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Abstract. The Program for International Student Assessment (PISA), becomes one of the references or indicators 

used to assess the development of students' knowledge and skills in each member country of the Organization for 

Economic Cooperation and Development (OECD). The results of the PISA survey in 2018 placed Indonesia in the 

bottom 10, indicating that the implementation of the national education system has not been successful. This underlies 

the need for a more in-depth study of the factors that influence PISA data scores not only statistically qualitatively 

but also quantitatively which is still very rarely done. The data structure of the PISA survey results is complex, which 

involves multicollinearity, multivariate response variables, and random effects. Thus, it requires an appropriate 

statistical analysis method such as the multivariate mixed linear regression (MLMM) model. In this study, secondary 

data from the results of the 2018 PISA survey with Indonesian students as the smallest unit of observation were used 

as sample. School is used as an intercept random effect which is assumed to be normally distributed. Multicollinearity 

is overcome by selecting independent variables based on AIC and BIC values. Estimation of variance and random 

effect parameters was performed using the restricted maximum likelihood (REML) method. Based on the estimator 

of the variance of random effects for the response variables of mathematics, science, and reading literacy, it was 

obtained 1548.12, 1359.39, and 1082.48, respectively, which explains the significant effect of each school as a 

random effect on the three response variables. 
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1. INTRODUCTION 

Linear regression models with a single response variable frequently assume that all explanatory 

variables are fixed effects. However, in some cases, there are also those who assume the explanatory variable 

involved is a sample of the population of variables, so that this explanatory variable is said to be a random 

effect [1]. Linear regression models that include explanatory variables with fixed and random effects are 

referred to as linear mixed models (LMM).  

Linear mixed regression models that involve more than one response variable are called Multivariate 

Linear Mixed Models. The random effect contained in the linear mixed model has a role to accommodate the 

possibility of clustering on the observed objects or the possibility of a correlation between the observed 

objects with one another in the same cluster [2]. Multivariate Linear mixed model can be applied to analyze 

fairly complex data in various fields such as biology, ecology, medicine, pharmaceutical science, and 

education. 

Many studies on the application of Multivariate Linear Mixed Models have been conducted, including 

Jaffa, who used MLMM in the medical field to examine kidney function by involving three response 

variables, i.e., the average blood urea nitrogen content, the average serum creatinine content, and the 

glomerular filtration rate [3]. Gebregziabher et al. estimate a person's total health costs by involving the 

response variables for treatment costs, hospitalization costs, and outpatient costs [4]. Jaffa et al. conducted a 

study to identify cardiovascular risk in type-I diabetes diabetic patients [3]. Oskrochi et al. also applied the 

same model to examine shoulder complexity in breast cancer patients, involving four response variables in 

the form of muscle activity in the shoulder measured using electromyography (EMG) [5]. 

Multivariate Linear Mixed Models (MLMM) can be used to analyze data collected by the Program for 

International Student Assessment (PISA). This program has been established by the Organization for 

Economic Cooperation and Development (OECD) to evaluate the development of knowledge and skills of 

students aged around 15 years in a number of countries in the world that are OECD members [6]. PISA has 

been held regularly every three years since 2000 [7]. Currently, the PISA survey has been followed by 79 

countries, including Indonesia, which has been part of PISA since 2000. This survey produces quite complex 

data sets involving many explanatory variables, several response variables, and even random effects. The 

need for statistical methods that can be used to analyze such complex data is real. 

In the research on PISA conducted by Pakpahan [8] and Santi et al. [9], only one response variable was 

used and all explanatory variables were assumed to be fix, no random effects were involved in the analysis. 

Furthermore, Pakpahan's findings showed that 22 factors had a significant effect on the mathematical literacy 

score [8]. Meanwhile, Santi et al. [9] produced 11 factors that significantly influenced the scientific literacy 

score. Santi et al. [10] modeled PISA data using the Generalized Linear Mixed Model (GLMM) involving 

random effects on univariate response variables. Until now, studies on quantitative PISA data scores have 

been extremely rare. A more in-depth statistical analysis of PISA data scores involving multivariate response 

variables and random effects has also never been done.  Therefore, this study uses three response variables 

simultaneously, which are the three scores on PISA, i.e., reading, math, and science literacy scores, and 

involves the school effect of each student, which is assumed to be a random effect using Multivariate Linear 

Mixed Models estimated through REML technique. 

 

 

2. RESEARCH METHODS 

2.1 Data 

The target in the PISA program is students aged between 15 to 16 years or students who are nearing 

the end of compulsory education. According to the OECD, these students have acquired the knowledge and 

skills necessary to participate in modern society. Students' knowledge and skills are measured through the 

subject of the PISA instrument, which consists of science, mathematics, and reading literacies regardless of 

the curriculum system. The data used in this research are students aged around 15 to 16 years who are 

randomly selected through random sampling from the PISA [11]. According to Bluman, if it is found that the 

correlation value between variables is greater than 0.8, then this indicates the existence of multicollinearity 

[12]. One of the efforts made to overcome this multicollinearity is by excluding one of the correlated 

explanatory variables. 
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2.2 Multivariate Linear Mixed Model 

The multivariate linear mixed model (MLMM) is a development of the linear mixed model (LMM) for 

modeling cases involving more than one response variable with multiple normal distributions [7], [13]. The 

following is the data structure for the Multivariate linear mixed model. 

 
Table 1. MLMM Data Structure  

Observation 

(𝒊) 

Response (𝒀) Explanatory (𝑿) 

𝒀𝟏 … 𝒀𝒎 𝑿𝟏 … 𝑿𝒑 

1 𝑦11 … 𝑦1𝑚 𝑥11 … 𝑥1𝑝 

… … … … … … … 

… … … … … … … 

𝐧 𝑦𝑛1 … 𝑦𝑛𝑚 𝑥𝑛1 … 𝑥𝑛𝑝 

 

Where i is the index for the observations, 𝑖 = 1, 2, … , 𝑛; 

𝑗 is the index for the explanatory variable of constant effect, 𝑗 = 1, 2, … , 𝑝; and k is the index for the 

response variable, 𝑘 =  1, 2,… ,𝑚; where l index for random effect group, 𝑙 =  1, 2, … , 𝑞. p is the number of 

explanatory variables, m is the number of multiple response variables, n is the number of observations, and q 

is the number of random effect groups. The multivariate linear mixed model can be written as follows 

[14][15]. 

𝒀 = 𝑿𝜷 + 𝐙𝒖 + 𝒆                                                                 (1) 

where 𝒀 is a matrix of multiple response variables measuring 𝑛 × 𝑚, 𝑿 is a design matrix of 

explanatory variables measuring 𝑛 × (𝑝 + 1), β a fixed effect parameter matrix measuring (𝑝 +
1) × 𝑚, 𝒁 is a random effect design matrix measuring 𝑛 × 𝑞, 𝒖 is random effect group matrix 𝑞 × 𝑚 

dan 𝒆 is error or error matrix measuring 𝑛 × 𝑚. When translated into the form of a matrix, the 

following is obtained: 

𝑿 = [
1
⋮
1
 

𝑥11

⋮
𝑥𝑛1

 

⋯
⋱
⋯

 

𝑥1𝑝

⋮
𝑥𝑛𝑝

] ,    𝒆 = [

𝑒11 ⋯ 𝑒1𝑚

⋮ ⋱ ⋮
𝑒𝑛1 ⋯ 𝑒𝑛𝑚

],  and 𝒁 = [

𝑧11 ⋯ 𝑧1𝑞

⋮ ⋱ ⋮
𝑧𝑛1 ⋯ 𝑧𝑛𝑞

] (2) 

    
𝑿 is a matrix of explanatory variables measuring 𝑛 × (𝑝 + 1), 𝒆 is an error component matrix 

measuring 𝑛 × 𝑚 which is assumed to spread normal multivariate 𝒆 ~ N(0, 𝚺), and 𝒁 is a random effect 

design matrix measuring 𝑛 × 𝑞 which contains values 0 and 1, with a value of 1 for groups (clusters) of 

random effect which are the original group of observations, while 0 for other random effect groups which are 

not the original group of observations. Then, 𝜷 is a fixed effect parameter matrix measuring (𝑝 + 1) × 𝑚, 

and 𝒖 is a random effect matrix measuring 𝑞 × 𝑚 as follows: 

   𝜷 = [

𝛽01 ⋯ 𝛽0𝑚

⋮ ⋱ ⋮
𝛽𝑝1 ⋯ 𝛽𝑝𝑚

] and 𝒖 = [

𝑢11 ⋯ 𝑢1𝑚

⋮ ⋱ ⋮
𝑢𝑞1 ⋯ 𝑢𝑞𝑚

]                  (3) 

If 𝜷 and 𝒖 are expressed as vectors, they become as follows: 

   𝜷 =

[
 
 
 
 
 
 
𝛽01

⋮
𝛽𝑝1

⋮
𝛽0𝑚

⋮
𝛽𝑝𝑚]

 
 
 
 
 
 

 and  𝒖 =

[
 
 
 
 
 
 
𝑢11

⋮
𝑢𝑞1

⋮
𝑢1𝑚

⋮
𝑢𝑞𝑚]

 
 
 
 
 
 

                                                    (4) 

where 𝑝 is the number of fixed influence parameters, and 𝑞 is the number of random effect clusters. The 

random effect on MLMM in this study is assumed to have a double normal distribution, 𝒖 ~ iid MVN (0, 𝐃), 

where 𝒖𝑙𝑘 is the l-th random effect on the 𝑘 −th multiple response variable. If 𝑖 =  1, 2,… , 𝑛 is the number 
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of observations and 𝑘 =  1, 2, … ,𝑚 is the number of response variables, the multiple response variable 

becomes the following: 

𝒀 = [

𝑦11 ⋯ 𝑦1𝑚

⋮ ⋱ ⋮
𝑦𝑛1 ⋯ 𝑦𝑛𝑚

] ~ 𝑀𝑉𝑁(𝐗𝜷, 𝑽)                               (5) 

 
When written in vector form it becomes 

𝒀 =

[
 
 
 
 
 
 
𝑦11

⋮
𝑦𝑛1

⋮
𝑦1𝑚

⋮
𝑦𝑛𝑚]

 
 
 
 
 
 

                                                                               (6) 

where 𝒚𝒊𝒌 is the i-th individual observation value for the k-th response variable. In MLMM, the random effect 

𝐮 has a normal multivariate distribution and the distribution of error 𝒆 is also a normal multivariate spread, 

both of which are assumed to be independent. Thus, the multiple response variable 𝒀 has a normal 

multivariate distribution with a value of E(𝒚) = 𝐗𝜷, Var(𝒚) = 𝑽 =  𝐙𝑫𝒁′ + 𝚺 is a matrix of variance, 𝒚 and 

is required to be a positive definite. However, 𝑫 and 𝚺 matrices are not required to be positive definite matrix 

and 𝐲|𝐮~𝐍(𝐗𝛃 + 𝐙𝐮, 𝒆).  

The thing that distinguishes random effects from fixed effects is that information on random effects is 

only limited to the value of variance, while the permanent effect informs the value of the model parameter 

coefficients [15]. The purpose of adding random effects to multivariate linear mixed models is to 

accommodate the possibility of correlation between response variables. If the estimated variance of the 

random effect has a very small value or is close to zero, this indicates that the random effect in the model is 

not significant. Then, these multiple variable mixed linear models will approach the ordinary multiple 

variable linear model. 

2.3 Restricted Maximum Likelihood (REML) 

According to McCulloch and Searle, this REML method is a modification of ML by transforming the 

response variable vector 𝐲 into 𝐚′𝐲 where 𝐚′𝐲 does not contain  𝜷 fixed effect estimation result which means 

𝐚′ will result 𝐚′𝐗 = 0 [15].  If 𝑨 =  [𝒂𝟏, 𝒂𝟐, … , 𝒂(𝑵−𝒓𝒂𝒏𝒌(𝑿))] are independent with 𝐀′𝐗 = 𝟎. Thus, if written 

as 𝐀′𝐘~𝑀𝑉𝑁(𝟎, 𝐀′𝐕𝐀), it has a density function opportunity [16]. 

𝑓𝑅𝐸𝑀𝐿(𝒀) = (2𝜋)−
𝑚

2 |𝐀′𝐕𝐀|−
1

2𝑒𝑥𝑝 [−
1

2
([𝑨′𝒀]′𝐀′𝐕𝐀−𝟏[𝑨′𝒀])]      (7) 

The form of the maximum likelihood and log-likelihood functions is as follows 

𝐿𝑅𝐸𝑀𝐿(𝜃) = ∏ (2𝜋)−
𝑚

2 |𝑨′𝑽𝒊𝑨|−
1

2𝑒𝑥𝑝 [−
1

2
([𝑨′𝒀𝒊]′(𝐀′𝐕𝒊𝑨)−𝟏[𝑨′𝒀𝒊])]

𝑛−𝑟𝑎𝑛𝑘(𝑥)

𝑖=1

 

ln 𝐿𝑅𝐸𝑀𝐿 (𝜃) =  −
1

2
∑ ([𝑨′𝒀𝒊]′(𝐀′𝐕𝒊𝑨)−𝟏[𝑨′𝒀𝒊])

𝒏−𝒓𝒂𝒏𝒌(𝒙)
𝒊=𝟏 −

1

2
∑ ln|𝑨′𝑽𝒊𝑨|𝑛−𝑟𝑎𝑛𝑘(𝑥)

𝑖=1 − 𝑐  (8) 

with 𝑐 =
𝑚(𝑛−𝑟𝑎𝑛𝑘(𝑥))

2
ln(2𝜋), estimation of variance is obtained by deriving equation 8 with respect to 𝝋𝒌 

which is the kth element in the covariance matrix V, with 𝑘 =  1, 2, … , 𝑞 [16], obtaining below:  

𝜕𝑙

𝜕𝝋𝒌
=

1

2
[(𝒀)′𝑷

𝝏𝑽

𝝏𝝋𝒌
𝑷(𝒀) − tr (𝑷

𝝏𝑽

𝝏𝝋𝒌
)]                             (9) 

with 

𝑷 = 𝐀(𝐀′𝐕𝐀)−𝟏𝐀′                                                               (10) 

In estimating parameters, the form of the log-likelihood function is not simple, so it cannot be easily 

evaluated. Therefore, a numerical iteration algorithm is used, i.e., Newton Raphson iteration.  
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2.4 Data Analysis Procedure 

The following are the steps of data analysis used in this study: 

1. Data input and cleaning. 

2. Data exploration. 

3. Building MLMM to model the three response variables simultaneously (literacy scores of reading, 

mathematics, and science) with the explanatory variables. 

4. Estimating MLMM fixed effect parameters and variance using REML and Newton Raphson numerical 

iteration approach. 

5. Testing the significance of the effect of explanatory variables on the three responses, literacy scores of 

math, science, and reading simultaneously using the Wald-test and partially using the t-test. 

6. Interpreting the explanatory variables that have a significant effect on the three response variables 

simultaneously. 

 

 

3. RESULTS AND DISCUSSION 

The data used in this study is secondary data derived from survey results from the Organization for 

Economic Cooperation and Development (OECD) with its program, PISA. In the PISA survey, the reachable 

population of students aged around 15 years from 79 OECD member countries is around 31 million students. 

The sample in this study was 1,500 Indonesian students who were taken by the target population of all 

Indonesian students who took part in the PISA survey in 2018. In the sampling, multi-stage sampling method 

was used with stratified random sampling for school samples [17]. Samples of student observation units were 

taken by random sampling from each school, i.e., students aged around 15 years or nearing the end of 

compulsory education [11]. Students with the criteria for the age of 15-16 years include students who are 

currently studying in Junior High School (SMP) and Senior High School (SMA). Therefore, these are students 

in grade 7, grade 8, grade 9, grade 10, grade 11, and grade 12. The three Program of International Student 

Assessment (PISA) scores used are math literacy, scientific literacy, and reading literacy scores. 

3.1. Analysis of the Relationship between Response Variables and Explanatory Variables 

The relationship between the response variables used, i.e., the three PISA scores, must be examined to 

determine whether or not there is a significant relationship between the three response variables. If the 

relationship between the three response variables is not significant, it will result in the results of the 

multivariate analysis being relatively the same as the results obtained by univariate analysis. 

 
Table 2. Descriptive Data and Relationships between Variables  

Variables 
Mean  

Standard 

Deviation 

  Correlation coefficient 

N Mathematics Science Reading 

Mathematics 409.70 75.28 1.00   1500 

Science 396.90 75.64 0.87** 1.00  1500 

Reading 421.15 67.42 0.84** 0.89** 1.00 1500 

       
(**) 

Significant Correlation 

Based on the results of the Pearson correlation test, it was found that the three response variables had 

a significant correlation coefficient and were classified as strong because the coefficient value was above 0.8 

and the relationship was positive. Then, based on the scatter diagram between the response variables in pairs, 

it can be seen that the distribution of observations tends to spread and form a positive linear pattern. This 

indicates that there is a relatively strong relationship between the three response variables used and the 

relationship is positive, as shown in Figure 1 below. Therefore, the use of multivariate analysis can be carried 

out because of the strong correlation between the three response variables used. 
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Figure 1. Scatter diagram between response variables  

Based on checking the correlation between the explanatory variables, because all explanatory variables 

are of categorical type, the polychoric correlation is used. From 27 explanatory variables used in the model, 

it is found that there are explanatory variables that are strongly correlated with each other with a correlation 

coefficient value of more than 0.8. This indicates that there is multicollinearity in the explanatory variables 

that are strongly correlated, i.e., the existence of a computer (X8) with educational software (X9) of 0.80, the 

existence of a computer (X8) with many computers (X16) which has a correlation value of 0.86, repeating a 

class during elementary school (X24) with repeating a class during junior high school (X25) of 0.88, and 

repeating a class during high school (X26) repeating a class during junior high school (X25) of 0.83. 

Furthermore, two model specifications were formed based on the explanatory variables that were strongly 

correlated above, the first model, i.e., a model that did not involve the explanatory variables X8 and X25, and 

the second model, i.e., a model that did not involve X8, X24, and X26. From the two models, the best model 

was selected based on the feasibility values of the AIC and BIC models as shown in Table 3 below. 

Table 3. Selection of Independent Variables Based on Comparison of Models 

Models AIC BIC 

Model 1 – 1765.14 – 408.27 

Model 2 – 1771.23 – 461.85 

Based on the results of AIC and BIC obtained from both models, model 2 has smaller AIC and BIC 

values than model 1, and also model 2 has fewer model parameters because it uses 24 explanatory variables 

compared to the first model with 25 explanatory variables. Thus, model 2 is simpler than model 1. Therefore, 

the second model is the best model obtained based on the eligibility criteria of the model used.  

3.2. Multivariate Linear Mixed Model 

Before modeling the three PISA scores, i.e., the scores of mathematical literacy, scientific literacy, and 

reading literacy which are assumed to have a normal multivariate distribution, they are checked using the 

Doornik Hansen test as shown in Figure 2 below: 
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Figure 2. Quantile diagram of Response Variables 

 

The results of testing the distribution of the three response variables obtained a calculated DH value of 

11.56 with a p-value of 0.07, which means that the three response variables used have a normal multivariate 

distribution. Therefore, the specification of the model used is Multivariate Linear Mixed Models (MLMM) 

with schools that are used as a random effect on the model, which is assumed to be normally distributed. 

The results of the simultaneous parameter significance test using the Wald chi-square test. The results 

of the chi-square count are 56791.8 with a p-value of 0.00 <0.05, so that it can be said that there is a significant 

effect of all model parameters simultaneously on the three response variables, including father's education, 

internet access, facilities at home, and the age of entering kindergarten (TK). These findings are in line with 

research conducted by Pakpahan [8], Santi et al. [9], and Santi et al. [10]. 

Table 4. Estimation of Varieties 
 R (Residual Variance) D (Random Variance) 

  Y1_Math Y2_ Science Y3_ Reading Y1_Mat Y2_ Science Y3_ Reading 

Y1_Math 2227.08    1548.12    

Y2_ Science 1610.15 2308.11   1424.41 1359.39   

Y3_ Reading 1296.81 1609.04 1886.37 1296.14 1209.15 1082.48 

Based on Table 4 above, the estimation of the variance of random effects obtained from the three 

responses, the literacy scores of mathematics, science, and reading are 1548.12, 1359.39, and 1082.48, 

respectively, which involved a random effect in the form of 389 schools as well as the value of the variance 

of both the random effect and the residual variance that was not equal to zero indicating a relationship between 

the three response variables used. The variance value is relatively significant or not equal to zero, thus 

indicating that the variance between schools is significant. These results are in line with the previous 

assumption that the independence of the three response variables originating from the same school is a part 

that needs to be included in the model to avoid bias in the estimation of standard errors in parameter 

estimation.  Based on the results of the estimation of the variance of random effects, it also explains that there 

is a significant difference in the effect of each school on students' mathematical literacy scores. Then, for 

reading literacy scores, the differences in schools have a small effect compared to the other two response 

variables. This is because reading literacy or students' reading ability is relatively a basic ability from within 

a student. Therefore, it does not depend on the origin of the student's school, whether the school is in the 

superior category or not, and vice versa for math and science abilities at each school. 

 

 
4. CONCLUSIONS 

The multivariate analysis model involving random effects, i.e., the Multivariate Linear Mixed Models 

(MLMM), can be said to be suitable for modeling PISA data, which involves three response variables, the 

scores of mathematical literacy, scientific literacy, and reading literacy, and involves a random effect in the 

form of students’ schools. From testing the significance of the parameters for the three scores, it was 

simultaneously concluded that all the explanatory variables had a significant effect on the three PISA scores, 
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including father's education, internet access, facilities at home, and the age of entering kindergarten (TK). 

Based on the estimation of variance, it was found that school as a random effect has a significant influence 

on reading and science literacies. 
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