-Volterra Model [5]. Some 

researchers have developed the Predator-Prey Model, one of which is the three-species food chain model. 

Research on the three-species food chain model was introduced by [6] and concluded that there was chaos 

in the dynamics of the model that might be common in the food chain. Then, [7] developed the research by 

showing the existence of chaos dynamics where no top species are found in the food chain in an 

equilibrium environment. Next, [8] modified the food chain model of three species from [7] using the 

Lyapunov Function. 

Another modification related to the three-species food chain model was carried out by [9] who 

examined Horf bifurcation in a three-species food chain model with a time delay. [10] studied the food 

chain model of three species by providing nutrition and dividing it into three important regions, namely 

areas where predators will become extinct, areas of equilibrium are stable, and areas where there are stable 

boundary cycles. Then [11] have examined three species of food chain models with intraspecific 

competition in both predators developed from the research of [12] on the Predator-Prey Model of two 

species with intraspecific competition in predators. 

In addition, [13] have examined the effects of predatory harvesting on the competitive model of two 

predators with one prey. Based on the harvesting at trophic level III (predators) in the marine ecosystem 

and intraspecific competition in predator populations, this research will develop a three-species food chain 

model from the model introduced by [11] with the addition of harvesting parameters examined by [13] and 

use type II response functions. 

 

 

2. RESEARCH METHODS 

2.1. Basic Predator-Prey Model 

Predator-Prey Model is a model that describes the interaction between prey and predator populations. 

This model was first introduced by Lotka (1925) and Volterra (1926) so it is often referred to as the Lotka-

Volterra Model. The Lotka-Volterra model is the simplest Predator-Prey model which involves two species, 

namely one predator species that preys on other species (prey). 
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Without predators, the growth of the prey population is increasing rapidly due to the growth of the 

prey population in proportion to the current population. Without prey, predators will become extinct. This is 

due to the assumption that the growth of predators depends on prey as their food source. The predation 

interaction between predators and prey influences the growth of predators and inhibits prey growth. 

Notated 𝑋 and 𝑌 are prey and predator populations with time 𝑡, the Lotka-Volterra model can be written 
𝑑𝑋

𝑑𝑡
= 𝑏𝑋 − 𝛾𝑋𝑌, 

   
𝑑𝑌

𝑑𝑡
= −𝑐𝑌 + 𝛾𝑋𝑌, 

 

(1) 

where 𝑏 is the rate of growth of prey (𝑏 > 0), c is the rate of death from predators (𝑐 > 0), and 𝛾 is the 

coefficient of interaction between prey and predator[14]. 

2.2. Functional Response Type II 

The response function in ecology is a function of the predatory consumption rate for different prey 

densities. Holling categorizes response functions into three types, one of these functions is the hyperbolic 

response function (type II) [15]. Hyperbolic response function (type II) is a response function where the rate 

of consumption increases but there is a continuous decrease. That is, the rate of consumption of predators 

increases with increasing prey population but will decrease when predators approach satiety. This is 

because when the prey population is small, some predator time is spent searching for prey. Whereas when 

the prey population is large, predators spend the time available to handle and digest prey not to look for it, 

consequently the consumption rate will be lower. This causes the consumption rate to reach half-saturation. 

This type describes a predator that moves actively looking for prey. The type II response function is 

represented as follows. 

𝑓(𝑋) =
𝑎𝑋

𝑑 + 𝑋
 , (2) 

where 𝑓(𝑋) is the predatory consumption rate, 𝑎 represents the interaction coefficient between prey and 

predator,  𝑋 is the number of population prey, and 𝑑 is the half-saturation constant, that is the number of 

population prey when the consumption rate per unit of prey reaches half of the maximum value. 

 

 

3. RESULTS AND DISCUSSION 

3.1. Model Formulation 

The assumptions used to form the food chain model of three species with intraspecific competition 

and harvesting of predators are as follows. (1) Prey population is a group of species that fall prey to the 

predator population. (2) Predator population is a group of species that prey on prey and fall prey to top 

predator population. (3) Top predator population is a group of species that prey on predator population. (4) 

The interaction between prey, predator, and top predator follows the form of interaction in the food chain, 

so that the prey population cannot prey on the top predator population. (5) The top predator population does 

not prey on the prey population. (6) Prey population, predator population, and top predator population are 

closed, meaning that there is no migration in all three populations. (7) The prey population growth follows 

the logistical growth rate. (8) There is no type of food other than prey that is preyed on by predator and no 

other type of food besides predator that is preyed on by top predator. (9) Predator and the top predator in 

predation follow the type II response function. (10) Growth of predator population depends on predation of 

prey and growth of top predator population depends on predation of the predator. (11) There is intraspecific 

competition in living things in predator and top predator populations. (12) Predator population is species 

that can be harvested. 

Variables and parameters for the assumption model used to form a three-species food chain model 

with intraspecific competition and harvesting on predators are presented in Table 1. Then the transfer 

diagram illustrating the relationship between prey, predator, and top predator is presented in Figure 1. 
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Table 1. Lists the variables and parameters of a three-species food chain model with intraspecific competition 

and harvesting on predator 

 

 

 

Figure 1. Transfer diagram of the parameters of a three-species food chain model with intraspecific 

competition and predatory harvesting 

 

Based on the assumptions and Figure 1, a three species food chain model can be formed with intraspecific 

competition and harvesting on predators in the form of a nonlinear differential equation system 

 

 

 

 

 

 

 

Symbol Definition Type Condition Unit 

𝑿(𝒕) Total population of prey at the 𝑡-time Variable 𝑋(𝑡) ≥ 0 𝑡𝑎𝑖𝑘 

𝒀 (𝒕) Total population of the predator at the 𝑡-time Variable 𝑌(𝑡) ≥ 0 𝑡𝑎𝑖𝑙 
𝒁(𝒕) Total population of the top predators at the 𝑡-time Variable 𝑍(𝑡) ≥ 0 𝑡𝑎𝑖𝑙 
𝒓 Prey growth rate without being influenced by the 

environment 

Parameter 𝑟 > 0 1

𝑑𝑎𝑦
 

𝑲 The environmental carrying capacity of the prey 

population 

Parameter 𝐾 > 0 𝑡𝑎𝑖𝑙 

𝑴𝟏 Coefficient of interaction between prey and predator Parameter 𝑀1 ≥ 0 𝑑𝑎𝑦 

𝑴𝟐 Coefficient of interaction between predator and top 

predator 

Parameter 𝑀2 ≥ 0 1

𝑑𝑎𝑦
 

𝑨𝟏 Half-saturation constant in predator Parameter 𝐴1 ≥ 0 𝑡𝑎𝑖𝑙 
𝑨𝟐 Half-saturation constant in top predator Parameter 𝐴2 ≥ 0 𝑡𝑎𝑖𝑙 
𝑬𝟏 Changing the consumption of prey to the birth of predator Parameter 𝐸1 ≥ 0 − 

𝑬𝟐 Changing the consumption of the predator to the birth of 

top predator 

Parameter 𝐸2 ≥ 0 − 

𝑫𝟏 Predator death rate Parameter 𝐷1 ≥ 0 1

𝑑𝑎𝑦
 

𝑫𝟐 Top Predator death rate Parameter 𝐷2 ≥ 0 1

𝑑𝑎𝑦
 

𝑯𝟏 The rate of competition between living things in predator 

population 

Parameter 𝐻1 ≥ 0 1

𝑡𝑎𝑖𝑙 𝑑𝑎𝑦
 

𝑯𝟐 The rate of competition between living things in the top 

predator population 

Parameter 𝐻2 ≥ 0 1

𝑡𝑎𝑖𝑙 𝑑𝑎𝑦
 

𝒒 Predator harvesting rate Parameter 𝑞 ≥ 0 𝑡𝑎𝑖𝑙

𝑑𝑎𝑦
 

𝑾 The effort required to harvest predator Parameter 𝑊 ≥ 0 1

𝑡𝑎𝑖𝑙
 

𝑑𝑋

𝑑𝑇
 
= 

𝑟𝑋 (1 −
𝑋

𝐾
) −

𝑀1𝑋𝑌

𝐴1 + 𝑋
 , 

 

𝑑𝑌

𝑑𝑇
 
= 𝐸1𝑀1𝑋𝑌

𝐴1 + 𝑋
− 𝐷1𝑌 −

𝑀2𝑌𝑍

𝐴2 + 𝑌
− 𝐻1𝑌

2 − 𝑞𝑊𝑌,  
(3) 

𝑑𝑍

𝑑𝑇
 
= 𝐸2𝑀2𝑌𝑍

𝐴2 + 𝑌
− 𝐷2𝑍 − 𝐻2𝑍

2. 
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System (3) can be written in dimensionless form, referring to [11] with 𝑥 =
𝑋

𝐾
, 𝑦 =

𝑌

𝐾𝐸1
, 𝑧 =

𝑍

𝐾𝐸1𝐸2
, dan 𝑡 =

𝑟𝑇 so that System (3) becomes 

 

 

 

 

 

where 

𝑎1 =
𝑀1𝐾𝐸1
𝑟𝐴1

,  𝑏1 =
𝐾

𝐴1
,  𝑑1 =

𝐷1
𝑟
,  ℎ1 =

𝐻1𝐾𝐸1
𝑟

, 𝑎2 =
𝑀2𝐾𝐸1𝐸2
𝑟𝐴2

,   

𝑏2 =
𝐾𝐸1
𝐴2

,  𝑑2 =
𝐷2
𝑟
,  ℎ2 =

𝐻2𝐾𝐸1𝐸2
𝑟

, 𝑝 =
𝑞𝑊

𝑟
, 

and 

𝛤 = {(𝑥,  𝑦,  𝑧) ∈ ℝ3 : 𝑥 ≥ 0,  𝑦 ≥ 0,  𝑧 ≥ 0}. 

 

3.2. Model Analysis 

Next will be found the equilibrium point of System (4). The equilibrium points in the three-species 

food chain model with intraspecific competition and predator harvesting is obtained if  
𝑑𝑥

𝑑𝑡
=
𝑑𝑦

𝑑𝑡
=
𝑑𝑧

𝑑𝑡
= 0. 

So that the equilibrium points are obtained: 

1. Equilibrium point 𝐸1 = (0, 0, 0); 
2. Equilibrium point 𝐸2 = (1, 0, 0); 

3. Equilibrium point 𝐸3 = (𝑥̃, 𝑦̃, 0), where 𝑦̃ =
(1−𝑥̃)(1+𝑏1𝑥̃)

𝑎1
 and 𝑥̃ is the root that satisfies the equation 

∑ 𝐵𝑖𝑥
𝑖 = 03

𝑖=1  with 

 

4. Equilibrium point 𝐸4 = (𝑥, 𝑦̂, 𝑧̂), where 𝑦̂ =
(1−𝑥̂)(1+𝑏1𝑥̂)

𝑎1
, 𝑧̂ =

(𝑎2−𝑏2𝑑2)𝑦̂−𝑑2

ℎ2(1+𝑏2𝑦̂)
, and 𝑥 is the root that 

satisfies the equation ∑ 𝐺𝑖𝑥
𝑖 = 07

𝑖=1  with 

𝐺0 = −𝑎1
2𝑎2(𝑎2 − 𝑏2𝑑2) + 𝑎1

3𝑎2𝑑2 − ℎ1ℎ2(𝑎1 + 𝑏2)
2 − 𝑎1ℎ2(𝑑1 + 𝑝)(𝑎1 + 𝑏2)

2, 

𝐺1 = 𝑎1
2ℎ2(𝑎1 + 𝑏2)

2 − 𝑎1
2𝑎2𝑏1(𝑎2 − 𝑏2𝑑2) – 𝑎1

2𝑎2(𝑎2 − 𝑏2𝑑2)(𝑏1 − 1) + 𝑎1
3𝑎2𝑏1𝑑2 −

2𝑎1𝑏2ℎ1ℎ2(𝑏1 − 1) − 2𝑏2
2ℎ1ℎ2(𝑏1 − 1) − 𝑏1ℎ1ℎ2(𝑎1 + 𝑏2)

2 − ℎ1ℎ2(𝑏1 − 1) 
(𝑎1 + 𝑏2)

2 − 2𝑎1𝑏2ℎ2(𝑎1 + 𝑏2)(𝑏1 − 1)(𝑑1 + 𝑝) − 𝑎1𝑏1ℎ2(𝑑1 + 𝑝)(𝑎1 + 𝑏2)
2, 

𝐺2 = 2𝑎1
2𝑏2ℎ2(𝑏1 − 1)(𝑎1 + 𝑏2) − 𝑎1

2𝑎2𝑏1(𝑎2 − 𝑏2𝑑2)(𝑏1 − 1) + 2𝑏1𝑏2ℎ1ℎ2(𝑎1 + 𝑏2) 
−𝑏2

2ℎ1ℎ2(𝑏1 − 1)
2 − 2𝑏1𝑏2ℎ1ℎ2(𝑏1 − 1)(𝑎1 + 𝑏2) − 2𝑏2ℎ1ℎ2(𝑏1 − 1)

2(𝑎1 + 𝑏2) 
−𝑏1ℎ1ℎ2(𝑏1 − 1)(𝑎1 + 𝑏2)

2 + 𝑏1ℎ1ℎ2(𝑎1 + 𝑏2)
2 + 2𝑎1𝑏1𝑏2ℎ2(𝑑1 + 𝑝)(𝑎 − 1 + 𝑏2) −

𝑎1𝑏2
2ℎ2(𝑏1 − 1)

2(𝑑1 + 𝑝) − 2𝑎1𝑏1𝑏2ℎ2(𝑎1 + 𝑝)(𝑏1 − 1)(𝑑1 + 𝑝), 

𝐺3 = 𝑎1
2𝑏2
2ℎ2(𝑏1 − 1)

2 − 2𝑎1
2𝑏1𝑏2ℎ2(𝑎1 + 𝑏2) + 𝑎1

2𝑎2𝑏2
2(𝑎2 − 𝑏2𝑑2) + 2𝑏1𝑏2

2ℎ1ℎ2 
(𝑏1  − 1) +  2𝑏1

2𝑏2ℎ1ℎ2(𝑎1 + 𝑏2) − 𝑏1𝑏2
2ℎ1ℎ2(𝑏1 − 1)

2 + 4𝑏1𝑏2ℎ1ℎ2(𝑎1 + 𝑏2) 
(𝑏1 − 1) − 𝑏2

2ℎ1ℎ2(𝑏1 − 1)
3 − 2𝑏1𝑏2ℎ1ℎ2(𝑎1 + 𝑏2)(𝑏1 − 1)

2 + 𝑏1
2ℎ1ℎ2 

(𝑎1 + 𝑏2)
2 + 𝑎1𝑏1𝑏2

2ℎ2(𝑏1 − 1)(𝑑1 + 𝑝) + 2𝑎1𝑏1
2𝑏2ℎ2(𝑎1 + 𝑏2)(𝑑1 + 𝑝), 

𝑑𝑥

𝑑𝑡
 
= 𝑥(1 − 𝑥) −

𝑎1𝑥𝑦

1 + 𝑏1𝑥
 ,  

𝑑𝑦

𝑑𝑡
 
= 𝑎1𝑥𝑦

1 + 𝑏1𝑥
− 𝑑1𝑦 −

𝑎2𝑦𝑧

1 + 𝑏2𝑦
− ℎ1𝑦

2 − 𝑝𝑦,     

(4) 

𝑑𝑧

𝑑𝑡
 
= 𝑎2𝑦𝑧

1 + 𝑏2𝑦
− 𝑑2𝑧 − ℎ2𝑧

2.  

𝐵0 = −ℎ1 − 𝑎1(𝑑1 + 𝑝),  

𝐵1 = 𝑎1
2 − 2𝑏1ℎ1 + ℎ1 − 𝑎1𝑏1(𝑑1 + 𝑝),  

𝐵2 = 2𝑏1ℎ1 − 𝑏1
2ℎ1,  

𝐵3 = 𝑏1
2ℎ1.  
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𝐺4 = 2𝑏1
2𝑏2
2ℎ1ℎ2(𝑏1 − 1) − 2𝑎1

2𝑏1𝑏2
2ℎ2(𝑏1 − 1) − 𝑏1

2𝑏2
2ℎ1ℎ2 +  2𝑏1𝑏2

2ℎ1ℎ2(𝑏1 − 1)
2 

+2𝑏1
2𝑏2ℎ1ℎ2(𝑎1 + 𝑏2)(𝑏1 − 1) − 𝑏1𝑏2

2ℎ1ℎ2(𝑏1 − 1)
3 − 2𝑏1

2𝑏2ℎ1ℎ2(𝑎1 + 𝑏2) 
+𝑏1𝑏2

2ℎ1ℎ2(𝑏1 − 1) + 2𝑏1
2𝑏2ℎ1ℎ2(𝑎1 + 𝑏2)(𝑏1 − 1) − 𝑎1𝑏1

2𝑏2
2ℎ2(𝑑1 + 𝑝) 

+2𝑎1𝑏1
2𝑏2
2ℎ1ℎ2(𝑏1 − 1)(𝑑1 + 𝑝), 

𝐺5 = 𝑎1
2𝑏1
2𝑏2
2ℎ2  − 𝑏1

3𝑏2
2ℎ1ℎ2 − 3𝑏1

2𝑏2
2ℎ1ℎ2(𝑏1 − 1) + 2𝑏1

2𝑏2
2ℎ1ℎ2(𝑏1 − 1)

2 

−2𝑏1
3𝑏2ℎ1ℎ2(𝑎1 + 𝑏2) + 𝑏1

2𝑏2
2ℎ1ℎ2(𝑏1 − 1) − 𝑎1𝑏1

3𝑏2
2ℎ2(𝑑1 + 𝑝) 

𝐺6 = 𝑏1
3𝑏2
2ℎ1ℎ2 − 3𝑏1

3𝑏2
2ℎ1ℎ2(𝑏1 − 1), 

𝐺7 = . 𝑏1
4𝑏2
2ℎ1ℎ2. 

The stability of the equilibrium point is investigated from the linearization results in System (4) around the 

equilibrium point. Before linearizing, a Jacobian matrix of System (4) is formed around the equilibrium 

point 𝐸 = (𝑥, 𝑦, 𝑧) 

𝐽(𝒇(𝑥,𝑦,𝑧)) =

(

 
 
 
 

𝜕𝑓1
𝜕𝑥

𝜕𝑓1
𝜕𝑦

𝜕𝑓1
𝜕𝑧

𝜕𝑓2
𝜕𝑥

𝜕𝑓2
𝜕𝑦

𝜕𝑓2
𝜕𝑧

𝜕𝑓3
𝜕𝑥

𝜕𝑓3
𝜕𝑦

𝜕𝑓3
𝜕𝑧 )

 
 
 
 

(𝑥,𝑦,𝑧)

 

 

 

(5) 

where  
𝑑𝑥

𝑑𝑡
= 𝑓1(𝑥, 𝑦, 𝑧), 

𝑑𝑦

𝑑𝑡
= 𝑓2(𝑥, 𝑦, 𝑧), and 

𝑑𝑧

𝑑𝑡
= 𝑓3(𝑥, 𝑦, 𝑧). The matrix elements of 𝐽(𝒇(𝑥,𝑦,𝑧)) is 

 

 

 

Theorem 1. The equilibrium point 𝐸1 = (0, 0, 0) is unstable. 

Proof. The equilibrium point 𝐸1 is substituted to the matrix elements of  𝐽(𝒇(𝑥,𝑦,𝑧)), obtained by the matrix 

𝐽(𝑓(𝐸1)) is 

𝐽(𝑓(𝐸1)) = (

1 0 0
0 −(𝑑1 + 𝑝) 0
0 0 −𝑑2

). 

So, the characteristic equation for 𝐽(𝑓(𝐸1)) is 

(𝜆 − 1)(𝜆 + (𝑑1 + 𝑝))(𝜆 + 𝑑2) = 0. 

Then, the eigenvalues obtained are 𝜆1 = 1, 𝜆2 = −(𝑑1 + 𝑝), dan 𝜆3 = −𝑑2. Because 𝑑1, 𝑝, 𝑑2 > 0 then 

𝜆2, 𝜆3 < 0. However, 𝜆1 > 0. So, the equilibrium point 𝐸1 = (0, 0, 0) is unstable. 

 

Theorem 2. If 𝑎1 < (𝑑1 + 𝑝)(1 + 𝑏1), then the equilibrium point 𝐸2 = (1, 0, 0) is locally asymptotically 

stable. 

𝜕𝑓1
𝜕𝑥

 
= 
1 − 2𝑥 −

𝑎1𝑦

1 + 𝑏1𝑥
+

𝑎1𝑏1𝑥𝑦

(1 + 𝑏1𝑥)
2
 , 

𝜕𝑓2
𝜕𝑧

 
= −

𝑎2𝑦

1 + 𝑏2𝑦
, 

𝜕𝑓1
𝜕𝑦

 
= −

𝑎1𝑥

(1 + 𝑏1𝑥)
,  

𝜕𝑓3
𝜕𝑥

 
= 0, 

𝜕𝑓1
𝜕𝑧

 
= 0, 𝜕𝑓3

𝜕𝑦
 
= 𝑎2𝑧

1 + 𝑏2𝑦
−

𝑎2𝑏2𝑦𝑧

(1 + 𝑏2𝑦)
2
,  

𝜕𝑓2
𝜕𝑥

 
= 𝑎1𝑦

1 + 𝑏1𝑥
+

𝑎1𝑏1𝑥𝑦

(1 + 𝑏1𝑥)
2
 , 

𝜕𝑓3
𝜕𝑧

 
= 𝑎2𝑦

1 + 𝑏2𝑦
− 𝑑2 − 2ℎ2𝑧. 

𝜕𝑓2
𝜕𝑦

 
= 𝑎1𝑥

(1 + 𝑏1𝑥)
− 𝑑1 −

𝑎2𝑧

1 + 𝑏2𝑦
+

𝑎2𝑏2𝑦𝑧

(1 + 𝑏2𝑦)
2
− 2ℎ1𝑦 − 𝑝, 



BAREKENG: J. Il. Mat. & Ter., vol. 16(2), pp. 549-560, June, 2022.     557 

 

Proof. The equilibrium point 𝐸2 is substituted to the matrix elements of  𝐽(𝒇(𝑥,𝑦,𝑧)), obtained by the matrix 

𝐽(𝑓(𝐸2)) that is 

𝐽(𝑓(𝐸2)) =

(

 
 
−1 −

𝑎1
1 + 𝑏1

0

0
𝑎1

1 + 𝑏1
− 𝑑1 − 𝑝 0

0 0 −𝑑2)

 
 

 

So, the characteristic equation for 𝐽(𝑓(𝐸2)) is 

(𝜆 + 1) (𝜆 − (
𝑎1

1 + 𝑏1
− 𝑑1 − 𝑝)) (𝜆 + 𝑑2) = 0 

Then, the eigenvalues obtained are  𝜆1 = −1, 𝜆2 =
𝑎1

1+𝑏1
− 𝑑1 − 𝑝, and 𝜆3 = −𝑑2. Because 𝑑2 > 0, 

consequently 𝜆3 < 0. For the equilibrium point 𝐸2 to be locally asymptotically stable, it must be 𝜆2 < 0. 

That is, 

 𝑎1
1 + 𝑏1

− 𝑑1 − 𝑝 < 0 

⇔ 𝑎1 < (𝑑1 + 𝑝)(1 + 𝑏1). 

So, the equilibrium point 𝐸2 = (1, 0, 0) is locally asymptotically stable if 𝑎1 < (𝑑1 + 𝑝)(1 + 𝑏1). 

 

Theorem 3. If  𝑥̃ >
𝑏1−1

2𝑏1
 dan 𝑦̃ <

𝑑2

𝑎2−𝑏2𝑑2
, then the equilibrium point 𝐸3 = (𝑥̃, 𝑦̃, 0) is locally 

asymptotically stable. 

Proof. The equilibrium point 𝐸3 is substituted to the matrix elements of  𝐽(𝒇(𝑥,𝑦,𝑧)), obtained by the matrix 

𝐽(𝑓(𝐸3)) that is 

𝐽(𝑓(𝐸3)) = (

𝑔11 𝑔12 0
𝑔21 𝑔22 𝑔23
0 0 𝑔33

), 

where  

So, the characteristic equation for 𝐽(𝑓(𝐸3)) is 

(𝜆 − 𝑔33)[𝜆
2 − (𝑔22 + 𝑔11)𝜆 + 𝑔11𝑔22 − 𝑔12𝑔21] = 0. 

Then the eigenvalues satisfy the characteristic equation is 𝜆1 = 𝑔33, 

𝜆2,3= 
(𝑔11+𝑔22)±√(𝑔11+𝑔22)

2−4(𝑔11𝑔22−𝑔12𝑔21)

2
. Because 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑑1, 𝑑2, ℎ1, 𝑝 > 0, so that the 

equilibrium point 𝐸3 is locally asymptotically stable local must be 𝜆1 < 0 and 𝜆2,3 < 0. Then, 𝑔33 < 0, 

(𝑔11 + 𝑔22) < 0 and (𝑔11𝑔22 − 𝑔12𝑔21) > 0. So 𝑔11 < 0, 𝑔22 < 0,  𝑔12 < 0, and 𝑔21 > 0. Based on 

𝑔33 < 0 and 𝑔11 < 0, obtained 𝑦̃ <
𝑑2

𝑎2−𝑏2𝑑2
 dan 𝑥̃ >

𝑏1−1

2𝑏1
. So the equilibrium point𝐸3 = (𝑥̃, 𝑦̃, 0) is locally 

asymptotically stable if 𝑥̃ >
𝑏1−1

2𝑏1
 and 𝑦̃ <

𝑑2

𝑎2−𝑏2𝑑2
.  

 

Theorem 4. If 𝑎1 >
(1−2𝑥̂)(1+𝑏1𝑥̂)

2

 𝑦̂
 and 𝑎2 <

ℎ1(1+𝑏2𝑦̂)
2

𝑏2𝑧̂
, then the equilibrium point 𝐸4 = (𝑥, 𝑦̂, 𝑧̂)  is locally 

asymptotically stable. 

Proof. The equilibrium point 𝐸4 is substituted to the matrix elements of  𝐽(𝒇(𝑥,𝑦,𝑧)), obtained by the matrix 

𝐽(𝑓(𝐸4)) that is 

𝑔11 = 
1 − 2𝑥̃ −

𝑎1𝑦̃

1 + 𝑏1𝑥̃
+

𝑎1𝑏1𝑥̃𝑦̃

(1 + 𝑏1𝑥̃)
2
 , 

𝑔12 = 
−

𝑎1𝑥̃

1 + 𝑏1𝑥̃
,  

𝑔23 = 
−

𝑎2𝑦̃

1 + 𝑏2𝑦̃
, 

𝑔21 = 𝑎1𝑦̃

1 + 𝑏1𝑥̃
+

𝑎1𝑏1𝑥̃𝑦̃

(1 + 𝑏1𝑥̃)
2
,  

𝑔22 = −ℎ1𝑦̃, 𝑔33 = 𝑎2𝑦̃

1 + 𝑏2𝑦̃
− 𝑑2. 
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𝐽(𝑓(𝐸4)) = (
𝑚11 𝑚12 0
𝑚21 𝑚22 𝑚23
0 𝑚32 𝑚33

), 

Where: 

So, the characteristic equation for 𝐽(𝑓(𝐸4)) is 

or 

𝜆3 + 𝐶𝜆2 + 𝐷𝜆 + 𝐸 = 0, 

where 𝐶 = 𝑚11 +𝑚22 +𝑚33, 𝐷 = 𝑚22𝑚33 −𝑚23𝑚32 +𝑚11𝑚22 +𝑚11𝑚33 −𝑚12𝑚21, and 𝐸 =
−𝑚11𝑚22𝑚33 +𝑚11𝑚23𝑚32 +𝑚12𝑚21𝑚33.  

Determination sign eigenvalues 𝜆1, 𝜆2, dan 𝜆3 in the equation using Routh-Hurwitz criterion, that is 

𝐻 = (
𝐶 1 0
𝐸 𝐷 𝐶
0 0 𝐸

), 

so that the determinant obtained from the Routh-Hurwitz Matrix is 

∆1 = |𝐶| = 𝐶, ∆2 = |
𝐶 1
𝐸 𝐷

| = 𝐶𝐷 − 𝐸, ∆3 = 
|
𝐶 1 0
𝐸 𝐷 𝐶
0 0 𝐸

| = 𝐸(𝐶𝐷 − 𝐸). 

For the characteristic equation to have a real part of the negative eigenvalues it must be ∆1> 0, ∆2> 0, and 

∆3> 0, where 

So 

𝑚11 <
0,𝑚12 <
0,
𝑚21 <

0, 𝑚22 < 0, 𝑚23 < 0, 𝑚32 > 0, and 𝑚33 < 0. Based on 𝑚11 < 0 and 𝑚22 < 0 obtained 𝑎1 >
(1−2𝑥̂)(1+𝑏1𝑥̂)

2

 𝑦̂
 and 𝑎2 <

ℎ1(1+𝑏2𝑦̂)
2

𝑏2𝑧̂
. So the equilibrium point 𝐸4 = (𝑥, 𝑦̂, 𝑧̂) is locally asymptotically stable 

if 𝑎1 >
(1−2𝑥̂)(1+𝑏1𝑥̂)

2

 𝑦̂
 and 𝑎2 <

ℎ1(1+𝑏2𝑦̂)
2

𝑏2𝑧̂
.  

 

3.3. Model Simulation 

Numerical simulations are carried out using the Maple 18 program. Numerical simulations are 

performed at each of the equilibrium points in System (3) and simulations on variations of several 

parameters. Numerical simulations at the equilibrium points are performed to determine the behavior of the 

System (3) around the equilibrium points, while simulations on variations of several parameters are carried 

out to find out how changes in these parameters affect predator population and top predator population. 

The parameter values in this simulation are taken around the parameters of several studies of the 

Predator-Prey model, that is [6], [11], [13], [16]–[20]. Then for the population of prey (Zooplankton) 

using research data at Kartini Beach, Jepara City [21]. The parameter values used are 𝐾 = 8,545777778 ×
1013 tail; 𝐸1 = 0; 𝐸2 = 0; 𝑎1 =  4,288; 𝑎2 = 2,76; 𝑏1 = 2,312; 𝑏2 = 2,198; 𝑑1 = 0,97; 𝑑2 = 0,353; 

ℎ1 = 0,05; ℎ2 = 0,05; 𝑝 = 0,152; and the initial value taken is 𝑥(0) = 0,47;  𝑦(0) = 0,61;  𝑧(0) = 0,28. 

𝑚11 = 
1 − 2𝑥 −

𝑎1𝑦̂

1 + 𝑏1𝑥̂
+

𝑎1𝑏1𝑥̂𝑦̂

(1 + 𝑏1𝑥̂ )
2
 , 

𝑚23 = 
−

𝑎2𝑦̂

1 + 𝑏2𝑦̂
, 

𝑚12 = 
−

𝑎1𝑥

1 + 𝑏1𝑥̂
,  

𝑚32 = 𝑎2𝑧̂

1 + 𝑏2𝑦̂
−

𝑎2𝑏2𝑦̂𝑧̂

(1 + 𝑏2𝑦̂)
2
, 

𝑚21 = 𝑎1𝑦̂

1 + 𝑏1𝑥̂
+

𝑎1𝑏1𝑥̂𝑦̂

(1 + 𝑏1𝑥̂)
2
, 

𝑚33 = −ℎ2𝑧̂. 

𝑚22 = 𝑎2𝑏2𝑦̂𝑧̂

(1 + 𝑏2𝑦̂)
2
− ℎ1𝑦̂, 

   

𝜆3 − (𝑚11 +𝑚22 +𝑚33)𝜆
2 + (𝑚22𝑚33 −𝑚23𝑚32  + 𝑚11𝑚22 +𝑚11𝑚33 −𝑚12𝑚21)𝜆    

−𝑚11𝑚22𝑚33 +𝑚11𝑚23𝑚32 +𝑚12𝑚21𝑚33 = 0 

𝐶𝐷 − 𝐸 = −(𝑚11)
2𝑚22 − (𝑚11)

2𝑚33 +𝑚11𝑚12𝑚21  − (𝑚22)
2𝑚33 −𝑚11(𝑚22)

2 

−2𝑚11𝑚22𝑚33 +𝑚12𝑚21𝑚22 +𝑚22𝑚23𝑚32 −𝑚22(𝑚33)
2 −𝑚11(𝑚33)

2 

+𝑚23𝑚32𝑚33. 
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Numerical simulations are carried out at the equilibrium point 𝐸1 = (0, 0, 0) by reducing the 

mortality rate of predators to 𝑑1 = 0,36, the results of numerical simulations are shown in Figure 2. Figure 

2 shows the instability where the population of prey, predator, and top predator is away from the 

equilibrium point (0,0,0). That is, the ecosystem does not occur simultaneously in all three populations. 

If the coefficient of interaction between prey and predator lowered to 𝑎1 = 0,5  conditions in 

Theorem 1 are met, so that the three populations is shown in Figure 3. Figure 3 shows System (5) towards 

the equilibrium point 𝐸2 = (1, 0, 0), wherein the predator population is extinct or decreases and is stable at 

point 0. As a result, the top predator population decreases to extinction and is stable at point 0, while the 

prey population increases and is stable at point 1. 

If the top predator mortality rate is increased 𝑑2 = 1,055 all three populations will go to the 

equilibrium point 𝐸3 = (𝑥̃, 𝑦̃, 0) where 𝑥̃ = 0,6769937155 and 𝑦̃ = 0,1932319916. Then the conditions 

in Theorem 2 are fulfilled and the results of numerical simulations for the equilibrium point 𝐸3 are shown 

in Figure 4. The population of top predators decreases until it reaches point 0 and is stable at that point, 

which means it is experiencing extinction. As a result, the predator population increased and stabilized at 

point 0,1932319916. While the prey population declined and stabilized at the point 0,6769937155.  

If the parameter values used in this study, the equilibrium point 𝐸4 = (𝑥, 𝑦̂, 𝑧̂)  with 𝑥 =
0,7107453472, 𝑦̂ = 0,1783046657, and 𝑧̂ = 0,01114087784. Then the conditions in Theorem 3 are 

fulfilled and the numerical simulation results for the equilibrium point 𝐸4 are shown in Figure 5. The prey 

population decreases to 0,672, then increases to 0,7107453472 and is stable at that point. The population of 

predators increases to 0,196, then slightly decreases until it reaches 0,1783046657 and is stable at that 

point. The top predator population decreases and is at the point 0,003, then rises to the point 

0,01114087784 and is stable at that point.  

  
Figure 2. Simulation of System (1) to the 

equilibrium point 𝑬𝟏 

 

Figure 3. Simulation of System (1) to the 

equilibrium point 𝑬𝟐 

 

  
 

Figure 4. Simulation of System (1) to the 

equilibrium point 𝑬𝟑 

 

Figure 5. Simulation of System (1) to the 

equilibrium point 𝑬𝟒 
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Figure 6. Simulation of parameter 

variations 𝒉𝟏 = 𝟎, 𝒉𝟐 = 𝟎 

 

 

Figure 7. Simulation of parameter 

variations 𝒉𝟏 = 𝟎, 𝟓𝟔, 𝒉𝟐 = 𝟎 

Figure 8. Simulation of parameter 

variations  𝒉𝟏 = 𝟎, 𝒉𝟐 = 𝟎,0004 

   
 

Figure 9. Simulation of parameter 

variations 𝒑 = 𝟎 

 

Figure 10. Simulation of 

parameter variations 𝒉𝟏 = 𝟎,𝒉𝟐 =
𝟎, and 𝒑 = 𝟎 

 

Figure 11. Simulation of 

parameter variations 𝒑 = 𝟎, 𝟑𝟎𝟒 

 

Then a numerical simulation is carried out by varying parameters ℎ1 (rate of competition between 

living things in predator population), ℎ2 (rate of competition between living things in top predator 

population), and 𝑝 (predator harvesting rate). Figure 6 shows when ℎ1 = 0, ℎ2 = 0, the population of prey, 

predator, and top predator goes to the same equilibrium point as in Figure 5. However, going towards 

stability shows a greater increase or decrease compared to Figure 5. In Figure 7 shows when ℎ1 = 0,56,
ℎ2 = 0, the top predator population is extinct. Figure 8 shows when ℎ1 = 0, ℎ2 = 0,0004, the population 

of prey, predator, and top predator experiences the same stability as in Figure 6. 

Furthermore, Figure 9 shows when 𝑝 = 0, the population of prey decreases until it reaches 0,456, 

then increases until it reaches 0,71 and is stable at that point. The predator population increases until it 

reaches the point 0,295, then decreases until it reaches the point 0,18 and is stable at that point. The 

population of top predators increases until it reaches a point of 0,087 and is stable at that point. Figure 10 

shows when ℎ1 = 0, ℎ2 = 0, and 𝑝 =  0, the population of prey decreases until it reaches point 0,422 and 

then increases until it reaches the point of 0,71 and is stable at that point. The predator population increases 

until it reaches 0,312, then decreases until it reaches 0,18 and is stable at that point. The population of top 

predators increases, until it reaches the point 0,095 and is stable at that point. In Figure 11 when p is 

enlarged twice to 𝑝 = 0,304, the predator population approaches extinction, causing the top predator 

population to experience extinction. 

 

 
4. CONCLUSIONS 

1. Based on the assumptions set in this study, a three-species food chain mathematical model was formed 

with intraspecific competition and harvesting on predators, namely in System (3).  

2. The system has four equilibrium points namely 𝐸1 = (0,0,0), 𝐸2 = (1, 0, 0),  𝐸3 = (𝑥̃, 𝑦̃, 0), and 𝐸4 =
(𝑥, 𝑦̂, 𝑧̂). Stability analysis was performed at the four equilibrium points, the 𝐸1 equilibrium point was 
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found to be unstable, while the equilibrium points 𝐸2, 𝐸3, dan 𝐸4 were locally asymptotically stable 

with certain conditions. 

3. Numerical simulations were carried out with the Maple 18 program using parameter values taken from 

research related to the Predator-Prey model. Numerical simulations at the equilibrium points show the 

same results as the results of the analysis. Numerical simulations with variations of several parameters 

show the parametersℎ1 and ℎ2 have little effect on changes in predator and top predator populations. 

At the ℎ1 and ℎ2 values which are quite low, System (3) towards a stable point experiences a smaller 

increase or decrease than without intraspecific competition. This is due to the reduction in predator and 

top predator populations due to intraspecific competition. While the predator harvest parameters affect 

the predator population and top predator. 
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