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Abstract. If there is multicollinearity and outliers in the data, the inference about parameter estimation in the LS 

method will deviate due to the inefficiency of this method in estimating. To overcome these two problems 

simultaneously can be done using robust regression, one of which is the ridge least absolute deviation method. This 

study aims to evaluate the performance of the ridge least absolute deviation method in surmounting multicollinearity 

in diverse sample sizes and percentage of outliers using simulation data. The Monte Carlo study was designed in a 

multiple regression model with multicollinearity (ρ=0.99) between variables 𝑥1 and 𝑥2 and outliers of 10%, 20%, 

and 30% on response variables with different sample sizes (n = 25, 50,75,100,200; 𝛽0=0, and β=1 otherwise). The 

existence of multicollinearity in the data is done by calculating the correlation value between the independent 

variables and the VIF value. Outlier detection is done by using boxplot. Parameter estimation was carried out using 

the RLAD and LS methods. Furthermore, a comparison of the MSE values of the two methods is carried out to see 

which method is better at overcoming multicollinearity and outliers. The results showed that RLAD had a lower MSE 

than LS. This means that RLAD is more precise in estimating the regression coefficients for each sample size and the 

various outlier levels studied. 
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1. INTRODUCTION 

As is known in the multiple regression linear model, the presence of multicollinearity and outliers in 

the data can affect the conclusion if the parameter estimation is carried out using the OLS method. The 

deviation of the conclusions obtained is caused by the inefficiency of this method if the assumptions of 

multicollinearity [1-4]. Using robust regression to cope with the correlation between independent variables 

can be done. There are several types of robust methods, one of which is robust ridge regression. The advantage 

of using the robust ridge regression method is that the standard error can be reduced and a more accurate 

estimation of the regression coefficient can be obtained [5-10]. 
 

In addition, deviations in conclusions can also be found when there is data that deviates from the 

average which is called an outlier. Outliers can lead to non-fulfillment of the assumption of normality and 

homogeneous error [11]. We need a method that can solve the problems of outliers and multicollinearity 

simultaneously. 
 

Regression Ridge Least Absolute Deviation (RLAD) is an alternative method that we chose to handle 

multicollinearity and outliers at the same time, besides other robust methods that are widely available. This 

method is a combination of the robust ridge regression method and the least absolute deviation method. The 

RLAD estimator that results will be stable and resistant to outliers [12].  However, there has been no 

comprehensive research using this method to seek the outcome of this method in overcoming various levels 

of outliers at various sample sizes. Therefore, in this study, ridge least absolute deviation performance in the 

multiple regression model with data containing multicollinearity and various levels of outliers at various 

sample sizes was analyzed and compared with the least squares method using simulation data. 

 

 

 

2. RESEARCH METHODS 

Least Absolute Deviation (LAD) is a robust regression parameter estimation method that is resistant 

to the presence of outliers by minimizing the total absolute value of the residual. The least absolute deviation 

method can be defined as: 

𝑚𝑖𝑛 ∑ |𝜀𝑖|𝑛
𝑖=1 = 𝑚𝑖𝑛 ∑ |𝑌𝑖 − 𝑿𝒊

′𝜷 𝐿𝐴𝐷|𝑛
𝑖=1   (1) 

In the formula, it can be seen that LAD will minimize the absolute value of the residual. This is in 

contrast to the least squares method, which minimizes the sum of the squares of the residuals. In this way, 

the effect of outliers will be minimized in the LAD method and will produce more accurate regression 

coefficient estimator [6]. 

Because the LAD method does not have an analytical solution to obtain parameter estimates, an iterative 

approach is needed. The weighted least squares procedure can be used for this. The iterations were performed 

to obtain a convergent value. The Least Absolute Deviation (LAD) parameter estimator can be solved using 

the following formula: 

�̂�𝐿𝐴𝐷 = (𝑿′𝑾𝑿)−1𝑿′𝑾𝒀                    (2) 

where W is a diagonal matrix with diagonal elements  𝑤𝑖𝑖 with 

𝑤𝑖𝑖 = {

1

|𝜀𝑖|
, 𝑖𝑓 |𝜀𝑖| ≠ 0 

  1 ,         𝑖𝑓 |𝜀𝑖| = 0

 

 
One of the methods commonly used to solve multicollinearity problems by limiting coefficient 

estimates is ridge regression, namely by modifying the LS parameter estimator. In this way, ridge regression 

is able to reduce the variance of the estimator. However, it generates bias. The relatively small constant bias 

𝛼 resulting from the ridge method is added to the main diagonal of the matrix 𝑿′𝑿 obtained by the LS method 

to form a new matrix (X’X+ 𝛼I) [13]. The ridge regression model can be written as: 

  𝒀 = 𝑿𝜷𝑹 + 𝜺         (3) 
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where 𝛽𝑅is the ridge regression parameter to be estimated. 

The ridge regression estimator requires that   𝜷𝑹
′  𝜷𝑹 = 𝝆 be satisfied to obtain the minimum sum of 

squares. This can be done using the Lagrange multiplier method to obtain:  

(𝜷𝑹, 𝛼) = 𝒀′𝒀 − 𝟐𝜷𝑹
′ 𝑿′𝒀 + 𝜷𝑹

′ 𝑿′𝑿𝜷𝑹 + 𝛼(𝜷𝑹
′ 𝜷𝑹 − 𝝆). (4) 

If Eq. (4) is derived with respect to 𝜷𝑹 and then equalized to zero, then the following equation will be 

obtained: 

   �̂�𝑅 = (𝑿′𝑿 + 𝛼𝑰)−1𝑿′𝒀      (5) 

with I = identity matrix; 0 ≤ 𝛼 ≤ 1; �̂�𝑅 = ridge parameter vector.  Adding bias 𝛼 to the diagonal matrix 𝑿′𝑿 

in order to get an unbiased estimator coefficient and independent variables X and dependent variable Y should 

be transformed into a standard variable (standardization) [14]. 
 

The combination of LAD and ridge regression will produce the ridge least absolute deviation (RLAD) 

method. With the ability of LAD to overcome multicollinearity and ridge regression that is able to deal with 

outliers, the RLAD method will be able to surmount multicollinearity and outliers in the data simultaneously 

[12].  The parameter estimator of RLAD can be written as: 

�̂�𝑅𝐿𝐴𝐷 = (𝑿′𝑿 + 𝛼∗𝑰)−1𝑿′𝑿�̂�𝐿𝐴𝐷    (6) 

where �̂�𝐿𝐴𝐷= LAD regression estimator with  0 ≤ 𝛼∗ ≤ 1. 
 

There are several ways to select the value of 𝛼*. One of the formulas is to use the method introduced 

by [5, 7, 12] based on the least squares method as follows: 

 

   𝛼∗ =
𝑝 𝑆𝐿𝐴𝐷

2

�̂�𝐿𝐴𝐷
𝑇  �̂�𝐿𝐴𝐷

       (7) 

where 𝑝 = number of independent variables and 𝑆𝐿𝐴𝐷
2  =

(𝒀−𝑿�̂�𝐿𝐴𝐷)𝑇(𝒀−𝑿�̂�𝐿𝐴𝐷)

𝑛−𝑝
. 

 
Mean Square Error (MSE) is one of the most popular and easy to use error measurements. The MSE 

value is used to measure the accuracy of the estimated value of the regression model, which is expressed in 

the mean square of the error. Generally, the smaller the MSE, the more accurate the forecast value of a model 

will be. In addition, in this case, the best method is defined as the method that can fix multicollinearity and 

outlier problems in unison. The Mean Square Error (MSE) formula to determine the best parameter estimation 

results of �̂� is: 

    𝑀𝑆𝐸(�̂�) =
1

𝑚
∑ (�̂�𝑗 − 𝛽);𝑚

𝑗=1  𝑗 = 1,2, … , 𝑚    (8) 

With �̂�𝑗  is estimated regression coefficient; 𝛽 is regression coefficient to be estimate and 𝑚 is repetition. 

 
Simulated data was used in this study using RStudio 1.2.1335.  The true model 𝒀 = 𝑿𝜷 + 𝜺 was 

simulated with different sample sizes (n=20, 40, 60, 100, 200) and 𝑝 = 6 repeated 1000 times.  The 

independent variables 𝑥𝑖𝑗 = (1 − 𝜌2)1/2𝑢𝑖𝑗 + 𝜌𝑢𝑖𝑗, 𝑖 = 1,2, … , 𝑛    𝑗 = 1,2, … ,6 were generated following 

[15] with, 𝑢𝑖𝑗are independent standard normal pseudo-random numbers. Multicollinearity or correlation 

(ρ=0.99) between variables 𝑥1 and 𝑥2 was designed in the model with 10%, 20%, and 30% outliers in the 

response variables. β parameters vectors are determined arbitrarily (𝛽0=0, and β=1 otherwise). Analysis 

began by testing multicollinearity based on the correlation between the independent variables and the VIF 

value. Outlier detection was done by using boxplot.  Next, calculated the �̂�𝑅𝐿𝐴𝐷 and �̂�𝐿𝑆. Finally, we 

compared the MSE values of the two methods.  
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3. RESULTS AND DISCUSSION 

The results of the analysis to ensure the existence of multicollinearity in the data were carried out by 

calculating the correlation between the independent variables based on VIF values. The results are presented 

in Table 1.  

 
Tabel 1.  VIF values for various sample sizes and 10%, 20% and 30% of outliers for simulated data 

 VIF 

n 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 

20 20.8051 24.4644 2.5837 2.2502 1.6855 3.4597 

40 40.2781 41.6082 1.7631 2.2338 1.9079 2.1164 

60 39.7091 38.7429 1.8391 2.4791 1.9061 1.7895 

100 42.9446 43.0693 1.6656 1.7729 1.6564 1.7670 

200 28.6906 29.0339 1.8635 1.5891 1.4932 1.7071 

 
As represented in Table 1, the VIF values for the variables 𝑥1 and 𝑥2 are greater than 10. This indicates 

the presence of multicollinearity. Afterwards, we checked if there were outliers in the data by using a Box 

plot. We present the box plot for n=20 with 10% outliers as displayed in Figure 1 below. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 1.  Boxplot for n=20 with 10% outliers 

 
Figure 1 shows that outliers were detected using the box plot, which was indicated by data that was far 

from the average value. The same method was used to detect the presence of outliers for n=20, 40, 60, 100, 

200, and outlier levels of 10%, 20%, and 30%. From Table 1 and Figure 1 above, it can be seen that there is 

multicollinearity indicated by the VIF value and outliers indicated by the data, which is far from the average 

value in the boxplot.  This indicates that a robust method is needed to address the problems. To begin with, 

we have to reduce the correlation between variables and eliminate outliers by using RLAD. After being 

analyzed by RLAD, the VIF value of the data was checked again to ensure that there was no longer any 

correlation between variables. The VIF value generated using RLAD is presented in Table 2. 

It can be seen in Table 2 that the value of the correlation between the independent variables is reduced 

as indicated by the VIF value between the variables. The VIF value of all independent variables becomes less 

than 10, which indicates that there is no longer a correlation between the independent variables. 
 

Table 2.  VIF using RLAD for n=20, 40, 60, 60, 100, 200 with 10%, 20%, and 30% outliers. 

    VIF    

n outliers 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 

20 10% 0.1946 0.1719 0.3122 0.3171 0.3209 0.3066 

 20% 0.1015 0.0895 0.1870 0.1939 0.2070 0.1656 

 30% 0.0999 0.0881 0.1790 0.1848 0.1951 0.1624 

40 10% 0.3127 0.3021 0.5856 0.5940 0.5794 0.6067 

 20% 0.1648 0.1589 0.3699 0.3570 0.3627 0.3651 

 30% 0.1138 0.1100 0.2626 0.2485 0.2574 0.2532 

60 10% 0.3951 0.4041 0.7189 0.7182 0.7420 0.7216 

 20% 0.1908 0.1965 0.4415 0.4168 0.4455 0.4456 

 30% 0.1113 0.1148 0.2747 0.2543 0.2718 0.2773 
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100 10% 0.5781 0.5755 0.8933 0.9230 0.9036 0.9062 

 20% 0.3212 0.3199 0.6417 0.6517 0.6492 0.6423 

 30% 0.2089 0.2083 0.4558 0.4568 0.4596 0.4530 

200 10% 1.1339 1.1301 1.1767 1.0860 1.0362 1.1363 

 20% 0.6086 0.6033 0.9066 0.8647 0.8365 0.8926 

 30% 0.3024 0.2985 0.5978 0.5943 0.5866 0.6010 

 
In addition, the outliers were eliminated automatically. We proceeded to compute the MSE of RLAD 

and LS. The results are provided in Table 3 and Figure 2. 

 
Tabel 3.  MSE of RLAD and LS 

Outliers (%) 

n 

MSE 20 40 60 100 200 

10 
LS 91.8476 43.5959 9.6913 7.1296 4.2906 

RLAD 0.7083 0.3524 0.1888 0.1226 0.1199 

20 
LS 101.0431 45.4925 37.3247 11.5228 13.1625 

RLAD 0.9525 0.2516 0.1555 0.1413 0.1153 

30 
LS 102.2833 87.1023 75.4217 47.3645 7.8237 

RLAD 2.0779 0.5166 0.2827 0.2181 0.2043 

 

 

 

Figure 2.  MSE of RLAD and LS 

 
Table 3 and Figure 2 show that RLAD has a smaller MSE than LS for n=20, 40, 60, 100, and 200 for 

different numbers of outliers in the data. In addition, the sample size seems to also affect the MSE of both 

methods. Likewise, with the number of outliers in the data. The MSE value decreased with increasing sample 

size for both methods. However, the MSE for both methods increases as the number of outliers increases. 
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Figure 3.  MSE of RLAD for various sample sizes and number of outliers 

 

We present Figure 3 to show MSE RLAD separately from MSE LS to get clearer results. From this 

figure, it is clear that the MSE of RLAD is higher at small sample sizes. The MSE value decreased with an 

increasing number of samples. In addition, the MSE value also seems to be influenced by the number of 

outliers. At a small sample size, the MSE value is high. However, by increasing the sample size, this can be 

overcome. In addition, Figure 3 shows that the larger the sample size, the outliers will not have much effect 

on the MSE value. 

The results of this study indicate that the RLAD method can overcome multicollinearity and outliers 

simultaneously compared to the LS method. In addition, when viewed from the MSE value, this study also 

produces parameter estimates using the RLAD method that are more precise than the LS method. Likewise, 

if based on the sample size used, it is also found that for small and large sample sizes, the RLAD method can 

reduce the magnitude of the estimation error value compared to LS. The results of this study are in line with 

previous results that the robust method in general and the RLAD method in particular can overcome 

multicollinearity and outliers simultaneously [8-12]. 

 

 

 

4. CONCLUSIONS 

Based on the results of the study, the sample size has an effect on the MSE value of RLAD and LS. The 

larger the sample size used in the data, the smaller the MSE value for both RLAD and LS, even though the 

presence of outliers is increasing. Overall, it can be concluded that RLAD has a better performance than LS 

in overcoming multicollinearity and various outlier levels because it has a smaller MSE value at various 

sample sizes and levels of outliers studied. 
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