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Abstract. This study discussed modelling fluid flow with a free surface and a submerged obstacle in the fluid flow. To 
build the mathematical model, we assumed the fluid is incompressible, steady-state, and irrotational. Firstly, we used 

Newton’s second law, the law of mass conservation and the law of conservation of momentum to obtain the general 

Navier-Stokes equation. Then, the Euler-free surface equation and the Bernoulli equation were designed before 

making a free surface representation and linearizing the wave equation to obtain a fluid flow model. The resulting 

mathematical model is a Laplace equation with boundary conditions in the fluid. 
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1. INTRODUCTION 

Differential equations are a branch of mathematics that play a role in solving problems related to the 

real world. It deals with Analysis [2], Algebra [3], Geometry [4], and others. Most problems in differential 

equations are finding exact (analytic) solutions from mathematical models derived from real problems. [5]. 

Fluid modelling is one of the mathematical models obtained from the behaviour of a fluid. A fluid is a 

substance that can flow in the form of a liquid or gas [6]. A liquid is a substance with a certain volume that 

fills the container in which the liquid is placed. 

In physics, a free surface is a fluid surface with an interface between two homogeneous fluids, such as 

water and air [7]. Unlike liquids, gases cannot form a free surface by themselves. A liquid will have a free 

surface if the volume of the liquid is less than the volume of a container. 

This research was conducted to obtain a model of the fluid flow and free surface conditions when an 

object is given to the fluid flow. We assume in this research that the fluid is incompressible [8], ideal [9], 

irrotational [10], and steady-state [11]. The process of obtaining a model of fluid flow and free surface 

conditions begins by reconstructing the general Navier-Stokes equation [12] from Newton's second law [13], 

designing the Euler-free surface equation and Bernoulli equation [14], and representing the free surface as 

well as the linearizing wave equation [15]. 

 

 

 

2. RESEARCH METHODS 

Newton's second law in terms of momentum can be written as: 

∑ �⃗� =
𝛥𝑝

𝛥𝑡
=

𝛥𝑚�⃗�

𝛥𝑡
, 

where 𝑝 is momentum and t represents time. To obtain the Navier-Stokes equation from equation (1), first, equation (1) 

was changed in the form of the differential operator D. The second step was to derive the equation using the chain rule. 

Third, the change in momentum of the fluid particles partitioned and represented as a cube was determined. Fourth, 

each force that affects the fluid particles was deduced based on the change in momentum obtained. After obtaining the 

Navier-Stokes equation for an incompressible fluid, the fifth step was to assume that the fluid was an ideal fluid by 

ignoring the fluid's viscosity so that the Euler-free surface equation was obtained. Then, the sixth step was to assume 

that the fluid has an irrotational flow, namely by proving that the vorticity in the flow is 0. Seventh, the Laplace equation 

was obtained based on the Helmholtz-Hodge theorem [16], which states that each vector can be expressed into two 

parts, namely, the part where the divergence is zero and the part where the curl is zero. The eighth step was to determine 

the boundary conditions on the fluid's free surface, resulting in the Bernoulli system of equations for water waves. 

Finally, a flow model and fluid-free surface conditions were obtained by linearizing the dynamic and kinetic-free surface 

conditions in the Bernoulli equation system. The completion steps in this paper are referred to [15]. 

 

 

 

3. RESULTS AND DISCUSSION 

3.1. The Navier-Stokes Equation on a Free Surface 

The general equation used in this study is the Navier-Stokes equation. The Navier-Stokes equation in 

fluid mechanics is a partial differential equation describing an incompressible fluid's flow. The equation is a 

generalization of the equations made by the Swiss mathematician Leonhard Euler in the 18th century to 

describe the flow of incompressible and frictionless fluids. In 1821, French engineer Claude-Louis Navier 

introduced the element of viscosity (friction) for a more realistic and much more difficult problem of viscous 

fluids. Throughout the mid-19th century, the English physicist and mathematician Sir George Gabriel Stokes 

developed this research. However, complete solutions were obtained only for the case of simple two-

dimensional flows. To obtain the Navier-Stokes equation, firstly we use Newton's second law in Equation 

(1).  

For very small values of 𝛥𝑡, Equation (1) can be written as: 

(1) 
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( )

31 2

1 2 3

.

tF D mv

xx xmv mv mv mv

t x t x t x t

=

    
= + + +

      

 

After obtaining Equation (2), the next step was to determine the change in momentum of the fluid 

particles. We divided the fluid into small parts. Let us see one partition as in Figure 1. 

 

 

From Figure 1, the change in momentum of the fluid particles over time is obtained as follows: 

𝛥𝑝

𝛥𝑡
= 𝜌 (

𝜕|�⃗�|

𝜕𝑡
+ [

𝜕(�⃗�)

𝜕𝑥1
𝑣𝑥1

] ⋅ 𝑖 + [
𝜕(�⃗�)

𝜕𝑥2
𝑣𝑥2

] ⋅ 𝑗 + [
𝜕(�⃗�)

𝜕𝑥3
𝑣𝑥3

] ⋅ �⃗⃗�) 𝑑𝑥1𝑑𝑥2𝑑𝑥3 . 

Three forces always act on fluids, namely gravity (𝑔), pressure (𝑝), and viscosity (𝜇) so that the Navier-

Stokes equation can be written as follows: 

𝜌𝑔𝑥1
−

𝜕𝑃

𝜕𝑥1
+ 𝜇 (

𝜕2𝑣𝑥1

𝜕𝑥1
2 +

𝜕2𝑣𝑥1

𝜕𝑥2
2 +

𝜕2𝑣𝑥1

𝜕𝑥3
2 ) = 𝜌 (

𝜕𝑣𝑥1

𝜕𝑡
+

𝜕𝑣𝑥1

𝜕𝑥1
𝑣𝑥1

+
𝜕𝑣𝑥1

𝜕𝑥2
𝑣𝑥2

+
𝜕𝑣𝑥1

𝜕𝑥3
𝑣𝑥3

) 

𝜌𝑔𝑥2
−

𝜕𝑃

𝜕𝑥2
+ 𝜇 (

𝜕2𝑣𝑥2

𝜕𝑥1
2 +

𝜕2𝑣𝑥2

𝜕𝑥2
2 +

𝜕2𝑣𝑥2

𝜕𝑥3
2 ) = 𝜌 (

𝜕𝑣𝑥2

𝜕𝑡
+

𝜕𝑣𝑥2

𝜕𝑥1
𝑣𝑥1

+
𝜕𝑣𝑥2

𝜕𝑥2
𝑣𝑥2

+
𝜕𝑣𝑥2

𝜕𝑥3
𝑣𝑥3

) 

𝜌𝑔𝑥3
−

𝜕𝑃

𝜕𝑥3
+ 𝜇 (

𝜕2𝑣𝑥3

𝜕𝑥1
2 +

𝜕2𝑣𝑥3

𝜕𝑥2
2 +

𝜕2𝑣𝑥3

𝜕𝑥3
2 ) = 𝜌 (

𝜕𝑣𝑥3

𝜕𝑡
+

𝜕𝑣𝑥3

𝜕𝑥1
𝑣𝑥1

+
𝜕𝑣𝑥3

𝜕𝑥2
𝑣𝑥2

+
𝜕𝑣𝑥3

𝜕𝑥3
𝑣𝑥3

). 

 

3.2 Modelling the Neumann-Kelvin Equation 

The previously obtained Navier-Stokes equation can only be used in modelling simple fluid 

flows where there is no object in the flow and also does not have conditions on the free surface as seen 

in Figure 2. 

 

 

 

(2) 

 

 

 

 

 

  

Figure 1. Fluid Particles 

(3) 

(4) 
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However, in this study, the fluid flow modelled has an obstacle submerged in the flow as well as 

conditions on the free surface as can be seen in Figure 3.  

 

Notation 𝛺+ represents the domain of the fluid, and 𝛺− expresses the object’s domain. The boundary 

of 𝛺+ is a free surface L and the object’s surface is denoted as Г. Vector �⃗⃗� = (𝑛1, 𝑛2) represents the normal 

vector outward, whereas 𝜏 expresses the tangential vector. Notation 𝐿0 represents a horizontal line on the 

surface of the water and represents the velocity of the fluid in the direction 𝑒1.  

The Navier-Stokes equation in Equation (4) for a two-dimensional space can be rewritten as: 

( ) ( ) ( ) ( )

( ) ( )

1 2

2 2

2 2
1 2 1 2

2 2

22 2
1 2

x x

v v v v v
v v Pdxdy gdxdy

t x x x x

v v
PId ge

x x

  

 

        
+ + = + − +                  

  
= + −  + 

   

 

 

 

 

 

 

 

 

 

  

 

 

  

 

Figure 3. Fluid Flow and An Object 

𝑈𝑒1 

𝐿0 

 

 

 

Figure 2. Simple Fluid Flow 
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





 

 

 

=  −  +

 
=  −  + 
 

 
=  +  −  + 
 

  + 
=   −  +  

  

  + 
=   −  +  

  

=   −

 

Hence, we obtain: 

( ) ( )
1 2 2

1 2

.x x

v v v
v v ge

t x x
  
     

+ + = −           

 

For an incompressible fluid, Equation (5) can be written as: 

2,( ( ) )
on

0,
tV V V ge

V

   + +  = −


 =
 

3.3 Ideal Fluid Assumption 

Further, we assume that the fluid is ideal. An ideal fluid is a fluid that has no viscosity and is 

incompressible. Viscosity is a frictional force that occurs due to friction between layers contained in the fluid. 

If the viscosity possessed by the fluid in Equation (5) is neglected (assuming an ideal fluid), the stress tensor 

[15] can be written as: 

𝜎 = 𝑃𝐼𝑑 

Substituting Equation (7) into Equation (6), we obtain the Euler-free surface equation: 

2,( ( ) ) on 

0, on

tV V V P ge

V

  + +  = − 

+ = 
 

3.4 Irrotational Flow Assumption 

Furthermore, we assume fluid flow is irrotational. Irrotational flow occurs when the velocity in each 

fluid layer is the same, which causes the fluid particles not to rotate. Irrotational flow can also be defined as 

a flow with vorticity equal to zero. Vorticity is a vector quantity that shows the rotational rate of the fluid 

particles. To get the equation of vorticity, the curl is taken from Equation (6): 

𝛻 × (𝜌(𝜕𝑡𝑉 + (𝑉 ⋅ 𝛻)𝑉)) = 𝛻 × (𝛻𝑃 − 𝜌𝑔𝑒2) 

𝛻 × ((𝜕𝑡𝑉 + (𝑉 ⋅ 𝛻)𝑉)) =
1

𝜌
𝛻 × (𝛻𝑃 − 𝜌𝑔𝑒2) 

𝛻 × 𝜕𝑡𝑉 + 𝛻 × ((𝑉 ⋅ 𝛻)𝑉) =
1

𝜌
𝛻 × (𝛻𝑃 − 𝜌𝑔𝑒2). 

Because 𝑒2 = 𝛻𝑥2 then Equation (9) becomes: 

𝜕𝑡𝛻 × 𝑉 + 𝛻 × ((𝑉 ⋅ 𝛻)𝑉) =
1

𝜌
𝛻 × (𝛻𝑃 − 𝜌𝑔𝛻𝑥2) 

𝜕𝑡𝛻 × 𝑉 + 𝛻 × ((𝑉 ⋅ 𝛻)𝑉) =
1

𝜌
𝛻 × (𝛻𝑃 − 𝛻𝜌𝑔𝑥2) 

𝜕𝑡𝛻 × 𝑉 + 𝛻 × ((𝑉 ⋅ 𝛻)𝑉) =
1

𝜌
𝛻 × 𝛻(𝑃 − 𝜌𝑔𝑥2), 

assuming that 𝛻 × 𝑉 = 𝜔, we obtain the result of (𝑉 ⋅ 𝛻)𝑉: 

(6) 

(7) 

(8) 

(9) 

(10) 

(5) 
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 
= + +

 

3 31 2
3 1 2 3

1 2 2 2

31 2
1 2 3

3 3 3

32 1 1
2 2 3 3

1 2 3 1

3 2 2 1
3 3 1 1

2 3 1 2

v vv v
v i v v v j

x x x x

vv v
v v v k

x x x
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v v v v i

x x x x

v v v v
v v v v j

x x x x

v

     
+ + +   

      

  
+ + + 

   

      
− − −           

       
− + − − −           


+

( )

3 31 2
1 1 2 2

3 1 2 3

1 2

2
1 2

.
2

v v v
v v v v k

x x x x

V V V

V V 

 
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 
 
 
 
 
 
 
       
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=  −  

=  − 
 

Take the curl on both sides of Equation (11), then it is obtained: 

𝛻 × ((𝑉 ⋅ 𝛻)𝑉) = 𝛻 × 𝛻 (
1

2
|𝑉|2) − 𝛻 × (𝑉 × 𝜔) 

𝛻 × ((𝑉 ⋅ 𝛻)𝑉) = −𝛻 × (𝑉 × 𝜔). 

Assuming that 𝜔 = 𝜔1𝑖 + 𝜔2𝑗 + 𝜔3𝑘, Equation (12) becomes: 

( )( ) ( )

( )( )

( ) ( )

( )

( ) ( ) ( )

1 2 3 1 2 3

1 2 3

1 2 3

2 3 3 2 3 1 1 3

1 2 2 1

2 3 3 2 3 1 1 3 1 2 2 1
1 2 3

V V V

v i v j v k i j k

i j k

v v v

v v i v v j

v v k

i j k v v i v v j v v k
x x x



  

  

   

 

     

  = − 

= −  + +  + +

 
 

= −  
 
 

  − + −
= − 

 + − 

   
= − + +  − + − + − 

   

 

 

 

(11) 

(12) 



BAREKENG: J. Math. & App., vol. 16 no. 4, pp. 1147- 1158, December, 2022 1153 

 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1 2 3

2 3 3 2 3 1 1 3 1 2 2 1

3 1 1 3 1 2 2 1 1 2 2 1 2 3 3 2
3 2 1 3

2 3 3 2 3 1 1 3
2 1

1 2 2 1
2 1 1 2

2 2 2 2

i j k

x x x

v v v v v v

v v v v i v v v v j
x x x x

v v v v k
x x

v v
v v

x x x x

     

       

   

 
 

  
= −

  

− − −

      
= − − − + − − −   

      

  
+ − − − 

  

      
= + − +   

      

3 31 1
1 3 3 1

3 3 3 3

3 32 2 1 2 2 1
3 2 2 3 2 1 1 2

3 3 3 3 3 3 3 3

3 1
1 3

1 1

v v
i v v i

x x x x

vv v v
v v j v v j

x x x x x x x x

v
v

x x


 

   
   




       
− + − +                

                
+ + − + − + − +                              

  
+ +

  

3 3 31 2 2
3 1 3 2 2 3

1 1 3 3 3 3

3 31 2 1 2
1 1 1 2 2 2

1 2 3 1 2 3

31 2 1
3 3 3

1 2 3 1

vv v
v k v v k

x x x x x x

v vv v v v
i j

x x x x x x

vv v v
k

x x x x

  
  

     

  

           
− + − + − +                        

       
= + + + + +   

        

   
+ + + − 

    

1 1
1 2 3

2 3

3 3 32 2 2
1 2 3 1 2 3

1 2 3 1 2 3

3 31 2 1 2
1 1 1 2 2 2

1 2 3 1 2 3

31 2
3 3 3

1 2 3

v v
i

x x

v v vv v v
j k

x x x x x x

v v v i v v v j
x x x x x x

v v v k
x x x

  

     

    

  

  
+ + 
  

       
− + + − + +   

        

       
− + + − + +   

        

   
− + + + 

   

( ) ( ) ( ) ( )

1 1 1
1 2 3

1 2 3

3 3 32 2 2
1 2 3 1 2 3

1 2 3 1 2 3

.

v v v i
x x x

v v v j v v v k
x x x x x x

V V V V

 

    

   

  
+ + 

   

       
+ + + + + +   

        

= −  +   +  −  
 

Hence, we obtain: 

( )( ) ( ) ( ) ( ) ( ).V V V V V V     = −  +   +  −    

Because 𝛻 ⋅ 𝑉 = 0 at Equation (6) and 𝛻 ⋅ 𝜔 = 0 at Equation (13), then Equation (13) becomes: 

𝛻 × (𝑉 ⋅ 𝛻)𝑉 = −(𝜔 ⋅ 𝛻)𝑉 + (𝑉 ⋅ 𝛻)𝜔, 

by substituting Equation (14) into Equation (9), then we get: 

(13) 

(14) 
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( )( )

( )( )

( ) ( )( )

2

1
( )

0

0

t

t

t

V V V P gx

V V V

V V V




 

  +  =  −

  +  =

  + −  +  =

 

( ) ( )

( ) ( ) ,

t

t

V V V

V V

 

  

  +  = 

 +  = 

 

from the vorticity equation (15), if 𝜔 = 0 is given at a time, then 𝜔 = 0 is applied for all time. 

 The Helmholtz-Hodge theorem states that every vector can be expressed into two parts, namely the 

part where the divergence is zero and the part where the curl is zero [16]. If the curl of a vector �⃗� is equal to 

zero (𝛻 × �⃗� = 0) so �⃗� can be written as the gradient of a scalar (�⃗� = 𝛻𝛷). If the divergence of a vector �⃗� is 

equal to zero (𝛻 ⋅ �⃗� = 0) so �⃗� can be written as a curl of a vector (�⃗� = 𝛻 × 𝐴). Because 𝜔 = 0, there is a 

scalar   so that: 

,V =  

Because 𝑉 is also incompressible in + , then we obtain: 

2

0

0

0

0.

V  =

  =

  =

 =

 

Equation (17) is also known as Laplace's equation. Further, Equations (16) and (11) are substituted into 

Equation (8) to obtain: 

(15) 

(16) 

(17) 
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( )( )

( )( )

( )

( )

2

2

2
2

2
2

2
2

2
2

2
2

2
2

1

2

1

2

1

2

1
0

2

1 1
( ) 0

2

1 1

2

t

t

t

t

t

t

t

t

V V V P ge

P
V V V ge

P
V V V V g x

P
g x

P
g x

P
g x

P gx

P gx

 
















 +  =  −


 +  = −

   
 +  −   = −   

  

   
  +   − = −   

  

 
  +   = −  
 

 
  +   − +  = 
 

   +  − + =

  +  − + = ,c

 

where c is a constant. Equation (18) is also known as Bernoulli's equation. In equation (18), the value of P 

pressure is still unknown, except at the surface (where the dynamic free surface condition is applicable). 

Because P = 0 at the L surface, the dynamic free surface condition is obtained as follows: 

2

2

1
.

2
t gx c  +  + =  

 

3.5 Boundary Conditions on Free Surfaces 

From now on, 𝐿 will be considered as a function describing the free surface of the fluid: 

𝐿𝑡 = {(𝑥1, 𝜂(𝑡, 𝑥1)); 𝑥1 ∈ ℝ}, 

where 𝜂(𝑡, 𝑥1) is the height of the wave that is formed over time. Let us see any point (𝑥1(𝑡), 𝑥2(𝑡)) on the 

free surface carried by the fluid flow, from the kinematic free surface conditions we obtain: 

1 1 1 2

2 2 1 2

( ) ( , ( ), ( )),

( ) ( , ( ), ( )),

d
x t V t x t x t

dt

d
x t V t x t x t

dt

=

=

 

with the definition of 𝜂 in Equation (20), 𝑥2(𝑡) = 𝜂(𝑡, 𝑥1(𝑡)) is obtained in equation (22). The velocity 

𝑉2(𝑡, 𝑥1(𝑡), 𝑥2(𝑡)) is the first derivative of 𝜂(𝑡, 𝑥1(𝑡)). It can be written as follows: 

( ) ( )( )( ) ( )( )

( )( ) ( ) ( )( )

( )( ) ( ) ( )( )( ) ( )( )

2 1 1 1

1 1 1 1

1 1 1 1 1 1

, , , ,

, ,

, , , , , .

t

t

d
V t x t t x t t x t

dt

d
t x t x t t x t

dt

t x t V t x t t x t t x t

 

 

  

=

=  + 

=  + 

 

Equation (23) can be rewritten as a kinematic boundary condition: 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 
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𝑥1  ∈  ℝ 

𝑥1  ∈  ℝ 

𝑥1  ∈  ℝ 

𝑥1  ∈  ℝ 

𝜕𝑡𝜂(𝑡, 𝑥1(𝑡)) + 𝑉1 (𝑡, 𝑥1(𝑡), 𝜂(𝑡, 𝑥1(𝑡))) 𝜕1𝜂(𝑡, 𝑥1(𝑡)) = 𝑉2(𝑡, 𝑥1, 𝜂(𝑡, 𝑥1)), 

where 𝑡 ∈ ℝ+ and 𝑥1 ∈ ℝ. By this representation, Bernoulli's system of equations for water waves can be 

written as: 

( )( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( )

2

1 1 1 1 1

1 1 1 1 1 1 2 1 1

0, on

1
, , , , , , , , for

2

, , , , , , , , , for

0, on

t

t

n

t x t x t x t x g t x c

t x t x t x t x t x t x

  

   

+ = 

  +  = − +

 +    =  

  = 

 

 

If it is far from the object, the velocity is assumed to be uniform and horizontal: 

1, forV Ue x→ →  

by substituting (16) into Equation (26), we obtain: 

1 , forUe x→ →  

With 1 1e x= ,  Equation (27) can be written as: 

1

1

,

,

U x

Ux

→ 

→

 

subtracting the left and right sides of the term (28) by 1Ux , we get: 

( )

1 1 1

1 0, for

Ux Ux Ux

Ux x

 − → −

  − → →

 

 By changing the variable 
1Ux =−   then Equation (29) can be written: 

0, for x→ →  

substitute 𝛷 = 𝛹 + 𝑈𝑥1 to the system of equations (25) under the conditions of the first and second free 

surfaces, we get: 

( )( ) ( )( ) ( )

( ) ( )( )( ) ( ) ( )( )

2

1 1 1 1 1 1

1 1 1 1 1 1 2 1 1

1

0, on

1
, , , , , , , , for

2

, , , , , , , , , for

, on

0, for

t

t

n

t x t x t x t x Ue g t x c

t x t x t x U t x t x t x

Un e

x

  

   

+ = 

  +  + = − +

 +   +  =  

  = −  

 → →
 

 

 

(24) 

(26) 

(27) 

(28) 

(29) 

(30) 

(25) 

(31) 
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3.6 Linearization of the Wave Equation 

See equation (23), the function can be approximated using the Taylor series against 𝜂, hence we 

obtain: 

( )( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

( ) ( )( )

22
1 1 1 2 1 1 2 1 1

33
2 1 1 2 1 1

1 2 1 1 1

1

1
, , , , ,0 , ,0 , 0 , ,0 , 0

2

1 1
, ,0 , 0 , ,0 , 0

3! !

, ,0 , ,0 , ,

, ,0 , .

nn

t x t x t x t x t x t x t x

t x t x t x t x
n

t x t x t x o t x

t x o

  

 

 



 = +   − +   −

+   − + +   − +

= +   +

=  + 

 

Equation (32) is substituted into the system of Equations (31) for the first and second free surface 

conditions by keeping only the first-order derivatives so that we get: 

1 0

1 2 0

1

0, on 

, on 

, on 

, on 

0, for 

t

t

n

U g L

U L

Un e

x



 

+ = 

  +   = −

 +  =  

  =  

 → →

 

Steady-state is a condition which states that no change occurs with time. By setting the steady state condition, 

we have 𝜕𝑡𝛹 = 𝜕𝑡𝜂 = 0. Further, the first and second free surface conditions at (33), become: 

1 0

1 2 0

, on

, on

U g L

U L





  = −

 =  

 

 Differentiate Equation (34) with respect to 𝑥1. Further, Equation (35) is substituted to Equation (34), hence 

the free surface boundary condition is obtained as: 
2
11 2 00, on v L +   =  

where 𝑣 =
𝑔

𝑈2.  

 

 

Based on Equations (36) and (33), the system of equations of the free surface and fluid flow conditions is 

obtained as follows: 

2
11 2 0

1

0, on 

0, on 

, on 

0, for 

n

v L

Un e

x

+ = 

  +   =

  =  

 → →

 

 

 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 
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4. CONCLUSIONS 

Based on the results of the research that has been done, a mathematical model is obtained in the form 

of the Laplace equation 0 =  on +  along with the boundary conditions in the fluid, the free surface 

condition, the condition at the obstacle surface and the condition at infinity, namely:  2
11 2 0v +   =  at 𝐿0, 

1n Un e  =   at 𝛤 and 0 →  for |𝑥| → ∞. 
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